
Code Clones in Feature-Oriented Software Product Lines

Sandro Schulze
University of Magdeburg, Germany
sanschul@iti.cs.uni-magdeburg.de

Sven Apel
University of Passau, Germany

apel@uni-passau.de

Christian Kästner
Philipps University Marburg, Germany
kaestner@informatik.uni-marburg.de

Abstract
Some limitations of object-oriented mechanisms are known to
cause code clones (e.g., extension using inheritance). Novel pro-
gramming paradigms such as feature-oriented programming (FOP)
aim at alleviating these limitations. However, it is an open issue
whether FOP is really able to avoid code clones or whether it even
facilitates (FOP-related) clones. To address this issue, we conduct
an empirical analysis on ten feature-oriented software product lines
with respect to code cloning. We found that there is a considerable
number of clones in feature-oriented software product lines and
that a large fraction of these clones is FOP-related (i.e., caused by
limitations of feature-oriented mechanisms). Based on our results,
we initiate a discussion on the reasons for FOP-related clones and
on how to cope with them. We show by means of examples how
such clones can be removed by applying refactorings.

Categories and Subject Descriptors D.2.3 [SOFTWARE ENGI-
NEERING]: Coding Tools and Techniques; D.2.9 [SOFTWARE
ENGINEERING]: Management; D.2.13 [SOFTWARE ENGINEER-
ING]: Reusable Software

General Terms Design, languages, measurements

Keywords Code clones, software product lines, feature-oriented
programming, refactoring

1. Introduction
Code cloning, that is, the replication of code fragments in source
code, is known to be a serious and common problem in object-
oriented programming (OOP) [6, 10, 35]. Numerous studies have
shown that code clones occur frequently in software systems, rang-
ing from 7 % to 23 % [6, 10, 21, 26, 32]. Although recent studies
discuss the harmfulness of code cloning controversially, it is widely
accepted that code clones have a negative effect on the software
structure, in terms of a decrease of maintainability and the intro-
duction of errors [10, 23, 35]. The causes for code cloning have
been widely discussed and include, amongst others, shortcomings
of the host language, which force the programmer to introduce code
clones without any alternative.

Recently, novel programming paradigms such as feature-oriented
programming (FOP) gained attention, which aim at overcoming
certain limitations of OOP. In the context of FOP, a feature is
an increment in program functionality. The functionality encom-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’10, October 10–13, 2010, Eindhoven, The Netherlands.
Copyright c© 2010 ACM 978-1-4503-0154-1/10/10. . . $10.00

passed by a feature is encapsulated in a cohesive unit called feature
module. Feature modules can be used to create a software prod-
uct line (SPL). Typically, an SPL consists of a set of features.1 A
user-defined subset of these features is composed to synthesize a
tailored product. In comparison to OOP, FOP aims at a stronger co-
hesion and reusability of feature code. However, so far, no studies
have been conducted to explore the presence and effects of code
clones in feature-oriented software product lines. Based on our ex-
perience with SPL development, we assume that, although FOP has
the potential to avoid OOP-related code clones, it may introduce
FOP-related clones.

We want to shed light on the issue of code cloning in FOP
and raise a number of research questions: Do code clones exist
in feature-oriented SPLs? Is FOP prone to introduce FOP-related
clones, especially in the context of SPLs? Does it matter whether
the SPL was developed from scratch or refactored from a legacy
application? And finally, what can we do against code clones in
feature-oriented SPLs?

To answer these questions, we perform a code clone analysis
of ten feature-oriented SPLs, six implemented from scratch and
four refactored from legacy applications. We use the established
clone detection tool CCFinder2 [24] to obtain the code clones for
the respective product lines. In particular, we make the following
contributions:

• We perform a conceptual analysis of code clones in FOP. We
identify limitations of FOP that are likely to introduce code
clones. For example, the coarse-grained granularity of exten-
sions in FOP is a limitation that may lead to code clones. We
show that a considerable number of (FOP-related) code clones
actually exist in the SPLs we analyzed.

• By means of a case study on ten different non-trivial feature-
oriented SPLs, we analyze the amount and characteristics of
clones in FOP.

• We explore and discuss whether code clones occur indepen-
dently of the fact that an SPL has been developed from scratch
or refactored from legacy code.

• Based on the results of our analysis, we discuss possibilities of
removing clones by means of refactoring without breaking the
validity of the underlying SPL. We show that code clones can
be removed (in parts) through the application of refactorings
that are tailored to feature-oriented SPLs.

• We initiate a discussion on the existence and effect of code
clones in FOP.

1 The terms feature and feature module are used synonymous for the re-
maining paper, because there is a 1:1 mapping between problem and solu-
tion space in FOP.
2 http://www.ccfinder.net

2. Background
2.1 Code Clones
We give a short overview of research on code clones to lay the
foundation for the remaining sections. Code clones are argued
to have a negative effect the software structure. Amongst others,
increased maintenance costs and an increased probability of bugs
are the most devastating consequences [37, 43].

Code clones are classified into four categories: type-I (identi-
cal), type-II (similar), type-III (statements are removed, added or
changed) and type-IV (semantically similar) clones. In Figure 1,
we give an example for a type-II clone pair, which we detected in
one of our case studies, the graph product line (GPL) [34]. The
two code fragments differ only in the variable names urep and
vrep (Lines 4–8 and Lines 10–15). Furthermore, corresponding
code clones can be merged to clone classes (e.g., by establishing an
equivalence relation between them). Such clone classes are useful
for code clone analysis or removal since they allow to treat related
clones as a unit.

Several approaches for the detection of clones exist, in particu-
lar text-based [6, 17], token-based [24, 32], tree-based [10, 31] and
metric-based [30, 35] clone detection. For detailed information on
clone detection techniques and tools we refer to Roy et al. [44].

The result of clone detection can be used for further processing.
Generally, two approaches exist: code clone removal and code
clone management, of which the latter implies that the clones
remain in the program. For code clone removal, on which we
concentrate in this paper, we carry out an analysis of the detected
clones to obtain information on the clones, useful for their removal
(e.g., identifying clone classes or determining the clone type).
Then, clones are removed using refactorings, that is, restructuring
the program in a behavior-preserving way [18]. There are several
approaches, in which different refactorings are applied manually or
(semi-)automatically to remove clones [7, 19].

1 class Graph { /*...*/
2 public Graph Kruskal {
3 // some code
4 for(int j=0;j<(vrep.members).size();j++) {
5 vaux = (Vertex) (vrep.members).get(j);
6 vaux.representative = urep;
7 (urep.members).add(vaux);
8 }
9 /*...*/

10 for(int j=0;j<(urep.members).size();j++) {
11 vaux = (Vertex) (urep.members).get(j);
12 vaux.representative = vrep;
13 (vrep.members).add(vaux);
14 }
15 }
16 }

Figure 1. An example of a type-II code clone, taken from the
graph product line (GPL) [34]

2.2 Feature-Oriented Software Product Lines
An SPL is a set of software-intensive systems that share a com-
mon, managed set of features [13]. In this context, a feature is an
increment in functionality that implements a stakeholder’s require-
ment [9, 42]. To generate a concrete program from an SPL, the
user selects the desired features – typically a subset of all features
of the SPL – and a generator generates the tailored program (a.k.a.
variant). Different variants of an SPL contain common as well as
different features.

The variability of an SPL is described by a feature model [25].
A feature model defines the features of an SPL and their depen-
dencies. In Figure 2, we depict a graphical feature model of a

optional

Legend:

mandatory

alternative

Figure 2. Feature model of the Stack SPL

Stack product line. The root of the model represents the SPL it-
self, whereas the remaining nodes represent individual features.
Features can be optional or mandatory and, beyond that, can be
grouped as alternative features. Optional and alternative features
are used to express variability in an SPL whereas mandatory fea-
tures express commonalities across all variants.

There are different approaches to implement SPLs, e.g., frame-
works [22] or conditional compilation [27, 41]. Here, we use FOP,
a language-based approach (a.k.a compositional approach) that
gained much attention in the past and that aims at the modulariza-
tion of a program by decomposing it according to Features. Several
FOP languages and tools exist, such as AHEAD [9], FeatureHouse
[5] or FeatureC++ [3], which provide various mechanisms for the
modularization and composition of features. The core idea is that
the functionality encompassed by a feature is implemented by a
cohesive unit called feature module. As a result, we obtain a clean
relationship between the feature and its implementation unit. The
increment of functionality, introduced by a feature, is realized by
adding new structures such as classes or methods and refining ex-
isting ones, such as extending a method.

Feature Stack

class Stack { ...
void push(int v) {/*...*/}
int pop() {/*...*/}

}

Feature Peek

refines class Stack {
int peek() {/*...*/}

}

Feature Undo

refines class Stack { ...
int backupPush;
void undo() {/*...*/}
void push(int v) {
backupPush=v;
original(v);

}
}

Figure 3. Feature-oriented implementation of Stack with features
Peek and Undo

In Figure 3, we show three feature modules of our Stack prod-
uct line. Feature Stack is the basic feature of our product line, in
which class Stack is initially declared. The two features Peek and
Undo refine this class to add functionality (indicated by ’refines
class...’). Feature Peek introduces a new method to copy the
topmost element of the stack. Feature Undo introduces a method
undo and extends the existing method push by an additional state-
ment at the beginning so that the topmost element is assigned to
a backup variable. Keyword original invokes method push of
the original class Stack. We use operator ’•’ to denote the com-
position of features to a program. Although, in our example, each
feature contains only one class, typically multiple classes and class
refinements belong to a feature.

3. Reasoning about Code Clones in
Feature-Oriented SPLs

Limitations of (object-oriented) programming languages are dis-
cussed as a reason for code clones [8, 43]. Mechanisms such as
inheritance or generics are not always sufficient for reusing func-
tionality or expressing variability in programs and thus contribute
to code cloning. By contrast, novel programming paradigms such
as FOP provide mechanisms to overcome these limitations. We il-
lustrate the problem of expressing variability with our Stack prod-
uct line example.

Composing the three features shown in Figure 3, we can gener-
ate four different, meaningful combinations of programs (variants):
Stack, Peek • Stack, Undo • Stack, and Undo •Peek • Stack. Imple-
menting these four variants in OOP requires four separate classes,
one for each program, which we show in Figure 4. Creating the
three programs Stack, PeekStack, and UndoStack can be done
by using simple inheritance without any code clone activity. How-
ever, the creation of the fourth program, UndoPeekStack, would
require to inherit from two classes, PeekStack and UndoStack.
Since this is not possible in many OOP languages (diamond prob-
lem), code has to be cloned contemporary to reuse functionality in
class UndoPeekStack. By contrast, with our feature-oriented im-
plementation in Figure 3 we overcome these limitations by means
of class refinements and thus no code clones occur. Hence, we con-
clude that FOP can help to avoid code clones.

class Stack { ...
void push(int v) {/*...*/}
int pop() {/*...*/}

}

class UndoStack
extends Stack { ...
int backupPush;
void undo() {/*...*/}
void push(int v) {
backupPush=v;
original(v);

}
}

class PeekStack
extends Stack{
int peek() {/*...*/}

}

class UndoPeekStack
extends PeekStack { ...
int backupPush;
int peek() {/*...*/}
void undo() {/*...*/}
void push(int v) {
backupPush=v;
original(v);

}
}

Figure 4. Object-oriented implementation of Stack with features
Peek and Undo

At the same time, FOP may have limitations that contribute to
code cloning as well, such as alternative features. To evaluate the
existence and effect of code clones in feature-oriented SPLs, we
discuss the key mechanisms of FOP and analyze how they possi-
bly foster code cloning. We begin with a conceptual analysis in-
dependent of a particular FOP language, and identify (conceptual)
limitations of FOP that may tempt the programmer to introduce
code clones. Having knowledge on such weaknesses can help to
deal with clones or even to avoid code clones in advance (e.g., by
rethinking the design of the FOP language). Furthermore, we use
the results of our conceptual analysis for structuring our empirical
analysis.

Separation of concerns. Features are concerns relevant in SPL
engineering. As stated by Parnas [40], it is imperative to separate
concerns. But some concerns (or rather their implementations) are
inherently tangled with and scattered across other concerns, com-
monly referred to as crosscutting concerns [29]. Hence, it is diffi-
cult to encapsulate them in separate modules. Although FOP is able
to modularize certain kinds of crosscutting concerns using feature
modules, it has weaknesses to separate others, especially homoge-
neous crosscutting concerns [4]. Homogeneous crosscutting con-

cerns extend a program at several points by the same piece of code
[15]. While studies show that this kind of crosscutting concern oc-
curs rarely compared to others, it still may introduce a compara-
tively large number of code clones [2].

Granularity of extensions. A feature extends existing program
structures by other features. Extensions can be carried out at differ-
ent levels of granularity [27] (e.g., extending classes or methods).
For instance, in our Stack product line in Figure 3, we extend the
method push in feature Undo by a statement at the beginning of the
method. While FOP (and other compositional approaches) work
fine for coarse-grained extensions, it has limitations when realiz-
ing fine-grained extensions, such as extensions at statement level
[27, 39]. For instance, extending a program by adding statements
in the middle of an existing method is only possible with FOP with
cumbersome boilerplate code. As an example, we show in Figure 5
two methods of two features, breadth-first search (BFS) and depth-
first search (DFS), of GPL [34]. Both methods differ only in the
called method in Line 18 and thus, these methods cannot be easily
factored out in a common piece of code. Furthermore, extending
a program by adding a parameter to a method’s signature is not
possible either with FOP [27]. Such limitations are likely to cause
code clones across features since the respective methods have to be
reimplemented in features with only minor changes, as can be seen
in Figure 5.

Alternative features. In particular, alternative features, i.e., fea-
tures that are mutually exclusive, may lead to code clones. A main
characteristic of alternative features is that they are often similar,
differing only in some points. Structured reuse of the common code
of such features, e.g., by class refinements, is not possible without
further workarounds (e.g., additional features, boilerplate code) due
to their alternative nature. Consequently, the respective functional-
ity has to be implemented for each feature separately. For instance,
the two features BFS and DFS of Figure 5 are alternative features.
Hence, the same interface has to be implemented in both features
separately. As a result, both features share a large portion of identi-
cal code and differ only in one particular statement.

Restructuring features. As usual (OO) programs, SPLs are sub-
ject to software evolution. This means that features are extended
due to new requirements and thus grow over time. This may lead to
the point at which a feature contains more functionality than it was
designed for. As a result, the feature has to be split and the corre-
sponding code has to be extracted from the existing feature into the
new one using Cut&Paste. However, since this code is often tightly
coupled with the remaining code of the existing feature, it might be
unavoidable to reuse parts of this code by Copy&Paste, which may
cause code clones.
All of the discussed limitations may introduce code clones. We re-
fer to them as FOP-related clones, because they originate from the
limitations and concepts of FOP. However, since FOP is based on
OOP, other code clones, originating from the latter, may occur as
well in feature-oriented SPLs. For instance, the presence of repli-
cated code fragments within a class or a file may not be specific to
FOP. Hence, we refer to these code clones as OOP-related clones
in the remainder of the paper.

4. Empirical Analysis of
Ten Feature-Oriented SPLs

To explore to what extent code clones exist in feature-oriented
SPLs, we conducted an analysis on ten different feature-oriented
SPLs. In this section we describe the setup, the methodology and
results of our analysis. Furthermore, we discuss the results and
threats to validity.

Feature BFS

1 public class Graph
2 {
3 public void search(WorkSpace w)
4 {
5 VertexIter vxiter = getVertices();
6 if (vxiter.hasNext() == false) return;
7 while (vxiter.hasNext())
8 {
9 Vertex v = vxiter.next();

10 v.init_vertex(w);
11 }
12 for (vxiter = getVertices(); vxiter.hasNext();)
13 {
14 Vertex v = vxiter.next();
15 if (!v.visited)
16 {
17 w.nextRegionAction(v);
18 v.bfSearch(w);
19 }
20 } //end for bfsSearch
21 }
22 }

Feature DFS

1 public class Graph
2 {
3 public void search(WorkSpace w)
4 {
5 VertexIter vxiter = getVertices();
6 if (vxiter.hasNext() == false) return;
7 while (vxiter.hasNext())
8 {
9 Vertex v = vxiter.next();

10 v.init_vertex(w);
11 }
12 for (vxiter = getVertices(); vxiter.hasNext();)
13 {
14 Vertex v = vxiter.next();
15 if (!v.visited)
16 {
17 w.nextRegionAction(v);
18 v.dfSearch(w);
19 }
20 }
21 }
22 }

Figure 5. Code clones between features BFS and DFS in GPL
(only Line 18 differs)

4.1 Prerequisites
The subjects of our analysis are ten feature-oriented SPLs of differ-
ent size (150 to 45000 SLOC3). All SPLs were developed with FOP
tools based on Java, namely FeatureHouse [5] and AHEAD [9].
Furthermore, the selected feature-oriented SPLs stem from differ-
ent domains such as database systems, editors, and mobile games.
We list them in Table 1. The programs in the upper half of Table 1
are implemented from scratch, whereas the others are refactored
from legacy applications. Furthermore, we provide some informa-
tion on authorship, code size, and the domain. We consider the
whole code base of the feature-oriented SPLs rather than certain
variants, because this way we are able to detect code clones across
the boundaries of individual features, which are of interest for our
analysis. For information on dependencies and relations amongst
features, a feature model exists for each of the considered SPLs.
All SPLs can be downloaded from the Web.4

3 SLOC is acronym for source lines of code, a common metric, which refers
to the length of the source code excluding comments and blank lines.
4 http://www.fosd.de/fh

We performed clone detection on the selected SPLs using the
token-based clone detection tool CCFinder [24]. We decided to use
CCFinder because of its high recall and a relatively high precision
(i.e., only few false positive code clones are detected) [11]. As
result, we can ensure that we do not miss any code clones in the
analyzed SPLs. Within CCFinder, the user can specify different
parameters such as minimum clone length. Guided by a former
study that used CCFinder [12], we set the minimum clone length to
five lines of code. This way, we omit meaningless code clones such
as getter and setter methods, which occur incidentally and thus have
no value for our analysis. Afterwards, we merged corresponding
code clones to clone classes based on the detection results, as usual
in clone detection. Consequently, we can treat these clones as a
unit for further analysis steps or even for their removal. Finally, we
performed some minor transformations on the clone classes5 such
as removing comments or whitespaces. We list the results of the
whole analysis in Table 2 and explain the different parts of this
Table in the remaining section.

name SLOC FM domain

GPL1 1 929 28 graph and algorithm library
GUIDSL2 11 527 29 graphical configuration tool
Notepad3 1 012 13 graphical text editor
PKJab4 3 305 8 instant messaging client
TankWar5 4 933 38 shoot ’em up game
EPL6 149 11 arithmetic expression evaluator

Berkeley DB7 45 000 100 transactional storage engine
MobileMedia8 4 227 47 multimedia management
Violet9 7 194 88 graphical model editor
Prevayler10 5 270 6 persistence library

developed by 1R. Lopez-Herrejon (UT Austin), 2D. Batory (UT Austin),
3A. Quark (UT Austin), 4P. Wendler (U Passau), 5L. Lei et al. (U Magdeburg),
6R. Lopez-Herrejon (UT Austin)
refactored by 7C. Kästner (U Magdeburg), 8C. Kästner (U Magdeburg),
9A. Kampasi (UT Austin), 10J. Liu (UT Austin)
FM: feature modules; SLOC: source lines of code

Table 1. Overview of the analyzed SPLs

4.2 Code Clone Analysis Methodology
The code clone analysis process consits of three steps: clone detec-
tion, syntactical classification, and feature-related classification. In
the following, we explain each step and present the main results.
The clone ratio, given at several points in this (and the following)
subsection is always related to the total amount of code (SLOC) for
each SPL.

Clone detection. In Table 2 (a), we show the results of the clone
detection. The result of the initial clone detection process shows
that the considered SPLs exhibit large portion of clones. For in-
stance, in TankWar, we detected 1000 SLOC of clones, which are
20 % of the total code base. Nevertheless, there may be clones
which occur incidental and thus are meaningless for our analy-
sis (e.g., a sequence of variable declarations). Furthermore, at this
point, it is still unclear whether the clones are FOP-related or OOP-
related. Hence, we perform a more detailed analysis to gain more
information on the detected clones.

Syntactical classification. First of all, we classify the initial clone
classes by their syntactic category, that is, their relation to cer-

5 Whenever an action is performed on a clone class in the following, this
action affects all of its member clones.

(a) clone detection (b) syntactical classification (c) feature-related classification

SLOCclones CRcd IS FS WS MD TD CRsc CPF/A CDF SLOCclones CRFOP

GPL 731 37 0 14 0 480 185 35 652/652 0 652 34
GUIDSL 900 7 20 0 24 403 443 7 98/98 0 98 1
Notepad 291 28 130 0 0 18 58 20 130/0 0 130 12
PKJab 203 6 18 12 0 0 90 3 0/0 0 0 0
TankWar 1000 20 132 4 0 371 242 15 662/634 0 680 13
EPL 18 12 0 0 0 0 18 12 18/18 0 18 12

BerkeleyDB 952 2 65 0 0 436 207 2 69/69 67 357 <1
MobileMedia 716 16 24 0 0 46 482 13 16/16 135 305 7
Violet 784 11 56 24 0 30 315 6 220/162 108 328 5
Prevayler 131 2 6 0 0 62 58 2 0/0 0 16 <1
CR: clone ratio (in %) for clone detection (cd), syntactical classification (sc), and feature-related classification (FOP); IS: IfStatement; FS: ForStatement;
WS: WhileStatement; DS: DoStatement; MD: MethodDeclaration; TD: TypeDeclaration; CPF/A: clones with common parent feature/portion of clones from
alternative features; CDF: clones with common dependency feature;

Table 2. Statistics of clone detection and analysis

tain syntactical elements (e.g., statements, expressions, . . .). Af-
terwards, we select the clone classes that we classify into one of
the following categories with the obvious meanings: IfStatement,
ForStatement, WhileStatement, MethodDeclaration, and TypeDec-
laration. We do this for two reasons: First, these categories indicate
enclosing blocks (e.g., for loops) that encapsulate a semantically
coherent piece of functionality. Hence, such blocks may result from
explicit cloning activity (e.g., by Copy&Paste) rather than occur in-
cidental. Second, these categories provide good refactoring oppor-
tunities for code clone removal, for instance, by applying Extract
Method or Pull Up Method refactorings, tailored to SPLs [18]. All
clone classes with different syntactic categories are filtered out and
not considered for further analysis.

We list the results of this classification in Table 2 (b). For
each category, we give the number of clones (SLOC). In the last
column, we provide the clone ratio for each of the considered SPLs
(column CRsc). For instance, TankWar has the following number
of code clones: 371 SLOC related to method declarations, 242
SLOC related to type declarations, and 132 SLOC related to if
statements. Overall, this product line has a clone ratio of 15 %
considering only syntactical clones of interest, i.e., there are some
clones that are not related to the considered syntactical categories.

Feature-related classification. In the second step of our analysis,
we identify the nature of code clones, that is, whether they are FOP-
related or not. This step is based on the syntactical classification
and thus only syntactical clones of our interest are considered.
For determining their nature, we have to consider corresponding
code clones as a whole. Thus, we analyze the clone classes created
after clone detection and selected for further analysis by syntactic
classification. First of all, we define the following condition: A
clone class is FOP-related, if its member clones affect at least two
features, that is, the corresponding clones must occur in at least
two different features. Code clones of a clone class that affect only
one feature, occur within one class or between different classes
of a single feature. Since this kind of cloning happens in a usual
OOP program as well, we assume that these clone classes are OOP-
related. These clones are relevant too, but outside the scope of this
paper.

After the classification, we analyzed the FOP-related clones to
gain information on the causes of cloning as well as to identify pos-
sible refactorings applicable for code clone removal. Specifically,
we analyzed whether the detected clones cover features that have
a common parent, are mutually exclusive, or are in a parent-child
relationship. We discuss the concrete correlation between feature

relationship, obtained by this analysis step, and refactoring in Sec-
tion 5.

We show the result of the whole second analysis step in Ta-
ble 2 (c). The respective columns contain the results of our analysis.
In column SLOCclones, we list the total number of clones between
multiple features. Column CPF/A indicates the SLOC (of clones)
that occur in features with a common, direct parent feature and how
many of these clones occur in alternative features. Furthermore, we
list how many clones (using the SLOC metric) occur in features
that are in a parent-child relationship (column CDF). We describe
such dependencies in Section 5 in detail. Finally, we list the clone
ratio of the remaining, FOP-related clones in column CRFOP.

For instance, TankWar contains 680 lines of FOP-related code
clones (column SLOCclones), which are 13 % compared to the
whole code size (column CRFOP). The first part of column CPF/A
indicates that 662 lines of code clones exist in features with a
common, direct parent feature. The second part of this column
indicates that 634 lines of code clones exist in alternative features.
Furthermore, no code clones exists in features with a parent-child
relationship (column CDF). In the following subsection we have a
closer look at the results.

4.3 Results
During our analysis, we collected various data. Next, we describe
our results from Table 2. For a discussion and interpretation of the
results refer to Section 4.4. We structure our description according
to our analysis steps and examine the differences that may result
from the different development process of our SPLs.

We calculated the percentage of the average and the standard
deviation (a ± s) on the clone ratio of all considered SPLs. Next,
we state the results for our three analysis steps, that is, clone
detection, syntactic classification and feature-related classification.
Additionally, we set our focus on how the results depend on the
development process of the analyzed SPLs.

Number of code clones. The results of our initial clone detec-
tion reveal that there is a significant number of clones in feature-
oriented SPLs (cf. Table 2 (a)). Regarding all considered SPLs,
15 ± 10% of the overall code are clones. We observed consid-
erable differences regarding the clone ratio of the particular SPLs
that ranges from 2 % to 37 %, which is also reflected by the rela-
tively high standard deviation. Beyond this, we noticed that two of
the smallest SPLs (GPL and Notepad) have the highest clone ratio
values with 37 % and 28 % respectively. By contrast, the two largest
SPLs (Berkely DB and GUIDSL) are among those with the lowest
clone ratio value.

Refactorable clones. With our first analysis step, we aimed at de-
tecting clones that could be target to refactorings because of their
syntactic characteristics. The data (cf. Table 2 (b)) reveal that there
is still a huge number of clones that may be removable indicated
by a total clone ratio of 12 ± 9%. In addition, we observed the
clone ratio decreases in comparison to the initial clone detection in
almost all SPLs. This means that not all code clones exhibit syntac-
tical characteristics that are useful for refactoring by our means. We
observed further that the clone classes, filtered out by the syntacti-
cal classification, mainly fall into the three categories IfStatement,
MethodDeclaration, and TypeDeclaration. Particularly, we noticed
the high number of code clones in category TypeDeclaration, which
means that whole classes have been cloned.

FOP-related clones. The data resulting from the last analysis
step (cf. Table 2 (c)), reveal, that there are code clones that are
FOP-related by our definition. Nevertheless, we observed that four
feature-oriented SPLs (GUIDSL, PKJab, Berkeley DB, and Pre-
vayler) contain (almost) no FOP-related clones. We assume that
this results from the fact, that these SPLs have the lowest clone ra-
tio even in the initial clone detection (cf. Table 2 (a)) and that the
existing clones are OOP-related. Generally, we observed that the
clone ratio is considerable lower than the clone ratio after syntacti-
cal classification for all SPLs except of GPL. Regarding all SPLs,
the ratio of FOP-related clones is 9±9% and of OOP-related clones
is3± 2%. This reveals that the analyzed SPLs contain more FOP-
related clones and that there is a high diversity of the FOP-related
clone ratio of the several SPLs. Actually, four SPLs have an FOP-
related clone ratio greater than 10 %, whereas the clone ratio of
the remaining SPLs is less than 8 %. Finally, we observed that the
FOP-related clones mostly have a common parent feature and are
distributed over alternative features (column CPF/A in Table 2 (c)).
Only in three SPLs (MobileMedia, BerkeleyDB, and Violet), clones
are contained in features that are in a parent-child relationship (in-
stead of having a common parent feature).

From scratch vs. refactored. Considering all of the data we col-
lected, we observed one peculiarity: Throughout all analysis steps,
the number of clones in SPLs developed from scratch is higher than
in SPLs decomposed from legacy applications. This is also indi-
cated by the number of clones that is higher for SPLs from scratch
(19± 12% in Table 2 (a), 12± 12% in Table 2 (c)) than for SPLs
from legacy applications (10±5% in Table 2 (a), 5±4% in Table 2
(c)). The SPLs refactored from legacy applications were developed
originally object-oriented and finally, were decomposed manually
or automatically [28]. Beyond that, the data reveal that the diver-
sity of clone ratios between the individual SPLs from scratch is
very high, which indicates that there are even differences amongst
those SPLs. Finally, we observed that both kinds of SPLs contain
FOP-related as well as OOP-related clones.

4.4 Discussion
Next, we discuss the results of our case study regarding the research
questions raised in the introductory section.

Do code clones exist in feature-oriented SPLs? Based on the
results of our analysis, we conclude that a considerable number
of code clones actually exist in feature-oriented SPLs. Beyond
that, we observed that there are significant differences, regarding
the number of clones between the analyzed SPLs in general, and
in a few of them the number is negligible. In addition, some of
the smallest SPLs have the highest number of clones. However,
considering the overall results of the clone detection, we can not
discover a correlation between SLOC metric and clone ratio.

Is FOP prone to introduce FOP-related clones in SPLs? Our
results indicate that there are FOP-related clones in the analyzed

SPLs. An interesting observation is that the majority of these FOP-
related clones occur between alternative features. This observation
coincides with the limitations of FOP analyzed by us and other
researchers before. But this observation indicates that there is a
high potential for code clone removal, because we can possibly
extract the respective clones into a separate but shared feature
(cf. Section 5). In contrast, we also detected clones that are FOP-
related, which do not occur in alternative features. Considering our
data, we can not clearly infer why these clones occur. But even
without these clones it is a matter of fact that feature-oriented SPLs
contain FOP-related clones.

Does the development process of the SPL influence code cloning?
Our results show differences between the analyzed SPLs that can be
ascribed to the development process (from scratch vs. refactored).
The SPLs developed from scratch contain a significant higher num-
ber of clones than the SPLs refactored from legacy applications. In
Particular, we observe a relation between FOP-related clones and
alternative features. Indeed, the SPLs from scratch have a consid-
erable amount of alternative features while the decomposed SPLs
have not. We conclude that (a) alternative features especially lead
to code clones and (b) the SPLs from scratch contain a higher num-
ber of this kind of features. This observation is supported by the
fact that the SPLs refactored from legacy applications were not de-
signed with variability in mind and thus contained no or only few
alternatives before decomposition. As a result, the variability was
mostly introduced by optional features during the decomposition
process.

Another reason may be that the programmers of the SPLs from
scratch were not capable to exploit all concepts and mechanisms of
FOP (as often observed with new programming paradigms). Hence,
they may have introduced clones unnecessarily or missed to factor
out clones where it was possible with the mechanisms of FOP.

How to deal with clones in feature-oriented SPLs? During our
analysis, we particularly looked at the refactoring potential of the
detected clones. The corresponding data reveal that a large portion
of the overall detected clones exhibits characteristics that indicate
refactoring opportunities. One interesting observation is that a huge
number of clones between alternative features are across method
declarations. These clones can be refactored by pulling them up to
the common parent feature. We will have a closer look to concrete
refactorings in Section 5.

However, our data do not reveal information on the concrete
number of actual refactorable clones. For instance, two cloned
methods may be similar except of one statement, that differs in the
call to another method as in Figure 5. As a result, it will be hard to
apply a refactoring such as Pull Up Method to these clones. This
requires a more detailed analysis, which we present exemplarily for
one of the considered SPLs in Section 5. Besides refactoring, other
possibilities exist for managing clones, we did not consider in our
analysis, such as clone tracking [16] or linked editing [46]. The idea
of both approaches is that the detected clones remain in the code
but information on their existence is used for their management,
e.g., for changing code clones simultaneously. Apart from that, we
believe that code clone removal, if applicable, is the most suitable
practice for dealing with clones.

4.5 Threats to validity.
Single FOP language. Although FOP is a general paradigm, it
depends to some extent on the mechanisms of the underlying lan-
guage. As a result, different FOP languages exist (e.g., for Java,
C++, Haskell, and UML) that may lead to different implementa-
tions for feature-oriented SPLs. In this paper, we focused only on
FOP languages based on Java, so the results of our analysis are
comparable. These FOP languages are considered to be most ma-

ture and a sufficient amount of case studies exist compared to other
FOP languages. However, the classification we made along with
our analysis is in theory also valid for other languages, e.g., C++ or
C#. Although no empirical evaluation for other languages yet ex-
ists, we assume that our analysis is independent of the underlying
language.

Selected SPLs. A major problem with case studies is that the se-
lected programs may be biased an thus the results are not general-
izable. In addition, only few SPLs exist that are implemented using
FOP (based on Java), which might reduce the validity of our study.
To address this problem, we considered all feature-oriented SPLs
that we were able to locate for our study. Beyond that, the selected
SPLs are from different domains and of different size. Neverthe-
less, one problem remains: All of the analyzed SPLs are proto-
typical implementations from academia. Hence, there is a lack of
comparable results of SPLs with industrial strength, which is also
caused by the fact that such systems do not exist for FOP yet. Nev-
ertheless, the considered SPLs have been implemented by different
authors and for other purposes and prior to and independent of our
analysis. Considering the SPLs refactored from legacy applications
it is worth to mention that these SPLs were refactored without code
clones in mind. Hence, we can definitively exclude that the results
of our empirical analysis are biased because of code clone aware-
ness.

Classification of FOP-related clones. During our analysis, we
proposed a classification for FOP-related clones based on the rela-
tion of the affected features. However, we detected clones for which
we can neither infer why these clones occur nor if they are FOP-
related indeed. One possibility is that these clones are contained in
features that implement homogeneous crosscutting concerns. Since
this kind of concerns occurs in OOP programs as well, the respec-
tive clones may be not purely FOP-related. Beyond that, our condi-
tion for FOP-related clones is rather a criterion that can be used to
omit clones that are clearly OOP-related. As a result, this condition
can not ensure that FOP-related clones are caused by FOP exclu-
sively. Hence, we should refine this condition to be more restrictive
in our classification of what an FOP-related clone is. However, we
defined a lower bound with our definition of what an FOP-related
code clone is, which can be used as a base for future work.

5. Removal of (FOP-related) Code Clones
During our empirical analysis, we looked for refactoring opportuni-
ties for removing the detected (FOP-related) clones. In this section,
we discuss how the analysis results can be used for deriving con-
crete refactorings. Subsequently, we apply these refactorings exem-
plarily to one of our case studies, the TankWar product line.

5.1 Extracting Code Clones from Features
There are different possibilities to remove FOP-related clone
classes. The general pattern is that we want to replace the replicated
code in multiple locations by a single reusable code fragment.

For example, in the simple case that an SPL always requires one
of two alternative features, and both features introduce the same
method, then we can remove all cloned instances of the method and
introduce it only once in the root feature. With this modification, we
eliminate cloning and the method is always available from the root
feature. Obviously, we cannot move every cloned code fragment
into the root feature. If it is valid to select none of the features
containing cloned code, moving code to the root feature would
bloat the code base of variants in that none of these features is
selected.

A general solution is to move cloned code into a newly created
feature that is selected if and only if at least one of the features

containing cloned code is selected. Consider the feature model in
Figure 7 (a) and assume that some code between features C and D
is cloned. In this case, we could create a new parent feature X for
C and D and move the cloned code there as illustrated in Figure 7
(b). Alternatively, we can create a new feature X somewhere else
in the feature model and use a cross-tree constraint (X equals C
or D) to enforce the previous semantics as in Figure 7 (c). Of
course, we can also search the feature model for existing features
that would meet the condition, instead of creating a new one.
Note that both transformations of the feature model preserve all
existing variants and do not create new variants (called feature
model refactoring) [45].

The pattern of moving cloned code to a single new location
works uniformly for different kind of clones: cloned types, cloned
methods and others.

(a) Original (b) Alternative #1 (c) Alternative #2

Figure 7. Feature model edits for code clone removal

5.2 Exemplary Refactoring of FOP-related Code Clones
To evaluate the applicability of refactorings to FOP-related clones,
we performed code clone removal by manually applying refactor-
ings for one of our case studies: TankWar. TankWar is a shoot ’em
up game, running on PC and mobile phones, that was developed
by students of the University of Magdeburg. We selected this prod-
uct line, because it has a high clone ratio, a relatively high num-
ber of FOP-related clones, and it is of medium size (approx. 5 000
SLOC). The game was developed as a product line because it must
adhere to strong portability requirements, as common for mobile
games [1]. For instance, TankWar has been developed for PC and
mobile phone, which have different constraints regarding memory
or display. Even between mobile phones, there can be considerable
differences, e.g., a modern smartphone has more memory and com-
puting power than a five year old mobile phone. As a result, the
developer must be able to tailor the game in order to achieve the
best game quality. In Figure 6, we show the feature model of the
TankWar product line in which features such as Image and Sound
are specific for different platforms. Furthermore, we can see sev-
eral alternative feature groups and, according to our analysis (cf.
Table 2 (c)), these features contain a large portion of code clones.
Hence, we expected that removing these clones by refactoring is
very promising.

Following our analysis results, we identified fourteen clone
classes, which contain potentially refactorable clones. We list these
clone classes in Table 3, with their syntactical category (SC), the
features containing the code clones (CF), the target feature for
the refactorings (RF), and the applied refactorings (if possible).
After a first review of these clone classes, we declared four clone
classes (#11 – #14) as ”not refactorable” for the following reasons:
Three of them (#11 – #13), contained in different features below the
feature Tools, consist of type-II clones (i.e., they differ in constants,
variable names, etc.) which means that refactoring would be only
possible with some workarounds. Since this leads to complicated
code and, in this special case, to increased code size, we excluded
these clone classes from the refactoring process. The fourth clone

Figure 6. Feature model of the TankWar product line

CC SC CF RF Refactorings

1 TD Leopard, Abrahams,. . . Tanks EM, PUM
2 MD PC, Mobile Platform PUM
3 IS PC, Mobile Platform EM, PUM
4 MD PC, Mobile Platform PUM
5 MD PC, Mobile Platform PUM
6 MD PC, Mobile Platform PUM
7 TD PC, Mobile Platform PUC
8 MD Re PC, Re Mobile Record PUM
9 TD Re PC, Re Mobile Record PUC

10 IS TankWar, Tools TankWar EM
11 TD Bomb, Freeze, . . . – –
12 TD Bomb, Freeze, . . . – –
13 TD Bomb, Freeze, . . . – –
14 IS Handy, Re Mobile – –

CC: clone class; SC: syntactical category; CF: feature(s), containing the clones;
RF: feature, the clones are refactored to; EM: Extract Method refactoring;
PUM: Pull Up Method refactoring; PUC: Pull Up Constructor Body refactoring

Table 3. Overview of clone classes removed by refactorings

clone class (#14) consist of type-III clones with notable differences
such that a refactoring was not applicable. Beyond this, the clones
of these four clone classes are scattered across features that have
neither a common parent nor other dependencies that are essential
for the application of refactorings.

For the remaining ten clone classes that where finally subject of
our refactoring process, we made the following observations. Ob-
viously, most of the clones exist between alternative features that
separate platform-dependent functionality. In addition, the clone
classes fall only into three different syntactic categories (IfState-
ment, MethodDeclaration, TypeDeclaration), which coincides with
our observations in Section 4. Furthermore, we made some obser-
vations, which we did not list in the table due to space restrictions.
First, all member clones (i.e., clones of a single clone class) have a
common, direct parent feature. Second, clone classes with syntac-
tic category TypeDeclaration (TD) contained replicated methods or
constructors as code clones. Hence, we treat them like clone classes
of category MethodDeclaration (MD) for the refactoring process.
Third, we observed that seven clone classes consist of type-I clones
and three consist of type-II clones.

For the actual refactoring process, we had to tailor certain
object-oriented refactorings to FOP. We call such refactorings
feature-oriented refactorings.6 For instance, we tailored the Pull
Up Method refactoring such that it operates on the level of features
instead of classes. As a result, the application of this refactoring
in the context of feature-oriented SPLs means that the respective
method is moved from the current feature to its parent feature. In
the same way, weadapted the Pull Up Constructor Body [18]. In

6 Note that this term is used in analogy to aspect-oriented refactorings [38]
and different from the term used by Liu et al. [33], where it describes the
process of decomposing (object-oriented) programs into features.

contrast, we used the Extract Method refactoring in its original
form, because their is no difference between extracting a method
in OOP and FOP.

During the application of the refactorings mentioned above,
we made the following observations. Initially, we could apply the
refactorings to all of the ten clone classes and consequently, remove
the code clones. For three clone classes, we had to apply the
Extract Method refactoring in advance, either for extracting the
identical part of the clones (#1) or for extracting if statements
into methods (#3, #10). For two clone classes (#7, #9) we had to
replace a value by a variable, which we initialized for each of the
clones separately. Finally, we applied the (feature-oriented) Pull Up
Method refactoring to all clone classes to remove the clones.

After the code clone removal process, we analyzed the TankWar
product line again, according to the methodology introduced in
Section 4. This lead to the following results: The number of code
clones has been decreased throughout all analysis steps. Regarding
the initial clone detection, the number of clones decreased from
20 % (cf. Table 2 (a)) to 12 %. For the syntactic classification, the
number of code clones is reduced by the half to 7 %. Finally, we
achieved a vast decrease of the number of FOP-related clones. In
the refactored SPL, only 4 % FOP-related clones exist, which is
three times lower than in the original SPL (12 %). We conclude that
code clone removal through refactorings is a promising approach to
remove FOP-related clones from feature-oriented SPLs.

5.3 Discussion
First, a large portion of FOP-related clones can be removed by
refactoring. This fact raises the question whether these clones occur
due to Copy&Paste activities rather than limitations of FOP. But
even in this case it is unclear why the programmer copied the code.
For instance, it is possible that the programmer was not aware
of proper (feature-oriented) refactorings or mechanisms that can
avoid the resulting code clones. As a result, these clones can be
considered FOP-related as well to some extent.

Secondly, we observed that there are some limitations for the re-
moval of FOP-related clones. On the one hand, all of the removed
clones occurred in features with a common, direct parent feature
and most of them were alternative features. Hence, we can make
no clear statement on removing clones caused by fine-grained ex-
tensions or crosscutting concerns. On the other hand, the detected
clones where mostly identical (type-I) or had only slight differences
(type-II). In the case, that the clones have notable (syntactic) differ-
ences, it may be difficult to remove them.

Third, we found FOP-related clones (type-II and type-III) that
were not refactorable at all. One reason was that the application
of refactorings implied complicated workarounds that outweigh
the benefits of code clone removal. This observation led us to the
assumption that there is a border line at which the extraction (of
clones) is no longer beneficial for maintainability.

However, we are confident that code clone removal is possible
for a considerable fraction FOP-related clones and that refactorings
are a viable approach to remove them. Nevertheless, more research

is necessary to find out reasons, characteristics, and solutions for
code clones and their removal in feature-oriented SPLs.

6. Related Work
The different topics addressed in this paper such as clone detec-
tion/removal or feature-oriented programming, have been subject
to intensive research in the past.

Many studies exist on code clones in object-oriented software
systems. Some of them focus only on whether code clones exist
or not [6, 10, 31] whereas others analyze code clones with respect
to their effects [32, 37], their removal [7] or other peculiarities,
e.g., identifying crosscutting concerns [12]. However, all of these
studies are limited to OOP (and, to a minor fraction, functional
programming). In contrast, our work focuses on clone detection and
analysis of particularities of FOP and SPLs, which has not been
considered so far. We open a new field for code clone research
activity. Additionally, we related the causes for FOP-related code
clones to the limitations of FOP, which can initiate discussions on
FOP language design.

Beyond FOP, clone detection in SPLs is rare as well. Mende
et al. propose clone detection for supporting the evolution of
SPLs [36]. However, in their work they consider SPLs, realized
by object-oriented, preprocessor-based languages such as C++ and
thus, the individual features are separated only virtually (i.e., by
syntactical elements such as #ifdef). In our work, we consider
feature-oriented SPLs where the features are separated into mod-
ules and we show that clone detection for such SPLs is applicable
as well.

Because of the negative effects of code clones, their removal has
been subject of research in the past. Balazinska et al. propose ad-
vanced code clone analysis that supports the application of object-
oriented refactorings for code clone removal [7]. Higo et al. pro-
pose a metric-based approach to identify refactoring opportunities
[20] for code clones. Although we focus on refactorings for code
clone removal as well, our work is different in the way that we
propose refactorings tailored to FOP, which is in line with aspect-
oriented refactorings [14, 38]. Specific details of such refactorings
are outside the scope of this paper; for details, see [33].

7. Conclusion
Code clones have negative effects on software systems. We an-
alyzed the existence of code clones in feature-oriented software
product lines. To this end, we formulated research questions, re-
garding the causes and removal of code clones, specific to feature-
oriented SPLs. We conducted an empirical analysis on ten differ-
ent SPLs to answer these questions. Additionally, we performed a
conceptual analysis on limitations of FOP and how these limita-
tions contribute to code clones. Based on the results of the empiri-
cal analysis, we removed FOP-related code clones of an exemplary
product line by the application of refactorings.

We observed, that code clones exist in feature-oriented SPLs
and that a considerable number of these clones is FOP-related (in
the context of SPLs). Furthermore, we found that these clones are
caused by limitations of feature-oriented SPLs such as alternative
features. Another interesting observation we made is that the de-
velopment process is crucial for the number of FOP-related code
clones. More precisely, we found that feature-oriented SPLs, devel-
oped from scratch, contain a significantly higher number of FOP-
related clones than SPLs refactored from legacy applications. Fi-
nally, we observed that refactoring is a viable approach to remove
FOP-related clones.

However, there still some questions we could not answer so far.
More research is necessary to quantify which causes are crucial
for FOP-related clones and which are not. Furthermore, it is open

whether clones are common to SPLs in general. For instance, in
future work we will analyze how other mechanisms for dealing
with variabilty such as #ifdefs influence the occurence of code
clones (compared to FOP). Nevertheless, our work and the results
can serve as input for a discussion on code clones in feature-
oriented SPLs and in SPL engineering in general.

Acknowledgments
We thank Thomas Thüm for giving insights to and the extension of
FeatureIDE. Schulze’s work has been funded in part by the German
Federal Ministry of Education and Science (BMBF) through the
Research Programme under Contract No. FKZ:13N10817. Apel’s
work is supported in part by DFG project #AP 206/2-1. Kästner’s
work is supported in part by the European Research Council (ERC
grant ScalPL #203099).

References
[1] V. Alves and et al. Extracting and Evolving Mobile Games Product

Lines. In Proc. of the Int. Software Product Line Conf., pages 70–81.
Springer-Verlag, 2005.

[2] S. Apel. How AspectJ is Used: An Analysis of Eleven AspectJ
Programs. Journal of Object Technology, 9(1):117–142, 2010.

[3] S. Apel, T. Leich, M. Rosenmüller, and G. Saake. FeatureC++: On the
Symbiosis of Feature-Oriented and Aspect-Oriented Programming. In
Proc. of the Int. Conf. on Generative Programming and Component
Engineering, pages 125–140. Springer Verlag, 2005.

[4] S. Apel, T. Leich, and G. Saake. Aspectual Feature Modules. 34(2):
162–180, 2008.

[5] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse: Language-
Independent, Automated Software Composition. In Proc. Int. Conf. on
Software Engineering, pages 221–231. IEEE Computer Society, 2009.

[6] B. S. Baker. On Finding Duplication and Near-Duplication in Large
Software Systems. In Proc. of the Work. Conf. on Reverse Engineer-
ing, pages 86–95. IEEE Computer Society, 1995.

[7] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogian-
nis. Advanced Clone-Analysis to Support Object-Oriented System
Refactoring. In Proc. of the Work. Conf. on Reverse Engineering,
pages 98–107. IEEE Computer Society, 2000.

[8] H. Basit, D. Rajapakse, and S. Jarzabek. Beyond Templates: A Study
of Clones in the STL and some General Implications. In Proc. Int.
Conf. on Software Engineering, pages 451–459. ACM Press, 2005.

[9] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refine-
ment. IEEE Trans. Soft. Eng., 30(6):355–371, 2004.

[10] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone
Detection Using Abstract Syntax Trees. In Proc. of the Int. Conf.
on Software Maintenance, pages 368–377. IEEE Computer Society,
1998.

[11] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Compar-
ison and Evaluation of Clone Detection Tools. IEEE Trans. Soft. Eng.,
33(9):577–591, 2007.

[12] M. Bruntink, A. Deursen, R. Engelen, and T. Tourwe. On the Use
of Clone Detection for Identifying Crosscutting Concern Code. vol-
ume 31, pages 804–818. IEEE Computer Society, 2005.

[13] P. Clements and L. Northrop. Software Prodcut Lines: Practices and
Patterns. Addison Wesley, 2006.

[14] P. Cole, L.and Borba. Deriving Refactorings for AspectJ. In Proc.
Int. Conf. on Aspect-Oriented Software Development, pages 123–134.
ACM Press, 2005.

[15] A. Colyer, R. A., and G. Blair. On the Separation of Concerns in
Program Families. Technical Report Technical Report COMP-001-
2004, Computing Department, Lancaster University, 2004.

[16] E. Duala-Ekoko and M. Robillard. Tracking Code Clones in Evolving
Software. In Proc. Int. Conf. on Software Engineering, pages 158–167.
IEEE Computer Society, 2007.

[17] S. Ducasse, M. Rieger, and S. Demeyer. A Language Independent
Approach for Detecting Duplicated Code. In Proc. of the Int. Conf.
on Software Maintenance, pages 109–118. IEEE Computer Society,
1999.

[18] M. Fowler. Refactoring – Improving the Design of Existing Code.
Addison Wesley, 2000.

[19] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Aries: Refactoring
Support Environment based on Code Clone Analysis. In Proc. of Int’l
Conf. on Soft. Eng. and Appl. (SEA), pages 222–229. ACTA Press,
2004.

[20] Y. Higo, S. Kusumoto, and K. Inoue. A Metric-Based Approach to
Identifying Refactoring Opportunities for Merging Code Clones in a
Java Software System. J. Softw. Maint. Evol., 20(6):435–461, 2008.

[21] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD: Scalable
and Accurate Tree-based Detection of Code Clones. In Proc. Int. Conf.
on Software Engineering, pages 96–105. IEEE Computer Society,
2007.

[22] R. Johnson and B. Foote. Designing Reusable Classes. J. of Object-
Oriented Progr., 1(2):22–35, 1988.

[23] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do Code
Clones Matter? In Proc. Int. Conf. on Software Engineering, pages
485–495. IEEE Computer Society, 2009.

[24] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source
Code. volume 28, pages 654–670. IEEE Press, 2002.

[25] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Re-
port CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, 1990.

[26] C. Kapser and M. W. Godfrey. Supporting the Analysis of Clones in
Software Systems: A Case Study. J. Softw. Maint. Evol., 18(2):61–82,
2006.

[27] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software
Product Lines. In Proc. Int. Conf. on Software Engineering, pages
311–320. ACM Press, 2008.

[28] C. Kästner, S. Apel, and M. Kuhlemann. A Model of Refactoring
Physically and Virtually Separated Features. In Proc. of the Int. Conf.
on Generative Programming and Component Engineering, pages 157–
166. ACM Press, 2009.

[29] G. Kiczales et al. Aspect-Oriented Programming. In Proc. of the Eur.
Conf. on Object-Oriented Programming, pages 220–242, 1997.

[30] K. Kontogiannis. Evaluation Experiments on the Detection of Pro-
gramming Patterns Using Software Metrics. In Proc. of the Work.
Conf. on Reverse Engineering, pages 44–55. IEEE Computer Society,
1997.

[31] J. Krinke. Identifying Similar Code with Program Dependence
Graphs. In Proc. of the Work. Conf. on Reverse Engineering, pages
301–309. IEEE Computer Society, 2001.

[32] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding Copy-
Paste and Related Bugs in Large-Scale Software Code. IEEE Trans.
Soft. Eng., 32(3):176–192, 2006.

[33] J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactoring of
Legacy Applications. In Proc. Int. Conf. on Software Engineering,
pages 112–121. ACM Press, 2006.

[34] R. Lopez-Herrejon and D. Batory. A Standard Problem for Evaluating
Product-Line Methodologies. In Proc. of the Int’l Conf. on Generative
and Component-Based Soft. Eng. (GCSE), pages 10–24. Springer-
Verlag, 2001.

[35] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the Automatic
Detection of Function Clones in a Software System Using Metrics. In
Proc. of the Int. Conf. on Software Maintenance, pages 244–254. IEEE
Computer Society, 1996.

[36] T. Mende, F. Beckwermert, R. Koschke, and G. Meier. Supporting the
Grow-and-Prune Model in Software Product Lines Evolution Using
Clone Detection. In Proc. of the Eur. Conf. on Software Maintenance
and Reengineering, pages 163–172. IEEE Computer Society, 2008.

[37] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Soft-
ware Quality Analysis by Code Clones in Industrial Legacy Software.
In Proc. of the Int Symposium on Software Metrics, pages 87–96. IEEE
Computer Society, 2002.

[38] M. Monteiro and J. Fernandes. Towards a Catalog of Aspect-Oriented
Refactorings. In Proc. Int. Conf. on Aspect-Oriented Software Devel-
opment, pages 111–122. ACM Press, 2005.

[39] G. Murphy, A. Lai, R. Walker, and M. Robillard. Separating Features
in Source Code: An Exploratory Study. In Proc. Int. Conf. on Software
Engineering, pages 275–284. IEEE Computer Society, 2001.

[40] D. L. Parnas. On the Criteria to be used in Decomposing Systems into
Modules. Commun. ACM, 15(12):1053–1058, 1972.

[41] P. W. Pearse, T. T.and Oman. Experiences Developing and Maintain-
ing Software in a Multi-Platform Environment. In Proc. of the Int.
Conf. on Software Maintenance, pages 270–277. IEEE Computer So-
ciety, 1997.

[42] C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects.
In Proc. of the Eur. Conf. on Object-Oriented Programming, pages
419–443. Springer, 1997.

[43] C. Roy and J. Cordy. A Survey on Software Clone Detection Research.
Technical Report 2007-451, School of Computing, Queen’s University
at Kingston, 2007.

[44] C. K. Roy, J. Cordy, and R. Koschke. Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach.
Sci. Comp. Prog., 74(7):470–495, 2009.

[45] T. Thüm, D. Batory, and C. Kästner. Reasoning about Edits to Feature
Models. In Proc. Int. Conf. on Software Engineering, pages 254–264.
IEEE Computer Society, 2009.

[46] M. Toomim, A. Begel, and S. Graham. Managing Duplicated Code
with Linked Editing. In Proc. of the Symposium on Visual Languages
- Human Centric Computing, pages 173–180. IEEE Computer Society,
2004.

