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Abstract
Software product lines (SPLs) and adaptive systems aim at vari-
ability to cope with changing requirements. Variability can be de-
scribed in terms of features, which are central for development and
configuration of SPLs. In traditional SPLs, features are bound stat-
ically before runtime. By contrast, adaptive systems support fea-
ture binding at runtime and are sometimes called dynamic SPLs
(DSPLs). DSPLs are usually built from coarse-grained compo-
nents, which reduces the number of possible application scenar-
ios. To overcome this limitation, we closely integrate static binding
of traditional SPLs and runtime adaptation of DSPLs. We achieve
this integration by statically generating a tailor-made DSPL from a
highly customizable SPL. The generated DSPL provides only the
runtime variability required by a particular application scenario and
the execution environment. The DSPL supports self-configuration
based on coarse-grained modules. We provide a feature-based
adaptation mechanism that reduces the effort of computing an op-
timal configuration at runtime. In a case study, we demonstrate the
practicability of our approach and show that a seamless integration
of static binding and runtime adaptation reduces the complexity of
the adaptation process.

Categories and Subject Descriptors D.2.13 [Software Engineer-
ing]: Reusable Software—Reusable libraries, Reuse models

General Terms Design, Languages

Keywords Software Product Lines, Dynamic Binding, Feature-
oriented Programming

1. Introduction
Software product line (SPL) engineering aims at variable software
by generating a set of tailor-made programs from a common code
base (e.g., for different customers or application scenarios) [28].
SPL engineers consider features as central abstractions for config-
uration because they are implementation independent and map di-
rectly to user requirements. For example, a feature QUERYENGINE
of an SPL for database management systems (DBMS) represents
functionality to execute queries using the structured query language
(SQL). In SPL engineering, features are usually bound statically.
That is, a user selects the desired features and a generator creates
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Figure 1. Feature model of a simple DBMS.

the corresponding software product containing exactly the needed
features.

Valid feature combinations are often described in a feature
model using a hierarchical representation of an SPL’s features and
constraints between them [12]. In Figure 1, we depict an example
of the feature model of a database management system (DBMS).
Mandatory and optional features are denoted by filled and empty
bullets. To specify invalid feature combinations, domain engineers
define relations between features, such as OR and XOR, plus addi-
tional constraints such as requires (a feature requires another fea-
ture) or excludes (two features cannot be used in combination). In
general, arbitrary propositional formulas can be used as constraints.

In contrast to an SPL, an adaptive system offers variability
at runtime in order to adapt to changing requirements [18]. Ap-
proaches for runtime adaptation are often based on components
and describe program adaptations at the architectural level [27].
They allow a programmer to specify adaptation rules for recon-
figuring components and thereby abstract from the concrete im-
plementation [14, 16, 20]. Dynamic SPLs (DSPLs) integrate con-
cepts of SPLs and adaptive systems [1, 8]: The products of a
DSPL can be reconfigured at runtime. In contrast to describing
program adaptations using architectural models, there are DSPL
approaches that support feature-based runtime adaptation. For ex-
ample, some approaches use feature models to describe dependen-
cies between features and to reason about runtime variability of
DSPLs [10, 19, 21, 37]. Describing also program adaptations in
terms of features abstracts from implementation details, simplifies
reconfiguration of running programs, and allows for checking con-
sistency of adaptations [10]. Such feature-based approaches use a
mapping of DSPL features to the components that are used for im-
plementation [21, 37]. However, components are usually coarse-
grained and limit customizability of a DSPL. For example, it is im-
perative to customize components for embedded systems to remove
unneeded functionality and to tailor the components with respect to
the hardware [35]. Increasing customizability with small compo-
nents is usually not an option due to an increasing communication
overhead between the components [9].

We bridge the gap between feature-based variability modeling
and component-based runtime adaptation, by integrating generative
SPL engineering and DSPLs. In previous work, we have shown
how to integrate static and dynamic feature binding by statically
merging a set of features into a dynamic binding unit according
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Figure 2. Generating tailor-made DSPLs from the features of an
SPL (A–D): For DSPL1 we generate two binding units (A, B)
and (C, D); for DSPL2 we generate binding units (A) and (B, C).

to the requirements of an application scenario [30]. At runtime,
selected binding units are composed to derive a concrete program.
In this paper, we extend our previous work to support runtime
adaptation and self-configuration on top of binding units:

• We propose to generate tailor-made DSPLs: As illustrated in
Figure 2, we implement an SPL with feature-oriented software
development (FOSD) [2] and statically compose the required
features to derive a DSPL. The DSPL supports reconfiguration
at runtime based on coarse-grained dynamic binding units.

• We provide a feature-based approach for runtime adaptation
and self-configuration.

In contrast to DSPLs that use components for dynamic binding, we
generate tailored binding units from the SPL features (cf. Fig. 2).
Due to this fine-grained static customization, we improve reuse and
minimize resource requirements of DSPLs. We achieve runtime
adaptation with a customizable adaptation framework, called Fea-
tureAce, which we integrate into a generated DSPL. The framework
supports autonomous self-configuration by using features for de-
scribing program adaptations and thus guarantees safety for mod-
ifications at runtime. By tailoring and minimizing the number of
dynamically-bound modules, we reduce the effort for computing a
configuration of a DSPL. We demonstrate practicability of our ap-
proach with a prototypical implementation of the adaptation frame-
work and a case study. In summary, our contributions are:

• an approach of statically generating tailor-made DSPLs from
SPL features, which improves software reuse (Section 3),

• a customizable adaptation framework including customization
of adaptation rules and monitoring code (Section 3.1),

• a feature-based approach of adaptation and self-configuration
(Section 4.1), which ensures composition safety (Section 4.2)
by means of feature models while using coarse-grained binding
units for adaptation,

• a case study that demonstrates practicability of our approach
and illustrates the optimization capabilities with respect to re-
configuration and resource consumption (Section 5).

2. Feature-oriented Programming
Using components to implement variability is sometimes too re-
strictive because components are coarse-grained and thus limit
customizability of an SPL. For example, many small features
and cross-cutting functionality are hard to implement in individ-
ual components [17]. In contrast, feature-oriented programming
(FOP) [6, 29] can be used to implement the features of an SPL
in a modular way. With FOP, one can achieve the same variability
in the implementation as it is described by the feature model. For
example, we can modularize the transaction-management subsys-
tem of a DBMS even though it affects many parts of the system.
In FOP, features are implemented in feature modules as increments
in functionality using a one-to-one mapping [6]. A user creates a

CORE implementation

1 class DB {
2 bool Put(Key& key, Value& val) { ... }
3 };

Feature QUERYENGINE

4 refines class DB {
5 QueryProcessor queryProc;
6 bool ProcessQuery(String& query) {
7 return queryProc.Execute(String& query);
8 }
9 };

Feature TRANSACTION

10 refines class DB {
11 Txn* BeginTransaction() { ... }
12 bool Put(Key& key, Value& val) {
13 ... //transaction−specific code
14 return super::Put(key,val);
15 }
16 };

Figure 3. FeatureC++ code of class DB, decomposed along
the CORE implementation and the features QUERYENGINE and
TRANSACTION.

program (a variant of an SPL) by selecting features that satisfy
requirements. Based on the feature selection (a.k.a., the configura-
tion), a generator composes the corresponding feature modules to
yield a concrete program.
FeatureC++. FeatureC++1 is a language extension of C++ that
supports FOP [4]. In Figure 3, we depict the FeatureC++ code of
a class DB of a DBMS (cf. Fig. 1). A programmer typically de-
composes a class into smaller class fragments called base class and
class refinements according to the features of the SPL. A base class,
such as class DB (Lines 1-3), implements basic functionality. For
example, method Put (Line 2) stores data provided as key-value
pairs. A class refinement is denoted by keyword refines and ex-
tends a base class to provide code required for a particular feature.
The refinement in feature QUERYENGINE (Lines 4–9) introduces
a new member queryProc and a new method ProcessQuery for
processing SQL queries. Feature TRANSACTION overrides method
Put (Line 12) and invokes the refined method using keyword
super (Line 14). Based on the implementation shown in Figure 3,
we can generate four different DBMS variants by composing dif-
ferent sets of feature modules: We can generate a simple DBMS
consisting of CORE only, but we can also derive variants with any
combination of the features QUERYENGINE and TRANSACTION.
Static and Dynamic Feature Binding. FeatureC++ supports
static binding of features at compile-time and dynamic binding at
load-time and runtime [30]. When binding all features of an SPL
statically, a single binary is generated for the variant. At the class
level, the FeatureC++ compiler merges the code of a base class and
the refinements of selected features into a single class. For example,
composing the CORE implementation and feature TRANSACTION
of Figure 3 means to generate a single class DB that includes all
code of the corresponding base class and its refinement in feature
TRANSACTION.

For dynamic binding, FeatureC++ generates compound fea-
tures, called dynamic binding units. A dynamic binding unit is
tailored to an application scenario and consists of a set of stati-
cally merged features. It is similar to a component but it includes
only required functionality. To yield a concrete program, a dy-
namic binding unit is bound as a whole with other dynamic bind-
ing units at runtime. At the class level, FeatureC++ supports dy-

1 http://fosd.de/fcc
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Figure 4. Static composition of an SPL and FeatureAce ( ) re-
sulting in DSPL1 and subsequent dynamic composition of binding
units ( ) resulting in adaptable programs P1–P4 .

namic binding by generating dynamically composable class frag-
ments. For example, to generate a binding unit that contains the
features QUERYENGINE and TRANSACTION of Figure 3, the code
of lines 4-16 is composed into a single class fragment. Multiple
class fragments are dynamically composed using the decorator de-
sign pattern [15]. This allows us to change the configuration of a
class at runtime, which is the basis for generating a DSPL from
the features of an SPL. To enable dynamic loading, each binding
unit is usually encapsulated in a separate dynamic link library (e.g.
a Windows DLL). For a detailed description of dynamic binding
units we refer to [30].

3. Generating Dynamic Software Product Lines
We generate a DSPL from an SPL by statically selecting the fea-
tures required for dynamic binding and generating a set of dynamic
binding units, as we illustrate in Figure 4 (cf. Fig 2). In DSPL1 ,
two binding units are generated: (A, B) and (C, D). The binding
units are composed at runtime to yield the concrete program P1 or
P2. One of the binding units (e.g., (A, B) in DSPL1 ) usually acts
as the base program, i.e., the part of the DSPL that provides ba-
sic functionality that is always needed. Hence, the base program is
statically bound and is dynamically extended by additional binding
units as required.

The transformation process from an SPL to a running program
can be seen as a staged configuration [13]: In a first step, Fea-
tureC++ statically merges a set of features into dynamic binding
units ( in Figure 4). In a second step, the generated binding units
are composed at runtime according to a dynamic feature selection
( in Figure 4). Hence, a DSPL comprises a subset of the products
of the SPL it was generated from. That is, a DSPL is a specializa-
tion of a corresponding SPL and provides dynamic variability only.

In contrast to our previous work [30], we support runtime
adaptation of programs (i.e., reconfiguration) using a customizable
framework, called FeatureAce. FeatureAce is included into a gen-
erated DSPL and is responsible for composing features and mod-
ifying a program’s configuration at runtime. Reconfiguration of a
program means to add and remove binding units dynamically. For
example, program P1 of Figure 4 can be reconfigured into P2 by
adding binding unit (C, D). FeatureAce computes the needed con-
figuration changes using a SAT solver. Since FeatureAce itself is
developed as an SPL, programmers can choose the required com-
position and adaptation mechanisms. In the following, we describe
FeatureAce and the runtime adaptation process in detail.
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Figure 5. Generating a DSPL from FeatureAce, adaptation rules,
monitoring code, and an SPL’s implementation.

3.1 FeatureAce: A Customizable Adaptation Framework
FeatureAce is an SPL-independent framework for (re)configuration
of DSPLs at runtime. Based on a user-defined feature selection, the
FeatureC++ compiler generates a tailor-made DSPL from SPL fea-
tures and the features of FeatureAce ( in Figure 4). FeatureAce is
statically bound using generated, SPL-specific glue code. In the ex-
ecutable DSPL, a generic metaprogram (part of FeatureAce) is re-
sponsible for controlling the dynamic composition of binding units
( in Figure 4) and for self-adaptation at runtime (e.g., reconfigur-
ing P1 into P2 in Figure 4). Programmers describe runtime adap-
tations with declarative adaptation rules. The execution of a rule is
triggered by events spawned in monitoring code of the DSPL. To
ensure correctness of program adaptations with respect to the fea-
ture model, FeatureAce computes a valid configuration by applying
the adaptation rules to the feature model of the DSPL.

In Figure 5, we provide a more detailed view of the transforma-
tion process. A user selects the required features from FeatureAce,
adaptation rules, monitoring code, and the SPL and the FeatureC++
compiler generates a customized DSPL:

• Users can customize FeatureAce to choose between manual and
autonomous adaptation and to enable validation of adaptations
if required.

• Adaptation rules are stored in separate feature modules to allow
the programmer to choose actually required rules at deployment
time, e.g., to choose between alternative adaptation rules.

• Monitoring code of the DSPL that triggers adaptation events is
implemented in distinct feature modules. Hence, it is possible
to use only required monitoring code and to choose between
alternative implementations.

The customization of the adaptation infrastructure allows us to cope
with changing requirements (e.g., to support different execution en-
vironments). In the following, we use static binding for customiza-
tion of the adaptation infrastructure. In general, parts of this vari-
ability may also be needed at runtime, which requires dynamic
binding of selected features of FeatureAce and adaptation code.
This is beyond the scope of this paper but it illustrates that there
are further challenges for improving the flexibility of our approach.

In Figure 6, we depict the feature diagram of FeatureAce. Fea-
ture AUTOINST encapsulates the functionality required for auto-
mated SPL instantiation using command-line arguments or a con-
figuration file to provide an initial feature selection. Feature ADAP-
TATION enables modification of a running DSPL instance (i.e., the
configured and running program) and feature SELF-CONFIG sup-
ports rule-based self-configuration. Feature VALIDATION checks
the validity of an SPL variant before composing the binding units.
For customization, a user defines the required adaptation facilities
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of FeatureAce and may even add user-defined extensions, such as
special adaptation mechanisms. FeatureAce extensions are imple-
mented as additional feature modules without the need for invasive
modifications of the framework.

As shown in Figure 7, the adaptation metaprogram of Fea-
tureAce provides a decision engine that uses the feature model of
the DSPL to ensure validity of changes in the running program.
Monitoring code for analyzing the context at runtime is located at
the base-level. It is implemented in feature modules of the SPL be-
cause it is usually domain-specific. For example, code for monitor-
ing DBMS queries may trigger an event for loading a feature that
implements a special search index when a particular kind of query
is detected. The events triggered by the monitoring code are cap-
tured by an event handler that activates the decision engine. Based
on adaptation rules and the feature model, the decision engine com-
putes a new configuration. The adaptation engine applies required
configuration changes by loading and unloading binding units.

After generating a DSPL, there is an n-to-1 mapping of the
original features to the dynamic binding units of the DSPL. For
example, features A and B in Figure 4 map to binding unit (A,B) of
DSPL1 . In the following, we call the binding units features of the
DSPL and use a feature model to describe dynamic variability. The
DSPL features are used for composition and adaptation at runtime,
as we describe next.

3.2 Instantiation and Adaptation of DSPLs
FeatureAce supports a set of operations for instantiation and adap-
tation of a program from selected DSPL features at runtime:

Instantiation: A program is composed from multiple DSPL fea-
ture, implemented as binding units. The result is a stack of fea-
ture instances that represents a DSPL instance.

Adaptation: An already running DSPL instance can be modified
by adding and removing features as well as activating and
deactivating already loaded features.

Note that not every feature that can be bound at load-time can also
be bound at runtime without further modification. For example,

1 void ConnectSQLite(string db) {
2 FeatureConfig::ActivateFeature("SQLite"); //activate feature SQLite
3 ConnectDB(db); //continue with activated feature
4 }

Figure 8. FeatureC++ source code for activating feature SQLITE
from the base-level.

runtime adaptation requires to support consistent changes with re-
spect to the state of objects. There are further issues, such as con-
currency control and state transfer, that have to be considered for
transition from an SPL to a DSPL [32]. As a solution, develop-
ers may provide special code for binding at runtime, such as state
transformer functions [26]. Using FOP, this code can be separated
in feature modules that are only included in a program when run-
time adaptation is used. Implementation of such features is beyond
the scope of this paper.

After composing a concrete DSPL instance, FeatureAce pro-
vides different adaptation mechanisms:

Add and remove features: A feature can be added to or removed
from a running DSPL instance. A feature that is not part of any
running DSPL instance can be deleted and unloaded.

Activate and deactivate features: A feature can be deactivated if
it is temporarily not needed and can be reactivated later. This
maintains the state of a feature while disabling its functionality.

The described operations are internally used by FeatureAce for
runtime adaptation and can be accessed via an API from an external
program or from the base-level of the DSPL itself.
Reflection vs. Rule-based Adaptation. There are two ways to use
the adaptation mechanisms of FeatureAce. First, we support man-
ual adaptation by external programs via the API of FeatureAce or
by the DSPL itself using reflection. Second, we provide a rule-
based adaptation mechanism. For manual adaptation, FeatureAce
uses the feature model of the DSPL to validate a feature selection
at runtime with a SAT solver.2 When using the rule-based mecha-
nism, we use a SAT solver to derive a valid configuration dynam-
ically. To provide only the actually required variability at runtime,
we transform the original SPL feature model according to the gen-
erated DSPL, as we describe in Section 4.

Via reflection, the base-level of a DSPL can access the adap-
tation meta-level for observing or modifying the current configu-
ration. The reflection mechanism is sufficient for simple adapta-
tions, e.g., when events can be directly mapped to a configuration
change. In Figure 8, we depict an example of activating a feature
for database access in a client by accessing the meta-level from the
base-level (Line 2). This mechanism simplifies SPL development
since no additional code for an adaptation metaprogram is needed.
To separate domain implementation from adaptation mechanisms,
programmers should implement such adaptation code in distinct
feature modules.

4. Rule-based Program Adaptation
A more flexible mechanism that is independent of the implemen-
tation of an SPL is to describe adaptations in a declarative way
using adaptation rules. An adaptation rule defines how a configura-
tion of a DSPL must be changed when an event occurs. In contrast
to many existing approaches, we use features to define adaptation
rules. In particular, an adaptation rule describes constraints (e.g.,
required features) that the configuration of a program must satisfy
after adaptation.

2 Even though the SAT problem is NP-complete, it has been shown that
validity of feature models can be efficiently checked [24].
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4.1 Feature-based Adaptation Rules
A configuration C of a program P of a DSPL is the set of features
that is included in P . During adaptation, we derive a configuration
C from a set of requirements R that define which features of the
DSPL must be included in a valid program. In the simplest case,
the requirements are defined by a set of required features (e.g., a
user-defined feature selection). In general, however, a requirement
may be an arbitrary configuration constraint (i.e., a propositional
formula over the set of available features) that restricts the set of
valid configurations [31]. A configuration constraint is not different
from a domain constraint of a feature model but it is added to and
removed from the model at runtime. For example, to express that
a feature must be included in a program, we can define a requires
constraint for that feature.

As an example consider the feature diagram of Figure 1 with an
initial set of requirements R (e.g., defined by a user)3:

R = {QUERYENGINE, INDEX} (1)

R defines that the features QUERYENGINE and INDEX must be in-
cluded in a valid configuration. We can derive a valid configuration
C that satisfies R:

C = {QUERYENGINE, INDEX, HASH}. (2)

Because C must also satisfy the constraints defined in the feature
model, such as the XOR constraint between HASH and BTREE (cf.
Fig. 1), it must include one of the two features. In our example,
we have chosen feature HASH. While C represents a single pro-
gram, R defines a specialization S of our DSPL that represents
multiple configurations, as illustrated in Figure 9. In this example,
DSPL D has two specializations S1 and S2 , which we denote with
an empty arrowhead [31]. Each specialization represents multiple
configurations (illustrated with a cone). For example, C1 and C2

are configurations of S1. Each specialization represents a subset of
the configurations of the unspecialized DSPL.

We can represent a set of requirements R as a single propo-
sitional formula using a conjunction of all requirements. For in-
stance, R from equation (1) corresponds to the boolean constraint
QUERYENGINE ∧ INDEX. Since a feature model can also be trans-
lated into a propositional formula [5], we can check if a configu-
ration C satisfies the requirements R for a feature model FM : If
FM ∧ R is true for configuration C, then C is valid with respect
to R. Furthermore, we can use a SAT solver to test if R is a valid set
of requirements with respect to FM . This can be done by check-
ing whether we can derive at least a single valid configuration, i.e.,
FM ∧R must be satisfiable [36].
Adaptation Rules. The current configuration C of a running pro-
gram of a DSPL is modified by a configuration change ∆C (i.e.,

3 Users can provide an initial set of requirements in a configuration file using
the declarative language VELVET [31]. The initial set can be empty.

a reconfiguration; cf. Fig. 9) that defines which features are added
to C and which features are removed from C during adaptation.
However, as we explain below, it is usually too restrictive to di-
rectly define configuration changes in an adaptation rule. Instead,
an adaptation rule describes changes with respect to the active re-
quirements R of a DSPL. We thus define an adaptation rule A as
a pair (E,∆R) where E is the event that triggers rule A and ∆R
are modifications that must be applied to R when E is triggered.
∆R is a pair (∆R⊕,∆R	) of added and removed requirements.
We use operator • to denote adaptations (i.e., application of ∆R to
R):

R′ := ∆R •R (3)
:= (R \∆R	) ∪∆R⊕. (4)

The modified requirements R′ must be satisfied after applying rule
A to a configuration C. That is, ∆R does not directly modify the
configuration of a DSPL but it modifies a set of requirements R
that correspond to a specialization of the DSPL. As illustrated in
Figure 9, applying ∆R to S1 results in specialization S2.

From a modified set of requirements R′, we derive a modified
configuration C′. In Figure 9, we can derive two valid configura-
tions C2 or C3 from S2. For runtime adaptation, we have to choose
one of these configurations. For example, we may choose the con-
figuration with the smallest number of features. Finally, we de-
rive the corresponding configuration change ∆C, which is a pair
(∆C⊕,∆C	). It defines the set of features that must be added
(∆C⊕) and removed (∆C	) for adaptation. We compute it from
the current configuration C and the target configuration C′:

∆C := (∆C⊕,∆C	) (5)
∆C⊕ := C′ \ C (6)
∆C	 := C \ C′ (7)

As a complete example, consider the DBMS from equations (1) and
(2) with an adaptation rule A that is triggered on event ERange,
meaning that range queries are used:

A = (ERange, ({BTREE}, ∅)) (8)
R′ = ({BTREE}, ∅)) •R (9)

= {QUERYENGINE, INDEX, BTREE} (10)
C′ = {QUERYENGINE, INDEX, BTREE} (11)

∆C = ({BTREE}, {HASH}). (12)

Rule A adds feature BTREE to R (i.e., BTREE must occur in a valid
configuration), which results in the modified requirement R′. From
R′ we derive a new configuration C′. The required configuration
change ∆C (adding feature BTREE and removing feature HASH)
is derived from C and C′ according to equations (5–7).

In contrast to modifying the set of requirements, a direct con-
figuration change is too restrictive. For example, an adaptation rule
that adds feature BTREE directly to configuration C violates the
XOR constraint of the feature model (either BTREE or HASH must
be selected). As another example, consider a rule that removes fea-
ture BTREE from a configuration because it is not required any
longer. Such a rule causes a conflict if the feature to be removed is
required by another constraint. With named requirements, we can
simply remove the requirement that is not needed and the feature
will only be removed from the configuration if not needed due to
another requirement.
Specifying Adaptation Rules. We specify adaptation rules in a
declarative language, as shown in the example in Figure 10; we de-
pict the corresponding grammar in Figure 11. A rule consists of a
name, a named adaptation event E (e.g., OnTxn in Line 2) that trig-
gers adaptation, and actions ∆R, which describe the required con-
figuration changes. Currently, we create adaptation events in mon-



1 //Load transaction management
2 BeginTxn : OnTxn => addReq(TX: Transaction);
3
4 //Process range queries
5 BeginRQ : OnRangeQuery => addReq(RQ: Btree);
6
7 //Remove constraint RQ
8 EndRQ : OnRangeQueryEnd => removeReq(RQ);

Figure 10. Two adaptation rules that add the named constraints
TX and RQ (Lines 2 and 5) and a rule that removes constraint
RQ (Line 8).

1 AdaptScript: Rule+ ;
2 Rule: RuleName ":" EventName "=>" Action+ ";" ;
3 RuleName: ID ;
4 EventName: ID ;
5 Action: AddReq | RemoveReq ;
6 AddReq: "addReq" "(" ReqName ":" Constraint ")" ;
7 RemoveReq: "removeReq" "(" ReqName ")" ;
8 ReqName: ID ;
9 Constraint: FeatureName | "(" Constraint ")" |

10 "!" Constraint | Constraint ConstrOp Constraint ;
11 ConstrOp: "&&" | "||" | "->" | "<->" ;
12 FeatureName: ID ;

Figure 11. Grammar of FeatureAce’s adaptation rule specifica-
tion language.

itoring code using the host language. For example, event OnTxn in
Figure 10 is signaled when monitoring code observes a transaction
query. The event triggers loading the transaction management fea-
ture as defined in rule BeginTxn. An action adds or removes named
configuration constraints using keywords addReq and removeReq
followed by a constraint definition (Line 5) or a constraint name re-
spectively (Line 8). Each constraint has a name to be able to remove
it from the requirements of a DSPL, as shown in Line 8.

Applying Adaptations. Before computing a new configuration
when applying an adaptation rule, FeatureAce checks whether an
adaptation is really needed: If a set of requirements Ri represent a
specialized DSPL Si (e.g., S1 in Figure 9) then Ri+1 = ∆R • Ri

corresponds to a new specialization Si+1 (e.g., S2 in Figure 9).
If Si and Si+1 overlap then there are configurations that can be
derived from both specializations (e.g., C2 in Figure 9). Hence, if
the current configuration of the DSPL is also a valid configuration
of the new specialization, we do not have to adapt the running
program. For example, adaptation of S1 to S2 in Figure 9 for
configuration C2 does not require a program adaptation. Hence,
the decision engine of FeatureAce first checks whether the current
configuration Ci already satisfies the new requirements Ri+1.

If this is not the case, we have to find a new configuration Ci+1

that satisfies Ri+1. To test if there is at least one valid configuration
that satisfies Ri+1, the decision engine checks satisfiability of the
feature model including the new requirements. If there are multiple
valid configurations, the decision algorithm has to choose the best
one. Which configuration is the best depends on the domain, the
application scenario, and the context at runtime [14, 38]. For exam-
ple, we may choose the configuration with the smallest number of
features or the smallest number of required adaptations. Other opti-
mization goals are non-functional requirements [34], such as mem-
ory consumption, performance, or quality of service. We currently
choose the configuration with the smallest number of configuration
changes. For that reason, FeatureAce tries to keep already config-
ured features to minimize changes. Features are removed when they
violate a constraint. Hence, when an adaptation rule removes a con-
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LOGTRANSACTION
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INDEX
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QUERYENGINE TXNQE

DB'

addReq(TX: Transaction)
addReq(RQ: Btree)
removeReq(RQ)

addReq(TX: Txn)
addReq(RQ: DB’)
removeReq(RQ)

Figure 12. Transformation of a feature model and the correspond-
ing transformation of actions of adaptation rules (lower part) ac-
cording to defined binding units. Transformed features in adapta-
tion rules are underlined.

straint from requirements R, this does not always cause a reconfig-
uration. Furthermore, we remove features that are not required for a
pre-defined time span to provide a simple mechanism for reducing
resource consumption when features are not used anymore.

To reduce resource consumption, a configuration can also be ex-
plicitly minimized by rules, e.g., triggered by low working memory.
In future work, we plan to use more sophisticated mechanisms to
trigger unloading of features based on non-functional requirements.
For example, we may remove unused features based on statistics
and the workload of the system, or we may optimize a configura-
tion using CSP4 solvers [7, 38].

4.2 Safety of Runtime Adaptation
Since we merge multiple features of an SPL into a single binding
unit of a generated DSPL, there is an n-to-1 mapping of SPL fea-
tures to DSPL features. For safe adaptation at runtime, however, we
have to reason about the dynamic variability provided by the gen-
erated DSPL, which represents a subset of the products that can be
derived from the SPL. We thus transform the SPL’s feature model
according to the generated binding units and derive a special fea-
ture model of the DSPL. In the upper part of Figure 12, we show
an example of such a feature model transformation. A detailed de-
scription of the transformation can be found in [30]. Since domain
engineers define adaptation rules in terms of SPL features, we ap-
ply a corresponding transformation to the adaptation rules (lower
part of Figure 12). This transformation is achieved by replacing
each feature in the adaptation rules with the binding unit of the
feature in the generated DSPL. For example, we have to replace
all occurrences of feature TRANSACTION with its corresponding
binding unit TXN (first action in Figure 12). After transforming all
actions of Figure 12, requirement RQ (second action) is always sat-
isfied because DB’ is the root of the feature tree and included in
every configuration. Hence, we can remove all actions that add or
remove requirement RQ, such as the last two actions in Figure 12.

The correctness of an adaptation rule with respect to the SPL’s
feature model can be checked with a SAT solver already before run-
time. Furthermore, we can check whether there are combinations
of events that may result in configuration conflicts due to applying
rules at the same time. For example, if two rules add conflicting re-
quirements, only one adaptation would be possible. Unfortunately,
this can only be checked for a small number of adaptation rules be-
cause there is an exponential number of combinations of adaptation
rules and even the order of the adaptations matters. However, due
to customization of the DSPL with a reduced number of features
and adaptation rules, this may often be possible in practice.

After transforming the feature model including adaptation rules,
we can validate the transformation by checking whether all trans-
formed rules can be applied to the DSPL’s feature model. For ex-

4 Constraint satisfaction problem
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Figure 13. Feature diagram of an SPL for sensor network nodes.

ample, an adaptation rule that adds requirement ¬Btree is trans-
formed into a rule with requirement ¬DB’, which is not satisfiable
since DB’ is the root of the feature model and is always true. Such a
rule is invalid with respect to the generated DSPL (i.e., with respect
to the chosen binding units). As another example, consider the fea-
tures TRANSACTION and LOG in Figure 12. Both features are part
of binding unit TXN. Hence, both features are always present at
the same time in the generated DSPL. Consequently, an adaptation
rule that requires LOG and excludes TRANSACTION is invalid in
this DSPL. Using a SAT solver, we can detect such invalid trans-
formations before runtime.

Finally, the model transformation and the model-based runtime
adaptation process guarantee that a new configuration is correct
with respect to the original feature model. In combination with
static type checking of the entire SPL [3], we can even ensure static
type safety for runtime adaptations.

5. Case Study
By means of a case study, we demonstrate the practicability of our
approach and show that binding units can reduce the time needed
for runtime adaptation. We use an implementation of FeatureAce
for FeatureC++, but the concept can be applied to other languages
as well. As application scenario, we use a sensor network.

5.1 An SPL for Sensor Network Nodes
A sensor network (SN) is a network of interconnected embed-
ded devices (e.g., via radio communication), which sense different
kinds of information (temperature, light, etc.) [23]. There are dif-
ferent types of nodes in a sensor network. Sensor nodes measure
data, store it locally, and send it to other nodes. Aggregation nodes
aggregate data (e.g., computing the mean value) from other nodes.
Access nodes provide access to clients that connect to the network.

With SPL technology, we can generate different program vari-
ants tailored to the different kinds of SN nodes. In Figure 13, we
depict an excerpt of the feature diagram of an SPL for sensor
nodes that we implemented in FeatureC++. Subfeatures of DATA
are used for aggregation in aggregation nodes and streaming in ac-
cess nodes. A node does not always play a single role (e.g., being
a sensor node) but possibly multiple roles at the same time. For
example, a node may aggregate data but may also be responsible
for accessing the network. To compensate node failures and for ef-
ficiency, the role may change over the lifetime of a node. For ex-
ample, if the access node fails due to exhausted battery power, a
different node can reconfigure itself to provide this service. Due to
hardware constraints, not all physical nodes can play every role. For
example, only a node with sufficient storage capacity can be used
for data aggregation. Such limitations influence the configuration
process when defining binding units at deployment time:

1. Static binding: For embedded devices that do not allow dy-
namic changes to already loaded program code (because the
executable code is stored in ROM), we do not support runtime
adaptation and generate program variants statically.

2. Runtime adaptation: For all other nodes, we generate a DSPL
using a subset of all features. We include only the features that

Hardware Role Binding Units

Simple Sensor StaticSense

Advanced Positioning Core, Positioning
Sensor Core, Sense
DataAggregator Core, QueryProc, Aggregation
AccessNode Core, QueryProc, Streaming

Table 1. Examples of different roles and their binding units for two
kinds of devices.

Binding Unit Features

StaticSense Positioning, Routing, Sensor, Radio, ST
Core Routing, Radio, Wi-Fi, MT
Positioning Positioning
Sense Sensor
QueryProc Access, SQL, Data, Storage
Aggregation Aggregation, SQLite
Streaming Streaming, BerkeleyDB

Table 2. Sample configuration of different binding units.

are required for the used operating system, the hardware, and
the roles a node can play.

3. Binding units: We reduce the overhead of dynamic binding
and the number of possible variants by merging features into
binding units when they are used always in combination.

For evaluation, we use a sensor network simulation, in which each
node of the network is simulated by a separate process that com-
municates with other nodes. The nodes software can be deployed
on embedded devices, but for simulation we use a desktop environ-
ment.

5.2 Defining Binding Units
In Table 1, we show a sample assignment of roles for two types of
node hardware and the corresponding binding units. The binding
units are composed from the features of Figure 13. We depict
sample configurations in Table 2. In our example, simple node
hardware (Simple in Table 1) with highly constrained resources
does not support runtime adaptation and can only be used for
sensor nodes. We use a statically composed variant for these nodes
(binding unit STATICSENSE in Table 1).

Hardware with less resource constraints (Advanced in Table 1)
that supports reconfiguration at runtime is used for different roles.
An advanced node is deployed with role Positioning, for computing
the relative position of the node. A node unloads the feature when
the position has been determined. If a sensor, a data aggregator,
or an access node is needed, an advanced node loads the required
binding units. The node may also play different roles at the same
time. For example, to process a streaming query, a DataAggregator
additionally loads the STREAMING binding unit.

We observe that our approach provides a high flexibility with
respect to possible deployment scenarios. We can define different
feature configurations according to the used hardware at deploy-
ment time and according to required functionality at runtime. For
example, a sensor node uses different binding units but a similar set
of features depending on the used hardware (Simple or Advanced).
We can also define completely different binding units and feature
selections according to used hardware, application scenarios, etc.

The feature selection influences the binary size of the generated
node software. A variant that uses only static binding (binding unit
STATICSENSE in Table 1) does not include any code for runtime



adaptation. It has a binary size of 48 KB, which is only half of
the size of a runtime-adaptable variant with the same features and
a size of 104 KB. This overhead mostly comes from code of the
infrastructure for runtime adaptation (i.e., FeatureAce including
a SAT-solver), which is independent of the number of features.
As we observed in previous studies, the resource consumption
increases with an increasing number of binding units [30]; it can
be optimized by generating a DSPL that provides only required
dynamic variability. The overhead is quite small compared to larger
programs such as a node with stream processing, which has a
binary size of 576 KB. Hence, our approach allows us to apply self-
configuration also on resource-constrained devices. Nevertheless,
on systems with highly limited resources only static binding is an
option. With our approach, a user can choose at deployment time
whether to use static binding or to support runtime adaptation.

5.3 Self-Adaptation
Adaptation Rules. We define adaptation rules within dedicated
feature modules. For example, we place rules for activating and
deactivating stream processing in feature STREAMING. The rules
are thus included in a running program only if the corresponding
feature is selected for dynamic binding. Based on the defined rules,
a DSPL autonomously reconfigures itself according to the required
features at runtime. In our scenario, a node loads the streaming
binding unit when it receives a streaming query.

Reconfiguration of nodes is triggered by events spawned in
monitoring code of the DSPL. We implement the monitorings in
distinct feature modules that extend classes of the application SPL
to separate adaptation code from the SPL’s implementation. For
example, to activate stream processing, the monitoring code cap-
tures incoming queries and triggers an adaptation when a streaming
query is found. The corresponding rule adds a constraint for feature
STREAMING (i.e., the feature must be included in a valid configu-
ration). Another rule removes the constraint from the requirements
after all streaming queries have been processed. We do not directly
remove the feature because it would result in an unneeded reconfig-
uration when the feature is used again. A feature is only removed
when it is excluded by other constraints or when other requirements
such as limited working memory force to remove unneeded fea-
tures. For example, we use a rule to unload the positioning feature
when the position of a node has been determined.

Reconfiguration. In Figure 14, we depict evaluation results for
the adaptation process.5 We analyzed the time needed for comput-
ing whether an adaptation (using a SAT solver) is needed and the
time for reconfiguration. To show the benefits of statically optimiz-
ing the feature model, we compared reconfiguration of the same
sensor node (1) using the original feature model of the SPL in-
cluding all 55 features and (2) using the transformed feature model
of the DSPL with 6 features (i.e., one feature per binding unit; cf.
Sec. 3.1). In the diagram, we depict the time a node requires to
process queries that are sent every 300 ms.

Stream processing is triggered by incoming streaming queries
(denoted with b in Fig. 14), which results in a runtime adaptation
to load binding unit STREAMING. In our example, the adaptation
must be finished before the query processing can continue. The
first streaming query is detected after 5 s. Loading the STREAMING
feature takes 20–60 ms (note that we use a logarithmic scale) and
increases the response time because the execution is continued after
reconfiguration. Computing the new configuration takes less than
1 ms. Assuming a minimal adaptation time of 20 ms, a node cannot
reconfigure itself more than 50 times per second.

End of stream processing is denoted with (e). Instead of unload-
ing the Streaming feature, a rule removes the constraint added be-

5 For evaluation, we used an AMD 2.0 GHz CPU and Windows XP.
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Figure 14. Response time (logarithmic scale) during reconfigu-
ration of a query processing sensor network node using a feature
model with 55 features and a simplified model with 6 features. Be-
gin and end of stream processing are denoted with (b) and (e).

fore. Hence, all following adaptation events do not cause a reconfig-
uration. Nevertheless, the adaptation events increase the response
time by about 0.32 ms when using the complete feature model with
55 features and 0.05 ms for the DSPL model with 6 features (with
a 95 % confidence interval of ±0.13 and ±0.10 ms respectively).
This computation time is required for checking whether the node
has to be reconfigured due to the context change. Compared to a re-
configuration that takes 20-50 ms, 0.32 ms is a very small overhead.
However, it means that the node cannot handle more than about
3000 changes of the adaptation context per second even though no
adaptation is needed. On an embedded device this would be much
less due to limited computing power. By contrast, the node with the
simplified feature model with 6 features requires only 0.05 ms (i.e.,
85 % less time) for checking whether an adaptation is needed. This
demonstrates the importance of reducing the variability for runtime
adaptation by optimizing the feature model.

5.4 Discussion
In our case study, we combined static feature binding with sup-
port for feature-based runtime adaptation. We have shown that we
can achieve autonomous reconfiguration by including the adapta-
tion mechanism and the feature model into the running DSPL. By
generating binding units, we further optimize the runtime adapta-
tion process, as we discuss next.
Implementation-independent Adaptations. Using features to de-
scribe adaptations, we provide an adaptation mechanism that ab-
stracts from the modules actually used for dynamic binding. Hence,
we can generate binding units that fit to an application scenario and
the execution environment, while being able to reuse adaptation
rules. As in component-based approaches, there is an m-to-n map-
ping of SPL features to dynamic binding units. At compile-time, we
simplify this complex mapping by transforming the feature model
and adaptation rules according to the generated binding units. The
result is a simpler 1-to-1 or 1-to-n mapping of DSPL features to
binary modules that must be considered during adaptation. We can-
not always achieve a 1-to-1 mapping, because a compound feature
may overlap with other compound features, which results in multi-
ple code units per binding unit. These crosscutting modules corre-
spond to derivatives known from feature-oriented software devel-
opment [22].
Composition Safety. Using a feature model, we ensure that adap-
tations are correct with respect to domain constraints. As we have
shown, this can be efficiently done at runtime before creating a vari-
ant by using a SAT solver. Furthermore, we can check if an adap-
tation rule is valid with respect to the feature model of the DSPL



before runtime. Currently, we do not check whether a dynamically
bound feature supports binding to an already running SPL instance
(e.g., supporting state transfer; cf. Sec 3.2). This could be achieved
with an extension of the feature model that allows for annotating
such features.

Resource Consumption. We provide an adaptation mechanism
with low resource requirements (e.g., binary size, computing
power) due to (1) customization of the adaptation infrastructure and
(2) customization of binding units by removing unused code. The
flexible size of binding units minimizes dynamic binding and en-
ables static optimizations, as we analyzed in previous work [30].

Computational Complexity. We have shown that we can reduce
computations for reconfiguration at runtime in two ways: (1) by
avoiding unneeded adaptations and (2) by simplifying the compu-
tations for checking satisfiability by transforming the feature model
according to actually available variability. The time required for
computing a valid configuration is small compared to an actual re-
configuration even when using a feature model with 55 features.
However, frequently checking whether an adaptation is needed can
easily require more computing power than available. Hence, it is
important to simplify the feature model.

Including also non-functional requirements in these computa-
tions is a challenging task with respect to computational com-
plexity [14]. Since the computation time to solve constraint sat-
isfaction problems increases exponentially with the number of fea-
tures [7, 38], it is even more important to reduce the number of
binding units as far as possible. Our approach reduces the overall
complexity and can be combined with CSP solvers to consider also
numerical constraints (e.g., memory restrictions) when computing
an optimal configuration at runtime [33]. Further simplification is
possible by caching the results of a SAT or CSP solver.

6. Related Work
There are several approaches that use components and architecture-
based runtime adaptation as proposed by Oreizy et al. [27]. We ab-
stract from implementation details by using features for configuring
a program at runtime. This allows us to reason about configuration
changes at runtime at a conceptual level and to describe adaptation
rules in a declarative way without taking the high-level architecture
into account. There are also approaches that apply SPL concepts to
develop adaptive systems, e.g., using feature-oriented concepts for
modeling dynamic variability [10, 14, 19, 21, 37]. We aim at build-
ing a foundation for integrating existing approaches using features
for SPL configuration and runtime adaptation. In the following, we
compare our approach with respect to the most prominent related
approaches.

Some approaches describe dynamic variability in terms of fea-
tures [10, 21, 37]. Lee et al. use a feature model to describe static
and dynamic variability of an SPL. They suggest to manually de-
velop components (i.e., feature binding units) for implementing dy-
namic variability [21]. We decide at build-time which binding time
to use and use features (i.e., not implementation units) for speci-
fying adaptations and for validating a configuration. Furthermore,
a component-based approach requires mapping features to compo-
nents. We resolve the mapping before deployment by transforming
the feature model and the adaptation rules accordingly.

Floch and Hallsteinsen et al. present with MADAM an approach
for runtime adaptation that uses SPL techniques as well as archi-
tectural models [14, 19]. They propose to model variability using
component-based SPL techniques [19]. We use features for model-
ing variability and runtime adaptation to further abstract from the
underlying implementation and architecture.

Cetina et al. use feature models to describe the variability of an
adaptive system [10]. To adapt a system, they modify a configura-

tion by adding or removing features. This results in the problems
discussed in Section 5.4, which we solve by using constraints to
describe current requirements on a system. Furthermore, we seam-
lessly integrate SPL engineering and runtime adaptation by apply-
ing SPL concepts to adaptation code (e.g., adaptation rules) and by
supporting static binding of features and merging of features into
binding units. The result is a transformed feature model for runtime
adaptation that represents the required variability only.

Morin et al. describe variability with a feature model and realize
variability of the component model of an adaptive system with
aspect-oriented modeling (AOM) [25]. They use aspects to describe
model adaptations and reconfigure the underlying program based
on changes of the model. By contrast, we operate on features that
are not only implementation independent but also independent of
the component model of a system. Hence, our approach can be
combined with an approach for model adaptation. This allows us
to validate a configuration before adapting the component model.

Safe composition is important for component-based software
development. For example, the Treaty framework combines ver-
ification of component assemblies using contracts and event-
condition-action rules [11]. By contrast, we use feature models for
validating configurations at runtime. Due to the use of FOP, we
can furthermore check type-safety for an entire SPL before deploy-
ment [3]. In contrast to component-based approaches, we do not
provide any means for verifying compositions based on contracts,
but we think that approaches for verification are orthogonal to a
feature-oriented approach for composition and can be integrated.

We use FOP for implementing adaptive systems, but our ap-
proach for feature-based adaptation may also be used with other
implementation units such as aspects [10, 21, 25, 37]. In this case,
we can still use features to describe adaptation changes. After a new
configuration has been derived and validated, a corresponding set
of components has to be determined. Some component approaches
provide advanced capabilities for runtime adaptation not consid-
ered here (e.g., adaptation planning, state transfer, etc.). Such ad-
vanced mechanisms are complementary to a feature-based solution
and features can be used to improve these mechanisms by abstract-
ing from implementation details.

7. Summary
Current approaches for developing dynamic software product lines
(DSPLs) commonly use coarse-grained components to implement
variability. This reduces customizability and thus limits applicabil-
ity of a DSPL. We presented an approach that allows us to tailor
DSPLs by closely integrating traditional, static SPLs and DSPLs.
Based on a feature-oriented implementation of an SPL and a cus-
tomizable adaptation framework, we generate tailor-made DSPLs
by using fine-grained features to statically generate coarse-grained
dynamic binding units. As in traditional SPLs, we support fine-
grained static customization for efficiency reasons; as in DSPLs,
we provide adaptability at runtime by composing dynamic binding
units at runtime. A dynamic binding unit is tailored to an applica-
tion scenario by including only user-selected features.

For runtime adaptation, we describe adaptation rules in terms
of features. We provide a feature-based adaptation mechanism by
transforming the feature model of an SPL according to the binding
units of the generated DSPL. By using a feature model to derive
a valid configuration at runtime, our approach is independent of
an SPL’s implementation. Our integration of static binding and
DSPLs reduces the overhead for dynamic binding, avoids unneeded
dynamic variability, and simplifies computations at runtime.

In future work, we will integrate our work on optimizing non-
functional properties of SPLs [33, 34]. This means to extend the
dynamic variant selection process to optimize a variant with respect
to non-functional constraints using CSP solvers.
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S. Röttger. Enforceable Component-based Realtime Contracts. Real-
Time Systems, 35(1):1–31, 2007.

[21] J. Lee and K. C. Kang. A Feature-Oriented Approach to Developing
Dynamically Reconfigurable Products in Product Line Engineering.
In Proc. Int’l. Software Product Line Conf. (SPLC), pages 131–140.
IEEE CS, 2006.

[22] J. Liu, D. Batory, and C. Lengauer. Feature-Oriented Refactoring
of Legacy Applications. In Proc. Int’l. Conf. Software Engineering
(ICSE), pages 112–121. ACM Press, 2006.

[23] I. Mahgoub and M. Ilyas. Smart Dust: Sensor Network Applications,
Architecture, and Design. CRC Press, 2006.

[24] M. Mendonca, A. Wasowski, and K. Czarnecki. SAT-based Analysis
of Feature Models is Easy. In Proc. Int’l. Software Product Line Conf.
(SPLC), pages 231–240. Software Engineering Institute, 2009.

[25] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg. Mod-
els at Runtime to Support Dynamic Adaptation. Computer, 42(10):44–
51, 2009.

[26] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol. Practical Dynamic
Software Updating for C. In Proc. Int’l. Conf. Programming Language
Design and Implementation (PLDI), pages 72–83. ACM Press, 2006.

[27] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An
Architecture-based Approach to Self-adaptive Software. IEEE Intelli-
gent Systems, 14(3):54–62, 1999.
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