A Comparison of Product-based, Feature-based,
and Family-based Type Checking

Sergiy Kolesnikov

Alexander von Rhein

Claus Hunsen ~ Sven Apel

University of Passau
Germany

Abstract

Analyzing software product lines is difficult, due to their inherent
variability. In the past, several strategies for product-line analysis
have been proposed, in particular, product-based, feature-based,
and family-based strategies. Despite recent attempts to conceptu-
ally and empirically compare different strategies, there is no work
that empirically compares all of the three strategies in a controlled
setting. We close this gap by extending a compiler for feature-
oriented programming with support for product-based, feature-
based, and family-based type checking. We present and discuss
the results of a comparative performance evaluation that we con-
ducted on a set of 12 feature-oriented, JAVA-based product lines.
Most notably, we found that the family-based strategy is superior
for all subject product lines: it is substantially faster, it detects all
kinds of errors, and provides the most detailed information about
them.

Categories and Subject Descriptors D.2.13 [SOFTWARE ENGI-
NEERING]: Reusable Software; D.3.3 [PROGRAMMING LAN-
GUAGES]: Language Constructs and Features

Keywords Feature-oriented programming; product-line analysis;
type checking; Fuji

1. Introduction

A feature is an end-user-visible behavior or characteristic of a prod-
uct that satisfies a stakeholder’s requirement [[17]. A software prod-
uct line is a family of related software products that share common
features and differ in other features [12]]. The product-line approach
introduces a further dimension of complexity to software engineer-
ing: variability. It is this additional dimension that renders existing
analysis tools impractical, for example, model checkers, static an-
alyzers, type checkers, and so on [30]. Sure, to analyze a product
line, we can use an off-the-shelf analysis tool and apply it to all
of its products, which, however, requires exponential analysis ef-
fort, due to feature combinatorics (in the worst case, the number of
products grows exponentially with the number of features). Alter-
natively, applying off-the-shelf tools to the variable code base of a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

GPCE 13, October 27-28, 2013, Indianapolis, IN, USA.

Copyright © 2013 ACM 978-1-4503-2373-4/13/10... $15.00.
http://dx.doi.org/10.1145/2517208.2517213

product line itself (e.g., consisting of unprocessed C code, feature
modules, or aspects) is often impossible. However, a solution is to
make the tools variability-aware [30)].

Variability-aware analysis techniques that can be applied to the
variable code base of a product line are called family-based. They
take advantage of the inherent variability of a product line and
can deliver sound and complete analysis results. However, they are
often computationally expensive, compared to standard analyses.

To handle computational complexity, feature-based analyses
operate on the implementation of individual features, without
considering interactions across feature boundaries. While feature-
based analyses are fast, they are incomplete, for example, in that
they cannot catch bugs that arise from feature interactions.

Of course, using a product-based analysis, we could analyze
each product of a product line individually. This way, we do not
need to adapt existing analysis tools, but would face severe scal-
ability problems for larger sets of products. However, a developer
could analyze only a subset of all products, which is again incom-
plete.

Each of these three product-line analysis strategies has different
strengths and weaknesses, as has been discussed conceptually in
the literature (see a recent survey on product-line analysis by Thiim
et al. [30]]). To gain more empirical evidence, different researchers
began to compare product-line analysis strategies quantitatively, for
example, in terms of scalability and coverage. For example, Apel
et al. compared family-based and product-based strategies in the
context of model checking [7]], and Liebig at al. compared family-
based and product-based strategies in the context of type checking
and data-flow analysis [21].

Despite existing empirical work on product-line analysis, there
is no any study that compared all three strategies in a controlled
setting (i.e., by means of a common set of subject systems and the
same analysis tool that implements all three strategies). Our goal is
to close this gap. As a concrete analysis technique, we chose type
checking, as it has been used before in several studies on product-
line analysis (3| (14} [18} 21]]. As an implementation technique, we
use feature-oriented programming [6], because we already have a
proper tool infrastructure at our disposal, and we have access to a
repository of subject systems for our experiments.

For our experiments, we implemented the three type-checking
strategies—family-based, feature-based, and product-based—as an
extension of FUJI, an extensible compiler for feature-oriented pro-
gramming in JAVA [5]. Using FuJl, we compared the three strate-
gies by applying them to 12 feature-oriented, JAVA-based prod-
uct lines, from different application domains and of different sizes.
Overall, we found that the family-based strategy is superior in that
it is complete and takes substantially less time for type checking
than the other strategies. The feature-based strategy is also quite
fast, compared to the product-based strategy, but incomplete.



Based on the experimental results, we discuss a number of
issues regarding the ability to detect and report errors, the role of
optimization for family-based strategies, the influence of factors
such as the size of a product line, and the trade-off between analysis
coverage and time.

To summarize, we make the following contributions:

e We implemented a type checker for feature-oriented, JAVA-
based product lines that supports family-based, feature-based,
and product-based type checking. This is the first time that all
three analysis strategies have been integrated within a single
tool.

We compare the three type-checking strategies regarding differ-
ent aspects, such as the ability to detect different kinds of type
errors and the quality of the provided information about errors.

We present and discuss the results of a comparative perfor-
mance evaluation that we conducted on a set of 12 subject prod-
uct lines. Most notably, we found that the family-based strategy
is the most efficient strategy for all of them. It is substantially
faster, detects all kinds of errors, and provides the most detailed
information about the errors found, but it requires adaption of
the standard type-checking tools.

The implementation of the strategies (in the form of a FUJI com-
piler extension), the subject product lines, and the experimental
data are available online: http://fosd.de/fuji/.

2. Product-Line Type Checking

By means of a running example and type checking as a concrete
analysis technique, we illustrate product-based, feature-based, and
family-based strategies for product-line analysis.

2.1 Running Example

The example in Figure [I] is a very simple product line of list
data structures. It consists of two features: Base and Batch. The
mandatory feature Base provides two basic implementations of
lists: SingleList for singly-linked lists, and DoubleList for doubly-
linked lists. It also provides a test class TestCase. The optional
feature Batch provides a special list implementation BatchList for
scheduling batch jobs that uses class SingleList of feature Base.

In practice, not every combination of features is valid. Feature
models are commonly used to describe the conditions of the ab-
sence and presence of features, including dependencies among fea-
tures [17]]. In Figure 2] we show the feature model of our example.
It states that feature Base is mandatory (i.e., it must be present in
every product) and feature Batch is optional (i.e., it may be present
in a product). Consequently, our running example consists of two
valid products: {Base} and {Base, Batch} .

If we take a closer look at the code of feature Base, we see
that it refers to class BatchList in Line 9 of Figure[l] If we attempt
to compile a product with Base and without Batch, we get a type
error, because BatchList is declared only in Batch. This dangling
reference is a simple example of an error that involves multiple
features. The cause of this type error is an inconsistency between
the feature model and the implementation of the product line:
The feature model suggests that feature Base is independent from
feature Batch, but the implementation requires these features to be
selected together.

To resolve the inconsistency, we can make Bafch mandatory or
move the test case from Base to Batch. The key point is that, in
large-scale product lines, such inconsistencies may go unnoticed
for a long time and show up only late in the development cycle [28]].

Another kind of type error is illustrated in Line 17 of Figure[T}
There, the undeclared variable resutl is accessed. This type error is
caused by a simple typo. It is an example of a feature-local error

Feature Base

1 class SingleList {
Object next(){...}

2

3

4 class DoubleList {

5 Object next(){...}
6 Object prev(){...}
; glass TestCase {
9 BatchList bi:- |

0

1

1
1

Feature Batch

\
1

| Base requires Batch I -
]

12 class BatchList {<—' /
13 SingleList queue;

14

15 int reorderJobs(){
16 int result = ...
17 return resutl;

18 }

19 }

Figure 1. Running example: two basic list implementations (fea-
ture Base) and a list for batch jobs (feature Batch); type errors are
underlined; arrows denote references; the dashed arrow denotes a
possibly dangling reference.

e mandatory feature
O optional feature

Figure 2. Feature model of the running example.

that can be discovered as soon as the affected feature is used in a
product.

Next, we discuss which type errors can be detected by different
type-checking strategies. We consider what information can be
provided to a developer by a type checker to help to fix these errors.
We also take a look at certain properties of the strategies that can
influence type-checking performance.

2.2 Type Checking Product Lines

Our procedure for type checking of product lines consists of two
steps, as illustrated in Figure[3] In the first step, setup, we parse the
code of the considered features and compose it accordingly. In the
second step, checking, we perform the actual type checks on the
result of the first step. If a particular type-checking strategy cannot
check the whole product line in a single run, the type-checking pro-
cedure is repeated. For example, the product-based strategy repeats
the procedure for each product, the feature-based strategy repeats
it for each feature, and only the family-based strategy checks all
products simultaneously in a single run.

Code Base Error Report

ﬁ* 2. Checking _)m
] >

Figure 3. Steps of product-line type checking.

1. Setup

Parsing
Feature Code

Composing
Features



http://fosd.de/fuji/

The performance of a type-checking strategy is the total time ¢
required to check the entire product line:

T
t = Z 757‘s_etup + tgheckmg
i=1
The value r is the number of type-checker runs needed to verify
the complete product line; £°™” is the time used by the setup in
run 4, and ¢t5"°™2 is the time used by the checking step in run
<. Based on this equation, we can derive the following possibilities
for optimizing the type-checking procedure, of which the tree type-
checking strategies make use to different extents:

e Minimize the number of type-checker runs r

e Minimize the setup time ¢;°""?

e Minimize the checking time ¢"°*"&

2.3 Product-based Strategy

To ensure that every product of a product line is well typed, we can
apply the product-based strategy. That is, we generate and check
each product individually. This way, we find every type error in all
products of the product line.

We can even use an off-the-shelf type checker (or compiler)
for this task, because the individual products do not contain any
compile-time variability. In our setting, the products are normal
JAVA programs.

However, by generating and checking individual products, we
lose information about the features the products are made of as
well as about their dependencies. This makes it difficult to create
meaningful error messages. The error messages for our running
example will only tell us that one product accesses an unknown
type BatchList. A product-based type checker fails to identify the
primary reason, namely, the false optionality of feature Barch. That
is, the type checker cannot blame the feature that is responsible for
the error, which is left to the user. This also applies to feature-local
errors, such as for the undeclared variable resutl.

A major weakness of the product-based strategy is its poor
scalability. With n optional and independent features, we have to
repeat the type-checking procedure for each of the 2™ products.
Therefore, the upper bound for the performance is

2’71
t = 2 :tietup + tlc.hecking

=1

(Product-based)

The reason for the poor scalability are redundant analyses made
in every step of the type-checking procedure (Figure[3). During the
setup, we repeatedly parse and compose the same features again
and again. During type checking, we repeat type checks that are
similar among different products.

To avoid this redundancy, it is possible to parse the code of
feature Base only once, because the corresponding parse tree is the
same per product. Likewise, it is sufficient to perform type checks
that concern code inside Base, such as type checking the body of
method next, only once.

The remaining two type-checking strategies exploit this opti-
mization potential, which we explain next.

2.4 Feature-based Strategy

Using the feature-based strategy, we check every feature of a prod-
uct line individually. We assume that all types, declarations, and
so on that a feature requires are available in all valid products.
For example, if we check feature Base, then the feature-based type
checker assumes that the required type BatchList, provided by fea-
ture Batch, is always available. Type BatchList becomes part of the
feature’s required interface. While the feature-based strategy may

seem naive at first glance, it is motivated by open-world systems,
in which not all features are known at development time [20} 22].

Technically, we implement the required interface of a feature
module using stubs. A stub is a bundle of JAVA interfaces and
classes, possibly with member prototypes, that represent the types
and members a feature requires from other features. Either stubs
are provided by the developer to define the required interface, such
as in HYPER/J [27], or they are generated using tools, such as
AHEAD [29] or FEATURESTUBBER To type check feature Base
of our example, a stub containing an empty class named BatchList
is needed, possibly with proper member declarations.

While checking a feature, the feature-based strategy does not
know anything about other features. Consequently, a feature-based
type checker cannot detect type errors that arise between features.
In our example, it cannot detect the erroneous access to the missing
type BatchList, because the type is provided by the stub (i.e., the
type checker simply assumes that it will be provided by another
feature). Only errors that are local to a feature can be detected by
the feature-based type checker, as the undeclared variable resutl.

To guarantee that all products are well typed, feature-based type
checking has to be supplemented with additional type checks dur-
ing byte-code feature composition (which corresponds to linking in
C). The result is a mixed feature-product-based strategy [30].

Much like for the product-based strategy, we can use an off-the-
shelf type checker for feature-based type checking, because a single
feature complemented with stubs does not contain any compile-
time variability.

In contrast to a product-based type checker, a feature-based
type checker can provide sufficient information about feature-local
errors, but it misses errors that arise from combinations of features.

Furthermore, the feature-based strategy requires one type-
checker run for each feature. Thus, every feature is parsed and
checked only once, and the number of the unnecessarily repeated
actions is reduced compared to the product-based strategy. The
strategy also completely avoids the feature-composition part of the
setup (cf. Figure [3). To summarize, it utilizes the following opti-
mization possibilities:

e The number of type-checker runs 7 is reduced from 2" to n,
where 7 is the number of features.

e The setup time ¢3°""?

tion.

is reduced by omitting feature composi-

Therefore, the performance of the feature-based strategy is

n
t = 2 :t:etup + t;:hecking

=1

(Feature-based)

2.5 Family-based Strategy

The family-based strategy analyses the code base of a product line
as a whole. Hence, it can detect all type errors and guarantee that
all products of a product line are well typed.

The variability of a product line has to be incorporated into
the type-checking procedure, so that the type checker can take it
properly into account. The key idea is to compose all features of the
product line (even mutually exclusive ones), and to keep variability
information in the syntax tree (i.e., which program element belongs
to which feature and depends on which other features) [29]]. This
way, the syntax tree does not represent only a single product or
feature, but the whole product line, as illustrated in Figure [4] A
family-based type checker works on these enriched syntax trees and
must be able to cope with variability. For this reason, we cannot use
an off-the-shelf type checker for this task.

'http://fosd.de/featurebite/


http://fosd.de/featurebite/

List
SingleList DoubleList TestCase BatchList
Base Base Base L Y Batch
\ /N /N
next next prev bl 1 dueue reorderJobs
Base Base Base Base /' Batch Batch
e Butch ..

Figure 4. Syntax tree of the running example. Every node knows
the feature to which it belongs. Arrows denote references; the
dashed arrow denotes a possibly dangling reference (cf. Figure[T).

Base/TestCase. java:9:
Type Error: 1 optional target:
Feature Base accesses the type
(default package).BatchList of feature Batch

Figure 5. Error message of the family-based type checker.

Figure [5] shows an example of an error message produced by
our family-based type checker. The error message identifies the
features participating in the type error. It shows in which feature
and where exactly in its code the error occurs. Moreover, the error
message describes the exact cause of the error, namely that feature
Base requires feature Batch (because Base uses type BatchlList in-
troduced by Batch), but feature Batch is not present in all products
in which Base is present; all these products contain the type error,
which is useful information for debugging.

The family-based strategy parses and composes the code of all
features in one run. Thus, no repetitive parsing or composition of
the same source code is necessary. The resulting syntax tree rep-
resents the whole product line. Therefore, only one type-checking
run is needed to cover the whole product line. To summarize, the
strategy utilizes the following optimization possibilities:

e The number of type-checker runs r is reduced to the minimum
of one.

e Furthermore, the time t"*°*!"8 for type checking can be re-
duced by using caching, as we will explain in Section[3.6]

Therefore, the performance of the family-based strategy is

t = ¢5etup 4 gchecking (Family-based)

2.6 Summary

For a better overview, Table [I] summarizes the properties of the
three strategies, regarding performance, optimization, the ability to
find errors and to blame features, and the possibility to reuse off-
the-shelf tools.

3. Empirical Evaluation

The main goal of our evaluation is to compare the three strategies
quantitatively in terms of their performance. We believe that the
family-based strategy outperforms the other two, because it reduces
the number of type-checker runs to one. This way, the strategy
avoids unnecessarily repeated analysis operations during the setup
and checking steps. Nevertheless, a family-based type checker has
to take the whole variability of a product line into account. There-
fore, the respective problem is more complex and may require more
time for analysis. Moreover, family-based type checkers rely on
SAT solvers to determine dependencies between features [3} [18].
The corresponding SAT solver calls are expensive and may reduce

20
21
22

Feature BatchSingle

class BatchList extends SingleList {

-

Feature BatchDouble

class BatchList extends DoubleList {

=

Figure 6. Example of a variable type hierarchy: The choice be-
tween BatchSingle and BatchDouble defines the superclass of class
BatchList.

e mandatory feature
o optional feature
A\ alternative group

BatchSingle BatchDouble

Figure 7. Feature model for the running example, extended with
the two new features BatchDouble and BatchSingle.

the overall performance. Therefore, product-based type checking
may be faster than family-based, especially, on product lines with
a small number of products.

As for the feature-based strategy, it processes the same amount
of code as the family-based strategy and completely avoids the
composition part and ignores feature combinatorics. Thus, it is
an open question whether it outperforms the family-based strategy
when the analyzed product line has a small number of features. Of
course, the potential win of the feature-based strategy would be at
the expense of the number of type errors found, as it would detect
only feature-local errors (see Section 2.4). To be able to detect er-
rors occurring between features, we supplemented the strategy with
additional type checks at the byte-code level, as explained in Sec-
tion[2.4] These type checks run on the per-product basis when com-
posing separately compiled feature modules, which corresponds, in
fact, to a mixed feature-product-based strategy. For illustration, we
also present the performance measurements for this mixed strategy.

3.1 Hypotheses

Based on our previous considerations, we state the following three
hypotheses that we address in the evaluation:

e H.1: The family-based strategy is superior to the feature-based
and product-based strategies in terms of performance.

e H.2: As an exception to H.1, the product-based strategy is
superior to the family-based one, if the analyzed product line
has a relatively small number of products.

e H.3: As an exception to H.1, the feature-based strategy is supe-
rior to the family-based one, if the analyzed product line has a
relatively small number of features.

3.2 Implementation

We implemented the three type-checking strategies in a single type
checker. The type checker is an extension of a feature-oriented
JAVA compiler FUJIE] It operates on the abstract syntax tree, built

2http://fosd.de/fuji/


http://fosd.de/fuji/

Table 1. Conceptual comparison of the three type-checking strategies.

Strategy ‘ Performance Optimization Error detection ~ Feature blaming  Tool reuse
- o @ possible
2 setup checking
Product-based | > 7, ¢ + tih ) ® o ° © partly possible
n setup checking
Feature-based | > 7t +1; #runs, setup © ) [ ) O impossible
Family-based ¢setup 4 ychecking #runs, checking ) [ O

by the FUII’s parser, and extends the underlying JAVA type system
to implement variability-aware type checks.

To calculate dependencies between features, our type checker
uses a corresponding library from the FEATUREIDE project In
FEATUREIDE, the problem of determining a dependency between
features is reduced to a SAT problem and solved by querying
an off-the-shelf SAT solver (SAT4J). FEATUREIDE implements
a caching mechanism to reduce the response time in the case of
multiple identical SAT solver queries (see Section[3.6] Caching).

It is important to note that our type checker covers many but not
all JAVA type rules. In a nutshell, it checks all accesses to fields,
methods, constructors, and types, and verifies that the accessed ele-
ments are present in all corresponding products. The possibly vari-
able type hierarchy of the corresponding product line is considered
too, because it can influence the presence or absence of program
elements, such as fields or methods. For illustration, let us assume
that we decided to add two alternative features to our running ex-
ample, as illustrated in the Figures[6|and[7] The new features refine
feature Batch, and specify a new superclass for class BatchList.
Consequently, the two alternative features define which methods
are inherited by BatchList. If feature BatchSingle is selected, the
superclass of BatchList is SingleList, and BatchList inherits method
next. If feature BatchDouble is selected, the superclass of Batch-
List is DoubleList, and BatchList inherits the methods next and prev.
Now, if prev is called on a BatchList object, the type checker has
to determine in which feature combination method prev is inher-
ited by BatchList (in our case, the required combination is {Base,
BatchDouble}).

Further type rules cover explicit and implicit casts, which also
take a possibly variable type hierarchy into account. The rules for
implicit casts cover assignment expressions involving two vari-
ables, assignments of a return value of a method call, parameter
passing, and so on.

3.3 Subject Systems

We conducted the evaluation of the type-checking strategies on a
set of 12 feature-oriented, JAVA-based product lines. The set has
been collected and prepared before for benchmarking purposes and
was used in several studies [1 I5]. The subject systems belong to
different application domains, and they are of different sizes: in
terms of lines of code, number of features, and number of prod-
ucts. In Section we use the three size categories to discuss the
relation between the size of a product line and the corresponding
performance of type checking. Table [2| summarizes relevant infor-
mation about the systems.

3.4 Measurement Procedure

To compare the performance of the three type-checking strategies,
we applied each strategy to each subject system, and we measured
the time required by every step of the type-checking procedure (i.e.,
15etUP and ¢ehecking) We repeated each measurement 10 times and
took the average value to reduce measurement bias. The maximum
relative standard error was 3.1 %, which we observed for family-

3http://fosd.de/featureide/

Table 2. Overview of the subject systems (LOC: number of lines
of code; #F: number of features; # P: number of products).

System Domain LOC #F #P
EPL Expression evaluation 304 12 425
GPL Graph library 2855 25 156
GRAPHLIB Graph library 401 5 16
GUIDSL Configuration tool 14318 26 24
NOTEPAD Text editor 2193 10 512
PKJAB Chat client 4109 8 48
PREVAYLER  Persistence library 6185 6 32
RAROSCOPE  Compression library 415 4 16
SUDOKU Game 1926 6 64
TANKWAR Game 4845 38 2458
VIOLET Model editor 10866 88 ~288
Z1IPME compression library 5076 13 24

based type checking of ZIPME. For the product-based strategy, we
did not include the time needed to generate the configuration of
each product, because this time was negligible compared to the
time required for type checking. Likewise, for the feature-based
strategy, we did not include the time used to generate stubs (Sec-
tion[2.4), because stubs represent required interfaces and are part of
the corresponding feature modules. We measured the performance
of the family-based type checker twice, with and without caching,
to investigate the influence of the caching (Section[3.2) on the over-
all performance.

We instrumented the code of the FUJI compiler with calls to the
timer of Th readMXBeanE] such that we measure only the CPU time
consumed by the type-checker thread. This approach eliminates the
influence of other concurrent tasks (e.g., garbage collection) on the
measurement results. Furthermore, we did not measure the JVM
startup time for each type-checking run, because the overhead can
be avoided using special tools

We conducted all measurements on a workstation equipped
with an Intel Xeon CPU (2.9 GHz) and 8§ GB RAM, running
Ubuntu 12.04 (64-Bit) and OpenJDK 7 (u21).

3.5 Results

In Table [3] (page [I0), we present the results of our measurements
(in seconds). For each subject system and each strategy from our
comparison, we show the setup time (t***"P), the checking time
(tBecking) and the total time (i.e., the performance of the strategy,
t). We also provide total times (¢) for the feature-product-based
strategy and the family-based strategy with caching disabled. For
the feature-based strategy, we computed the speedups relative to the
product-based strategy. For the family-based strategy, we computed
the speedups relative to the product-based strategy and the feature-
based strategy. Note that we aborted the product-based measure-
ments for VIOLET after checking 40 random products, because it
was impossible to check all of the approximately 258 products in

4java.lang.management. ThreadMXBean is part of the JAVA 7 APIL.

Shttp://martiansoftware.com/nailgun/


http://fosd.de/featureide/
http://martiansoftware.com/nailgun/

reasonable time. We mark the corresponding values in the table
with “X.”

For comparison, we visualize the results in Figure [§] by means
of bar plots. There is one bar plot per subject system, consisting
of five stacked bars, divided into two groups (with different axes
to compensate the considerable differences between the measured
times). Each bar denotes the amount of time (in seconds) used by
the corresponding type-checking strategy. The light gray part of
each bar denotes the time required by the setup step; the white
part denotes the time required by the check step. The crosses over
the bars for VIOLET indicate that we aborted measurements at this
point.

Note that, for the family-based strategy, there are two bars: the
first, FM, denotes the performance of the strategy with SAT-solver
caching enabled; the second, FM", denotes the performance with
SAT-solver caching disabled. FT* denotes the performance of the
feature-product-based strategy; its dark gray part denotes the time
required by the byte-code feature composition (Section 2.4).

As we can see, the family-based strategy is the fastest for all
subject systems. Compared to the product-based strategy, the min-
imum speedup of this strategy has been measured for GUIDSL,
where it is 8.8 times faster. The maximum speedup of 745.3 has
been measured for TANKWAR. As we could not check all products
of VIOLET in reasonable time, we do not consider the correspond-
ing speedups (they are likely to be much higher). Compared to the
feature-based strategy, the speedup of the family-based strategy lies
in between 1.7 and 6.5. The feature-based strategy is the second
fastest. Its speedup compared to the product-based strategy lies in
between 2.2 and 129.7.

Recall that the feature-based strategy finds only feature-local
errors (Section[2:4). In our evaluation, it found no errors at all. The
reason is that our subject systems have been used in many previous
studies. Every single feature of the product lines was type checked
as part of a product at least once. Therefore, all feature-local errors
have already been detected and fixed. The other two strategies
detected the same 556 unique type errors. These errors occurred
between features and stayed undetected, because the corresponding
feature combinations have been never considered by the developers
and users of the systems.

The results support our first hypothesis H.1 (Section B.I): the
family-based strategy is superior to the other two strategies in terms
of performance. Although quite apparent from Table[3] we still con-
ducted statistical tests to test all hypotheses. We used the Wilcoxon
test, because the data are not normally distributed (according to
a Shapiro-Wilk test). Though, we could use the non-parametric
ANOVA, we decided to use the conservative double-test variant
with Bonferroni correction, because it is more rigorous. For all per-
formance comparisons, the p value is much smaller than 0.01.

We found no supporting evidence for hypothesis H.2 (i.e.,
product-based is superior on product lines with few products) and
H.3 (i.e., feature-based is superior on product lines with few fea-
tures), because, for none of our subject systems, the product-based
or the feature-based strategy is superior to the family-based strat-
egy, not even for very small product lines with few products and
features (e.g., GRAPHLIB and RAROSCOPE).

A comparison of the results for the two variants of the family-
based type checker shows a substantial influence of SAT-solver
caching on performance.

Finally, the feature-product-based strategy is always slower
than the family-based strategy (with caching) and the feature-
based strategy. More interestingly, it is only in several cases slower
than the product-based strategy (e.g., GUIDSL, PKJAB, ZIPME),
which indicates the benefits of separate feature compilation and
byte-code feature composition.

Table 4. Break-even points of the superiority of the family-based
strategy for the subject systems. Total number of products #P
and break-even points 4B (i.e., the number of products whose
cumulative analysis time exceeds the time needed by the family-
based strategy to check all products of the product line).

System #P 4B System #P 4B
EPL 425 2 PREVAYLER 32 2
GPL 156 4 RAROSCOPE 16 2
GRAPHLIB 16 2 SUDOKU 64 2
GUIDSL 24 3 TANKWAR 2458 4
NOTEPAD 512 3 VIOLET ~288 g
PKJAB 48 2 ZIPME 24 2

3.6 Discussion

Next, we discuss the results of our measurements based on the size
categories of Table[2]as well as regarding the implementation of our
type checker. We use the product-based strategy as the base line,
and compare it to the other strategies. We subdivided this section
in three parts, one part for each strategy.

Product-based strategy. The measurements of the product-based
strategy support our expectations about its poor scalability. As dis-
cussed in Section[2.3] this strategy induces considerable redundant
work in every step of the type-checking procedure, while the num-
ber of the unneeded repetitions increases with the number of prod-
ucts. An extreme example is VIOLET, which we could not even
check completely, because of the sheer amount of time required to
generate and check all of the approximately 233 products. Never-
theless, if developers have to use a standard (non-variability-aware)
type checker, product lines with few products and relatively small
code bases (e.g., RAROSCOPE) can be checked in reasonable time.

Comparing the results for GUIDSL and ZIPME makes it ap-
parent that it is insufficient to consider only the number of prod-
ucts when estimating the performance of the product-based strat-
egy. Both product lines have the same number of products, but type
checking GUIDSL lasts almost twice as long as type checking
Z1PME. The cause is the larger code base of GUIDSL, which is
almost three times larger than the code base of ZIPME. Systems
with a similar number of products and a similar size of the code
base (e.g., GRAPHLIB and RAROSCOPE) have similar times.

Although not in the scope of our study, one could use sampling
to speed up the product-based strategy [[15,[16}[23H25]]. This would
render the analysis incomplete, but tractable, at least. To give an
impression of how the family-based strategy performs in compar-
ison to sampling, we computed the (average) number of products
one has to check with a sample-based strategy to exceed the time
needed for the family-based strategy. This number marks the break-
even point, at which the family-based strategy is superior without
question (recall sampling is incomplete). In Table |4, we list the
break-even points for the subject systems in terms of this number
(and the overall number of products checked by the product-based
strategy). The results are clear: Only when checking a very small
number of products (less than 5 %, on average), a sample-based
strategy is faster. But these small numbers also mean that the cov-
erage will be very low and does not satisfy state-of-the-art coverage
criteria (e.g., pair-wise coverage [23])). This observation is in line
with previous results [21].

Feature-based strategy. A feature-based type checker parses and
checks the code of each feature only once (cf. Section [2.4). The
result of this optimization becomes apparent when we compare the
performance of the product-based and feature-based strategies in
the setup step. With a growing number of products the advantage
of the feature-based strategy becomes more evident. Nevertheless,



EPL GPL

200 100 120 —
o o 800 o
80 100
150 - [
@ 600 |
(2] 80
g 60 — .
g 1007 60 400
k2 40
2 40
E 50+ 200
= 20 20 4
o= — B0 o &= = 0-5 ==
PB FT FM FT* FM PB FT FM FT* FM
GUIDSL Notepad
50 2500 600 — 400
04[] 2000 ] 500 4[|
300
- 400
g 30 1500
_ 200
§ 300
8 20+ 1000 |
° 200
€ 100
= 10 500 100 4
P e A — -
°“F8 FT M OTFT M °“FB T M OTFT AW
Prevayler Raroscope
60
60
10 .
— 50 4 — 8
50
40 &
— ] h 6 -
g w ||
5 30 €]
o 30 44
Q
Z
2 44
o 20 4| 20
E 24
= 104 10 2 E
o - = == o - == |
PB FT FM FT* FM PB FT FM FT* FM
TankWar Violet
3000 35000
3500 60 7156 —
— — — 30 000
2500 3000 50 4
25000
2000 2500 40 4 | 20000
3 _
S 2000
§ 1500 30
- 15000
3 1500
e 1000 1000 204 10000
= 500 500 - 10 5000
°“PBFT M OTFr W °“PFB FT MM OTFT W

GraphLib
10 9
PB  Product-based
] FT Feature-based
8 6 FM Family-based
FT* Feature—product-based
s FM* Family-based (no caching)
4 4
4 O Setup
O Checking
24 @ Compose
| B
0 -'55 = 0 - == d
PB FT FM FT* FM
PKJab
80 80 —
60 | 60
40 40
20 20
J = m
P8 FT M OTFT W
Sudoku
80 60 —
50
60
40
40 4 30 -
20 H
20 4
10 4
B = -
°“F FT M OTF AW
ZipMe
25 200
20
150
15 4
| 100
10 4
50 4
5 -
0O~FB FT % O F W

Figure 8. Type-checking times for each subject system—five bars per system. A bar denotes the time used by the corresponding type-
checking strategy. Each step of the type-checking procedure (Section [2.2) is denoted by a different color inside a bar. The crosses over the
bars for VIOLET indicate that we aborted the product-based measurement after checking 40 products (cf. Section 3.3).

the feature-based strategy induces an overhead for every type-
checker run that is caused by instantiating internal data structures
and loading classes from the JAVA run-time library. This overhead
explains why setting up type checking for GUIDSL is only slightly
faster using the feature-based type strategy, then using the product-
based strategy. A peculiarity of GUIDSL that is responsible for
this effect is that it has a relatively small number of products and
more features than products.

The checking step of the feature-based strategy also consumes
less time than that of the product-based strategy. Still, we have
to keep in mind that the feature-based strategy is able to detect
only feature-local errors (cf. Section @) Our subject systems
have been used in many previous studies and all eventual feature-
local errors have already been fixed. Therefore, the feature-based

strategy found no errors. The inability to detect the full range of
errors is the main weakness of this strategy.

We used FEATUREBIT a tool developed by us—to perform
supplementary type checks when composing individually compiled
feature modules to products. These additional checks at the byte-
code level find type errors that arise between features (cf. Sec-
tion @) This way, we can achieve the same level of type safety
as with the other two type-checking strategies (all 556 errors are
found). However, our evaluation demonstrates that attaining type
safety by combining the feature-based and product-based strategy
requires considerably more effort than using the feature-based strat-
egy alone, which was to be expected. The interesting finding is that,

Shttp://fosd.de/featurebite/


http://fosd.de/featurebite/

in all subject product lines except GUIDSL, PKJAB, and ZIPME,
the feature-product-based strategy outperforms the product-based
strategy The reason is that the number of products of these three
product lines is relatively low compared to the number of their fea-
tures, which outweighs the benefit of separate feature compilation.
This result demonstrates that the intermediate steps of checking and
compiling feature modules and composing them at the byte-code
level can positively influence analysis performance.

Family-based strategy. The family-based strategy is the clear
winner among the three strategies. It requires only one run to check
all products of a product line. Consequently, it does not induce the
overhead of feature-based type checking (i.e., repeated instantiation
of data structures in each run) in the setup step. It also avoids the
overhead of the product-based strategy (i.e., repeated type checks)
in the checking step (cf. Section[2.5).

Furthermore, our results show that the family-based strategy
outperforms also the feature-based strategy in the checking step,
even though the feature-based strategy considers only features in
isolation. We attribute this phenomenon to the same kind of over-
head that the feature-based strategy induces in the setup step (i.e.,
repeated instantiation of data structures in each run). From Table[3]
(page[I0), we can see that the advantage of the family-based strat-
egy in the checking step increases with the number of features. For
product lines with a small number of features (e.g., GRAPHLIB,
PREVAYLER, RAROSCOPE, SUDOKU), the family-based strategy
is 1.7 to 3.5 times faster than the feature-based strategy. For prod-
uct lines with larger numbers of features (e.g., GPL, GUIDSL,
TANKWAR), the family-based strategy is 4.1 to 5.8 times faster
than the feature-based strategy.

Caching. One property of our family-based type checker poses a
principal boundary on its performance. The type checker reduces
the problem of determining dependencies between features to a
SAT problem (cf. Section 2.3). SAT is NP-complete, which ren-
ders family-based type checking NP-complete, as well (w.r.t. the
number of features). Luckily, today’s SAT solvers mitigate this the-
oretical boundary for practical problems. Nevertheless, the calls to
a SAT solver are still expensive enough, so minimizing the number
of such calls is always a good idea.

Our family-based type checker uses a caching mechanism. All
queries of the type checker to the SAT solver are cached, and
none of the queries is performed twice. As we can see from the
measurements (the FM and FM* bars in each plot, Figure , the
caching mechanism leads to a substantial speedup. This is due to
the fact that the family-based type checker makes a considerable
number of repeated, identical calls that involve the SAT solver.

A large number of features often means a more complex fea-
ture model and, consequently, more expensive SAT solver calls. A
small number of products keeps the time needed for the product-
based type checking relatively low. ZIPME and GUIDSL are such
product-lines, and, as we can see in Figure [8] the family-based
type checker without caching is slower than the product-based type
checker.

The reasons for the success of caching is that the feature mod-
ules in our subject systems are relatively coarse-grained units, and
checking them involves checking a large number of identical type,
method, and field accesses. This may not be the case if a product
line consists of many fine-grained features containing no or few
identical accesses (e.g., as may be the case for preprocessor-based
variability).

7We do not consider VIOLET, as we could not check all its products.

3.7 Threats to Validity

We implemented a substantial subset of type rules in FUJI, but
not all type rules specified for the JAVA language. This threatens
the internal validity of our study. However, the implemented rules
cover a considerable number of language constructs and involve
complex analyses of the possibly variable type hierarchy. We can
safely assume that adding new type checking rules (e.g., checking
access modifiers) will not change the overall picture substantially.

As often the case, the external validity of our study is affected by
the choice of the subject product lines. In our evaluation, we used
only product lines built with AHEAD/Fuii-style feature modules.
The coarse-grained nature of these features is beneficial for the
caching mechanism used in the family-based type checker (cf. Sec-
tion Caching). Although, we cannot draw sound conclusions
for other kinds of feature implementations (e.g., based on the C
preprocessor), previous work shows a similar picture, at least re-
garding the performance of the family-based strategy compared to
the product-based strategy [21].

4. Related Work

Our classification of product-line analysis strategies is based on
a recent survey by Thiim et al. [30]. Beside the classification,
the authors discuss the conceptual strengths and weaknesses of
the individual strategies. Based on this survey, von Rhein et al.
propose the Product-Line-Analysis model [32] that describes a
whole spectrum of possible combinations of product-line analysis
strategies.

The family-based strategy has been applied to several analysis
techniques, including type checking [3, [14} (18} 29], static analy-
sis [9, 110, 121]], model checking [4} [7, [11} [19], performance mea-
surement [26]], and deductive verification [31]. The feature-based
strategy has been used before for type checking [2| 8] and verifi-
cation [20] of product lines. Product-based analyses with sampling
have been used in the context of product-line testing [16l 23] and
performance prediction [[15} 24} 25]].

There are only few studies that compare product-line analy-
sis strategies empirically. Two studies evaluated the performance
of the family-based and product-based strategy in the context of
product-line verification [7,|13]]. Brabrand et al. compares the per-
formance of the family-based and product-based strategy for static
analysis [10]. For type checking, Liebig at al. evaluated the effi-
ciency of several sample-based strategies, compared to the family-
based strategy [21]. While their results are in line with ours, our
work is the first that implements all three strategies in one tool and
evaluates them using the same subject systems and measurement
procedure, so that all comparisons are made in a controlled setting.

5. Conclusion

For the first time, we compared the three product-line analysis
strategies—product-based, feature-based, and family-based—in a
controlled setting. In our evaluation, we used feature-oriented pro-
gramming as an implementation technique and type checking as
an analysis technique, although the big picture of our results may
be transferable to other techniques. In particular, we compared the
analysis performance, but we also addressed the ability to detect
different kinds of errors, and the quality of the provided information
about errors. Our evaluation is based on a feature-oriented com-
piler that we extended with the three type-checking strategies for
this purpose, and a subject set of 12 feature-oriented, JAVA-based
product lines.

A main result of our study is that the family-based strategy
outperforms the other strategies for all subject systems in terms
of analysis time. We identified its caching mechanism as the key
factor for the success, as it substantially reduces the number of



SAT-solver queries. At the same time, the family-based strategy
is complete: it finds errors that are feature-local and that occur
between features (556 in total), which is not the case for the feature-
based strategy. Furthermore, the family-based strategy provides the
most comprehensive error messages, as it has all information on
features and variability at its disposal, which is not the case for the
other two strategies.

Although not being in the focus of our study, we found that
pursuing a sampling-based strategy (checking only a tractable sub-
set of products) would not change the big picture. For our subject
systems, the break-even point, at which the family-based strategy
becomes faster, is at very low numbers of products, which means
that the corresponding analysis coverage of sampling is likely to be
very small, compared to the family-based strategy, which achieves
full coverage.

Surprisingly, the feature-based strategy is often slower than the
family-based strategy, although it ignores feature interactions and
is, consequently, incomplete. Combining the feature-based with
the product-based strategy makes it complete, but is substantially
slower. Interestingly, such a combined strategy outperforms the
plain product-based strategy in most cases in our experiments,
which indicates that separate feature compilation and byte-code
composition can have a positive effect on analysis performance.

An interesting avenue of further work is to combine the individ-
ual strategies and to explore trade-offs in the search for an optimal
strategy [32]].

Acknowledgments

We thank Peter Lutz for the implementation of the family-based
strategy in FuJl. This work was supported by the DFG grants
AP 206/2, AP 206/4, and AP 206/5.

References

[1] S. Apel and D. Beyer. Feature Cohesion in Software Product Lines:
An Exploratory Study. In Proc. ICSE, pages 421-430. ACM, 2011.

[2] S. Apel and D. Hutchins. A Calculus for Uniform Feature Composi-
tion. ACM TOPLAS, 32(5):19:1-19:33, 2010.

[3] S. Apel, C. Kistner, A. GroBlinger, and C. Lengauer. Type Safety for
Feature-Oriented Product Lines. Automated Software Engineering, 17
(3):251-300, 2010.

[4] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer. Detection

of Feature Interactions using Feature-Aware Verification. In Proc.
ASE, pages 372-375. IEEE, 2011.

[51 S. Apel, S. Kolesnikov, J. Liebig, C. Késtner, M. Kuhlemann, and
T. Leich. Access Control in Feature-Oriented Programming. Science
of Computer Programming, 77(3):174-187, 2012.

[6] S. Apel, C. Kistner, and C. Lengauer. Language-Independent and
Automated Software Composition: The FEATUREHOUSE Experience.
IEEE Trans. Software Engineering, 39(1):63-79, 2013.

[71 S. Apel, A. von Rhein, P. Wendler, A. GroBlinger, and D. Beyer.
Strategies for Product-Line Verification: Case Studies and Experi-
ments. In Proc. ICSE, pages 482-491. IEEE, 2013.

[8] L. Bettini, F. Damiani, and I. Schaefer. Compositional Type Checking
of Delta-oriented Software Product Lines. Acta Informatica, 50(2):
77-122,2013.

[9] E. Bodden, M. Mezini, C. Brabrand, T. Tolédo, M. Ribeiro, and
P. Borba. SPLLIFT: Statically Analyzing Software Product Lines
in Minutes Instead of Years. In Proc. PLDI, pages 355-364. ACM,
2013.

[10] C. Brabrand, M. Ribeiro, T. Tolédo, J. Winther, and P. Borba. In-
traprocedural Dataflow Analysis for Software Product Lines. Trans.
on Aspect-Oriented Software Development, 10:73-108, 2013.

[11] A. Classen, P. Heymans, P-Y. Schobbens, A. Legay, and J.-F. Raskin.
Model Checking Lots of Systems: Efficient Verification of Temporal

Properties in Software Product Lines. In Proc. ICSE, pages 335-344.
ACM, 2010.

[12] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[13] M. Cordy, A. Classen, G. Perrouin, P.-Y. Schobbens, P. Heymans, and
A. Legay. Simulation-Based Abstractions for Software Product-Line
Model Checking. In Proc. ICSE, pages 672-682. ACM, 2012.

[14] B. Delaware, W. Cook, and D. Batory. Fitting the Pieces Together: A
Machine-Checked Model of Safe Composition. In Proc. FSE, pages
243-252. ACM, 2009.

[15] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wasowski.
Variability-Aware Performance Prediction: A Statistical Learning Ap-
proach. In Proc. ASE. IEEE, 2013.

[16] M. Johansen, @. Haugen, and F. Fleurey. An Algorithm for Generating
t-wise Covering Arrays from Large Feature Models. In Proc. SPLC,
pages 46-55. ACM, 2012.

[17] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Re-
port CMU/SEI-90-TR-21, Carnegie Mellon University, 1990.

[18] C. Kistner, S. Apel, T. Thiim, and G. Saake. Type Checking
Annotation-Based Product Lines. ACM Trans. on Software Engineer-
ing and Methodology, 21(3):14:1-14:29, 2012.

[19] K. Lauenroth, S. Toehning, and K. Pohl. Model Checking of Domain
Artifacts in Product Line Engineering. In Proc. ASE, pages 269-280.
IEEE, 2009.

[20] H. Li, S. Krishnamurthi, and K. Fisler. Verifying Cross-cutting Fea-
tures as Open Systems. In Proc. FSE, pages 89-98. ACM, 2002.

[21] J.Liebig, A. von Rhein, C. Késtner, S. Apel, J. Dorre, and C. Lengauer.
Scalable Analysis of Variable Software. In Proc. ESEC/FSE, pages
81-91. ACM, 2013.

[22] J. Liu, S. Basu, and R. Lutz. Compositional model checking of
software product lines using variation point obligations. Automated
Software Engineering, 18(1):39-76, Mar. 2011.

[23] S. Oster, F. Markert, and P. Ritter. Automated Incremental Pairwise
Testing of Software Product Lines. In Proc. SPLC, LNCS 6287, pages
196-210. Springer, 2010.

[24] N. Siegmund, S. Kolesnikov, C. Kistner, S. Apel, D. Batory,
M. Rosenmiiller, and G. Saake. Predicting Performance via Auto-
mated Feature-Interaction Detection. In Proc. ICSE, pages 167-177.
IEEE, 2012.

[25] N. Siegmund, M. Rosenmiiller, C. Kistner, P. Giarrusso, S. Apel, and
S. Kolesnikov. Scalable Prediction of Non-functional Properties in
Software Product Lines: Footprint and Memory Consumption. Infor-
mation and Software Technology, 55(3):491-507, 2013.

[26] N. Siegmund, A. von Rhein, and S. Apel. Family-Based Performance
Measurement. In Proc. GPCE. ACM, 2013.

[27] P. Tarr, H. Ossher, and S. Sutton Jr. Hyper/J: Multi-Dimensional
Separation of Concerns for Java. In Proc. ICSE, pages 689—690. ACM,
2002.

[28] R. Tartler, D. Lohmann, J. Sincero, and W. Schroder-Preikschat. Fea-
ture Consistency in Compile-time-configurable System Software: Fac-
ing the Linux 10,000 Feature Problem. In Proc. EuroSys, pages 47-60.
ACM, 2011.

[29] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of
Product Lines. In Proc. GPCE, pages 95-104. ACM, 2007.

[30] T. Thiim, S. Apel, C. Kistner, M. Kuhlemann, I. Schaefer, and
G. Saake. Analysis Strategies for Software Product Lines. Techni-
cal Report FIN-004-2012, University of Magdeburg, 2012.

[31] T. Thiim, I. Schaefer, S. Apel, and M. Hentschel. Family-based
Deductive Verification of Software Product Lines. In Proc. GPCE,
pages 11-20. ACM, 2012.

[32] A. von Rhein, S. Apel, C. Késtner, T. Thiim, and I. Schaefer. The
PLA Model: On the Combination of Product-Line Analyses. In Proc.
VaMoS, pages 73-80. ACM, 2013.



Table 3. Measurement results for each subject system and type-checking strategy (in seconds). For each system and each strategy from our comparison, the setup time (t*°"P),
checking time (t°"°°¥1"&) and total time (t) are provided. We also provide total times (t) for the feature-product-based strategy and the family-based strategy with caching disabled.
For the feature-based strategy, the speedups relative to the product-based strategy are provided. For the family-based strategy, the speedups relative to the product-based strategy and
the feature-based strategy are provided. We rounded all values to one decimal place. * We aborted the product-based measurements for VIOLET after checking 40 random products

(cf. Section[3.3).

Product Feature Family Feature-product ~ Family (no caching)
Time (seconds) Time (seconds) Speedup w.r.t. Time (seconds) Speedup w.r.t. Time (seconds) Time (seconds)

System gsetup tehecking t gsetup ehecking t Product gsetup ehecking t Product Feature t t

EPL 152.7 28.9 181.7 4.6 0.3 4.9 37.2 0.4 0.4 0.8 240.3 6.5 90.5 6.4
GPL 68.5 43.7 112.2 8.1 3.8 12 9.4 0.6 1.7 2.3 48.9 5.2 84.2 798.2
GRAPHLIB 6 2.8 8.8 1.8 0.5 2.4 3.7 0.4 0.3 0.7 12.7 3.4 6.5 1.7
GUIDSL 19.6 22.5 42.1 12.2 6.9 19.1 2.2 1 3.7 4.8 8.8 4 55.9 2102.2
NOTEPAD 216.1 300.1 516.3 3.7 4.3 8 64.5 0.5 1.6 2.1 242.2 3.8 334 34.2
PKJAB 27.6 41.6 69.2 3.9 2.4 6.3 11 0.6 2 2.6 27.1 2.5 70.8 47.2
PREVAYLER 19.3 35.7 55.1 3 1.9 4.9 11.2 0.7 2.2 2.9 18.9 1.7 51.4 21

RAROSCOPE 6.4 3.1 9.5 1.9 0.4 2.3 4.1 0.4 0.3 0.7 13.4 3.2 7.8 1.6
SUDOKU 32 37.9 69.9 3 2.9 5.8 12 0.6 1.1 1.7 41.7 3.5 54.6 9

TANKWAR 1254.4 1326.5 2580.8 12.7 7.2 19.9 129.7 0.6 2.9 3.5 745.3 5.7 2176.5 3200.9
VIOLET 21.6% 37.1% 58.7% 39.6 14.4 54 1.1% 0.8 10 10.8 5.4% 5 100.2% 32251.1
Z1IPME 12.8 10.2 23 5.5 1.3 6.8 3.4 0.6 1 1.6 14.5 4.3 30.1 185.3




	Introduction
	Product-Line Type Checking
	Running Example
	Type Checking Product Lines
	Product-based Strategy
	Feature-based Strategy
	Family-based Strategy
	Summary

	Empirical Evaluation
	Hypotheses
	Implementation
	Subject Systems
	Measurement Procedure
	Results
	Discussion
	Threats to Validity

	Related Work
	Conclusion

