
Family-Based Performance Measurement

Norbert Siegmund Alexander von Rhein Sven Apel
University of Passau, Germany

Abstract
Most contemporary programs are customizable. They provide many
features that give rise to millions of program variants. Determining
which feature selection yields an optimal performance is challenging,
because of the exponential number of variants. Predicting the perfor-
mance of a variant based on previous measurements proved successful,
but induces a trade-off between the measurement effort and predic-
tion accuracy. We propose the alternative approach of family-based
performance measurement, to reduce the number of measurements
required for identifying feature interactions and for obtaining accurate
predictions. The key idea is to create a variant simulator (by translating
compile-time variability to run-time variability) that can simulate the
behavior of all program variants. We use it to measure performance of
individual methods, trace methods to features, and infer feature inter-
actions based on the call graph. We evaluate our approach by means
of five feature-oriented programs. On average, we achieve accuracy
of 98 %, with only a single measurement per customizable program.
Observations show that our approach opens avenues of future research
in different domains, such an feature-interaction detection and testing.

Categories and Subject Descriptors C.4 [Performance of Systems]:
Measurement techniques; D.2.13 [Reusable Software]: Domain
engineering

Keywords Family-based Analysis, FeatureHouse, Performance
Prediction

1. Introduction
Customizability is a critical success factor in software engineering. A
customizable program gives rise to a family of program variants that
can be tailored to the requirements of individual stakeholders. The
customization process is simple: Select the features that satisfy your
requirements, map the selected features to their respective implemen-
tation artifacts, and generate the corresponding program variant based
on the artifacts. However, despite this simplicity, it is often unclear
what the best feature selection is to satisfy all requirements, including
non-functional requirements.

Especially, performance is critical. Often, a user wants to know
the influence of a feature on performance of the generated program
variant. For example, in the data-management domain: a customer
has a specific workload for which she wants to determine the best
feature selection of a given customizable data-management system

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
GPCE ’13, October 27–28, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2373-4/13/10. . . $15.00.
http://dx.doi.org/10.1145/2517208.2517209

(i.e., with the fastest response time). Considering the huge space of
possible variants (33 optional and independent features give rise to a
unique variant for each human on the planet), a brute-force approach
that measures all variants does not scale.

Recent solutions to this problem aim at predicting a variant’s
performance based on the feature selection [17, 34]. This requires a
performance model of the customizable program, which either must
be trained via a number of measurements [11, 15, 17, 32] or inferred
based on code analyses [24] and architectural knowledge [5, 38].
Both approaches have their benefits. Measurement-based performance
models produce accurate performance predictions, but at the cost of
time-consuming measurements. With code analysis, one does not have
to actually measure individual program variants, reducing prediction
accuracy, because the environment and other side-effects cannot be
considered. Clearly, there is a trade-off between measurement effort
and prediction accuracy [33].

We focus on measurement-based performance modeling. Our goal
is twofold. First, we collect precise information on the performance
behavior of individual features and their interactions based on the
customer’s workload. Second, we aim at minimizing the measurement
effort to produce a performance model. To reach our goals, we propose
family-based performance measurement. The key idea is not to mea-
sure individual program variants, but to execute a variant simulator
that subsumes the individual behavior of all program variants.

Technically, family-based performance measurement consists
of three steps: First, it generates a variant simulator for a given
customizable program. In this step, it tracks which methods belong
to which feature. Second, it executes the variant simulator with a
given user-defined benchmark, logs the method execution times, and
creates a corresponding call graph. Third, it analyzes the call graph
to determine how much time has been spent within feature code and
which of the paths in the call graph are visited only for a specific
feature combination (which indicates a feature interaction). Then,
times for each feature and feature interaction are aggregated in a
performance model, in the form of a choice-calculus expression [14].

Family-based performance measurement relies on tracing informa-
tion that is obtained when creating the variant simulator, by translating
compile-time variability (e.g., feature modules [3]) to run-time vari-
ability (conditional execution). However, it can be applied also to
programs that are variable at run time, but, in this case, tracing
information needs to be provided externally.

We argue that family-based performance measurement is a promis-
ing alternative to the state of the art:
• It executes and measures only one variant simulator per customiz-

able program and workload.
• It determines which features are actually used by the respective

workload.
• It identifies performance-critical features and feature interactions

of any order. 1

1 The order of a feature interaction specifies how many features interact (minus
one) [28]. For example, an interaction between two features is first-order.



Class Base

ColorScan

AutoScan

Printer Color Scanner

Refines

Refines

Class

Refines Class 

Possible variants

RefinesLogging

Figure 1. Decomposition of classes (vertical bars) with respect to
features (horizontal layers) in the printer driver

Being a novel approach, it has some limitations (e.g., no multi-
threading support), which we discuss in Section 5.2. Furthermore,
we concentrate on feasibility in the evaluation. How accurate are
predictions based on a variant simulator? What is the role of feature in-
teractions, and how can they be detected, independently of their order?
To answer these questions, we developed a tool chain for family-based
performance measurement based on FEATUREHOUSE [3], in which
features are implemented with statically composable feature modules.
We evaluate our approach using five feature-oriented programs taken
from a standard repository. Our experiments show that we achieve a
prediction accuracy of 98 %, on average, while measuring only a small
fraction of the variant space (we need only a single execution). We de-
tected many feature interactions, up to the order of five, which cannot
be found by current approaches that rely on pair-wise sampling [34].

2. Feature-oriented Programming
We demonstrate feasibility of our approach with feature-oriented
programming (FOP) [6]. Programmers implement features in distinct,
physically separated modules, called feature modules, whose com-
posability facilitates customization. A feature module encapsulates
source code otherwise scattered across different classes inside a single
unit of composition. It can introduce new classes and extend existing
classes (class refinements). A composer, such as FEATUREHOUSE [3],
incrementally composes a set of given feature modules to obtain a
final program variants.

In Figure 1, we show the layered design of a feature-oriented
printer driver. Horizontal layers represent the feature modules of the
driver, and vertical bars represent JAVA classes. Starting from a base
implementation of a class, multiple refinements belonging to different
features are applied. Refinements add new members to classes, such
as methods and fields, or extend existing methods by overriding.
For example, if a user selects feature ColorScan, class Printer is
composed of the base implementation and a refinement to scan paper
with colors.

In Figure 2, we show the code of the four feature modules of the
printer driver. Technically, composition is implemented by superim-
position [3]. Superimposition composes feature modules, based on
nominal and structural similarity. It starts at the top of the hierarchical
structure of the feature modules; if two program elements match in
name and type they are merged; then, it proceeds recursively.

In our example, the composition starts with the feature modules
Base and Logging. Both declare a class Printer. Since the names
match, the content of the classes is superimposed, meaning that the
composed class Printer contains the union of all their members.
Then, superimposition proceeds with the individual class members.
If two methods have the same signature in both feature modules, one
method overrides the other method, in composition order (method
print of feature Logging overrides method print of feature Base),
a mechanism called method refinement. Keyword original refers to
the overridden method. In our example, we extend the base implemen-
tation of print by adding a statement and calling the overridden

Feature: Base

1 class Printer {
2 public static void main(String[] args){
3 Printer p = new Printer();
4 p.print((Page)args[0]);}
5 public void print(Page p) {
6 ... // 2s
7 }
8 public Page scan() {
9 ... // 1s

10 }}

Feature: Logging

11 class Printer {
12 public void print(Page p) {
13 log("Execute printer job."); // 1s
14 original(p);}
15 public Page scan() {
16 ... // 0.5s
17 return original();}
18 }

Feature: ColorScan

19 class Printer {
20 public void print(Page p) {
21 ... // 5s
22 scan();
23 original(p);}
24 public Page scan() {
25 return original();}
26 }

Feature: AutoScan

1 class Printer {
2 // scans one page and prints it
3 public void print(Page p) {
4 ... // 1s
5 scan();
6 original(p);}
7 }

Figure 2. A feature-oriented printer driver (the class declarations
of Logging, ColorScan, and AutoScan refine the corresponding
declaration of Base)

Program variant: {Base, Logging, ColorScan, AutoScan}
1 class Printer {
2 public static void main(String[] args){
3 Printer p = new Printer();
4 p.print((Page)args[0]);}
5 public void print(Page p) {
6 ... // 1s by AutoScan
7 ... // 5s by ColorScan
8 log("Execute printer job."); // 1s by Logging
9 ... // 2s by Base

10 scan(); // by ColorScan
11 scan(); // by AutoScan
12 }
13 public Page scan() {
14 ... // 0s by ColorScan
15 ... // 0.5s by Logging
16 ... // 1s by Base
17 }}

Figure 3. Variant with the features Base, Logging, Scan, and Copy

method. The result of the composition of all features of our example
is shown in Figure 3.

Note that, using the program variant of Figure 3, we can measure
the performance of all features in combination (because the example
does not include mutually exclusive features). But, this way, we cannot
infer to what extent individual features contribute to the measured per-
formance and how they interact. To quantify the influence of each fea-
ture, we would need to measure individual combinations, using a brute-
force or sampling approach. As an alternative to this approach, we
propose a family-based approach, which relies on a variant simulator.

Variant Simulator. A variant simulator subsumes the behavior of
all variants of the customizable program. Technically, we generate



Variant simulator: {Base, Logging, ColorScan}
1 class Printer {
2 static boolean _HighColor_enabled;
3 @Feature(name="Base")
4 public static void main(String[] args){
5 Printer p = new Printer();
6 p.print((Page)args[0]);}
7 @Feature(name="Base")
8 public void print_role_Base(Page p) {
9 ...// 2s by Base

10 }
11 @Feature(name="Logging")
12 public void print_role_Logging(Page p) {
13 ...// 1s by Logging
14 print_role_Base(p);
15 }
16 @Feature(name="FeatureSwitch")
17 public void print_role_before_Logging(Page p) {
18 if (_Logging_enabled) {
19 print_role_Logging(p);
20 } else {
21 print_role_Base(p); }
22 }
23 @Feature(name="ColorScan")
24 public void print_role_ColorScan(Page p){
25 ...// 5s by Logging
26 print_role_before_Logging(p);
27 }
28 @Feature(name="FeatureSwitch")
29 public void print(Page p) {
30 if (_ColorScan_enabled) {
31 print_role_ColorScan(p);
32 } else {
33 print_role_before_Logging(p); }
34 }
35 }

Figure 4. Excerpt of the variant simulator for the features Base,
Logging, and ColorScan

a variant simulator using variability encoding [2], which essentially
translates compile-time variability to run-time variability. A variant
simulator contains the code of all features as well as information
on which feature combinations are valid. It invokes feature-specific
behavior based on enabling and disabling guards around feature code.
The guards are controlled by boolean variables that represent the pres-
ence and absence of individual features and that can be set at run time.
For each method refinement, there is a new method introduced, called
feature switch, that dispatches between the refined methods and the
refining method. Finally, each method and each feature switch is anno-
tated with information on their origin (i.e., the feature it belongs to).

Figure 4 shows the variant simulator of our example. Each method
is annotated; the annotation in Line 3 states that this method belongs
to feature Base; the annotation in Line 16 states that the method is
a feature switch, included by variability encoding.

Note how the original methods have been renamed to imple-
ment method refinement. Each method refinement is translated
to two new methods, one method that implements the actual re-
finement and one method (a feature switch) that dispatches be-
tween the refined method and the actual refinement. For example,
print role Logging implements a method refinement (Line
12) and print role before Logging a feature switch (Line
17). The base method does not need a feature switch (Line 8), and
the last method refinement in chain receives the original name of the
method (Line 29).

3. Family-based Measurement
Family-based measurement is inspired by related work on family-
based analysis of software product lines [36], type checking [20, 23],
static analysis [8, 27], model checking [4, 13], and deductive ver-
ification [37]. The idea is simple: Do not measure each program
variant (or a subset thereof) individually, but execute a corresponding
variant simulator to build a performance model. Clearly, there are

Customizable 
program

Workload

fully automated

Performance model

base,15s , f1, 5s , 
f2, 3s , f1#f2, 10s , ..

Feature
modules

Variant
simulator

3s

3s

15s

15s

0s

0s

0s

5s

Call 
graph(s)

Figure 5. Process of family-based performance measurement

several challenges that arise when using a variant simulator, such
as how to handle alternative features and how to identify feature
interactions. Hence, we begin with discussing requirements and goals
of family-based measurement:
• When measuring performance, we need a specific workload or

benchmark. For instance, to determine performance of a customiz-
able database system, we need a representative workload that
simulates the target application scenario of the fully-customized
program variant. Such a workload may be standardized (e.g.,
TPC-H in the database domain) or given by the user to represent
the intended use case.
• Beside the workload, we require a variability model (e.g., a feature

model) to encode run-time variability properly. We reason only
about the valid execution paths across features, and disregard
invalid feature combinations. Furthermore, the variability model is
used to optimize the performance model, for example, by stating
which features are mandatory.
• The third requirement is measure all valid execution paths in

the variant simulator. That is, we aim at full feature coverage
according to the given workload.
• Finally, we want to fully automate the whole process, as illustrated

in Figure 5. The inputs are the customizable program and the work-
load for which we generate the performance model.2 Next, the vari-
ant simulator is generated and executed on the workload. From this
measurement, we automatically extract execution times and feature
interactions, and produce the corresponding performance model.

3.1 Performance Model
Our goal is to produce a performance model that captures the times that
the variant simulator spent in the respective features’ code. Clearly, the
model should incorporate interactions among features, because feature
interactions can have a substantial influence on performance [33]. The
output is a variable performance model that computes, for any given
feature selection, a performance value, which is used to predict the per-
formance when actually executing the corresponding variant. We ex-
press the performance model using the choice calculus [14], in which
each term holds a feature name and the time consumed by the feature
when selected. The performance model Π for a customizable program
p with the features f1, . . . , fn , and a workload w is defined as follows:

Πw
p =

n∑
i=1

〈fi, twi 〉 | fi ∈ p, twi ∈ R (1)

For a workload w, we log the time twi that a feature fi contributes
to the execution of p. A simple performance model of our running
example is:

〈Base, 5s〉+ 〈Logging , 1.5s〉+ 〈ColorScan, 5s〉

With this performance model, we can predict the execution time of
all valid program variants by adding the corresponding performance
values (considering feature Base is mandatory and Logging and
ColorScan are optional):

2 Note, in our scenario, we assume that the customizable program can be
automatically generated.



Variant Time in s

Base 5.0
Base, Logging 6.5
Base, ColorScan 10.0
Base, Logging, ColorScan 11.5

Note that we can have additional terms in the performance model
representing feature interactions. A feature-interaction term represents
the execution time that is consumed when the interacting features are
present in a program variant, in addition to times of the individual
features. If we identify a feature interaction between n unique features,
we add a corresponding term to the performance model, denoted with
operator # [7]:

〈f1# . . .#fn, t1#...#n〉
For example, if the features Logging and ColorScan interact,

we write Logging#ColorScan. Adding the feature-interaction term
〈Logging#ColorScan, 2s〉 to the performance model of our exam-
ple, would change the predicted performance of configuration {Base,
Logging, ColorScan} from 11.5s to 13.5s, because we must add 2 sec-
onds for program variants that contain both Logging and ColorScan.

3.2 Approach
The overall approach of family-based performance measurement
consists of four steps:
1. Generate the variant simulator and weave code into the variant

simulator to trace and measure feature code;
2. Execute the variant simulator to build a call graph that consists

of methods with annotated feature names and measured execution
times;

3. Identify feature interactions based on the call graph;
4. Aggregate performance values per feature to build a performance

model;
In the remaining section, we explain the four steps in detail. For
illustration, we use our running example, where Base is mandatory
and Logging, ColorScan, and AutoScan are optional. Furthermore, we
assume the times the features consume as specified in the comments
of Figure 3.

3.2.1 Call Graph with Feature Annotations
The first step of family-based performance measurement is to measure
the execution time of each individual feature. We need to extract the
following information from the running variant simulator:
• Which methods are executed?
• To which features do these methods belong?
• What is their execution time?
• What is the sequence of method calls?3

To obtain this information, we weave code around each method when
compiling the variant simulator, as shown in Algorithm 1. First, we
measure the execution time of each method and log the time together
with the name of the corresponding feature (or feature combination).
To this end, when visiting a method, we automatically start a mea-
surement (Line 9) and log the visit (Line 3). After returning from this
method, we stop the measurement and log the result (Lines 11 and 12).
Second, we build a call graph to trace the control flow, as illustrated in
Figure 6. To this end, we log which feature calls which other feature,
and we distinguish between a call due to a method refinement (via
original) and a normal method call (Lines 4–7). By storing the
name of the visited feature, we can keep track of that we visit all fea-
tures (required by feature-coverage requirement), and we can identify
feature interactions by analyzing the control flow across features.

By applying Algorithm 1 to the variant simulator of our running
example, we obtain the call graph shown in Figure 6. Horizontal

3 Currently, we do not consider multi threading.

Algorithm 1: Build call graph
Data: CallGraph callGraph, Method parent
Result: CallGraph callGraph

1 When executing Method method
2 begin
3 callGraph.add (method, method.featureName);
4 if method.isRefinement() then
5 callGraph.createRefineEdge(parent, method);
6 else
7 callGraph.createCallEdge(parent, method);
8 parent = method;
9 startTime = startMeasurement();

10 method.execute() ; // continue method execution
11 measuredTime = endMeasurement()- startTime;
12 method.time = measuredTime;
13 parent = method.parent;
14 return callGraph;
15 end

print

print_role_AutoScan

print_role_ColorScan

print_role_Logging

scan

scan_role_ColorScan

scan_role_Logging

print_role_BaseBase

Logging

ColorScan

AutoScan

main

Switch original call

method call

scan_role_Base12s

12s

12s

3s

2s

4.5s

1.5s

1.5s

1.5s

1s

print_role_before_ColorScanSwitch 4.5s 1.5s

print_role_before_LoggingSwitch 3s 1.5s

1.5s

scan_role_before_Logging

scan_role_before_ColorScan

scan_role_AutoScan

Figure 6. Call graph of our running example

layers denote features, nodes denote methods and method refinements,
and edges denote method calls (both normal calls and calls due to
original). For example, method print role Base contains
the code contributed by feature Base; it is is refined three times,
which results in three feature switches and three actual refinement
implementations.

Although every node holds the time that the corresponding
method has consumed, we do not know yet the actual time spent
in a feature. This is because the measured time comprises also
all execution times of methods that have been called from this
method. For example, if we measure the execution time of method
print role ColorScan, we measure 9.5s, which is only half
the story, because we spent only 5s in this method, and the remaining
4.5s in print role Logging, scan, etc. Another important
information that we do not have yet is on which features the execution
of a method depends. To gain this information, we have to identify
feature interactions, as we explain next.

3.2.2 Identifying Feature Interactions
Our approach to identify feature interactions is based on the ob-
servation that a call from one method to another always induces
an interaction between the calling feature and the called feature.
With “interaction”, we mean that the called feature would never be
executed, if the calling feature was not present.4 For example, in
Figure 6, there is an interaction between Base and AutoScan, as with-

4 There are also features a code level, referred to as derivatives [28]. We treat
derivatives similar to features. If the execution of interaction code leads to an
alternative call sequence, we treat this similar to mutually exclusive features
(see Section 3.3).



out Base, method print role AutoScan would not be executed.
Likewise, there is an interaction between AutoScan and ColorScan, be-
cause print role AutoScan calls scan; ColorScan’s method
refinement is executed only because AutoScan made this call.

In general, the execution of a method in a feature fn may depend
on a whole set f1, . . . , fn−1 of other features. We define this set as
the prefix f1#...#fn−1 of feature fn in the corresponding interaction
term. In our algorithm, prefixes grow when traversing the call graph.

In Algorithm 2, we show how to identify feature interactions.
When entering a method, we determine whether this is due to a
normal method call or a method refinement (Line 4). In the case of
a normal call, we protocol a feature interaction between the calling
feature and the called feature by adding the corresponding prefix
to the call graph (Line 7). The prefixes are passed from the calling
feature to the called feature and extended in each step (Lines 4–7).

Algorithm 2: Detect feature interactions
Data: CallGraph callGraph, Method parent
Result: CallGraph callGraph

1 // When entering Method method
2 begin
3 String currentFeature = method.getAnnotation();
4 if method.isRefinement() then
5 method.prefix = parent.prefix;
6 else
7 method.prefix

= parent.prefix + currentFeature + "#";
8 callGraph.addPrefix(method, method.prefix);
9 ...

10 method.execute() ; // continue method execution
11 ...
12 return callGraph;
13 end

There are two important facts to consider that are not obvious.
First, an original call does not cause a feature interaction, because
the execution of the method that has been refined does not depend on
the feature that applied the refinement. Second, the execution of all
refinements of a method depends on the feature that calls the method
(via a normal method call).

In Figure 6, method print and all of its refinements depend on
the presence of feature Base, which calls print from main. Based
on this call, we identify four feature interactions: Base#AutoScan,
Base#ColorScan, Base#Logging, and Base#Base. So, all features
that refine method print obtain the prefix Base# to keep track of
the interaction. Furthermore, all measured times will be included in
the performance model with the prefix and the feature name. As the
program execution continues, the prefix grows. For example, the two
calls to method scan from AutoScan and ColorScan result in two
sets of feature interactions:
{Base#AutoScan#ColorScan, Base#AutoScan#Logging,

Base#AutoScan#Base}
{Base#ColorScan#ColorScan, Base#ColorScan#Logging,

Base#ColorScan#Base}.
Simplifying Interaction Terms. The interaction terms created by
Algorithm 2 are quite verbose, so we simplify them, according to a
standard model of feature composition by Batory [7]. In particular,
we define two rules for simplification. First, if a feature interacts with
itself, then we can shrink the prefix accordingly, because the execution
of the feature’s methods depends on the presence of itself, which is
always satisfied:

fi#fi −→ fi (S-Ref)
Second, mandatory features are always present, so a feature in-

teraction between an optional and a mandatory feature depends only
on the presence of the optional feature:

mandatory(fi) prefix (fi) = ∅
fi#fj −→ fj

(S-Mand)

main

print

print_role_AutoScan

print_role_ColorScan

print_role_Logging

print_role_Base

scan_role_Base

scan

scan_role_ColorScan

scan_role_Logging2s

1s

5s

1s

0.5s

2s

3s

1s

1.5s

0s

1.5s

1.5s

0s

9.5s

0s

0s

1s

0.5s

1s

1.5s

0s

1.5s

1.5s

1s

12s

12s

0s

Base#

Base#AutoScan#

Base#ColorScan#

Refinement

Call

Interaction #

Base

Switch

AutoScan

Base

Switch

SwitchLogging

ColorScan

Logging

ColorScan Logging

ColorScan

Base

Base

Feature

scan_role_Base

scan

scan_role_
ColorScan

scan_role_Logging

Figure 7. Reachability tree of our running example (with omitted
feature switches). Times inside methods represent the time spent by
the method itself. Times on edges represent actually measured times

Note that # is not commutative, and this rule does not apply if fj
is mandatory and fi is optional, because, in this case, we execute a
method of the mandatory feature fj only if the optional feature fi
is present. Consequently, the time spent in this method influences
performance only when both features are present.

When applying these simplifications to our running example, we
obtain the following feature combinations in the performance model:

Base, AutoScan, ColorScan, Logging, AutoScan#ColorScan,
AutoScan#Logging, ColorScan#Logging

Note that, even in this simple example, we identify three pair-wise
feature interactions, indicating the potential of this approach to detect
feature interactions. Next, we explain the remaining task to obtain
a performance model: aggregating the execution times of individual
methods.

3.2.3 Aggregate Execution Times
As said previously, when we log the time at the end of a method
execution, we measured not only the time consumed by the method
itself, but also the time spent in other methods it called. We have to
subtract these times from the current measurement to compute the
actual performance of this method.5 For example, we measured an ex-
ecution time of 9.5 seconds for method print role ColorScan,
but we visited the method only for 5 seconds and spent the re-
maining time in the methods print role Logging (1 second),
print role Base (2 seconds), and in four additional methods
(1.5 seconds), as illustrated in Figure 7.6

Technically, we solve this problem by representing the call graph as
a reachability tree similar to reachability trees in model checking [12].
Nodes in the tree represent executed methods and edges represent
calls to other methods. Using this tree, we compute the actual time
tm spent in method m with the measured time Tm as follows:

tm = Tm −
n∑

i=1

Ti | ∀i ∈ children(m) (2)

with n being the number of children of method m in the reachability
tree.

5 Since we use a call graph and not a dynamic call tree, we handle also
recursive methods by representing it only a single time in the graph and
aggregating the executing time of all executions.
6 Note that we omitted some feature switches in Figure 7, for readability.



In Figure 7, we show the corresponding tree for our example.
For each method, we know the corresponding feature, and after the
execution of each method, we know the time spent. This time is
annotated to the corresponding edges of the tree and subsumes the
whole time spent below the current node. Using Equation 2, we
compute for method print role ColorScan the time:

tprint role ColorScan = Tprint role ColorScan

−
n∑

i=1

Tprint role ColorScan

= 9.5s− (3s + 1.5s) = 5s

Next, we aggregate the method times ti to build the performance
model. For this task, we have to consider feature interactions. That is,
it is not sufficient to take only the annotated feature names and sum the
times up for each feature. If we do so, we lose the information under
which condition a feature’s method is executed (i.e., which features
must be present to execute a certain method). The outcome would
be a performance model that expresses the maximal execution time
per feature, but not the actual execution time depending on a given
feature selection. To solve this problem, we use the identified feature
interactions encoded with the prefixes in order to create the correct per-
formance terms for the performance model, as shown in Algorithm 3.

Algorithm 3: Build performance model
Data: CallGraph callGraph, PerformanceModel model
Result: PerformanceModel model

1 foreach Method m in callGraph do
2 Term t = m.prefix + m.featureName ; // from Alg 2
3 t.time = m.clearedTime ; // from Equation 2
4 model.addOrUpdate(t) ; // add term to model
5 end
6 return model;

3.2.4 Putting the Pieces Together
So far, we have described the four steps of family-based performance
measurement: (1) the algorithm to build the call graph, (2) the algo-
rithm to identify feature interactions, (3) the simplification rules, and
(4) the algorithm to build the performance model. Next, for a better
overview, we explain how these pieces interplay using on the example
of Figure 7.

We enter the program from method main, so all preceding meth-
ods in the call graph depend on the presence of Base. Base# is passed
as the prefix when considering method print. Next, we reach
method print role AutoScan and subtract from the measured
12s all times coming from the corresponding child nodes (9.5s and
1.5s).7 As a result, we store the term 〈Base#AutoScan, 1s〉 in our
performance model (12s − 9.5s − 1.5s = 1s). Then, we continue
with the left child, which is method print role ColorScan
of feature ColorScan. Since this call is a method refinement, we do
not extend the prefix. We measure 9.5s for this method, whereas
3s are consumed by the first child and 1.5s are consumed by the
second child. Hence, we include the term 〈Base#ColorScan, 5s〉
in our performance model (9.5s− 3s− 1.5s = 5s). When entering
the second child of method print role ColorScan (which
is method scan), we have to extend the current prefix by Col-
orScan. That is, we store for method scan role ColorScan the
term 〈Base#ColorScan#ColorScan, 0s〉, and so on. The term
amounts to 0s, because the child nodes consume the whole execution
time (the method simply delegates the call).

7 In practice, we first compute the performance terms of all child nodes,
because the method is recursive. We explain the algorithm in the order of
program execution to ease understanding.

By applying the simplification rules and by removing terms with a
zero performance value, we obtain the following performance model:

〈Base, 2s〉+ 〈Logging, 1s〉+ 〈ColorScan, 6s〉
+ 〈AutoScan, 2s〉+ 〈ColorScan#Logging, 0.5s〉
+ 〈AutoScan#Logging, 0.5s〉+ 〈ColorScan#Base, 1s〉
+ 〈AutoScan#Base, 1s〉

Finally, the performance model is then used as follows: Based
on a valid feature selection, the model computes the performance
value by removing all terms that do not contain any feature in the
selection; then, the sum of the times of the remaining terms represents
the performance value of the corresponding program variant.

3.3 Mutually Exclusive Features
So far, we did not consider the case in which features are mutually
exclusive, say two alternative implementations of logging. While mutu-
ally exclusive features can be integrated into a single variant simulator,
they can never be active in the same execution (incorporating the
variability model, we consider only valid execution paths). A simple
solution to this problem is to execute the variant simulator once per mu-
tually exclusive alternative, and to compute the times consumed by the
corresponding features. While this increases the number of measure-
ments, this measurement applies only to sets of mutually exclusive fea-
tures, not to all kinds of feature combinations, as in brute-force or sam-
pling approaches [17]. Furthermore, since we assume that the method
execution time is constant, we do not have to measure all combinations
of alternative features. We discuss this issue further in Section 5.

4. Evaluation
The aim of our evaluation is to explore whether family-based perfor-
mance measurement is feasible. To this end, we evaluate the accuracy
of the predictions of our approach, compared to the actual perfor-
mance that is measured. Furthermore, we compare the measurement
effort of family-based measurement with state-of-the-art sample-based
prediction approaches [34]. Finally, we discuss to what extent our
approach can identify feature interactions.

Based on these goals, we formulate three research questions:
1. How accurate are the predictions of our approach?
2. What is the measurement effort of our approach compared to brute-

force and state-of-the-art sampling approaches (i.e., feature-wise
and pair-wise measurement)?

3. What kinds of feature interactions is our approach able to detect?
The complete tool chain (i.e., the extension of FeatureHouse and
the measurement infrastructure) as well as all experimental data are
publicly available: http://fosd.de/Family .

4.1 Experimental Setup
Next, we explain the customizable programs we used for our eval-
uation and the measurement procedure.

Subject Programs. As subject programs, we selected five feature-
oriented programs from a public repository.8 The selection criteria
were that these programs can be processed by our tool chain (i.e.,
FEATUREHOUSE) and that they can run a benchmark automatically
without user intervention, to obtain reproducible results. For each
subject program, we executed either a standard benchmark (deployed
with the program) or a typical workload (e.g., we analyzed a sub-
stantial code base with AJSTATS). We give an overview of subject
programs in Table 1.

In the following, we describe each subject program briefly, includ-
ing the changes we made to run a benchmark:
• AJSTATS is a customizable code-analysis tool for AspectJ pro-

grams. Depending on the configuration, it collects different statis-

8 http://fosd.de/fuji/

http://fosd.de/Family
http://fosd.de/fuji/


Program Domain # Features # Variants LOC

AJSTATS Code Analyzer 20 131 072 14 782
ELEVATOR Simulator 6 10 2 488
EMAIL E-mail Client 9 40 1 455
ZIPME Compression Lib 14 10 5 355
MBENCH Micro Benchmark 11 1 014 120

Table 1. Overview of the subject programs

tic, including the number of aspects, pointcuts, etc. As a workload,
we analyzed Orbacus, a customizable CORBA implementation.
• ELEVATOR models an elevator with varying optional conditions,

such as weight limitations and priority service. It has been used
before as a benchmark for (functional) feature-interaction detec-
tion [4, 29]. We extended the model by realistic timing information
(e.g., how long different functions of the elevator need). As a
workload, we use a scenario, applied by other researchers for
verification.
• Much like ELEVATOR, EMAIL has been used before to verify the

behavior of differently customized e-mail clients [4, 18]. Again,
we included timing information into the model. We used a typical
e-mail scenario as workload.
• ZIPME is a compression library that allows users to customize

it by selecting different compression algorithms. As a benchmark,
we use a file of 6 MB size generated by UIQ, a standard benchmark
generator for compression algorithms.9
• We wrote a micro benchmark, called MBENCH, to test corner

cases of family-based measurement. For example, it (a) calls
methods from within a refined method, (b) it calls original
within a loop, to simulate complex call graphs, (c) it defines
methods in a feature that are called only by other features, etc.

We performed all measurements for a single customizable program
exclusively either on a Intel Core2 Quad CPU, Win7 64Bit profes-
sional system with 8 GB RAM or on an Intel Core i7 2GHZ, Win7
64Bit professional with 4 GB RAM.

Experimental Procedure. We extended FEATUREHOUSE such that
it generates a proper variant simulator for a given feature-oriented pro-
gram. It generates (i) feature-name annotations for each method and
(ii) methods to switch between alternative features. We implemented
the measurement infrastructure and construction of the call graph
using ASPECTJ, by weaving advice around each annotated method.

The measurement process is simple: We run the variant simu-
lator to log the execution times and to compute the performance
model. Then, we create and measure all variants of the respective
program and compute the error rate of our prediction as the relative
difference between predicted and actually measured performance:
|actual−predicted|

actual
. For AJSTATS, we could not measure all variants

in a reasonable time. Instead, we measured 30 256 randomly selected
configurations, requiring two weeks of measurement.

4.2 Results
Prediction Accuracy and Measurement Effort. We present the
measurement results in Table 2, including the error rate for each
program, the distribution of the error rate using box plots, as well
as mean and standard deviation. On average, the error rate is 1.7 %,
which is well within the general measurement error of 2 %.10 In short,
to answer research question 1, we achieve very accurate predictions.

To learn about the feasibility of our approach, we quantify the mea-
surement effort. Actually, we had to run each variant simulator only
once, because no alternative features were present (research question

9 http://mattmahoney.net/dc/uiq/
10 In our experiments, measuring the same program multiple times results
in variations of up to 2 %. That is, an prediction error rate of below 2 % is
as accurate as actually measuring the program variants.

Error Rate (in %)

Program Time (BF) Distribution µ±σ

AJSTATS 15s (53d)
●●●● ●● ●● ●●●●●●● ●●●● ●●●●● ●● ● ●●●● ●● ●●●●● ●● ●●●●●● ●●● ●●●● ●●●●● ●●●●● ●●●● ●●● ●●●● ●● ●●●● ●●●● ● ●●●● ● ●●● ●●● ●●●● ●●●●●●● ● ●●● ● ●●●●●●●● ●● ●●●● ●● ●● ●●●● ●● ●●● ●●●●● ●●●●●● ●● ●●● ●● ●●●● ●●●●● ●● ● ●●●●● ●●●●● ●● ●●●●● ●●●●●●●●●● ●● ●●●● ●●●● ●●●● ●● ● ●●●●● ●●●● ●●●● ●●●● ●●● ●● ●●●●● ●● ●●●● ●●● ●● ●● ●●●●● ●●●●●●● ●●●●● ●●● ●●● ●●● ●●● ●● ●● ●●●●● ●● ●●●●●●● ●●●● ●●● ● ●●● ●●●●●●●● ●●● ●●● ●●●●●● ●●● ●●●●●●●●● ●●●● ●●●●●● ●●● ●● ●●● ● ●● ●●● ●● ● ●●●● ●●●●●●●● ●●●●●●●●●●●● ●● ●●●●● ●● ●● ●● ●●●●●●●●● ●●●●●● ●● ● ●●● ●● ●● ●●●●●●●●● ●●●●● ●●● ●● ●●●●●●●● ●● ●●●●●● ●●●● ● ●●● ●●●● ●●●●● ●●● ●● ●●●●●● ●●● ●● ●●●●●● ●● ●●●●●●●●● ●●●●● ●●●●● ●● ●●●● ●● ●●● ● ●●● ●● ●●● ●● ●● ●● ●●● ●●● ●●●●●● ●● ●● ●●●●●●● ●● ●●●● ●●●●● ●● ●●● ●●● ●●● ●● ●● ●●●●●● ●●● ●● ●●●● ●● ●●● ● ●●●● ●●●● ●●● ●●●● ●● ● ●●● ●●●● ●● ●● ●● ●●●●● ●●●●● ●●●●●●●●● ●● ●● ●● ●●●●●●● ●● ●●●● ●●● ●● ●●●●●● ●● ●●● ●● ●●● ●●●●●●● ●●●●● ●●●●●●●●●● ●● ●●● ●● ●●●● ●●● ●●●● ●● ●●●●●● ●●● ●● ●● ●●●●●●●● ●●●●●●●●●● ● ●●●● ● ●●●●● ●● ●● ●●●● ●● ●●● ●● ●●●● ●●●● ●●●●● ●● ●●●●●●●●●●●●●● ●●●●●●● ●● ●● ●●●●●●● ●●●● ●●●●● ●● ● ●●●● ●● ●●●●● ●● ●●●●●● ●●● ●●●● ●●●●● ●●●●● ●●●● ●●● ●●●● ●● ●●●● ●●●● ● ●●●● ● ●●● ●●● ●●●● ●●●●●●● ● ●●● ● ●●●●●●●● ●● ●●●● ●● ●● ●●●● ●● ●●● ●●●●● ●●●●●● ●● ●●● ●● ●●●● ●●●●● ●● ● ●●●●● ●●●●● ●● ●●●●● ●●●●●●●●●● ●● ●●●● ●●●● ●●●● ●● ● ●●●●● ●●●● ●●●● ●●●● ●●● ●● ●●●●● ●● ●●●● ●●● ●● ●● ●●●●● ●●●●●●● ●●●●● ●●● ●●● ●●● ●●● ●● ●● ●●●●● ●● ●●●●●●● ●●●● ●●● ● ●●● ●●●●●●●● ●●● ●●● ●●●●●● ●●● ●●●●●●●●● ●●●● ●●●●●● ●●● ●● ●●● ● ●● ●●● ●● ● ●●●● ●●●●●●●● ●●●●●●●●●●●● ●● ●●●●● ●● ●● ●● ●●●●●●●●● ●●●●●● ●● ● ●●● ●● ●● ●●●●●●●●● ●●●●● ●●● ●● ●●●●●●●● ●● ●●●●●● ●●●● ● ●●● ●●●● ●●●●● ●●● ●● ●●●●●● ●●● ●● ●●●●●● ●● ●●●●●●●●● ●●●●● ●●●●● ●● ●●●● ●● ●●● ● ●●● ●● ●●● ●● ●● ●● ●●● ●●● ●●●●●● ●● ●● ●●●●●●● ●● ●●●● ●●●●● ●● ●●● ●●● ●●● ●● ●● ●●●●●● ●●● ●● ●●●● ●● ●●● ● ●●●● ●●●● ●●● ●●●● ●● ● ●●● ●●●● ●● ●● ●● ●●●●● ●●●●● ●●●●●●●●● ●● ●● ●● ●●●●●●● ●● ●●●● ●●● ●● ●●●●●● ●● ●●● ●● ●●● ●●●●●●● ●●●●● ●●●●●●●●●● ●● ●●● ●● ●●●● ●●● ●●●● ●● ●●●●●● ●●● ●● ●● ●●●●●●●● ●●●●●●●●●● ● ●●●● ● ●●●●● ●● ●● ●●●● ●● ●●● ●● ●●●● ●●●● ●●●●● ●● ●●●●●●●●●●●●●● ●●●

3.2± 2.5

ELEVATOR 46s (220s)
●●

0± 0

EMAIL 60s (882s)
●●● ●●●

0.4± 0.5

ZIPME 40s (405s) 3.1± 3.0

MBENCH 50s (4h) 2.0± 1.3
0 2 4 6 8 10

Table 2. Accuracy and measurement effort of the subject programs;
BF refers to time needed for the brute-force approach. µ: arithmetic
mean; σ: standard deviation

2). This is far less than in the brute-force approach and in all sample-
based approaches (i.e., linear number of measurements for feature-
wise sampling and quadratic for pair-wise sampling with respect to the
number of features). Also note that the times presented in the table do
not include repeating a measurement several times, which is, however,
required to reduce measurement bias. Increasing the robustness and
reliability of measurements would mean to multiply the times by a
factor of 10 or higher. Even feature-wise measurement (as explained
next) requires more measurements for our subject programs, but with a
higher error rate, as it does not consider feature interactions at all [34].

For illustration, we depict in Table 2 the times needed for family-
based performance measurement in relation to the times needed
to measure all variants (in brackets). The benefit of family-based
measurement increases with the number of optional features (but
decreases with the number of mutually exclusive features, as we
discuss in Section 5).

Comparison against Sampling. Does family-based performance
measurement outperform state-of-the-art sampling approaches: (a)
feature-wise and (b) pair-wise measurement [34]? Feature-wise mea-
surement samples the customizable program to quantify the influence
of each feature on performance. To this end, we measure two variants
that differ only in a single feature. By computing the delta of both
measurements, we quantify the impact of this feature on performance.
Pair-wise measurement aims at improving prediction accuracy of
feature-wise measurement by keeping track of all pair-wise (i.e.,
first-order) feature interactions. To this end, we measure for each
pair of features an additional variant and compare predicted against
measured performance [32]. In Table 3, we compare family-based
performance measurement with feature-wise and pair-wise measure-
ment regarding prediction error rate and measurement effort. In all
cases, family-based measurement outperforms or is, at least, equally
accurate as feature-wise and pair-wise measurement. Considering
the substantial reduction of measurement effort, we conclude that
family-based performance measurement is a promising alternative
to existing sampling approaches.

Feature Interactions. To answer research question 3, we analyzed
the interaction terms of the generated performance models. In Fig-
ure 8, we show the distribution of interaction terms depending on
their order. Terms with an order of zero represent the influence of a
single feature on performance. With an increasing order, the terms
are more difficult to detect.

In ELEVATOR, we could not identify any feature interaction. Con-
sidering the perfect prediction accuracy, we assume that there are, in
fact, no interactions present in this program. For all other programs,
we identified a considerable number of feature interactions. More
than 80 % of all terms represent feature interactions. For ZIPME, we
found interactions up to an order of four and, for AJSTATS, up to an
order of five. These results demonstrate that, in principle, there is no
limit to detect interactions of arbitrary orders, which is not the case

http://mattmahoney.net/dc/uiq/


Effort Error Rate (in %)

Program Appr. #M Time Distribution µ±σ

AJSTATS Family 1 15s
●●●●●● ● ●● ●●●● ●●● ●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●● ●● ●● ●●●● ●●● ●●●●● ●●● ●● ●●●●●●● ●●● ●●●●●●●●●●●● ●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●● ●●●●●●●●● ●●● ●●●● ●●●●●●● ●● ●●● ● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●● ●●●●●●●● ●●● ●●●● ●●● ●●●● ●●●● ●● ●●● ●● ●●● ●●●●●●●● ●●● ● ●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●● ●●●●●●● ●●●●● ●●●●●●●●●● ●●●● ●●● ●● ●●●●●●●●●● ●● ●● ●●●● ●●● ●●●●●●● ●●●● ●●●● ●●●●● ●●●●● ●●● ●● ●●●● ●●● ●●●● ●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ● ●●●● ●●●●●● ●●●●● ●●●●● ●●●● ●●● ●●●●●● ●●●●●●● ●●● ●●● ●●●●● ●●●●●●●●●●●● ●●●● ●● ●● ●● ●●●●●●●●● ●● ● ●●●●●●●●●● ● ●●●●●●●●●●●●●● ●●●●●● ●●● ●● ●●● ●●●●●●●● ●●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●● ●●●● ●● ●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●● ●● ●●● ●● ●● ●●● ●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●●● ●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●● ●● ●●●●● ●● ●●●●●● ●●●●● ●●● ●●●●●●●●●● ●●●●●●●●● ●● ●●●● ●●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●● ●● ●●●● ●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●● ●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●● ●●●●● ●●● ●●●●●● ●●●●● ●●● ●●●●●●●●● ●● ●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ● ●● ●●●● ●●● ●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●● ●● ●● ●●●● ●●● ●●●●● ●●● ●● ●●●●●●● ●●● ●●●●●●●●●●●● ●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●● ●●●●●●●●● ●●● ●●●● ●●●●●●● ●● ●●● ● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●● ●●●●●●●● ●●● ●●●● ●●● ●●●● ●●●● ●● ●●● ●● ●●● ●●●●●●●● ●●● ● ●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●● ●●●●●●● ●●●●● ●●●●●●●●●● ●●●● ●●● ●● ●●●●●●●●●● ●● ●● ●●●● ●●● ●●●●●●● ●●●● ●●●● ●●●●● ●●●●● ●●● ●● ●●●● ●●● ●●●● ●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ● ●●●● ●●●●●● ●●●●● ●●●●● ●●●● ●●● ●●●●●● ●●●●●●● ●●● ●●● ●●●●● ●●●●●●●●●●●● ●●●● ●● ●● ●● ●●●●●●●●● ●● ● ●●●●●●●●●● ● ●●●●●●●●●●●●●● ●●●●●● ●●● ●● ●●● ●●●●●●●● ●●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●● ●●●● ●● ●●●● ●●●●●●●●●●●●●●●● ●●●●● ●●● ●● ●●● ●● ●● ●●● ●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●●● ●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●● ●● ●●●●● ●● ●●●●●● ●●●●● ●●● ●●●●●●●●●● ●●●●●●●●● ●● ●●●● ●●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●● ●● ●●●● ●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●● ●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●● ●●●●● ●●● ●●●●●● ●●●●● ●●● ●●●●●●●●● ●● ●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●

3.2± 2.5

FW 18 486s
● ●●●●●●● ●●●●●●● ●● ● ●●● ●●●●● ●●●●●●●●●●● ●● ●●●● ●● ●●● ●●●●●●● ●●●●●● ●●●●●●●● ●● ●●●●●● ●● ●●● ●●●● ●●● ●● ●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●●● ●●●● ●●●● ●●●●●●●● ● ●●●●● ●● ●●●● ●●●● ● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●● ●●●●● ●●●● ●● ●●●●●●●●● ●●● ●●●●●●●●●● ●●● ●●●●●●● ●●●●●●● ●● ● ●●● ●●●●● ●●●●●●●●●●● ●● ●●●● ●● ●●● ●●●●●●● ●●●●●● ●●●●●●●● ●● ●●●●●● ●● ●●● ●●●● ●●● ●● ●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●●● ●●●● ●●●● ●●●●●●●● ● ●●●●● ●● ●●●● ●●●● ● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●● ●●●●● ●●●● ●● ●●●●●●●●● ●●● ●●●●●●●●●● ●●

2.4± 2.1

PW 115 2 425s
●●●●●●●● ●●●●● ●● ●●●●●●●● ● ●●● ●●● ●● ●●● ●●● ●●●●● ●●●●●●●● ●● ●● ●● ●●●● ●●●●● ●●●● ●●●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●● ●● ●● ● ●● ●●●●●● ●● ●●● ●●●●●● ●●●●●●● ●●●●● ●● ●●● ●●● ●●● ●●● ●● ●● ●●● ●●●●● ●●● ●●●●●● ●●●● ●●●●● ● ●●●● ●● ●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●●●● ●●●●● ●● ●●●●●●●● ● ●●● ●●● ●● ●●● ●●● ●●●●● ●●●●●●●● ●● ●● ●● ●●●● ●●●●● ●●●● ●●●●●●●● ●●●●●●●●● ●●● ●●● ●●● ●● ●● ●● ● ●● ●●●●●● ●● ●●● ●●●●●● ●●●●●●● ●●●●● ●● ●●● ●●● ●●● ●●● ●● ●● ●●● ●●●●● ●●● ●●●●●● ●●●● ●●●●● ● ●●●● ●● ●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●

8.9± 6.9
0 5 10 15 20 25 30

ELEVATOR Family 1 46s
●●

0± 0

FW 5 147s 0± 0

PW 9 178s
●●●●

0± 0
0 5 10 15 20 25 30

EMAIL Family 1 60s
●●● ●●●

0.4± 0.5

FW 7 149s 12.4± 13.3

PW 27 586s
●●●●●●●●

0± 0
0 5 10 15 20 25 30

ZIPME Family 1 40s 3.1± 3.0

FW 5 192s 4.3± 3.7

PW 8 246s 1.8± 2.5
0 5 10 15 20 25 30

MBENCH Family 1 50s 2.0± 1.3

FW 11 205s 24.2± 18.7

PW 67 1 885s 10.5± 11.9
0 5 10 15 20 25 30

Table 3. Comparison of family-based measurement with sampling
approaches. #M: number of measurements; FW: feature-wise; PW:
pair-wise; µ: arithmetic mean; σ: standard deviation

0 1 2 3 4 5

Order of Feature Interactions

R
el

at
iv

e 
N

um
be

r 
of

 T
er

m
s 

in
 %

0
20

40
60

80
10

0

AJStats
Elevator
Email
ZipMe
MBench

Figure 8. Number of identified performance terms for each
customizable program. An order higher than zero indicates a
performance term representing a feature interaction

for sample-based approaches (e.g., pair-wise is able to detect only
first-order interactions).

In Figure 9, we show how much time we spent in determining in-
teractions terms of different orders during the execution of the variant
simulator. This illustrates the influence of feature interactions on the
overall execution time. We see that the higher the interactions the less
influence they have on the execution times. But, still, higher-order
interactions exist! This finding confirms heuristics used in previous
work [33].

0 1 2 3 4 5

Order of Feature Interactions

R
el

at
iv

e 
T

im
e 

in
 %

0
20

40
60

80
10

0

AJStats
Elevator
Email
ZipMe
MBench

Figure 9. Relative time contributed by interaction terms of different
orders

5. Discussion
5.1 Threats to Validity
A threat to external validity is certainly the limited selection of subject
systems. This is due to the novelty of our approach and the fact
that the tool chain still imposes certain technical requirements on
the subject systems. Nevertheless, we argue that our experiments
demonstrate, at least, the potential of our approach, which, of course,
shall be evaluated with more rigor in the future.

Our approach detects feature interactions based on the control
flow only, not considering the data flow. The presence of additional
data-flow interactions may change the results, but not the big pic-
ture, because of the already quite accurate results. In further work,
we plan to combine family-based performance measurement with
family-based data-flow analysis [27].

Furthermore, the aspect that performs the measurement and that
creates the call graph may induce an overhead in execution time. To
reduce this effect, we (a) measured the overhead of the aspect when
visiting a method and (b) how often we visit a method per feature.
Based on this information, we subtract the overhead for each feature.
Note that the overhead varies depending on the subject program.

Our conclusions can be transferred to other customization and im-
plementation techniques only with care. Our approach traces the exe-
cution of a method to the feature it belongs to. For feature-oriented pro-
grams, this information is available at compile time, and can be trans-
ferred to run time. For related compile-time customization techniques,
this information can be obtained in a similar way, for example, for
aspect-oriented programming and component systems. Results on ana-
lyzing C programs with preprocessor directives demonstrates that even
fine-grained, undisciplined annotation-based customization techniques
can be used for tracing [22, 27]. Furthermore, there is ongoing work
on translating preprocessor directives to conditional statements [31].

Finally, performance is important, but not the only non-functional
property of interest. Instead of measuring the execution time, we can
measure memory usage, energy consumption, throughput. We expect
our approach to be applicable to all other non-functional properties
that are measurable like performance.

5.2 Applicability and Limitations
As a novel approach, we face some limitations and focus on certain
application scenarios. Next, we discuss each limitation and highlight
how to overcome it in further research.

Mutually Exclusive Features. An issue that we largely set aside
is how to handle mutually exclusive features. In our experiments,
we needed only a single run per subject program, as they do not
contain any mutually exclusive features. As explained in Section 3.3,
with an increasing number of mutually exclusive features, the ef-
fort for family-based measurement (and also other sampling-based



approaches) increases, because alternative execution paths must
be visited to cover all possible program paths. However, previous
studies suggest that only a small fraction of features in real-world
customizable programs are mutually exclusive [26]. Furthermore, in
the presence of mutually exclusive features, our approach needs sub-
stantially fewer runs than state-of-the-art sampling-based approaches,
as for them the number of variants increases not only with the number
of mutually exclusive features, but also with the number of optional
features. In fact, even in the worst case that all features are mutually
exclusive, we require only a linear number of measurements (given
our assumption that a method’s execution time is constant), which
is the lower bound of existing sampling approaches.

Program-Flow Analysis and Context Sensitivity. Our approach
assumes that a method has a constant execution time no matter what
optional feature is called before. The time can change only if the
data used by the method depends on previously executed functions.
Identifying such a change would require a program-flow analysis,
which is a direction of future research. However, despite this limita-
tion, we observed a high prediction accuracy. We assume that, in most
cases, a changing workload has more significant influence on method
execution times than feature selection. Furthermore, features in our
evaluation usually implement a modular piece of functionality that
does not depend on data manipulated by other features. For instance,
applying an additional CRC check, signing an e-mail message, or addi-
tionally counting static members in an aspect in AJSTATS introduces
a constant execution time for a static workload. Clearly, there may be
cases in which feature execution times depend on other features’ func-
tionality and program-flow analysis is important, but our experiments
suggest that focusing on control-flow can be often sufficient.

Determining the execution time of a single multi-threaded pro-
gram is already challenging, but multi threading in the context of
customizable programs imposes even more challenges, because we
may encounter temporal dependencies among features. For instance,
a feature may be executed in parallel to another feature. This means
that depending on the feature selection, we may have an overlapping
execution time. We invite the community to jointly tackle this problem.

Granularity and Implementation Techniques. Currently, we sup-
port only FeatureHouse-style programs, because we rely on the
transformation of compile-time variability to run-time variability. An
interesting question is whether we can apply these transformations
also for other implementation techniques, supporting a finer granu-
larity (e.g., #ifdefs in C). In a parallel line of research, we currently
develop means to transform also #ifdef-based customizable programs
to variant simulators, including type changes of variables and so
forth. Furthermore, Kästner and others have shown that an automated
transformation of an #ifdef-based program to a corresponding set of
feature modules is possible [21]. An alternative way which makes
our approach independent of the variant simulator is to make current
profilers feature-aware. That is, if we can trace which statements
belong to which feature at runtime, we can certainly create our call
graph and subsequently our performance model.

To sum up, we expect that our assumptions (e.g., constant method
execution time, no program-flow analysis) are usually met by feature-
oriented programs, because features often implement coarse-grained
and cohesive pieces of functionality. This picture may change when
more fine-grained configuration options are considered as features, for
instance, a feature that enables 64 bit support or doubles the precision
of certain computations.

6. Related Work
The term ’family-based’ stems from a recent classification of analysis
techniques for product lines [36]. Currently, family-based analysis
is performed mainly in the context type checking [20, 23], static anal-
ysis [8, 27], model checking [4, 13], and deductive verification [37].
We use a family-based approach for performance prediction, which

imposes unique challenges, in particular, tracing and aggregating
execution times, identifying and incorporating feature interactions,
as well as making performance models themselves variable.

Performance Prediction. Chen and others [11] use a combined
benchmarking and profiling approach to predict the performance
of component-based applications. Based on a JAVA profiling tool, a
performance model is constructed for application-server components.
In contrast, we correlate the measurements to the feature selection
and have to perform the measurement only a single time.

Guo and others predict performance of software product lines
using classification and regression trees [17]. They measure multiple
configurations and classify the performance results by means of
selected and deselected features. When predicting performance of a
configuration, they use the most similar feature selection for which
they have already measured the corresponding configuration.

In our previous work, we proposed an approach to quantify the
influence of each feature on performance [34]. To this end, we mea-
sure two variants that differ only in a single feature and interpret the
delta of the measurements as the performance impact of the differing
feature. We refined this approach to detect feature interactions by
using several heuristics [33]. While improving prediction accuracy,
this also increased the number of measurements.

Family-based measurement differs form all these approaches in
that it requires a principally lower number of measurements, while
it achieves slightly improved prediction accuracy in our experiments.
However, family-based measurement is not a black-box approach. We
require the source code of the program.

Feature Interactions. Feature-interaction detection has been ad-
dressed in a substantial body of previous research (see Calder et
al. [10] for a comprehensive overview). There are measurement-based
approaches, such as by Calder and Miller, who use pair-wise measure-
ment based on linear temporal logic to detect feature interactions [9].
Another approach to identify feature interactions is iTree [35]. It
aims at reducing the complexity of combinatorial testing of customiz-
able programs by identifying sets of features that are most likely to
interact, especially, for higher-order interactions. Other techniques
can be classified as model-based detection, for example, reachability
graphs [30] and model checking [2, 13]. In contrast to previous work,
we concentrate on performance feature interactions and analyze the
control flow of a variant simulator to identify interactions. The relation
to other kinds of feature interactions shall be explored in further work.

Performance Profiling Performance profiling has a long tradition
and has similar equal goals. Calling context trees are related to our
annotated call graphs [1]. They allow us to handle different execution
times of the same method depending on the calling context. We
believe this technique can be combined with our approach. There are
a number of approaches that use profiling data to create a performance
model of a program [25]. For instance, Jovic and others analyze
samplings of call stacks of deployed versions of a program to find
performance bugs [19]. Grechanik and others propose to learn rules
for the generation of workloads that reveal program paths with a de-
graded performance [16]. However, these approaches tackle workload
variability rather than program variability.

7. Conclusion
Most of today’s software systems are customizable in terms optional
and alternative features. The selection of features can affect the perfor-
mance of a program substantially, and often users need to customize
a program to maximize performance or to satisfy certain performance
requirements. Measuring the performance of all program variants
is usually infeasible due to the combinatorial explosion of possible
feature combinations. Instead of measuring all variants, we predict
their performance based on the feature selection and with as few
measurements as possible.



We proposed family-based performance measurement—an ap-
proach that uses a variant simulator to measure performance of each
feature with only few runs. The variant simulator encodes compile-
time variability at run time, such that it subsumes the behavior of all
program variants. When executing the simulator, we log the execution
time of each method, the features to which the methods belong, and
the features from which the method calls came from. Based on this
information, we analyze the call graph to determine interactions
among features and to aggregate execution times for each method to
produce a performance model. Then, we use this model to predict the
performance of a certain feature selection.

We evaluated our approach by means of five customizable pro-
grams implemented with feature-oriented programming. The results
show that our predictions reach an accuracy of 98 %, on average,
while requiring only a single measurement per program. On a final
note, this work is not intended to be complete. Instead, we want to
open a door to further work on the analysis of feature interactions and
the prediction and optimization of non-function properties.

Acknowledgments
The work of Siegmund is supported by the German ministry of education and
science (BMBF), number 01IM10002B. The work of Apel and von Rhein
is supported by the German Research Foundation (AP 206/2, AP 206/4, AP
206/5, and AP 206/7).

References
[1] G. Ammons, T. Ball, and J. Larus. Exploiting hardware performance

counters with flow and context sensitive profiling. In Proc. PLDI, pages
85–96. ACM, 1997.

[2] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. Detection
of feature interactions using feature-aware verification. In Proc. ASE,
pages 372–375. IEEE, 2011.

[3] S. Apel, C. Kästner, and C. Lengauer. Language-independent and
automated software composition: The FeatureHouse experience. IEEE
Transactions on Software Engineering, 39(1):63–79, 2013.

[4] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and D. Beyer.
Strategies for product-line verification: Case studies and experiments.
In Proc. ICSE, pages 482–491. IEEE, 2013.

[5] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based
performance prediction in software development: A survey. IEEE
Transactions on Software Engineering, 30(5):295–310, 2004.

[6] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise refine-
ment. IEEE Transactions on Software Engineering, 30(6):355–371, 2004.

[7] D. Batory, P. Höfner, and J. Kim. Feature interactions, products, and
composition. In Proc. GPCE, pages 13–22. ACM, 2011.

[8] C. Brabrand, M. Ribeiro, T. Tolêdo, J. Winther, and P. Borba. Intrapro-
cedural dataflow analysis for software product lines. Transactions on
Aspect-Oriented Software Development, 10:73–108, 2013.

[9] M. Calder and A. Miller. Feature interaction detection by pairwise
analysis of LTL properties: A case study. Formal Methods in System
Design, 28(3):213–261, 2006.

[10] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature
interaction: A critical review and considered forecast. Computer
Networks and ISDN Systems, 41:115–141, 2003.

[11] S. Chen, Y. Liu, I. Gorton, and A. Liu. Performance prediction of
component-based applications. Journal of Systems and Software, 74
(1):35–43, 2005.

[12] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[13] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin.
Model checking lots of systems: Efficient verification of temporal proper-
ties in software product lines. In Proc. ICSE, pages 335–344. ACM, 2010.

[14] M. Erwig and E. Walkingshaw. The choice calculus: A representation
for software variation. ACM Transactions on Software Engineering and
Methodology, 21(1):1–27, 2011.

[15] C. Ghezzi and A. Sharifloo. Model-based verification of quantitative
non-functional properties for software product lines. Information and
Software Technology, 55(3):508–524, 2013.

[16] M. Grechanik, C. Fu, and Q. Xie. Automatically finding performance
problems with feedback-directed learning software testing. In Proc. ICSE,
pages 156–166. IEEE, 2012.

[17] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wasowski.
Variability-aware performance prediction: A statistical learning approach.
In Proc. ASE. IEEE, 2013. to appear.

[18] R. Hall. Fundamental nonmodularity in electronic mail. Automated
Software Engineering, 12(1):41–79, 2005.

[19] M. Jovic, A. Adamoli, and M. Hauswirth. Catch me if you can:
Performance bug detection in the wild. In Proc. OOPSLA, pages
155–170. ACM, 2011.

[20] C. Kästner and S. Apel. Type-checking software product lines - a formal
approach. In Proc. ASE, pages 258–267. IEEE, 2008.

[21] C. Kästner, S. Apel, and M. Kuhlemann. A model of refactoring
physically and virtually separated features. In Proc. GPCE, pages
157–166, 2009.

[22] C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger. Variability-aware parsing in the presence of lexical macros and
conditional compilation. In Proc. OOPSLA, pages 805–824. ACM, 2011.

[23] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type checking annotation-
based product lines. ACM Transactions on Software Engineering and
Methodology, 21(3):14:1–14:39, 2012.

[24] S. Kolesnikov, S. Apel, N. Siegmund, S. Sobernig, C. Kästner, and
S. Senkaya. Predicting quality attributes of software product lines using
software and network measures and sampling. In Proc. VaMoS, pages
25–29. ACM, 2013.

[25] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-G. Chun, L. Huang,
P. Maniatis, M. Naik, and Y. Paek. Automatic generation of efficient
performance predictors for smartphone applications. In Proc. USENIX,
pages 297–308. Usenix Association, 2013.

[26] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An analysis
of the variability in forty preprocessor-based software product lines. In
Proc. ICSE, pages 105–114. ACM, 2010.

[27] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer.
Scalable Analysis of Variable Software. In Proc. ESEC/FSE. ACM, 2013.

[28] J. Liu, D. Batory, and C. Lengauer. Feature-oriented refactoring of
legacy applications. In Proc. ICSE, pages 112–121. ACM, 2006.

[29] M. Plath and M. Ryan. Feature integration using a feature construct.
Science of Computer Programming, 41(1):53–84, 2001.

[30] K. Pomakis and J. Atlee. Reachability analysis of feature interactions:
A progress report. In Proc. ISSTA, pages 216–223. ACM, 1996.

[31] H. Post and C. Sinz. Configuration lifting: Verification meets software
configuration. In Proc. ASE, pages 347–350. IEEE, 2008.

[32] N. Siegmund, M. Rosenmüller, C. Kästner, P. Giarrusso, S. Apel, and
S. Kolesnikov. Scalable prediction of non-functional properties in
software product lines. In Proc. SPLC, pages 160–169. IEEE, 2011.

[33] N. Siegmund, S. Kolesnikov, C. Kästner, S. Apel, D. Batory,
M. Rosenmüller, and G. Saake. Predicting performance via automated
feature-interaction detection. In Proc. ICSE, pages 167–177. IEEE, 2012.

[34] N. Siegmund, M. Rosenmüller, C. Kästner, P. Giarrusso, S. Apel, and
S. Kolesnikov. Scalable prediction of non-functional properties in
software product lines: Footprint and memory consumption. Information
and Software Technology, 55(3):491–507, 2013.

[35] C. Song, A. Porter, and J. Foster. iTree: Efficiently discovering
high-coverage configurations using interaction trees. In Proc. ICSE,
pages 903–913. IEEE, 2012.

[36] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schäfer, and G. Saake.
Analysis strategies for software product lines. Technical report,
University of Magdeburg, Nb.: FIN-04-2012, 2012.

[37] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel. Family-based deductive
verification of software product lines. In Proc. GPCE, pages 11–20.
ACM, 2012.

[38] I. H. Witten and E. Frank. Data mining: Practical machine learning
tools and techniques. Elsevier, Morgan Kaufman, 2. edition, 2005.


	Introduction
	Feature-oriented Programming
	Family-based Measurement
	Performance Model
	Approach
	Call Graph with Feature Annotations
	Identifying Feature Interactions
	Aggregate Execution Times
	Putting the Pieces Together

	Mutually Exclusive Features

	Evaluation
	Experimental Setup
	Results

	Discussion
	Threats to Validity
	Applicability and Limitations

	Related Work
	Conclusion

