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Abstract

The polyhedron model has proved to be a useful tool in stggdyirthods for the automatic
parallelization of loop nests. Most of the mathematicaldateveloped for the polyhedron
model require the coefficients of variables to be constahltss restriction has turned out
to be a severe limitation for several recent developmenthienpolyhedron model. We
show how the polyhedron model can be generalized to allowlinear parameters, i.e.,
parameters appearing in the coefficients of variables. Ththematical method we use
for this generalization is quantifier elimination in the reambers. We demonstrate how
existing algorithms can be generalized by the use of detisiethods and give examples of
new algorithms which use quantifier elimination directlyseve common problems in the
polyhedron model.
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Chapter 1

Introduction

1.1 The Polyhedron Model

The field of automatic parallelization has been a reseaedfar many years now. Different
approaches to transform a sequential input program intoal@ltarget program have been
developed. One of these is parallelization based omptthghedron modelLen93]. In this
approach the operations performed by the input programeserithed by polyhedra (subsets
of then-dimensional space of real numbers bounded by hyperplangs)ytopes (bounded
polyhedra) and a partial ordering on them, called the degecelrelation. All the analysis
and the transformations are performed in this mathematicalel of the original program.
The final target program is then generated from the resufioighedra. It is clear that the
power and the limitations of this approach lie entirely ie #xpressivity of the polyhedron
model and the transformations which can be performed therei

for i :=0ton do for t := 0 to 2n+2 do
for j:=0to i+2 do forall p := max(0,t—n) to min(t, |t/2]+1) do
Al g) = AG-1,7) + A(4,7-1); At-p,p) = Alt-p—1.p) + At—-p.p—1);
od od
od od

U )

T (A
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Figure 1.1: Loop transformations in the polyhedron model

Figure 1.1 shows a sketch of the complete process. From tigggmn text a description
of the source program in terms of a polyhedron is derived fiefe). The polyhedron is
then transformed (bottom) and a new program (the “targegrara”) is obtained from the
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resulting polyhedron (right side). This process happersipile timei.e., it is performed
once when the target program is constructed and compiled.

Over the last decades powerful methods for the manipulatfgoolyhedra to achieve
different goals (obtain parallelism, perform cache optmmtion, etc.) have been developed
and used in compilers and meta-programming systems (@gRo[GL97]).

Most of the libraries and tools which have been developedHerpolyhedron model
(e.g., PIP [FCBO02], Polylib [Wil93]) rest on the suppositithat the variables of the equa-
tions and inequalities describing the polyhedra have eomsoefficients. This is a reason-
able choice for several reasons. First, the polyhedron h{add the older polytope model)
were applied to describe programs which are nestsrefoops with affine bounds and uni-
form dependences [Lam74]. Even after the extensions fraforamto affine dependences
and from the polytope model to the polyhedron model, mangnams and the necessary
transformations could still be described by systems witistamt coefficients. Second, many
algorithms depend on the signs of the coefficients, so nastaat coefficients would require
the result to contain case distinctions (see Section 2.1.4)

However, for some problems the limitation to constant coigffits is too restrictive.
As we will see in Section 1.2 and in greater detail in Sectidh e problem of tiling an
index space of a program with a parametric tile size requpegameters to appear in the
coefficients of some variables and can therefore not be dalith the existing techniques
for systems with constant coefficients.

The main observations which motivated this thesis are:

(1) Generalizing existing algorithms of the polyhedron mldd handle parametric coeffi-
cients requires the results of the algorithms to contaie déinctions with conditions
depending on the non-linear parameters (Section 4.2).

(2) The case distinctions are in general very large and finerenust be simplified as
much as possible.

(3) One method to simplify these case distinctions requjemtifier elimination (Chap-
ter 3).

(4) Quantifier elimination can itself be used to compute sofrtbe results often required
when working in the polyhedron model (Section 4.3).

In this thesis we introduce some concepts from the theorybfhedra, algebra, and logic
(Chapter 2), introduce our main mathematical tool (quatiéilimination) in Chapter 3,
elaborate on how we generalize the polyhedron model and sérite algorithms to non-

linear parameters in Chapter 4, and show some applicatfcthg generalized algorithms in
Chapter 5.

1.2 Introductory Example with Non-linear Parameters

We illustrate the principal difficulty of introducing noreastant coefficients to the polyhe-
dron model with a simple example. Suppose we are given tkeniolg program fom > 0:

fori=0ton
Afi] := (i)

This program assigns, for eveirg {0,...,n}, a new value t@\[i] which is computed by the
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function call f(i). We assume further thdtdoes not have side effects, so the iterations of
thefor-loop are independent of each other. Therefore, it is ptessibexecute the iterations
in an arbitrary order or even in parallel. What we want to dexscute the program on a
processor grid wittp processors, wherp > 1.

Figure 1.2: A tiled iteration domain

What we choose to do is partition the iteration domé...,n} of the program into
parts (which are calletiles) of size p and, for every part, assign one iteration to each avail-
able processor. We are going to use tiles which spaljacent points from the iteration
domain. Figure 1.2 shows the iteration domainrce 10 and the tiles we want to use for
p = 3 (in boxes). The iterations which are to be performed on aimeesprocessor are drawn
in the same color. The figure also shows that we assign ea&ch tiumbet. The offset
of a point from the left side of the tile containing the poistdalledo. o is the humber of
the processor executing the respective iteration. In tpectial iteration domain, the offsets
within a tile are 0, 1, 2, from left to right. Obviously, thefedts are, in general, in the range
0,....,p—1.

Let us describe the tiling we desire through affine inegiealiatnd one equation:

0<i<n
0<o<p-1
i=p-t+o0

Note that the variables and o have constant coefficients only, whereas in the equation
i = p-t+ othe variablg has the unknown coefficieqt

From this description we would like to extract tfar-loops: the first loop enumerates
the tiles and the second loop enumerates, for every tile erated by the first loop, the
points of the iteration domain which lie inside the tile.

Mathematically, this can be achieved by applying FourietMin elimination (cf. Sec-
tion 2.1.2) to the above system of inequalities and equstidde begin the elimination by
substitutingo =i — p-t (which is derived from the equation) into the inequaliti€his yields

0<i<n
O<i—p-t<p-1

The next step is to solve the inequalities ifor

o<i
p-t<i
i<n
i<p-t+p-—-1

(1.1)

IThis loop structure has been chosen to keep the exampleesiniptoes not yield an optimal parallel
program.
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Now we eliminatei from the system by comparing each lower bound against eagbrup
bound:

0<n

0<pt+p-1
p-t<n
p-t<p-t+p-1

Here we can do an optimization step. Simce 0 andp > 1 is being assumed, the inequal-
ites 0<nandp-t < p-t+ p—1 are always true and can be removed. This step is not
necessary for the correctness of the result, but it simplifie following calculation. The
next step is to solve the remaining inequalities(@-t + p— 1 andp-t < n) for t, which is
done by dividing the inequalities iy This requires a case distinction on the sigmpaince,
when p < 0, the orientation of the inequality relation changes, amden p = 0, dividing

by p is not allowed (and the system does not restrict the valuésroany way). Since in
both inequalities the coefficient ofis unknown, we have, in principle, to make two case
distinctions:

p>0

p<0 p>0 p<0 p>0 p<0 p>0
p=0 p=0 p=0

Of course, 6 of the 9 possible cases are impossible becatlseds® distinctions are on the
sign of p. In addition, we have assum@d> 1, so the first case distinction qris superfluous
sincep > 1 impliesp > 0. The second case distinction on the sfgoan be eliminated by
the same reasoning or, alternatively, by the argumentgha0 (the only possibility of the
first case distinction) and this (trivially) implies that> 0 when the sign of the “secong
is required. This reasoning is simple to carry out here, fillustrates the general problem
of avoiding unnecessary case distinctions.

Under the assumption @f > 1 the solved system takes the form

1<l (1.2)
p p

Systems (1.1) and (1.2) together give us all the bounds ddedm®nstruct a parallel program
(see also Section 2.1.2):

for t=[5—-1] to 7]
parfor i =max{0,p-t} to min{n,p-t+p—1}
Ali] := f(i)

The outerfor-loop enumerates the tildsnecessary to cover the iteration domain of the
original program. The inngparallel parfor -loop enumerates every point from the iteration
domain which lies in tilé and executes them in parallel. By construction, every tigains
p points, possibly except the last tile which may contain fiepants.

Although the example is relatively simple, some importargayvations can be made:
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e The presence of a parameter in the coefficient of a variablthi$ case the parameter
p as coefficient of the variabl§ introduces case distinctions in general (in our case
on the sign of the parameter).

e The parameten, which appears only in additive constants, does not cause aia-
tinctions.

e To find out which of the case distinctions are really necgssae have to analyze
logical consequences: to find out that the cgses0 andp = 0 can never happen, we
have to figure out thgd > 1 impliesp > 0 (in the real numbers).

Let us make the third point a bit more precise: what we had t dut exactly is, that in
the real numbers the logical formuég (p > 1 — p > 0) holds, i.e., for every real number

p it is true thatp > 1 impliesp > 0. Note that it is necessary to use a quantifier to express
this condition. The exact definition of logical formulas MBke introduced in Section 2.2

and a methods to check (i.e., decide) quantified logical fkemnin the reals is presented in
Chapter 3.






Chapter 2

Mathematical Prerequisites

2.1 Polyhedra

2.1.1 Definitions

There are different mathematical ways to describe the @truée polyhedron; the definition
we use here is based on linear equations and inequalities:

Definition 2.1 A linear equationis an equation of the form

_ici‘xi +d=0

=
wherexy, ..., X, are the unknowns am, ..., c,,d € R. An inequality of the form

n
Zci -X+d>0
i=
is called alinear inequality c,...,c, are calledcoefficients andd is called theadditive
constantor additive term

Linear equations can be expressed by two linear inequalgiacey | ; ¢ix +d = 0 is equiv-
alenttos cx+d>0AS,cx+d<O0. Itis desirable to use equations whenever pos-
sible, since equations can be treated much more efficiegtipdny algorithms than a pair
of complementary inequalities (see, for example, Secti@ri

We use also a vectorial notation for linear equations andjualties: with
X= (Xg,...,%) andc= (c,...,Cn), they can be written as follows:

c-x+d=0
c-x+d>0

or even (using homogeneous coordinates) as follows:

© d)-(DzO

The algebraic concepts of a linear equation and inequadits ldirect geometric corre-
spondents:
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Definition 2.2 Letac R"\ {0} andb € R. Then
A(ab) = {xeR"|a-x+b=0}
is called ahyperplane

A fundamental result of the theory of linear algebra states the hyperplanes @&" are
exactly the affine subspacesRf with dimensionalityn — 1 (see any linear algebra book).

Definition 2.3 Letac R"\ {0} andb € R. The set
H(a,b) = {xe R"|a-x+b> 0}
is called ahalfspaceof R".

Please note thak(a,b) = A(—a,—b), for anya andb, butH(a,b) # H(—a,—b). Further-
more:

From the correspondence between linear equations andgtgpes it is immediately obvi-
ous that the same correspondence holds between lineamiitezsuand halfspaces.

Definition 2.4 A polyhedron Pin n-dimensional real space is a subsetRf which is
an intersection of finitely many halfspaces, i.e., fore N, a,...,a, € R"\ {0}, and

3

P:

s

H(a.bi) = {xeR"[ A& x+Db >0}
i=1

i=1 i

An alternative form of describing the polyhedron is
P={XcR"|M-X+b>0}

where

Definition 2.5 A bounded polyhedron is calledpmlytope

2.1.2 Fourier-Motzkin Elimination

One of the fundamental algorithms which can be applied tghmmira isFourier-Motzkin
elimination ([Ban93], Section 3.8; [Sch94], Section 12@)ven a finite seSof inequalities
with variablesx, . .., x, andlinear parameters;, ..., pm as input, this algorithm calculates
the following two pieces of information:
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e a setF of inequalities only in the parameters such thpdE (i.e., the conjunction of
the inequalities inF) is true for given values of the parameters if and only if the
polyhedron described b Sis non-empty, and

e inequality systemg; andU; representing lower and upper boundsiaffor 1 <i < n)
such that

— L contains only lower bounds of, i.e., inequalities of the formg >t for some
expressiort (which does not contair),

— U; contains only upper bounds gf i.e., inequalities of the formg <t for some
expressiort (whereinx does not occur),

— ASis equivalent to\" ; (ALi A AU)),

— no variablex, 1,...,X, appears itJ; orLj, for 1 <i < n.

This means thak; andU; contain inequalities representing lower and upper bounds f
x1 which depend only on the parametets. andUs, list lower and upper bounds fog in
dependence of; and the parameters, and so forth.

Given an affine expressian:= zi”:lcixi + z{‘;ldi pi + e with the variablesx, ..., X,
parametergy, ..., Pm, and additive constam we write coeff, (t) to denote;, the coefficient
of x.

The algorithm works as follows:

$ =S

P > X — > . i =
Li:={x >X% Coeﬁ)q(t)](t_O)eS,coeff)q(t)>0} fori=n,....1
e L <X — > . i =
Ui i={x <X COeﬁ)q(t)](t_O)eS4,coe1°f)q(t)<0} fori=n,....1
S_1:={t>0] (t >0) € §, coef (t) =0} U fori=n,....,1

{t' —t>0] (x >t) €Ly, (x <t') eUi}
F=%

Note thatx, cancels in the expressions— m soL; andU; really contain inequalities
with the specified properties. '

As stated above, the conditighF states (in dependence of the parameters) whetlger
has a solution or not. It is important to note that any sofutgoin thereals If condition A F
is satisfied by the parameters, it is still possible {h&has no integral solution. Algorithms
deciding the existence of integral solutions are beyondtiee of this thesis. We just show
a way to enumerate the integral points of a polyhedron in &x section.

Unfortunately, Fourier-Motzkin elimination can suffelofn severe performance prob-
lems in practice. This is due to the fact that—in the worseeathe number of inequalities
is squared in every elimination step: if a given systemthbsunds, the worst case is when
half of the inequalities are lower bounds and the other haltigper bounds. The number of
inequalities in the following step is th@- g = %2. Therefore, Fourier-Motzkin elimination
is at least doubly exponential in the number of variablehinworst case. We discuss how
to constrain this growth of inequalities in Section 4.2.1.
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2.1.3 Polyhedra and Integers

In many applications one is interested in the integral goinside a polyhedron. Unfortu-
nately, there is nsimpletechnigue to decide whether a polyhedron contains at lesst o
integral point (in dependence of the parameters), so we tdisouss this question here.
Instead, we present a method to enumerate all integralgofrda polyhedron. This means
that, in the polyhedron model, we are working in the realstrobghe time and only come
back to the integers in the final step when code to enumeraiatégral points of the derived
polyhedra is generated.

Let Sagain be a set of inequalities in the variabkes . ., x,. Fourier-Motzkin elimina-
tion computes the sets of lower and upper bounds

Li={x>lia(Xe, .-, Xi-1),.- -, % > i (X, .., Xi-1)}
U ={x <u1(Xe, ..., %-1),.. .. X < Uig(X,...,%-1)}

for every variablex,, . .., x, such that\ Sis equivalent to

l11,. .01 <X <Upg,...,ULq
l21(X1), ... |2k (X1) <X2 < U21(X1),...,U20,(X1)
Ina (X1, %n-1), - Ingy (X1, -, Xn-1) <Xn < Un2(X1,-.., Xn-1), -, Uno, (X1, -+ s Xn—1)

Of course, the parameteps, ..., pm can appear in every; andu; j, but the dependence of
the bounds on the parameters is left out in the notation useslfor readability purposes.

We replace every lower bourdby [I] and every upper boundby |u| and enumerate
only integral values for every variable between the (iraedower and upper bounds. This
is usually done by constructing a nestfof-loops:

for X1 = max{ “171—| yeeey “l,k1—|} to mln{ LU]_’]_J ooy Luljolj}
for xo =max{[l21(X1)],..., [l2k (X1) ]} to min{{uz1(X1)|,..., [Uzo,(X1) ]}

for xn = max{[l1n(X1,....%-1)1,-- -, [Ink, (X1, .., %-1) ]} tO
mln{ LUn,l(Xla cee 7anl)J PRREN) Lun,on (Xla s 7anl)J}
loop body depending ofxy, ..., %)

This loop nest enumerates all poirits, ...,X,) € Z" which satisfy A S (for given values
of the parameterg,..., pm). If the enumerated polyhedron has no integral solutions (b
some real solutions) at least one of foe-loops will be empty (in the sense that its lower
bound is greater than its upper bound). This means that sopezfeious work is done by
the outerfor-loops, but the enumeration is correct and complete in es&sg.

This method to enumerate the integral points of a polyhedesnbe used together with
the generalized Fourier-Motzkin algorithm for inequaktystems with non-linear parame-
ters, which we present in Section 4.2.1.

For our algorithm to compute disjoint unions of polyhedrivég in Section 4.3.3), we
need a trivial correspondence between strict and weak &lidéigg with respect to integral
solutions:
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Lemma 2.6 Lety ;¢ -X +d be an affine expression in the variablgs.x., x, and coeffi-
cients @,...,cn,d € Z. Then, for everyxy,...,X,) € Z,

n n

Zlci-xi +d >0 ifandonly if Zlci-xi +d>1
= i=

and

n n n
Gi-x+d#0 ifandonly if G- X+d>1v yeg-x+d<-—1
I; i A (Zl i A i; it A )

This lemma allows us to replace strict inequalities by wesdqualities (or a disjunction of
weak inequalities if we replace an inequality with the rielat~), provided that the coeffi-
cients and the additive constant are integral numbers anakevenly interested in integral
solutions of the inequality. That the coefficients are irdédoes not mean that they have to
be constant numbers frof for example, they can also be polynomials in the paraméters
the parameters are assumed to be integral, too.

2.1.4 Polyhedra with Parameters

The definition of polyhedra given above states that the aoeffis of the variables and the
additive constant be real numbers. From the mathematidat pbview, there is little dif-
ference between using fixed numbers as coefficients, asxr2 > 0, and specifying the
coefficients through parameters, aginx— q > 0. Unfortunately, from the computational
point of view, there is a big difference between these twaouadities. This becomes clear
when one tries to solve either inequality for the only vaegab

In the case of 2x— 4 > 0, the coefficient ok is a fixed number, namely 2, and it can
be determined statically (at compile time) that ®. Therefore, solving the inequality far
yieldsx > .

On the other hand, the coefficient vin p-x—q > 0 is the parametep, whose sign
cannot be determined (without further assumptions), sahkeedor x in the general case
requires a case distinction to be made:

e Case 1:p > 0. We can divide by and the orientation of the relation symbol stays the
same:x > %

e Case 2:p < 0. We can divide byp, but have to change the orientation of the relation
symbol:x < %

e Case 3:p= 0. The inequality is in this case just the conditigi> 0, so we cannot
solve forx here.

Looking more closely at the problems introduced by paramgetebecomes clear that dif-
ferent levels of parametrization can be distinguished:

(1) The simplest extension of practical interest is to alfmavameters to appehnearly
in the additive term,

n

m
ZiciXiJeripiJreZO (2.1)
= J:]_
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wherexy,...,X, are again the variablegqy,..., pm are the parameters (calledeak
parametersas they appear only linearly), and the coefficients. ., c,,ds,...,dn € R

and the additive constaete R are fixed real numbers. Handling this case is relatively
easy, and it has been done for years in the domain of autofoaticparallelization.
The reason that linear parameters are no big problem is tleat@n interpret Inequal-
ity (2.1) as being non-parametric and having themvariablesxs, ..., Xn, P1,- - -, Pm-
Then it is possible to apply all computation techniqueslierrion-parametric polyhe-
dron model.

(2) A step further in the direction of full parametrizatiorowd be to allow parameters to
appear non-linearly in the additive term, i.e.,

n
Zicixwr f>0 (2.2)
i=
wheref is an arbitrary polynomial in the parametqrs . .., pn. But this case can be
reduced to the case with linear parameters only by introdunew linear parameters
for every polynomial appearing in the input inequalitiesr Example,

2x+p?+3>0
3x—p>+1>0
can be rewritten as
2X+01 >0
X+q>0
with g := p? + 3 andg, := —p° + 1 and the transformed system can be handled as

in case (1). After the computations are performed, the tipagameters); andgp are
resubstituted with the original expressionspin

(3) The most general and most desirable form of paramdtizas to introducestrong
parameterswhich can appear in arbitrary powers and products in th#icmats of a
variable or in the additive term. Then the inequalities tageain the form

n

Zcm +d>0 (2.3)

but nowcy,...,c,,d are polynomials inps,..., pm Which are the parameters of the
polyhedron.

The big difference between (1), (2) on the one hand and (3herother is the effect the
parameters can have on the hyperplanes and halfspaces ioegoeality (or the hyperplane
of one equation, respectively).

Parameters appearing in the additive term can only tranbklgterplanes (and therefore
halfspaces) in space, but the direction does not changes iHlear from the theory of
linear algebra, since the coefficiemts. . ., c, describe a normal of the hyperplane (which is
constant) and the additive constant determines the ttaosiaf the hyperplane.

In contrast, when parameters appear in the coefficientsrizblas, the normal depends
on parameters and its orientation (and accordingly thectitine of the hyperplane) changes
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<
<

y =-0.5x +p y = px + (2-2p)
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Figure 2.1: Hyperplanes defined by equations with a linedraanon-linear parameter

as the parameters change. This is illustrated in FigureThé left diagram shows the hyper-
planesy = % -X+ p for somep, and obviously they are all parallel. The right diagram skiow
that the hyperplanes defined py= p-x+ (2—2- p) are not parallel and their directions
change withp, sincep appears as coefficient of the variakle

The examplep-x—q > 0 at the beginning of this section shows that the orientation
the solution space (which is a halfspace) depends on thesignThis example also shows
that it is not sufficient to allow polynomials in the paranietas coefficients of variables. To
solve the inequalityp- x— g > 0 for x we have to use the fracti

Another complication is that we cannot assume that the peterndo not “mix”, i.e., if
different parameters appear in the coefficients of diffevaniables in the input, they can—
after some transformations—appear together in the sanificiergt. Let us take

p-x+y=0
Xx—Qq-y<0

as input of an elimination step which is, e.g., found in thefer-Motzkin algorithm (see
Section 2.1.2). To eliminate we first solve the system far(assumingp > 0):

_E y<X
p =

X<q-y

and then we eliminate by comparing the lower bound &fagainst the upper bound:

- y=qy
0 V=

1
+—]-y=0
(5)

In the input, the parametgrappears only as coefficientwandg only appears as coefficient
of y, but after the elimination of both parameters appear together in the coefficiegt of

These two observations show that, if we introduce non-tiqerameters, the right
choice for the domain of the coefficients is the quotient fi@las, ..., pn), which consists
of fractions of polynomials from the polynomial rif@[ps,...,pn]. Formal definitions of
Q[p1,---,pn) @ndQ(py,..., pn) are given in Section 2.3.3.

After merging we obtain the result:
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2.2 Logic

As we have seen in the introductory example in Section 1r&;&uts from the theory of logic
are needed in dealing with our problem, like implication firdt-order) quantification. This
section introduces some notation common in logic, which kel the base of our formal
approach to dealing with logical formulas in subsequentiGes.

We need ordinary first-order logic. “Ordinary” is used totitiguish this logic from its
variants like intuitionistic logic. Ordinary first-ordengjic is the most commonly used logic
in mathematics and computer science, so the reader shotaarder with it. “First-order”
means that quantification is possible only for individuas, for a single value, not for sets.

To deal formally with logical formulas, we must first intramkuthe notion of a (logical)
language The language determines which expressions (“terms”) amdiflas can be legally
formed in the logic. After that, a semantics has to be asdigm¢éhe formulas.

The base for the definition of the language isignature A signature is a common
concept in computer science and it plays the same role in.l&@yir signatures are relatively
simple: all operands are of the same “type,” and no highdetofunctions are allowed.

Definition 2.7 A signatureX is a triple(F, R ,ar) consisting of the set diinction symbols
F, the set of relation symbolg , and ararity assignment ar ¥ U — N.

The meaning of the signature is simple: we select some syywb®lwant to use to denote
functions, e.g.% = {+,—,-,0,1}, and relations, e.g® = {<}, and define the arities of
the function and relation symbols, e.gr(+) = ar(-) = ar(<) =2, ar(—) =1, ar(0) =
ar(1) = 1. This example gives us a signature with the two binary djmers“+” (addition),
“." (multiplication), the unary function =" (unary negation), two nullary function symbols
(also called constants) “0”, “1”, and a binary relation™(less than). This signaturgqy =
(F,R ,ar) is often called thesignature of ordered ringsWe come back to this signature in
subsequent sections.

It is important to note here that the signature does not assity meaning (i.e., se-
mantics) to the function and relation symbols. The concreéaning of the symbols is
determined by an interpretation (see below).

Terms and formulas will have to contain variables to be ussfuwe need an infinite set
9/ containing all variables. The alphabet of the logical leaggiis:

L=YUFURU{(,),»,=}
Now we can define the set tdrmsfor the signature.
Definition 2.8 Tm(7/,%), the set otermsover 7 andZ, is inductively defined by:
1) Y<Tmv,5)
(2) if f € F andar(f) =0thenf € Tm(7/,%)
(3) if fe F,ar(f)=n>0andty,...,t, € TMV,Z) thenf(ty,...,ty) € TMV,X)

This definition states that every variable is a term, evetianufunction symbol is a term,
and every function symbol applied to an appropriate numbetteer terms is again a term.
To continue the above example, legal terms for the signaigigeare, e.g.,

X +(x,1) (Y, +(=(x),0))
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with x,y € V.

The prefix notation, e.g--(x, 1), is tedious, so the more common infix notatios 1 is
used. We also apply the usual precedence rules to savelpesente.g., we writgx (—x+0)
to denote the formal term(y, +(—(x),0)). In addition,x—y will be used as an abbreviation
for X+ (—y).

Atomic formulas come in two variants: equations and retetio

Definition 2.9 At(7/,%), the set ofatomic formulasconsists of:
(1) equationg; =ty wheret;,t; € Tm(7, %),
(2) truth constants wherer € %, ar(r) =0, and
(2) predicates(ty,...,ty) wherer € R, n=ar(r) > 0.

As with the terms, we usually write relation symbols in infimtation. UsingZgg, for
example, we writx < y instead of< (x,y).

Definition 2.10 Fm(7/, %), the set ofirst-order formulasis inductively defined by:
(1) AY(V,5) C Fm(V, %)
(2) if ¢ € FM(V,X) then(—9) € Fm(V,%)
(3) if e FM(V,Z) andp € {A,V,—,<} then(ppW) € FM(V, %)
4) ifxe v, ¢ € Fm(V, %) then(3Ix9), (VXP) € Fm(V, )

Qf(%,Z), the set ofquantifier-free formulasis the subset oFm(7/,%) which is obtained
when rule (4) is not used in the formula construction, ilee, formulas inQf(4/,%) do not
containdx or Yx constructs.

Again, this definition imposes strict requirements wherpubparenthesis, but we apply the
usual rules to save parenthesis: in the chaim\, vV, —, < the symbol- shall have the
highest, and the symbe} shall have the lowest precedence.

A formula for a given signature is just syntax; a semantiamiy associated with a for-
mula when we choose a structure in which the formula is to teepneted. This is analogous
to the signature/structure concept in computer science.

A structure for a given signatuedefines the domain (or universe) in which the formula
is interpreted and defines mappings from the function aradioel symbols ok to functions
and relations over the domain of the structure.

Definition 2.11 A >-structure Ais a triple (A,i¢,ig ) where
(1) Ais a non-empty set (i.eA # @),
) i F = UnenA®) with ar(f) = nimpliesis (f) € A",
(3) iz : R — Unen 2™ with ar(r) = nimpliesix (r) € 24"

As a short-hand notation we defifi@ :=is(f) for f € F andr®:=ig (r) forr € R..
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What a structuré\ really does (besides defining a univefgeis that it assigns to everyary
function symbolf a function 2 : A — A and to everyn-ary relation symbot a relation
rAC AN,

The interpretation of function symbols defined by a struefuextends naturally to terms
if we also choose aanvironmenti.e., a mappindp : % — A which assigns to every variable
a value from the domaiA of the structuréA.

Definition 2.12 Given aternt e Tm(7/,%), its interpretatiorl,? inastructurdA = (A,ir,ig)
in the environmenh : 7 — Alis defined as follows:

W) th=ht)ifte v
() th=fAifte 7,ar(f)=0

@3) th = fA((t)h, ., (t)p) if t=f(ts,....ta), ar(f) =n>0

The interpretation of a term (in a given environment) is augairom the domain of the
structure. The interpretation of a formula is a truth valiue, the value “true” (denoted by
T) if the formula holds under the given environment, and ‘dalgenoted byl ) otherwise.
Using the interpretation of terms, the interpretation oémfifier-free formulas is straight
forward:

Definition 2.13 Given a quantifier-free formulg € Qf(7/,%), its interpretationc])ﬁ in a
structureA = (A,i#,ig ) in an environmenh : // — Alis defined as follows by induction on
the formula structure:

) (=)= {T =ty

1 otherwise
) if ¢ =r,r e R thenph =r2

T if ((t)fyeoos (t)p) €12
1 otherwise

@) it =r(tr.....t) thenq,@:{

. A
T ifoy=1
1 otherwise

@) (~)n = {

G) (OAWR

T if¢h=Tandyp=T
1 otherwise

{T if of = Toryp=T

otherwise

B if ot = Loryh=T
() (& =Wl = {L otherwise

p_ [T Oh = Uy
®) (6 =W = {L otherwise
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The semantics of formulas with quantifiers is defined by myaalif the environment. For
h,h" : 7 — A the notationY =, h shall mean that, for ay € ¥\ {x}, h'(y) = h(y), i.e.,h
andh’ are the same on all variables, possibly except

if there is an environmerit with i =, h andq)ﬁ =T
1 otherwise

w>cumﬁ:{T

T if ¢ﬁ = T for every environmenty with ' =, h
1 otherwise

umwwm:{

¢ﬁ =T is also written ag\Fp, ¢. If ¢ﬁ = T for everyenvironment, we writeAF ¢.

We must deal with the variables of a term, or the variablesappg freely (unquantified)
in a formula.

Definition 2.14 var(t), theset of variables appearing in a termis defined by:
(1) var(x) = {x} if xe V
(2) var(f)=gif f € F andar(f) =0

(3) var(f(ty,....tn)) = Ovar(ti) if fe 7 andar(f)=n>0
i=1

Theset of free variables frva) of a formulad € Fm(7/,%) is defined by:
(1) frvar(ty =tp) = var(ty) Uvar(tp)

(2) frvar(r)=@ifr € ® andar(r) =0

(3) frvar(r(ty,....ta)) = 0 var(tj) if r € ® andar(r) =n>0
i=1

(4) frvar(—¢) = frvar(¢)
(5) frvar(¢ pw) = frvar(¢) Ufrvar(y) for p € {A,V,—, <}
(6) frvar(Qxd) = frvar(d)\ {x} for Q € {V,3} andx e V

It is sometimes easier to use an alternative notation oftead terms” and “extended for-
mulas” instead of environments when talking about the \@abfdormulas.

Definition 2.15 Given a termt € Tm(7/,Z) and pairwise differentxs,...,X, with
var(t) C {x1,...,%n}, t(Xs,...,%n) is called anextended termand (xi,...,X,) is called an
extension

Given a formula ¢ € Fm(7,Z) and pairwise differentxs,...,x, € ¥ with
frvar(¢) C {X1,..., %}, ®(X1,...,X%,) is called anextended formulaand (xg,...,Xn) IS
called anextension

When we select an extension of a term or a formula, it is notseary to specify a complete
environment to determine the value of the term or formuld,ibis sufficient to specify
values for the variables of the extension.
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Definition 2.16 Given aternt € Tm(7/, %) or a formulap € Fm(/, %) and a fixed extension
(X1,...,X%n), & structureA with universeA and elementsy, . .., a,, we define

tA(ay,...,an) i=to
0A(ay,...,an) = Op
for any environmenh: 7 — Awith h(x;) = ay,...,h(xy) = an.
We note here that:

e The values oft2(ay,...,an) and ¢?(ay,...,a,) depend on the choice of the exten-
sion x1,...,X%,. Therefore, we say that we fix an extension before talkinguabo

B(ay,...,a) O $A(ay, .., ).

e The definition of an extension (Definition 2.15) ensures ttﬁ'al,...,an) and
¢2(ay,...,a,) are well-defined, because every variablet ifevery free variable in
¢, respectively) must appear in the extension.

e Anextended term(xy,.. ., %) defines a functiot® : A" — A, and an extended formula
d(X1,...,%) defines a functio? : A" — { L, T} in a structureA with universeA. In
analogy to (unextended) formulas we wilke= ¢(ay, ..., an) if ¢2(ay,...,a,) = T.

e An extended formul#(xs,...,X,) defines a set afi-tuples from the universa:

{(ar,....a0) € A" ¢%(a,....a0) = T}

In the following, we refer to this set as “the set definedpyf the structureA and the
extension(xy, ...,%,) are clear from the context.

The notation¥(¢) and 3(¢) is a short-hand fok/x; - - ¥xn (¢) and 3xz ---Ixq ($), where
frvar(¢) = {X1,..., %}

Definition 2.17 The (simultaneouspubstitution® := [x;/t1,...,%a/ty] Of the variables
X1,...,% by the termg;, ... t, in a term is defined by:

(1) y0 = ti if y=x for somei € {1,...,n} forye v
"~ |y otherwise

(2) fe:=fforfeF
(3) f(s1,...,5m)0:=f(s16,...,5m0) for f € F,s1,...,5m € TMV,X)

The (simultaneousjubstitutiond := [x1 /t1, ..., Xn/tn] Of the variables, . .., X, by the terms
t1,...,tn in a formula is defined by:

(1) (51 =%)0:= (510 =0) for 51,5 € TM(V, %)

(2) re:=rforre R

(3) r(sy,...,sm)B0:=r(s16,...,500) forr e R, s1,...,5m € TMV,%)
(4) (—)8:= (—¢8)
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(5) (bpw)8:= (¢8pWO) for pe {A,V,—, <}

Qy(¢6)) if y=x forsomeic {1,...,n}
() (Qy9)0: {Qy(c])e) otherwise
for Qe {3,V},ye ¥, and® = [xq/t1, ..., Xi—1/ti_1,%+1/t41.- .., %n/tn]

2.3 Algebra

2.3.1 Rings

Definition 2.18 A commutative ring withl (in the following “ring” for short) is a>qg-
structureR with universeR and the following properties:

Commutativity:  VXVy(X+y=y+X)
VXYY(X-y =Y-X)

Associativity: VxvyvZ(( x+y + z= x+ (Y+2)
((x-

VXVYvzZ (y-2)
Distributivity: VXVYVZ(X- (y+ z) =X-y+X-2)
ldentity: VX(X+0=X)

VX(X-1=X)
Additive Inverse: Vx(x+ (—x) = 0)

—(0=1)

Aring Ris called adomainif it has no zero divisors.
No Zero-Divisors: Vxvy(x-y=0— (x=0VvVy=0))

Aring Ris called dfield if multiplicative inverses exist for every non-zero elernen
Multiplicative Inverse: Vx(—(x=0) — Jy(x-y=1))

A domain or fieldR is calledordered if

Ordering: VXVWz(X<y— X+z<Yy+2)
YXYY(0 < XA0<y—0< X Y)

hold and< is a strict linear order oR.

We deal mostly with the ordered fieRlof real numbers (cf. Section 2.3.2) and its sub-fields
of rational numberg) and algebraic numbes (cf. Section 2.3.5). In addition, we deal
with polynomial rings (see Section 2.3.3).

2.3.2 The Real Numbers a&¢-Structure

The structureR is aZqg- structure with the domaiR and the usual operations and relations.
That is, the operationg®, —& B oR and & are the usual addition, negation, multipli-
cation, zero, and one of the real numbers, aidis the usual less-than relation. It is an
ordered field (Definition 2.18). We introduce some abbr@mest
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The sighatureq only contains the relation symbel, so we can define:

(t1 <tp) = (tl <t VvVt = tz)
(t1#£t) = 1<tVia<ty)
(1 >1) == (b <tiVtp=ty)
(t1>1t) = (tao<ty)

Note that the definitions of these abbreviations have beeserhso as not to contain nega-
tion, since virtual substitution requires positive foramil(cf. Definition 3.6 and Lemma
3.7).

To make the following presentation easier, we treat any fant; p t, with
pe{=#,<,<,>,>} as an atomic formula, although, >, >, # are not relation symbols
from Z,q. The above abbreviations show that this does not introdigmeh negations into
the formulas, which is important for algorithms which rely positive formulas as input.

In addition, we assume that every atomic formula is of themfar p O for
pe{=#,<,<,>,>}, although we may still writé; p t, when appropriate. We call this
the canonical form of atomic formulas R. This requirement is no restriction singep t,
is equivalent tqt; —tz) p 0 in R. When we speak of the “terms of a formuldr; we assume
that the atomic formulas ip are in the canonical forrhp 0 and mean the left-hand terms
t. We also write integral numbers like 3 er2 to denote the formal terms#1-+ 1 and
—(1+ 1), respectively.

The techniques described in Chapter 3 work in the reals, thélexception of root iso-
lation (see Sections 2.3.4 and 3.4, which can also be usenhtpute exactly the integral
solutions). The problems we try to solve are usually proklémthe integers, e.g., enumer-
ating the integral points in a polyhedron (cf. Section 2.1V8e lift integral problems to the
reals before applying our techniques. This implies that vilesemetimes get the answer
that some (real) solutions exist, although no integral temluexists. For Fourier-Motzkin
elimination this has already been discussed in Sectio3.2The final results we compute
may contain some superfluous cases (for non-integral paeavaues, for example), but
this does not affect the correctness of the results. It tragdout that we need not apply any
special, integral methods to solve the problems we handle the algorithms we develop
in Chapter 4 and apply in Chapter 5.

The input for the problems will always be rational in the setigat all numbers appear-
ing in the input are rational (or integral) numbers. Thiswas that all formulas in the
input can be expressed without denominators (by multighthre formulas with common
denominators); therefoi®,q is adequate for expressing the problems (see also Sectipn 4.

2.3.3 Polynomial Rings

We assume that the reader is familiar with polynomial rirggswe do not introduce poly-
nomial rings or the concepts necessary for dealing with theknrigorous definition of
polynomial rings via monoid rings is given in Chapter 2 of [B@.

Definition 2.19 Let R be a domain with universk and letx,, ..., X, be some new symbols
(calledindeterminates We define the set ahonomials M

M:={c-xg---- X |ceRey,...,en €N}
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where, as usuab{io := 1. The polynomial ringR[xs,...,X,] over R is then defined by the
universe

RIX1,... . %] ;= {m+---+m | ke N,my,....me e M}

and the usual polynomial operations fer —, -.
If n=1, the polynomial ring and the polynomials in it are callgdvariate if n > 2 they
are calledmultivariate

According to this definition, a monomial is a multiple of a pwproduct of the indetermi-
nates with a coefficient from the underlying riRRy As is shown formally in [BW93], the
ring axioms are inherited big[x1, . .., Xn], andR[x1, ..., X,] is again a domain.

When we are working iR, we can identify the term¥m({xs,...,Xn},Zorq) With the
elements of the polynomial ring[xs, . .., X,]: since associativity and commutativity hold in
R, every term inTm({X, ..., %}, Zord) Can be written as a sum of monomials.

Definition 2.20 Let Rbe aring andf = zi”:ocixi € R[x] with ¢, # 0. Then we call
deg f):=n the degreeof f,
lc(f):=cy theleading coefficienof f,
and for everyf = 3" X € Rjx] we call
n

fli= Elicixi‘l theformal derivativeof f.
i=

Note that the degree and leading coefficient of the O-polyabane undefined.

We need polynomial division and greatest common divisorgatynomials. We cite here
some results form Chapter 2 of [BW93]. We assume that theeraadamiliar with polyno-
mial division and the Euclidean algorithm (Chapter 2 of [B¥/8ontains these and many
others).

Lemma 2.21 (Polynomial division)

Let Rbe a field and fg € R[x] with g# 0. Then there exist uniquely determined g R[X]
with f =qg+r anddedqr) < degg) orr = 0. q is called the quotierQUOT( f,g) of f and
g, and r is called the remaind®REM( f, g) of f and g.

If REM(f,g) =0, we also Writeé for QUOT(f,g).

Definition 2.22 LetRbe a field and,b € R[x], a# 0 orb# 0. Theng € R[x] \ {0} is called
the greatest common divis@cd(a, b) of a andb if

e Ic(g) =1,

e REM(a,g) = REM(b,g) =0,

e everyg € R[x\ {0} with REM(a,d') = REM(b,d’) = 0 satisfies RENg,g') = 0.

If gcd(a,b) = 1, f andg are calledelatively prime
gcd(a, b) can be computed using the Euclidean algorithm.

The definition of the greatest common divisor can be exteffided univariate polynomial
rings to multivariate polynomial rings (cf. Section 2.5 8W93]) using the quotient fields
of polynomial rings (Definition 2.28).
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Squarefree Part of a Real Polynomial

Definition 2.23 Let f € R[x] \ {0} with deg(f) > 1.
* . f

ged(f, /)
is called thesquarefree parbf f.

The importance of the squarefree pértis that is has the same zerosfadut every zero of
f* is simple, that is, iz is a zero off* then the linear factofx — z) divides f*, but (x — z)?
does not. This implies that the sign changes around thezenal this property is useful
for the root isolation described in Section 2.3.4. We not thne can also compute the
squarefree factorizationf a polynomial f

f=u-f-f2.£5....f"

whereu € R andfy, ..., f, € R[x] are squarefree and pairwise relatively prime. An algorithm
to compute a squarefree factorization can be found in Chapef [BW93]. The squarefree
part and squarefree factorization bthave the advantage ovérthat the zeros off* and
f1,..., fn are simple and that their degree is probably lower than thecgeoff.

Reducta of Polynomials For cylindrical algebraic decomposition (Section 3.3) veed
to define the reducta set of a polynomial, i.e., the polyntsreatained from a given poly-
nomial f by successively removing the leading monomials. For exapgansider the poly-
nomial f = 4x3 4 3x? + 2x+ 1. The leading monomial of is 4x® and the reductum of
(written red f)) is 3x* 4+ 2x+ 1. The second reductured?(f) = red(red(f)) is 2x+ 1, and
so forth. The reducta set df(written RED(f)) is the set of all the reducta obtained frdm
(including f itself); in this case REDF) = {4x3 + 3x? 4+ 2x+1,3x* + 2x+ 1,2x+ 1,1}.

Definition 2.24 LetRbe aring andf € R[x]. We define theeductumof f as

0 if f=0

redf) =
at) {f—lc(f)-xdeqf) otherwise

Thereducta sebf f is defined as
RED(f) := {red (f) |0 <i <deg f), red(f) # 0}

where red ) denotes the functional iteration of red én
relP(f) = f, red™(f) =red (red(f)).

Resultants and Subresultants Resultants play an important role in the arithmetic of al-
gebraic numbers (cf. Section 2.3.5) and in the projectiogratpr of cylindrical algebraic
decomposition (cf. Section 3.3.2). They are defined as therm@ants of certain matri-
ces constructed from the coefficients of two given polyndsniResultants are connected to
the Euclidean algorithm: the resultant of two polynomiélandg vanishes if and only if
deg(gcd(f,g)) > 0. The subresultants df andg indicate whether polynomials of certain
degrees appear as remainders during the Euclidean algorlfle use resultants and sub-
resultants in algebraic number calculus and cylindricgéltaic decomposition, but we are
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not discussing (sub-)resultants themselves here. Befergiwe their definitions, we look at
an informal definition an give an example.

Let us look at the polynomials = 1x? 4 2x+ 3 andg = 4x3 + 5x? 4 6x+ 7. The resultant
of f andg is defined as the determinant of the Sylvester m&{X, g) of f andg:

1 4
21 5 4
S(f.g=13 2 16 5
3276

3 7

As one can see, the Sylvester matrix consists of the coefteced f andg which are written
from top to bottom and repeated in a diagonal manner. Thdiciesits of f are repeated
degg) times, and the coefficients ofare repeated déf) times. The determinant of the
Sylvester matrix is called the resultant (ég) of f andg:

req f,g) = detSy(f,g) = 256
The subresultants are also determinants of matrices inaificients off andg. Thek-th
subresultant of andgis defined as the determinant of the magixf,g), whereS(f,g) is
obtained fromS, by deleting the lastRrows, the lask columns with coefficients of, and
Si(f,0) = (
S(f.9) = (1
res(f,g) =detS(f,g) =0
res(f,g) =detS(f,g) =1

the lastk columns with coefficients af. Thus,
and the subresultants éfandg are
We now cite the formal definition of (sub-)resultants frorm@L02].

WN -
o b

1
2

(2}

~—

Definition 2.25 LetRbe aring andf = 3, fix € RX\ {0} andg= Y™, gix € R[x] \ {0}
with deg f) = n> degg) = m. Then we define for & k < mthe (n+m—2k) x (n+m—2k)
matrix &(f,g) as

fn Om
fa_1 fn Om-1 Om
frmikrt fn Ok
S(f,9) = : S
fir1 fm Om—ntkt1 Om
fok-mi1 fk Ook—n+1 Ok

m—k
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wheref; = 0 andg; = 0 for j < 0. Note that we assunte> min the definition ofS(f,g)
just to be able to depict the mati$( f,g) easily; the definition of( f,g) extends naturally
to the casen < m.

The matrixS(f,9) is called theSylvestematrix of f andg.
Definition 2.26 Let Rbe aring andf,g € R[x] \ {0}. We call

rex(f,g) := detS(f,q)

thek-th subresultanof f andg for 0 < k < min{degf),degg)}.
req f,g) :=reg(f,q) is also called theesultantof f andg.

Definition 2.27 LetRbe aring andf,g € R[x] \ {0}. We call

PSQf,qg) ;= {rex(f,g) | 0 <k <min{deq f),deqq)}, rex(f,qg) # 0}
the PSC seof f andg. We additionally define PS@,g) = @ if f =00org=0.

For the above (sub-)resultant example the PSC set i R§C= {res(f,q),res(f,9)} =
{256,1}, since reg(f,g) = 0.

We note that we use the term “PSC set” here to be consisteht{A@M98]. The ab-
breviation “psc” denotes the “principal subresultant &ioit”, i.e. the coefficient ok/
in the j-th polynomialsubresultant off andg. Our Definition 2.26 usescalar subresul-
tants (which are exactly the principal subresultant cadefiits). See [vzGL02] for detailed
descriptions of scalar and polynomial subresultants.

Quotient Field of a Polynomial Ring Finally, we introduce briefly the quotient field of a
polynomial ring since in the generalized polyhedron moHeldoefficients of variables are
usually taken fron@QQ(pa, ..., pm) With p1,..., pm being the parameters (cf. Section 4.1).

Definition 2.28 Given a domairR with universeR, we define the fieldR(xy,...,X,) with
universeR(xq, ..., X%y) through

f
R(le"'7xn) = {6 ’ f7g€ R[le"'7xn]7g7éo}

The arithmetic inR(xy,...,Xy) is carried out like the usual arithmetic with fractions. The
multiplicative inverse of a fractioé € R(X1,...,X%) \ {0} is defined as

LA
g) ~f
The details can be found in [BW93].
We can embetR[xy, ..., X,] iInto R(x1,...,X,) by

f|—>i

1

and therefore tred®[xs, ..., X,] as sub-ring oR(Xy, ..., Xn).
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2.3.4 Real Roots of Polynomials

In the following we look at polynomial$ € R[x] and discuss how to find their real zeros,
i.e., real numbers € R such thatf (r) = 0.

Definition 2.29 Let f € R[x]\ {0} andr € R with f(r) = 0. An interval[a,b] with a,b € Q
is called anisolation intervalfor the zeror of f, if r € [a,b] andr is the only zero off in
[a,b] (i.e., f(c) # O for everyc € [a,b]\ {r}).

Our aim is to find isolation intervals for every root of a givealynomial f € R[x] \ {0}
such that the intervals are pairwise disjoint. We achieisegbal using a simple method: we
start with an interval containing every zero band successively divide the interval in two
equally-sized subintervals until every interval contaéxactly one zero. This requires two
other algorithms: an algorithm to find the initial intervathieh includes every zero df, and
an algorithm to count the number of (distinct) zerod @fh a given interval (to find out when
we are finished dividing the intervals).

Lemma 2.30 ([BW93], Exercise 8.114)
Let f=3,cx € R[x\ {0} withdeg f) > 1and re R with f(r) =0. Then

1
|r| < l+mmaX{|C0|,...,|Cn,1|}

Proof. The proposition is obviously true fdr| < 1. Let|r| > 1. Sincecyr" = — - lar,
we have

n-1 n-1 )
nl-Ir"=1 3 ar'l < 3 fal-Irf
i= i=

n-1 i ‘r‘n_l
émaX{|C()|,...,|Cn,1|}--20|r| :maX{|CQ|,...,|Cn,1|}‘ ’r’—l
1=
<max(lcol...Icn al} - -
< Col;---»|Ch-1 -1
From this we can dedude| <1+ |C—1n‘ max{|Col,...,|Cn-1|}- O

The following theorem shows how to count the number of distzeros in a given inter-
val. It uses the notation VARSIG(d, .. .,a,) to denote the number of sign changes in the
sequencgay,...,a,). “Sign changes” refers to the number of changes in the sigoim
the valuesay,...,a, where zeros are ignored. Thus, VARSIAN-2,3,4,-5) is 3: the
signum changes between 1 an@, between—2 and 3, and finally between 4 aneb.
VARSIGN(1,0,-2,3,0,4,0,0,—5,0) is also 3 since zeros are ignored.

Theorem 2.31 (Sturm’s Theorem [BW93])
Let f € R[x]\ {0} withdeq f) >1and ab € R witha<b and f(a), f(b) # 0. Define

fo = f
f]_ = f’
fit1 = —REM(fi_1, fi) aslongasif£0
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Letr € N be maximal such that £ 0. Then f has the following number of distinct zeros in
the interval[a, b]:

VARSIGN(fo(a), ..., fr(a)) — VARSIGN(fo(b), .., (b))

A proof of Sturm’s theorem can be found in [BW93], Chapter. 8.8
Using the preceding lemma and Sturm’s theorem, it is passibiind isolation intervals
for every zero of a given polynomidl € R[x] \ {0}:

(1) Using Lemma 2.30, we compuké > 0 such that every root of lies in [a,b] where
a=—M andb= M.

(2) If aiis a zero off, we divide f as often as possible by— a (to eliminate the factor
x—afrom f) and[a,a] is an isolation interval for the zewof f; the same takes place
with x— b as factor andb, b] as isolation interval, ib is a zero off. Let the resulting
polynomial beg.

(3) If the number of zeros @fin |a, b is 0, we terminate with “no zeros i, b].”
(4) If the number of zeros afin |a, b[ is 1, we terminate with the isolation interval bJ.

(5) Ifthere is more than one zero@in |a, b], we setc:= %(a+ b) and apply the algorithm
recursively, starting with the intervala, c] and|c, b] for the polynomialg at Step (2).

The intervals computed by the above algorithm are not disjoi general: some interval
endpoints may be the identical. However, by the followingiea, it is possible to shrink
isolation intervals to become arbitrarily small.

Lemma 2.32 Let f € R[x] \ {0} withdeq f) > 1 and|[a,b] an isolation interval for a zero r
of f and c= 3(a-+b). Then[a,c] or [c,c] or [c,b] is an isolation interval for r.

This lemma is pretty obvious. Eitheris the only zero off in [a,b], or the zero is not and

lies inside one of the intervalg, c| or [c,b]. Which of the two intervalsa, c| and|c,b] the
zero lies in can be decided by counting the zeros in eachvaltasing Sturm’s theorem. But
there is a computationally more efficient alternative ushgsquarefree paft® of f: since
f—and hencd *—has exactly one zero ia, b] and that zero is a single root 6f, it follows

that the signs off*(a) and f*(b) are different, i.e.,f*(a)- f*(b) < 0. The sign off*(c)
determines which of the two intervals is the right onef‘ifa) - f*(c) < 0 then[a,c]| is the
right interval, otherwise it ic,b]. Using Lemma 2.32 one can make the isolation intervals
found by the preceding algorithm smaller and smaller uhéitare pairwise disjoint.

2.3.5 Algebraic Numbers

The previous section shows that one can find isolation iaterwith rational bounds for
every zero of polynomial$ € Q[x]. This means that it is possible to describe any such zero
solely by rational numbers (the coefficientsfoand the interval bounds).

Definition 2.33 Let A C R be the set of all zeros of polynomials ov@ri.e.,
A= {r e R | there existS € Q[x] with f(r) =0}

We call A the set ofalgebraic numbers
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A is a superset a, since every rational numbere Q is the zero of(x—q) € Q[x]. Itis
possible to do arithmetic i, that is, one can define addition, negation, multiplicatemd
reciprocal values of algebraic numbers and they are agagabedic numbers.

Theorem 2.34 The algebraic numbera form a field.

Proof: [Loo83].

The arithmetic computations i are, in principle, always performed by the following steps:

e From the given algebraic numbers (given by their polynosngaid isolation intervals)
compute a polynomias which has the result of the arithmetic operation among its
zeros.

e Compute pairwise disjoint isolation intervdls. .., |, for the zeros os.

e From the given isolation intervals of the input numbers cotapby interval arith-
metic) an intervaK which contains the resulting algebraic number.

o If KNI; # @ for more than one, shrink the isolation intervals of the input numbers
and compute a new, smaller intenkafrom them. Repeat this un#l has a non-empty
intersection with exactly onk.

e The polynomials and the intervaK describe the algebraic number resulting from the
arithmetic operation.

As an example consider the two algebraic numloets /2 andp = /3. The product - B
is the algebraic numbay6.

We first cite the algorithm for addition and multiplicatio @gebraic numbers from
[Loo83] and then show exemplarily the computation/- /3.

The notation rqs(f(x,y),g(x, y)) is used below to express that we want to compute the
resultant off (x,y) andg(x,y) where f andg are to be treated as polynomialsyirthaving
coefficients fromQ|x]), i.e., the entries of the Sylvester matrix (cf. Definitior2%2) are
polynomials inx, and hence, the resultant is also a polynomiad.in

e Input: Two algebraic numbers and3 described by their polynomiaksandb and by
their isolation interval$ andJ.

e Compute:
— for addition: s(x) = res/(a(x—y),b(y))
for multiplication: s(x) = res;, (y*9® - a(x/y), b(y))
— squarefree factorization &f s(x) = u-dy(x) - da(X)?-...-df (X)"
— pairwise disjoint isolation intervals, . . ., |, for every zero of everg; (1 <i < f)

— an interval which containg + 3 (or a - 3, respectively); for additionK = | 4 J,
for multiplicationK =1 «J (using interval arithmetic)

— if there is more than onk with KN ; # &, then bisect andJ (using Lemma
2.32) and go back to the previous step

e Output: the polynomiall from d,...,d, which has a zero in; and the isolation
intervalK together describe the algebraic numbera + 3 (ory=a - ).
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For the exampler = /2, B = v/3 we use the defining polynomiadgx) = x> — 2 andb(x) =
x? — 3 and the isolation intervdD, 2] for botha andB. We obtain de¢p) = 2 and need
to calculate (for the multiplication of and ) y? - a(y) = —2-y°4+0-y+x% andb(y) =
1-y?>40-y— 3. From these polynomials we calculate the resul&y; in the depicted
matrix we only show the entries coming from the coefficierityzoa(§) andb(y), the other
entries are 0 by Definition 2.25:

-2 1
. X B 0 -2 0 1 . 2
S(x)_reg,(yz.a(gl),b(y))_det 2 0 -3 0 =x'—12¢*+ 36

X2 -3

A squarefree factorization af(x) is (x> — 6)2. The zeros of(x) are therefore-/6 and
/6, and we choosé-3, —2] and [2, 3] as isolation intervals for these zeros. The interval
K is now computed from the isolation intervals @fand 3, and in this case we can use
K =1[0-0,2-2] =[0,4]. Only the interval2, 3] has a non-empty intersection with the interval
K and hence, the algebraic numlzer is defined by the polynomiad(x) = x> — 6 and
the isolation intervaK = [0,4] (we can also usé, 3], of course). Obviouslyd(x) andK
describe the algebraic numbg6, which is the product ofi andp.

Algorithms SimpLE and NORMAL  For the cylindrical algebraic decomposition method
of Section 3.3 we need two algorithms from algebraic numladcutus. We present the
specification of these algorithms as lemmas here and redereifder to [Loo83] for the
concrete algorithms and proofs of their correctness.

Lemma 2.35 (SIMPLE)
Leta,B € A. The algorithmSIMPLE computey € A and ab € Q[x] such thair = a(y) and

B = b(y).

As an example for this lemma, we lookat= /2 andp = v/2+ 1. A possible output of the
algorithm SMPLE is y = ¥/2 anda(x) = %, b(x) = X2 + 1, sincea(/2) = ¥/2° = v2 = a
andb(¥3) = ¥2° + 1= Y2+ 1=.

Lemma 2.36 (NORMAL)
Let f € A[x]. The algorithmNORMAL computes g Q[x] such that every zero of f is also a
zero of g, that is fr) = Oimplies dr) = O for every re R.

As an example consider the polynomifx) = x — /2 € A[X] with the algebraic number
coefficienty/2. The only zero of is /2. The rational polynomiat?> — 2 € Q[x] has rational
coefficients only and/2 is one of its zeros. The polynomigl — 2 has another zero, namely
—+/2. This shows that the rational polynomial computed lyRWIAL has, in general, more
zeros than the original polynomial with algebraic numbesfticients.



Chapter 3

Quantifier Elimination

Section 2.2 introduces quantifier-free formulas and thé-dirder quantifiersl andv. The
quantifiers are used to express properties of some varibgléise use of other variables.
For example, the formuldy (x = y?) makes a statement about the variabley claiming
the existence of a value (denoted Yysatisfying the conditiox = y?. If we are working
in the real numbers, this obviously means tkat 0, since exactly the non-negative real
numbers are squares of other real numbers. Both formbyg,= y?) andx > 0, make the
same statement aboxi{in the real numbers). The difference is that the latter cakenthis
statement without the use of quantifiers.

In the real numbers it is always possible to replace a formuith quantifiers by an
equivalent quantifier-free formula. In this chapter we sthomw to compute such quantifier-
free equivalents for some special cases using the techmimpliedvirtual substitutionand
cylindrical algebraic decomposition

3.1 Definitions

Before we start with the concrete algorithms, we give thenfdrdefinition of quantifier
elimination.

Definition 3.1 Let X be a signature. A-structureA is said to allonguantifier elimination
if, for every formula¢p € Fm(7/,%), a formulay satisfying the following conditions exists:

(1) weQf(?,2)
(2) AF¢ < U
(3) frvar(y) C frvar(¢)

Conditions (1) and (2) state thdt is quantifier-free and logically equivalent gpin the
structureA, and condition (3) requires thgt only contains variables which occur freely in
¢.

As stated above, the formully (x = y?) expresses thatis the square of some real num-
ber. In the structur® this is equivalent to saying thatis non-negativex > 0. Obviously
all three conditions of Definition 3.1 hold:

(1) (x>0) € Qf(V,Zorq)
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(2) REJy(x=y?) < x>0
(3) frvar(x > 0) = {x} C {x} =frvar(3y(x=y?)).

Definition 3.2 A decision methodor a structureA is an algorithm which, given a formula
¢ € Fm(7/,Z) with frvar(¢) = @ as input, computes wheth&r= ¢ or A¥# ¢ holds.

A quantifier elimination method for a structufeyields a decision method under the ad-
ditional condition that atomic formulas can be decidedAin Given a formula$ with
frvar(¢) = @, the quantifier elimination method calculates an equitalermula Y with
frvar(Q) = @. WhetherAF Y or A¥ @ holds, depends only on whether the atomic formu-
las of ¢ hold in A or not (cf. Definition 2.13). Hence, if the atomic formulasioftan be
decided, the truth-value af, which is also the truth-value @f, can be computed.

Alfred Tarski proved in 1948 that the above quantifier eliation example irR does
not succeed just by chance.

Theorem 3.3 (Tarski [Tar51])
The structureR allows quantifier elimination, and there is an effectivealthm to perform
quantifier elimination on a given formula.

Since itis in principle possible to decide atomic formula&| this theorem also proves the
existence of a decision method f&r Since Tarski's discovery of quantifier elimination for
R many other (and more efficient) algorithms have been fourelpk&sent briefly quantifier
elimination byvirtual substitution(Section 3.2) and a decision method based on cylindrical
algebraic decomposition (CAD, Section 3.3).

We should note here that no quantifier elimination proceflure,q exists inQ. In R
the formulady (x = y?) is equivalent tax > 0. In Q the conditionx > 0 is necessary fax
to be the square of a rational number, but it is not sufficientes for examplex = 2 is not
a square of a rational number. No quantifier-free formuldntie only variablex € Q can
express thax is a square.

3.2 Virtual Substitution

Virtual substitution was discovered by Volker WeispfermniivVei88]. It derives its name
from the way it eliminates quantifiers. To get rid of an exisi& quantifier, it is replaced by
a disjunction where in each disjunct the quantified varigbkubstituted (using the special
virtual substitution) by appropriately chosen terms (cffiDitions 3.13, 3.14 and Theorem
3.16).

To illustrate the idea, let us look at the very simple example

¢ = 3IAxY
P:=X>1Ax<p)

¢ expresses that there is a real number between 1pasd it is obviously equivalent to
saying thatp > 1. As we will see in Section 3.2.2 (Definition 3.15)—and asrisbably
intuitively clear—the “critical points” forx in the formulay arex = 1 andx = p. Virtual
substitution now proposes thiuis equivalent tap[x/1] vV Y[x/ p]. Here]-/-] denotes virtual
substitution and, in this simple case, it is the same as usuztitution. Thereforg is
equivalenttq1 > 1A1< p)V(p> 1A p < p) which can be simplified tp > 1 and that is
the result we expect.
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3.2.1 Prerequisites

Virtual substitution itself cannot take every first-orderrhula as input for the quantifier
elimination, but it requires the formula to be prenex withosifive matrix.

Definition 3.4 A formula$ € Fm(7/,%) is calledprenexif it is of the form

QX+ QnXa Y

withneN, Qq,...,Qn e {3,V}, X1,..., X, € V, andy € Qf (7, ). Yis called thematrix of
the prenex formula.

Lemma 3.5 Every formulap € Fm(7/,%) is equivalent to a prenex formulae Fm(7/,Z).

Proof sketch. A quantifier can always be moved to the front of a formula bylgpg the
following transformations as often as necessary:
For everyp € Fm(7/,Z) andx € v
—(3Ix¢) is equivalent to7x(—¢) and—(Vxd) is equivalent tadx(—d).
Foreveryd, W € Fm(7,%), p€ {A,V,—,<} andx,y € ¥ withy ¢ frvar(¢) Ufrvar(y)
(6 p(Qx)) is equivalent tQy (¢ p (Y[x/y])), and
((Qxd) pw) is equivalent taQy ((d[x/y]) pY)

Repeating this process for every quantifier will finally giel prenex formula. O

Definition 3.6 A formula ¢ € Qf(7/,%) is calledpositiveif none of the junctors, —, <
appears inp, i.e.,¢ only containsA andV as junctors.

Lemma 3.7 In the structureR every formulap € Qf(V,Zyq) is equivalent to a positive
formulay € Qf (7, Zorq).

Proof. Due to the definition of the semantics ef and < these junctors can be replaced:
the formulac — T is equivalent tq—0) VT, ando « T is equivalent tdo A T) V (=0 A —T).

A formula with the junctors-, A, andV is made positive by “pushing” the negations into
the formula until they reach atomic formulas. This proofysitiduction on the structure of
aformula¢ € Qf (7, Zyr¢) with the junctors—, A, andV only:

b € At(V,Zord) : ¢ is positive by definition.
¢ =—(t1 <tp): ¢ is equivalent to the positive formuta> t, in R.
¢ =—(ty =tp) : ¢ is equivalent to the positive formuta+# t in R.

¢ = ——¢1: Byinduction hypothesisp, is equivalent to a positive formulp, which is then
also equivalent t@.

¢ =-(d1Ad2): By induction hypotheses, there exist positive formuldig, W, €
Qf (V,Zorg) With W1 is equivalent to-¢, and Y is equivalent to-¢,. Thend is
equivalent to the positive formulfy v Y».

¢ =—-($1V 2) : Analogous to-(dp1 A ¢2) with A andV exchanged.

¢ =d1Ad2: Byinduction hypotheses there exist positive formwasandy, where is
equivalent tap, andy, is equivalent tap,. Therefored is equivalent tap; A Yo.
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¢ =0bd1Vvdy: Like o1 A b2, just with v instead ofA.

The termination of this recursive transformation procesmnisured by the fact that the num-
ber of junctors in the formula decreases in every stop oféhansion. 0

3.2.2 The Basic Algorithm for Linear Formulas

Let us look at the elimination of a single existential quiiiti The extension of the elimina-
tion technique to more than one quantifier (and universahtifiers) is discussed in Section
3.2.4. The presentation of the method we give here is basdidediecture “Anwendungen
der Computerlogik” given by Dr. Andreas Dolzmann in the siensemester 2002. A de-
tailed description of the method (and proofs for lemmas Wwhie leave out or only sketch
here) can be found in [Wei88] and [LW93].
The case we look at is a formulx ), wherey is a formula which is linear ix, positive,

and quantifier-free.

Definition 3.8 A formula @ is called linear in {x,...,xq} C ¥ if, for every variable
X € {X1,...,% }, every term appearing i can be written in the fornt-x-+t" with
X1,...,%n ¢ var(t) andx ¢ var(t’).

We assume thdfrvar(y) C {uy,...,um,x} so that(ug,...,um,X) is an extension ofp in
the sense of Definition 2.15. This implies thak,...,uy,) is an extension fop (since
x ¢ frvar()). uy,...,un are calledparameters In the following, we always consider the
extension(uy, ..., Un, X) for Y.

An existential quantifier like irdxy claims that an element of the universe (in our case
a real number) exists which satisfies a certain conditiore iflea of quantifier elimination
with virtual substitution is to find dinite set of candidates for the quantified variable such
that, if there are satisfying elements, one of the candidiastamong them.

To find such finite sets of candidates (also called “test ptjintet us take a closer look at
the structure of the set of all real numbers satisfying theditmn (), called the satisfaction
set.

Definition 3.9 Let (a,...,a,) = a< R". Thesatisfaction set W) of the formulay (with
respect to its free variabbg is defined as

S(W) = {ceR|W@c) =T}

Lemma 3.12 states that the satisfaction sej &f of a special form: a union of finitely many
disjoint intervals.

Definition 3.10 SC R is called aunion of finitely many disjoint maximal interval#
S= U:(lei, keN, Ig,..., Ik are pairwise disjoint intervals iR, and for everyi = 1,... k
and every interval, J 2 1;: JZ S

Furthermore, we define the sets of weak lower bouBggS), weak upper bounds
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Bwu(S), strict lower bound®(S), and strict upper bound3s,(S) of the intervaldy, ..., Ik.

Bu(S) :={beR|iec{L,...,k},[bb]=1I,b eR}U
{beR|ie{l,... Kk} b= cRuU{wn}}
Buu(S) :={beR|ie {1,....k}[b,b] =I;,b/ € R} U
{beR|ie{1,...,k},]b b]_li,b/eRU{—oo}}
Bsi(S) :={beR|iec{1,... ,k},]bb]=1;,b e R} U
{beR|ie{1,...,k},]bb[=1 .,b’eRu{oo}}
Bsu(S) :={beR|ic {L....k} [ ,b[= ;b € R} U
{beR|ie{l,...,k},]b,b[=1;,bl e RU{—o0}}

Lemma3.11 Let S = U i, S = Ul_,J be unions of finitely many disjoint maximal in-
tervals. Then

(1) SUS and §N'S are unions of finitely many disjoint maximal intervals.
(2) Bi(SIUS) C B((S1) UB(S) for T € {wl,wu,sl, su}
(3) Bi(SiNS) C Bi(S1) UB(S) for T € {wl,wu,sl, su}

Let us consider the formula = ((x >0A2X<p)VX> 7). The canonical form of this
formulais(x > 0A2x— p < 0) Vx—7 > 0. Obviously, the satisfaction setafs [0, §]U]7, o]
(where we interprel0, 5] as the empty set fop < 0). The finite bounds of the intervals in
the satisfaction set are the solutions of the equatiogs), 2x— p=0, andx—7=0. The
following lemma shows that we can always find the finite inéébounds of the satisfaction
set of a formulap among the zeros of the terms yn Of course, not every zero is an
interval bound, since, for example,v x > 8 has the additional zero 8 (comparedx but

the interval[8,[ is a subset of the interva¥,«[, so 8 does not appear as a bound in the
satisfaction set.

Lemma 3.12 The satisfaction set;@y) of the formulay is a finite union of pairwise disjoint
maximal intervals. For every € {wl,wu,sl,su} the finite bounds in S{(\)) are a subset
of the zeros of the terms i

Proof sketch.

P=wr1AYy:
SHW1 A P2) = SH{W1) NS(Ww2) by deflnltlon of S; and the semantics of. By
the induction hypothesisS{(W1) = U, 1li and S(Y2) = U, 1J; are finite disjoint
unions of maximal intervals and the finite boundsBir(S(W1)), B (Si(W2)) (T €
{wl,wu,sl,su}) are subsets of the zeros of the termsuyip and W, respectively.
By Lemma 3.11,S{W) = Si(W1) N S(W2) is also a union of finitely many disjoint

maximal intervals an@; (S()) € B (S§(W1)) UB (Si(W2)) for T € {wl,wu,sl, su}.
Therefore, all finite bounds i8(y) are zeros of terms ig.

W =y1VYs: By the semantics of/ and the definition ofSt we have S{(Y1 Vv Yy) =
SH(W1) USHW2). The same reasoning as o A Y, applies.
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interval type| test point
] —o,c] c

[c,d[ c

[c,d] c

|d,c] c

[C, 00 c

| — oo, [ c—-1
Jc,d[ f(c+d)
],w[ c+1

] — 00,00 0

Table 3.1: Interval types and suitable test points for them

P €AYV, Zorg) - Wis of the formt-x+t' pOwithp € {<,<,=,#,>,>}. Leta=tE(a),
b=t%(a), andc = —2 if a+ 0. The satisfaction s&()) depends on the values af
andb as is shown in the following table:

S{y) | a<0 a=0Ab<0 a=0Ab=0 a=0Ab>0 a>0
< Jc, 00 R @ %) | —oo,C|
< [C, 00 R R %) | — oo, C]
= [c,C] %) R %) [c,C]
+ [ R\{c} R o R R\ {c}
> | ]—o,c] %) R R [C, 0]
> | ] —oo,(C] %] %] R |, 00|

Obviously, in every case the satisfaction &) is a union of finitely many dis-
joint maximal intervals (note th& \ {c} =] — o, c[U]c,e[) and the only finite bound
appearing in the intervals is, the solution of the equatioh-x+t' = 0. When
p € {<,#,>}, cis a strict bound, and whegmne {<,=,>} thencis a weak bound.

0

The proof of Lemma 3.12 shows that all the finite interval lasiappearing in the satis-
faction set ofy) are a subset of the zeros of the equatibns+t’ = 0 wheret - x+t'p0
with p € {<,<,=,#,>,>} is an atomic formula inp. Furthermore, atomic formulas with
p € {<,#,>} contribute only to the strict bounds, and formulas witk {<,=,>} con-
tribute only to the weak bounds.

Finding Test Points We can now state how the quantifier elimination method reedigks.
To eliminate the existential quantifier #xy the idea is to take a “test point” from every
maximal interval of the satisfaction set. Since the sattgfa set is the set of all values for
X where becomes truesxy is true if and only if at least one of the chosen test points
makesy true. Things are a bit complicated by the fact that we do notkthe intervals
themselves but the atomic formulas pfgive us supersets of the bounds appearing in the
intervals. Therefore, we have to choose a test point forygvessibleinterval which has its
bounds among the sets derived from the atomic formulas.

Table 3.1 shows which test points can be chosen for the diffetypes of intervals in
the satisfaction set. As one can see, if an interval has a Weaikd, that weak bound can
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be chosen as test point (since the weak bound is part of thevall. Unfortunately the
situation is more complex if the interval has strict boundlyoln the case of — «, c[ and
|c, o[ the pointc— 1 orc+ 1 is a valid choice for every (possible) interval. But for aterval
of the form|c,d[ which has two strict bounds the values- 1 ord — 1 cannot be used since
d — c could be less than 1. Therefore, eveair of strict boundggenerates a new test point,
namely%(c+ d). This gives rise to a quadratic amount of test points in thalmer of strict
inequalities.

For the exampler = ((x> 0A2x < p) Vx> 7) we have the weak interval bounds$),
and the strict bound 7. According to Table 3.1 we have to ohasgest points

e Ofor thepOSSibIeintervaIS] — 00, ], [0700[, [O7 7[, ]7, O], [07 [_2)]! [fpvo]! ] - 00700[1
e D for thepossibleintervals] — e, 8], [2, o[, [2,0], [0, 8], [2.7[,17, 5],
e 6=7— 1 for thepossibleinterval] — o, 7],

e 8= 7+ 1 for thepossibleinterval]7, c].

We see that superfluous test points can be chosen. By lookihg formulaq, it is clear that

7 can only be a strict lower bound and there is no need to usa Gaspoint. In general, itis
not possible to say whether an atomic formula gives rise igpger or a lower bound (if it is
the cause for a bound at all). This can be easily seen on thepse; - x+ 1 > 0. Therefore,
we simply use every bound found in a formujleas a possible lower and a possible upper
bound. Of course, the elimination set (cf. Definition 3.14)eg in Theorem 3.16 can be
optimized by the knowledge that some zeros of terms can amlp\wer or upper bounds.
But, since we only show the principal idea of virtual sulstitn here, we do not go into
possible optimizations.

Division Operations The above discussion of our selection of test points usesgisiati
operation in two places. The (possible) interval boundsalions of equationa-x+b=0
if as 0. The solution is ther-2. For two strict bounds andd it is necessary to usg(c+d)
as test point. We cannot substitute formulas with divisigmisols into the formulap, since
no division symbol is part of the signatukgq. Instead we try to find &4-formula which
is “equivalent” to the formula resulting from substitutiadraction into the given formula.
We extend the signaturE,q to the signature . with the additional unary function

symbol~1. We also extend the structuReto the structur&’ by defining
— {g if a0

a = ]
0 otherwise

When we substitute a quotiesits — into an atomic formular overq, the result is &g -

formula. But it is always possible to find3&,4-formulay such that, for every environment

he RY, R Eh (BAS #0) if and only if R £ (yAS # 0). In other words, since we are

working in the real numbers, the absence of a division syrmdbes not limit our expressivity.
As an example consider the formulaxs+ 3 > 0 and let us substitutg for x (assuming

b # 0). The intermediate result is tt¥&,y-formula 5-a-b~1 +3 > 0. Sinceb is not zero,

b? is positive and we can multiply both sides of the inequalidyyteld (after canceling)

5.a-b4 3-b? > 0, which is aZyg-formula. In case of an equation or an inequality with the

relation#, it suffices to multiply with the denominatdr(instead ofo?). The formalization

of this idea is calledvirtual substitutionand is presented in the next definition.
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Definition 3.13 Let t-x+t'p0 be an atomic formula witp € {<,<,=,#,>,>}. The
virtual substitutionof x by s-§~1 (s,5 € TM(V, Z4q)) is defined as

— t-s-g+t-8%p0 ifpec{<,<,> >}
t-x+t'p0)[x/s- g1 := =
(t-x+t'pO)[x/s ] {t-s+t/-S’p0 if pe{=,+#}

For any terms € Tm(V, Zorq) We define
(t-x-+t'pO)[x/9 := (t- X+t pO)[x/§

This definition of virtual substitution can be extended toitary first-order formulas in the
same way as usual substitution.

Virtual substitution avoids division operations in forraslafter substituting a fractians—*

for a variablex by multiplying every equation and inequality in the intediade 2q-
formula by the (square of) the denominator of the fractidostituted for the variable. There
is one important thing we have to take care of when we perférenvirtual substitution
Y[x/s- 1. The formulag(x/s-s~1] does not ensure that the denominaddis not zero.
This is consistent with the definition oft, which is a totalization of the usual reciprocation
operation™1, i.e., it is also defined for the value 0. We must not forget tha have to
make a case distinction on whether the denominator is zamotofThis is formalized in the
following definition of elimination sets, where each tesirpd is guarded by a condition
which ensures that the denominators are not zero. Elinsimatts are a central concept of
the quantifier elimination procedure shown in this sectam] we present an example for an
elimination set and the use of virtual substitution after definition.

Definition 3.14 An elimination seffor Ixy is a finite setE C Qf (V,Zorg) x TM(V, Zorg)
with the property that

REIXY < \/ (YAWX/])

(vt)€E
andfrvar(y) Uvar(t) C {uy,...,un} for all (y,t) € E.

As has been stated before, the idea behind the quantifiemalilon procedure presented
here is to substitut& by a finite number of selected test points, such thakip holds, at
least one of the test points makpsrue. The elimination séf contains elementy,t) where

t represents one of the chosen test pointsyer@n additional condition for the applicability
of the test point. The necessity of additional conditions can be seen fronfah@wving
example.

Consider the equatiom= (a-x— 1= 0). Ixa is equivalent to the quantifier-free formula
a# 0. The test points for this equation are=1-a?, if a= 0, and 0 independently af(cf.
Theorem 3.16 below). Note thafx/t] = (a-1—1-a=0), i.e.,a[x/t] holds forevery ac R,
but obviouslya is false fora= 0. Thereforea[x/t] has to be guarded by the prerequisite
a# 0. In this case, a correct elimination set wouldBe= {(a# 0,1-a™1),(0=0,0)}
(which makes an appropriate case distinctionaef 0) and the quantifier-free equivalent to
Ixa is

(a#0na-1-1-a=0) v (0=0Aa-0—-1=0)
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which is equivalent to the expected# O.

If we compare Definition 3.14 to Definition 3.1 of quantifieringihation, we see

that the formulan := \ (YA W[x/t]) has (at most) the free variables,...,uy, since
(yt)eE

frvar(Q) C {uy,...,un,x} has been assumed. In additionis quantifier-free. If we choose

the elimination sekE as required by the definitiom is in fact a quantifier-free formula

equivalent tadxy.

The remaining problem is to find a correct elimination setstfwe define the set of crit-
ical pointsC3 () andCy, () for the strict and weak bounds defined by the atomic formulas
of Y. For atomic formulag-x+bp0 (withp € {<, <, #,=,>,>}) in Y, the points— b (for
a# 0) are said to be “critical” since they determine the testhsofor the formuIaElqu (see
also the proof of Lemma 3.12 and the discussion of the chditesb points following that
lemma).

Definition 3.15 The sets of critical pointgX (@) and (W) are defined by

GW) = {(t#0, —t/-tjl) | (t-x+t p0) atomic formula ofp,p € {<,#,>}}
CX(W) = {(t #0,—t'-t 1) | (t-x+1t'p0) atomic formula ofp,p € {<,=,>}}

Using the critical points, it is now possible to define an @hiation set for the formula
dxy. As has been suggested in the discussion after Lemma 3ri&efk inequalities and
equations the critical points are chosen as test pointsreslkeor every critical point of

the strict inequalities the points— 1 andc+ 1 and for every pair of critical points of strict
inequalities the arithmetic meahc+ d) has to be chosen as test point. Finally, the point
0 is an additional test point in case thatholds for allx and the atomic formulas do not
generate any critical points (e.@x(1 > 0)).

Theorem 3.16 The following set is an elimination set fery:

{0 [ (vt) € G U

{pt=1) [ (v,t) e GW)} U

{t+1) [ (v,t) e GW)} U

(i AV, (1) 270 | (v ta), (v, t) € CX(W), (Ya,ta) # (Y2, t2)} U
{(0=0,0)}

We have to note that the expressionsl, t + 1, and(t; +t2) -2~ do not satisfy the require-
ments of virtual substitution (Definition 3.13) since, doethe definition ofC} (W), t; +t2
is not an element oTm(V, Zoq) but of TM(V, 2, ), for example. This technical difficulty
can be easily solved by applying usual arithmetic for fratito(t; +t5) - 2~ to transform
it into a term of the forms; - s, *.

Putting all these results together, we see that the elilimalgorithm for the formula
dxy can be performed in three steps:

(1) CalculateC¥(y) and Gl (W).
(2) Calculate the elimination sét.

(3) The equivalent formula is then\/ (YA W[x/1]).
(yt)eE
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Example To demonstrate the complete procedure we consider the farmu
é=3Ix(p-x+q>0Ax>Qq)

and try to compute a quantifier-free equivalent. The matrinf ¢ contains two atomic
formulas,p-x+q> 0 andx > g. The zero ofp-x+qis %Pq if p+£ 0, and the zero of—qis
g. The critical points ofp are therefore:

Ch(w) ={(p#0,(—q)-p 1)}
Ci(w) ={(1#0,09)}

An elimination set according to Theorem 3.16 is then:

and¢ is equivalent to:

V' (yAwx/t)

(yt)eE
(P#0APp-(—9)-p+q-p*>0A(—q)-p—q-p*>0)
V (1#0Ap-(g—1)+q>0A(g—1)—qg>0)

V (1#0APp-(g+1)+g>0A(q+1)—qg>0)

vV (0=0Ap-0+q>0A0—q>0)

This can be simplified to (the second and fourth disjuncta@iord contradiction):

(P#0AP-g-(p+1)<0) v (p-(q+1)+q>0)

and this is a quantifier-free equivalent¢pfn R.

3.2.3 Virtual Substitution and Non-linear Terms

The previous section shows how the elimination works forrenfda which is linear in the
guantified variable. The principle stays the same for noear formulas, but the chosen test
points become in general more complex, i.e., they can aomiat only quotients but also
roots and that makes the definition of the virtual substtutnore complex.

If we only eliminate variables which occur linearly in a fauta, the elimination method
for linear formulas is sufficient. To be more preciseyit Qf(7,%) is linear inX C ¥
andx € X, then the quantifier-free equivalent @ty is linear inX \ {x}. A proof for this is
contained in the proof of Lemma 3.17.

The quantifier elimination with answer method for liner fardas described in Section
3.2.5 and the decision method for arbitrary variable freenfdas (based on cylindrical al-
gebraic decomposition) described in Section 3.3 are sefffidd solve all the problems we
present in Chapter 4.

Virtual substitution has been generalized to support imweal quantified variables. We
are not discussing this here; the interested reader igedfés [Wei97] and [Wei94].
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3.2.4 Multiple Quantifiers

When a formulap contains more than one quantifier, the elimination is peréat one quan-
tifier at a time, starting with the innermost quantifier. et Q1 X3 - -+ Qn—1Xn—1 QnXn (V)
be a prenex formula witls,...,Qn € {3,V} and Y quantifier-free. The quantifiers are
eliminated as follows:

e If Q, = 3 then a quantifier-free formuld’ which is equivalent tdQn x, () can be
computed and the elimination continues recursively @i, --- Qn_1Xn-1 ({').

e If Q, =V thenVx, Wy is equivalent to-3x, (—P) and a quantifier-free formulgy’
which is equivalent tad x, (—)) can be computed. The elimination then continues

recursively withQy X; -+ - Qn_1Xn_1 ().

3.2.5 Quantifier Elimination with Answer

A quantifier elimination method (as in Definition 3.1) comgmitfor a given formula an
equivalent, quantifier-free formulll. Sometimes it is desirable not only to know that there
are values for the existentially quantified variables thake$ true, but also to get exam-
ples of such values together wigHl. Virtual substitution can give such examples and this
enhanced algorithm is called “quantifier elimination witisever” or “extended quantifier
elimination.”

The answers for the existentially quantified variables anply the test points from the
elimination set.

Letd = 3x;... 3%y (W) for an arbitrary formulap with extension(uy, ..., Uy). The result
of a quantifier elimination with answer is a set of pajys {x1 =ti1,..., X =tin}), for
i€{1,...,1}, where¢ is equivalent toy; vV --- Vyi and if y; holds (under given values for
the parametersy, ..., un) then the termg§ j € Tm({uy,...,um}, Zor) (j € {1,...,Nn}) in the
associated substitution ligix; =tj1,...,X, =tin} represent answers fog, ..., X, which
make¢ true in dependence of the parametars . ., Um.

Example ¢ = 3x(up-x+u;=0AXx>0)

A possible result of extended quantifier elimination is
(U >0AU <0, {x=—121)
(U <O0AU >0, {x=—121)

(u=0AuU =0, {x=142})

Note that the choic& = 42 in the case ofiy = 0A u, = 0 is completely arbitrary, since
any non-negative real number satisfies the formula in trge.c&/hich representative of the
solutions is returned by the extended quantifier algorittapethds on the implementation,
so we cannot make assumptions about which solution is detivéexcept, of course, if

we depend on implementation details). If one desires a Spewlution, one must add

constraints to the formula which express the propertiekafiesired solution. For example,
the formula3x (Y A Vy (Wx/y] — x <y)) with P = (uz - X+ Uz = 0Ax > 0) has (compared

to ¢) the additional constraint that the solution fois minimal, so for this input the answer
for the casai; = 0A u, = 0 must bex = 0.
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Computing Answers in General To compute answers with virtual substitution, the quan-
tifier elimination for a formuladx; ... Ix, Y is performed as follows. First, the quantifiers in
the formulay are eliminated to yield the equivalent formuja Then, as usual, the elimi-
nation continues withix, {'. The elimination set for this formulg = {(y1,t1),..., (Yk,t)}
contains conditiong™ and solutiong(™ for x,. For every elementy™ t(") € E one con-
tinues the elimination for the formulax, 1(Y" A W/ [x,/t™]). This is repeated for the
quantifiersdx,_», ..., 3X1, which yields a set of results each of which is of the form

Y= YA YAV AY Bt oot ]) ) e ]

Each of these results corresponds to one of the partiaisofuty, {x; =t ... x, =tM})
of the extended quantifier elimination.

The following lemma states that the linearity of the inputfala ensures the linearity
of the answers.

Lemma 3.17 Lety € Tm(7, Z) be linear in the variablegx,...,x,} and let

{(Vis {tigs--otin}) | T€{L....k}}

be the answer computed for the questixq. .. 3x, P (for some suitable k N). Then every
tijislinearin{xy,...,xi—1} (@and %,...,X, ¢ var(t ;) by the definition of quantifier elimina-
tion with answer).

Proof by induction om.

n=1: Allthe solutiondy j for x; in the formuladx; Y areX,q-terms in the constants only.
This implies trivially that thet; j are linear in{xy,..., X} = @ due to the Definition
3.8 of linear terms.

n—n+1: Letd = Ixg1P. Since we assume that is linear in {xi,..., X1}, every
term iny can be written a{{‘jlla.x. + ag, whereay, ... ,an. 1 are appropriately cho-
sen terms withy, ..., Xn1 ¢ var(ap) U---Uvar(a,1). Therefore, the critical points
of Y are each of the fornf—ag— 31, ax) -a;jl. The test points of the elimina-
tion set, as defined by Theorem 3.16, are derived form thiealripoints and each

of them can again be written in the forfa-bg — 31, bix ) - by, for suitable terms
bo,...,bnr1 with Xg,..., X1 € var(bp),...,var(bn1). Rewriting these terms in the
form —bg - bt — 314 (by - b, - ) shows that the answers fag, 1 are linear in
{X1,...,% }. Definition 3.13 of virtual substitution ensures tigdk//t], wheret is such
atest point, is linear igxs, ..., X, }. In addition, the conditiongin the elimination set
(cf. Definition 3.16) are linear ifxy,...,%}. Therefore, the quantifier-free equiva-
lentd’ of ¢ is linear in{xq, ..., x,}. Applying the induction hypothesis fx; ... 3x, ¢’
yields the remaining parts of the proposition.

0

3.2.6 Generalized Method with Infinitesimals

As has been note above, strict inequalities give rise to rgtiaelly many test points in the
elimination set, since every pair of strict inequalitiesiicocause the satisfaction set to con-
tain a maximal interval of the forre, d[ and the choicg (c+d) of the test point depends on
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bothc andd. To reduce the number of test points, a variant of virtuakstiition has been
developed which allows to introduce infinitesimally smallagtities (") and unbounded
large quantities ") during the elimination. The virtual substitution has te éxtended to
deal with epsilons and infinities, but then the number of pegtts can be reduced consider-
ably.

A possible elimination set faix () is then

{060 | () € Gi(w)} U
{nt+)| () € GW) U
{(0=0,-w)}

More on this can be found in [LW93].

Unfortunately, this approach has a drawback. If one pedayoantifier elimination with
answer, the epsilons and infinities can appear in the andaetise existentially quantified
variables. This can make the result hard to interpret. Iregdnthe substitutiot = 0
invalidates the result, since anis always introduced with the constraiat- 0. On the
other hand, nothing is known about the magnitude and it is not possible to choose some
(arbitrary) small positive value fa.

The implementation of virtual substitution we useefR® oG [DS97a]) uses this gener-
alized method with infinitesimals. Therefore, we have t@tatre when we ask it to solve a
guantifier elimination with answer problem. The applicai®f quantifier elimination with
answer we present in Chapter 4 are formulated such that fveeas do not contain infinites-
imals. Unfortunately, this makes some of the problems moreptex (e.g., Section 4.3.2),
but there is currently no implementation of virtual suhgtan available which does not use
infinitesimals.

3.3 Cylindrical Algebraic Decomposition

The idea behind quantifier elimination with virtual suhstiibn is to find a test point for every
possible maximal interval of the satisfaction set of theriraif an existentially quantified
formula. Cylindrical algebraic decomposition (CAD) alsalaulates test points which are
substituted into the matrix of a formula. But, in contrastittual substitution, CAD does not
take the satisfaction set of the matrix into account. Irtstédaey are based on the following
consideration.

The terms of a&q4-formula Y are polynomialspy,...,ps. If we choose test points
t1,...,t which cover every possible sign combination of the polyradsy,, ..., pn, we can
test the formulasi(y) and V(W) by verifying that at least one or, respectively, every test
point satisfies).

Cylindrical algebraic decomposition does not compute aimmahset of test points to
cover every possible sign combination of the given polyradsiilt uses a projection method
to project the polynomials to have lower dimensionalityilunhivariate polynomial are
reached. A cylindrical decomposition for the 1-dimenslocese is then computed using
root isolation. Finally, the decomposition is extended ighkr dimensionalities until the
dimensionality of the original polynomials is reached. @rasentation of CAD is based on
[ACM98] and [Hon98].

First we first give some definitions we need to introduce clital algebraic decompo-
sition.
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3.3.1 Definitions

Definition 3.18 A non-empty connected subset®f (r € N) is called aregion For a region
Rwe define thecylinder over Rwritten asZ(R), asR x R.

The cylinder oveR® = {()} isR® x R =R.
Definition 3.19 Let Rbe a region oR". An f-section of 4R) is the set

{(a, f(a) |ae R}

for a continuous functiorf : R — R.
An (f1, fy)-sector of 4R) is the set

{(a,b) laeRbeR, fi(a) <b< fz(a)}

wheref; = —o or f; : R— R is continuous, and, = o or f, : R— R is continuous, and
f1(x) < f2(x) for everyx € R.

sec_t_ ors

X
I
v

sect’i ons

(@)

sections:|

(b)

Figure 3.1: Sections and sectors

Obviously, sections and sectors are regions. Figure 3.&skome sections and sectors
of Rt in (a), and some sections and sectors of a cylinder over anvaitin R? in (b).
The sections and sectors shown in Figure 3.1 also form sekiefined by the following
definition.

Definition 3.20 Let X C R". A decompositiorof X is a finite collection of pairwise disjoint
regions whose union ix.

LetRbe aregionk € N, andfy, ..., fx : R— R be continuous functions with (x) < f2(x) <
- < fi(x) for everyx € R. Then(fy,..., fx) defines a decomposition @iR) consisting of
the sets
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fi-sections oZ(R) for 1 <i <Kk,

(fi, fir1)-sectors oZ(R) for 1 <i <k,

e the(—o, f1)-sector ofZ(R),

the ( fx,)-sector ofZ(R).

Such a decomposition is calledstack over Riefined by( fy,..., fy).
In the case ok = 0 the decomposition consists only of thew, ©)-sector ofZ(R), i.e., the
stack consists of the single regidiR).

Definition 3.21 A decompositiorD of R' is calledcylindrical, if either
(1) r =1 andD is a stack oveR°, or

(2) r > 1 and there is a cylindrical decompositidr of R"~* such that, for each regidR
of D/, D contains a stack ovéR.

A decompositiorD of R' is calledalgebraicif each of its region®R is a semi-algebraic set,
i.e., if Rcan be defined by a quantifier-freg,g-formula.

A cylindrical algebraic decompositiofCAD) is a decomposition which is both cylindrical
and algebraic.

Since the terms dfyq-formulas are polynomials, we get a CAD if we construct arayfiical
decomposition whose stacks (i.e., sectors and sectioasedined by polynomials.

Definition 3.22 Let X C R" andp € Q|[x1,...,X%]|. We sayp is invariant on Xif one of the
following conditions holds:

e p(a) >O0foralla e X,
e p(a)=0foralla e X,
e p(a) <Oforalla e X.

We say that a set of polynomiatsC Q[xy, ..., %] is invariant orX, if every p € Ais invariant
on X. A decompositiorD is calledA-invariantif A is invariant on every region d@.

Our aim is to construct—for a given quantifier-free formyta-a cylindrical decomposition
such that the terms af are invariant on the regions of the decomposition. We are not
interested in the regions of the decomposition themselugsn computing a test point for
each of the regions. Since the termsjodre invariant on each of the regions, the truth value
of Y is also invariant on the regions. We can then substituteestepbints into the formula

U to compute the truth value df on each region. lf) is true on every region, the formula
V(W) is true; if Y is true on at least one region, the formdil@p) is true.
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3.3.2 Projection Phase

The projection phase of the CAD algorithm has the purposedfegt a finite set of poly-
nomialsA C Q[xa,...,%| to a finite set PRQA) C Q[Xq,...,%_1] of polynomials in one
indeterminate less. The condition this projection has tisfyais: if D' is a CAD of R 1
such thaD’ is PROJA)-invariant, then it is possible to construct a stack oveheagion of
D’ such that all these stacks together form a CBWhich is A-invariant.

Central for the correctness of a projection is the notionedingability.

Definition 3.23 Let p € Q[xy,...,%] andRbe aregion oR"~1. pis calleddelineableon R
if the portion of the set of zerog(p) = {X e R"| p(x) = 0} of p which lies inZ(R) consists
of pairwise disjoint sections &(R).

X2 X2

\
\
\
\
\
\
\
L4
Xy <

N/
O
- N

I
not a stack 3 stacks
Figure 3.2: Delineability of a polynomial

To put this definition in other words: the zerospfiefine a stack oveR, since the different
branches of the zeros gf“do not cross” oveR. Figure 3.2 shows an interval and the zeros
of a hypothetical polynomiagb over that intervalp is not delineable over the whole interval
and, therefore, the zeros pfdo not define a stack over the interval, Ipus delineable over
the three regions outlined in the right part of the figure.

The correctness of a projection is characterized by two itond. For any PROQ})-
invariant regiorR the following must hold:

(1) Eachp e Ais delineable orR, or p(x) = O for everyx € Z(R).
(2) The sections o (R) belonging to differenp, q € A are either disjoint or identical.
Condition (1) ensures that evepye A gives rise to a stack ov& (or pis the zero polynomial

overR) and condition (2) states that all the polynomialitogether define a stack.

Different projection operations have been proposed initbgature. Our implementation
is based on the projection operator from [Hon98]:
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Theorem 3.24 A projection operator satisfying the conditions (1) andig)

PROJA) := |J ({le(r)}uPsSar,r’))u

peA
reRED(p)

U U Psaro

QA
qu<€q reRED(p)
where< denotes an arbitrary linear ordering of the polynomials in A

For the operations RED, Ic, and PSC, we view the polynonp&asQ|xs,...,X/] as elements
of (@[xl,...,x,_l])[xr], i.e., we treat them as polynomials n having coefficients from
QX - Xe—1)-

3.3.3 Base Case

The base case of the CAD algorithm is reached when—Dby agptiig PROJ operator— 1
times—the polynomials iA C Q[x, ..., X/] have been projected to univariate polynomials in
PROJ1(A) C Q[xy]. In the univariate case it is possible to compute a cyliradridgebraic
decomposition by root isolation. The CAD is constructedadiews:

e First we make sure that no two polynomials have the same Zerachieve this, we
repeatedly take two polynomials g € A with g := gcd(p,q) # 1 and replace the set
Aby the setA\ {p,q}) U{§, 3,0} until the polynomials inA are pairwise relatively
prime.

e Using root isolation, one can find isolation intervals foe #teros of every polynomial
peA

e The isolation intervals can be refined to be pairwise disjoirhe zerogp: < p2 <
-+ < pk then define algebraic numbers

Algebraic numbeq Isolation interval‘ Defining polynomial

pP1 [a1,by] p1

Pk [a, bx] Pk
e The regions of the CAD are
] =, pa[, {p1}, P2, P2l; {P2}, - ... JPk-1, Pxl: {Pk} [Pk, o0

e Test points for the regions can be chosen according to thenfiolg table:

Region | Test point
] - Ooapl[ ap
{p1} P1
1P1,P2] b1
{p2} P2
Pk-1,pk[ | bk
{px} Pk
1Pk, % bx
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e If the polynomials inA do not have any zeros, we chodsec, «[ as the only region
of the CAD with the test point 0.

Since the polynomials iA are continuous functions and the regions of the CAD are d#fine
using the zeros of these polynomials, it is clear that the G&Binvariant. It is also clear
from the above table of test points that we can choose ratimmabers as test points for the
regions which are intervals. The regions which consist ofily single zero have, of course,
that zero as test point, and in general this is an algebraitbeu

3.3.4 Complete CAD Procedure

After the projection phase and the base case, the extensase gonstructs a CAD &',
that is, test points for its regions, from given test poirfta €AD of R' 1.

We show the extension phase as part of the complete CAD proeechich computes,
givenA C Q[xg,...,%], a set of test point$ for the regions of ar-invariant CAD:

(1) If AC Q[x1], we are in the base case ahds computed as outlined in Section 3.3.3.
(2) Otherwise:

(a) Compute a s€k’ of test points for a PR@A)-invariant CAD of Q[xy, . .., X 1]
by recursively applying the CAD method to PRB®J C Q|[x1, ..., % 1]

(b) Foreverya = (ay,...,0,_1) € T’ compute
Po = {p(ay,...,0r1,%) | PEA, p(ay,...,0r_1,%) # 0}

(c) Isolate the zeros of the polynomials B and construct test point$, =
{Ta1,---,Tak } from the zeros the same way it is done in the base case (Sec-
tion 3.3.3) for everya € T'.

(d) The test points representing the regions oAdnvariant CAD are
T:={(ag,...,0r1,7) [ (A1,...,0r 1) € T, TE Toy,..a, 1)}

Remarks:

e By the notationp(ay,...,0,_1,%) we mean that we substitute,,...,a,_1 € A for
the indeterminatesy,...,X_1 in p and obtain a univariate polynomial in the only
indeterminate; .

e p(ag,...,0r-1,%) # 0 is used to express that, after substituting...,o,_1 into p,
the resulting univariate polynomial is not the zero polymam

e The polynomialg(as,...,0,_1,% ) in Py are elements ak[x], i.e., the coefficients of
these polynomials are algebraic numbers, in general. Wetidbapply the techniques
of Section 2.3.4 to isolate the zeros op@s,...,0,_1,X ), but a naive application of
these techniques is extremely inefficient: all the comjmratto isolate the zeros of
such a polynomial have to be performed with polynomials fedjx | and, therefore,
the arithmetic operations on the coefficients of these motyjials are operations with
algebraic numbers. There are different ways around thesekesd algebraic num-
bers™:
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— Using the algorithm MRMAL, one can compute a polynomigle Qx| for
every p € P, such that every zero gf is also a zero of. The disadvantage of
usingq instead ofp is thatq has, in general, more zeros thpnand this causes
more test points to be calculated than necessary.

— A more rigorous solution to this problem involves a more ctarpepresentation
of algebraic numbers. The idea is to represent a test ppint..,B,—1) by a
primitive algebraic numbey and polynomialdy, ..., b,_; € Q[X] such thaf; =
bi(y) (computed using the algorithmgPLE). The arithmetic withBs,...,Br-1
can then be done usirg, . .., b,_1 in the quotient fieldQ[X] /(1) wherep € Q[X]
is the minimal polynomial o¥.

3.3.5 Example

As an example for the computation of a cylindrical algebdgcomposition, let us look at
the formulay = (a—3 >0 — & +b?— 1> 0) and the decision probleavb(y). The
formula @ contains the two polynomialp; (a,b) = a® +b? — 1 andpy(a,b) = a— 3. The
zeros ofp; and p, are shown in Figure 3.3. The polynomigd has a negative sign inside

b

a*+b?-1=0 a-3=0

Figure 3.3: Zeros of the polynomials in the CAD example

the circle around the origin and a positive sign outside thee; p, is negative left of the
straight line and positive on the other side.

We are looking for a cylindrical algebraic decompositionRdfwhich is sign invariant
for p; and p2. We choose to process the dimensions in the doderi.e., we first project the
b-dimension away, then construct a decomposition ofaftmension, and finally extend
the decomposition ti&2.

By looking at the zeros op; and p,, we can see that, fa< 1, 1< a< 3, anda > 3,
both polynomials have no zeros. At= —1 anda = 1 the polynomialp; has one zero, and
for —1 < a < 1 the zeros of; consist of two separate branchgs.is identical to the zero
polynomial fora= 3.
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Projection Phase To calculate the projection dfps, p2} to thea-dimension, we need the
reducta ofp; and p, with respect to the variable

RED(py) = {b?>+ (a®—1),a® — 1}
RED(pz) = {a— 3}

We now compute PR®{p;, p2}) (cf. Theorem 3.24). Note that the operations Ic and res
are performed with respect ) which is the main variable of the input polynomials. First
we show the calculation of the leading coefficients and th€ B&s of every reductum with
its formal derivative:

r=p+@-1):
r'=2b
lc(r)=1
1 2 0
rep(r,r’)=det| 0 0 2| =4a’-4
-1 0 0

res(r,r') = det(2) =2
PSQr,r') = {4a’ — 4,2}

r=a’—1:
r'=0
le(r)=a’—1
PSQr,r') =2
r=a-—3:
r'=0
lc(r)=a-3
PSGr,r') =9

The second part of PRQ{p1, p2}) calculates PSC sets of reducta derived from different
polynomials in{pz, p2}:

r=b’+(a®—1),s=a—3:
_ a=3 0\ _ _ .02
reso(r,s)—det< 0 a_3>—(a 3)

PSar,s) = {(a—3)?}

r=a’—1s=a—3:
rep(r,s) =1
PSQGr,s) = {1}

Putting these results together, we have
PROJ{p1, p2}) = {4’ — 4,8° - 1,(a—3)%,2,1}

Since 1 and 2 are constant polynomials anf-44 is a multiple ofa? — 1, we can use the
setA = {a? — 1,(a— 3)?} as input for the CAD computation in treedimension.
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Base case With A= {a®—1,(a—3)?} we have reached the base case, since the polynomi-
als inA are univariate. The zeros of the polynomialsAimre {—1,1,3}, and from this we
easily construct the regions and test points of a CAD oftdénension:

region | test point
] —o0,—1] -2
{-1} -1
|—1,1] 0

{1} 1
11,3 2

{3} 3
13,0 4

The regions constructed from the zeros of the polynomials ane exactly the intervals we
discovered by looking at the branches of the zerofpaf p;}.

Extension Phase The final step in our CAD computation is to extend the CAD of ¢éhe
dimension found in the base case tpm, p;}-invariant CAD ofR?. For every region in the
CAD of R already computed, we substitute the region’s test poiottime polynomials in

P = {p1, p2} (for the indeterminat@) and isolate the zeros of the resulting polynomials. We
use the notatioP[a/t] as abbreviation fof p;[a/t], p2[a/t]}.

e region] — oo, —1[:
Pla/ -2 = {b*+3,-5} No zeros, test point 0.

region | test point
] -0, —1[xR | (-2,0)

e region{—1}:
Pla/ —1] = {b?,—4} One zero ab= 0, test points-1, 0, 1.
region | test point
{_1}X]_°°70[ (_17_1)

{(=1,0)} (-=1,0)
{=1x]0,w[ | (=11

e region] —1,1[:
Pla/0] = {b2 —1,-3} Two zerosh= —1andb=1, test points-2, -1, 0, 1, 2.

region test point
{(ab)| —1<a<1b< —a’} (0,-2)
{(a,—a%) | —-1l<a<1} (0,—1)
{(ab)| —1<a<l,-a’?<b<a® | (0,0
{(a,@®) | —-1<a<1} (0,1)
{(a,b)| —1<a<1a®<b} (0,2)

e region{1}: Similar to region{—1}.

e region|1,3[: Similar to region — co, —1].
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e region{3}:
Pla/3] = {b?’+8,0} The zero polynomial ifP[a/3] is ignored;b? + 8 has no zeros.
The only test point is 0.

region | test point
{31xR| (30

e region|3,c[: Similar to region — oo, —1].

| -
} By

X K X X X X X a
-2 - 0 4 2 4

N >:<
|
|
|
|

Figure 3.4: Test points for a2 +b? — 1,a— 3}-invariant CAD

Figure 3.4 shows the test points for each region. These o@stspecan be used to decide the
formulavavb(a—3>0—a?+b?—1>0). Ifwe evaluatep = (a—3>0—a?+hb?>—1>0)

for each of our test points, we see tiqaholds for every test point, and hen&@vby holds

in R.

3.4 Integers

Virtual substitution and cylindrical algebraic decompiosi both work in the real numbers,
and their answer for a questiaiiy) states whether values for the variableirar () exist
such thatp becomes true in the reals. They cannot be used to analyzedkibifity of a
formula in the integers, in general. We are not elaboratinghmon integral solutions in
this thesis since, in general, the existence of integraiteols is undecidable, and it turned
out that quantifier elimination in the reals is sufficient tive the problems we show in
Chapter 5.

Here is the idea for finding the integral zeros of univariatdypomials. To decide
whether integral zeros of a polynomiglexist, one can isolate the zeros pfand make
every isolation intervaja, b] so small thab—a < 1. The interval then contains at most one
integral point. [a,b] contains the integral poirjia] if and only if [a] <b. If [a] is part of
the interval, one checks whethpf[a]) = 0. With this method one can find every integral
zero ofp.
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To find the integral solutions fgo > 0, one constructs test points like in the CAD base
case (Section 3.3.3) and tesig) > O for every such test point. From this, one infers which
integral points between the zeros (and possibly below thallest and above the biggest
zero) solvep > 0. The procedure is analogous far<, >, #.

3.5 Implementations Used for this Thesis

The previous sections outline virtual substitution as antjfiar elimination procedure and
cylindrical algebraic decomposition as a decision methé& use both algorithms in our
practical experiments (Chapter 5):

e The commercial computer algebra systerDRCE [Hea99, Red] includes a quantifier
elimination package (BbLOG [DS97a]) which is written by Andreas Dolzmann and
Thomas Sturm and is based on virtual substitution.

e Animplementation of cylindrical algebraic decompositi{@nd its sub-algorithms like
root isolation, algebraic number arithmetiaMBLE, NORMAL) are provided together
with other algorithms (e.g., the generalized Fourier-Mtzmethod from Section
4.2.1) in our implementation. Although arithmetic@ix|/(u) (for a minimal poly-
nomial 1) is available in the implementatidnthe CAD procedure uses the “simple”
method of replacing everg € Py, C A[x] by aq € Q[x] in the extension phase of the
CAD procedure (cf. Section 3.3.4).

The implementation of cylindrical algebraic decompositie by far not as optimized as the
REDLOG system. Therefore, we generally expect that the usearfUR E instead of our
own cylindrical algebraic decomposition has a (probabty) performance advantage. The
disadvantage of usingE®UCE is mainly that there is some overhead in passing formulas to
RebucEand reading back the results into our implementation’s statetures. See Chapter

5 for selected results of our experiments.

1The implementation does not require the computation of mmahipolynomials (since this would require
an algorithm for polynomial factorization which we did notplement), because the arithmetic is performed
in the ringQ[x]/(d) whered is a defining polynomial for an algebraic numtzefand hence a multiple qf);
additionally, the knowledge of an isolation interval fois used to simulate the arithmetic of the fi€lix] /(1)
in the ringQ[x]/(d).






Chapter 4

Applying Quantifier Elimination to
the Polyhedron Model

The algorithms used in the context of the polyhedron modstrilee transformations on
polyhedra. That means that they usually take one polyhediraeveral polyhedra as input
an return a new polyhedron or some new polyhedra. The maskealkary operation which
many algorithms have to perform on a polyhedron is to soleeadithe inequalities describ-
ing the polyhedron for a variabbe As has been outlined in Section 2.1.4, there is (from
the algorithmic point of view) a difference between fixedl re@efficients and coefficients
depending on parameters: if the value of the coefficiemti®known, its sign is also known;
if, on the other hand, the coefficient depends on parametersign (possibly) depends on
the parameters, and the result of the computation has todaech case distinction on the
sign of the parameter. Therefore, if we generalize the @lgus of the polyhedron model
to allow non-linear parameters, they have to be changedeisehse that they will have to
return not a single polyhedron as before, but case distimgttonsisting of conditions (in
the parameters) and results valid for a given condition.

These case distinctions can be represented in differerg.Wayo very basic possibilities
are

e alist (or set) of condition/result pairs,

e a decision tree, carrying conditions at its inner nodestéedges) and results at its
leaf nodes.

Quantifier elimination with answer (as described in Sec8dh5) delivers a set of condi-
tion/result pairs. In most cases, however, we prefer thergpresentation of results gener-
ated by the generalized algorithms. We make this choiceusectiee representations have
some advantages for our purposes:

e Decision trees are easily constructed when performing argéned version of algo-
rithms depending on the sign of coefficients, like Fouriestkkin elimination.

e Using alazylanguage for the implementation of the generalized algarjtthe algo-
rithm itself and a top-down tree simplifier can be implemdras separate modules.

Our implementation language is Haskell [PJ03], a lazy, lgdtenctional programming lan-
guage. We present some of the algorithms and data strudtrés section in a Haskell-like
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notation. Therefore, we assume that the reader is familigr Maskell. An introduction to
Haskell can be found in [HPFO0O].

In this chapter we first define the possible input formats lierdeneralized polyhedron
model (Section 4.1). We then introduce a representationeofiecision trees (Section 4.1.1)
we use to represent the results of generalized algorithnesdéVelop a general “recipe” to
generalize existing algorithms to handle non-linear patans (Section 4.2). As an exam-
ple for a generalized algorithm constructed using the esaiy® present a Fourier-Motzkin
algorithm for non-linear parameters (Section 4.2.1). Aftext, we are taking a different
approach: we develop new algorithms using quantifier etidm (with and without an-
swer), mainly an algorithm equivalent to a generalized Eowotzkin (Section 4.3.2) and
algorithms for computing unions of polyhedra (Section 3).3.

4.1 The Generalized Polyhedron Model

As is outlined in Section 2.1.4, we deal with inequalitiestaf form

n

Zci-Xi—i—dEO (4.2)
=
wherex,...,X, are variables andy,...,C,,d are the coefficients of the inequality which
may depend on the parametgrs..., pm. In general, we have to choo§¥ py,...,Pm) as
domain forcy,...,cn,d since we want to divide by (non-zero) coefficients to solvedo
variable.Q(pa, ..., pm) is a field and therefore closed under division (by non-zevisdis).

The disadvantage of usif@(pa, ..., pm) as domain for the coefficients is that Inequality
(4.1) is not a>,g-formula. Some algorithms which we present here requirenpet to be
given asxg-formulas. We can always write Inequality (4.1) equivaleals a>4-formula
(under the assumption that the denominators of the coeffic@re non-zero). We calculate
the least common multiplé of the denominators of;,...,cn,d. | is a polynomial from
Q[p1,. .., pm] and if we multiply Inequality (4.1) by or I2, all the denominators cancel out
and the resulting inequality is%&g-formula. If we can determine that> 0 holds under the
assumptions we make about the parameters, it suffices tgpipultequality (4.1) withl,
otherwise we must udé sincel? is always greater than zero. If we rewrite an equation (or
an inequality with the relatiogt), it suffices to usé as multiplier in any case since the sign
of | is irrelevant in this case.

Whether the assumptions about the parameters ensurk thatholds can be decided
using quantifier elimination. Assume that the quantifieefformulay expresses the as-
sumptions we make. We then decide the formula

Vp1--Vpm(X —1>0)

in R, and the truth value of this formula tells us whether the eggtions imply thatl is
greater than zero or not. In the following, we will not talkoaib the conversion of coefficients
form Q(p1,...,Pm) to Q[ps,..., pm] explicitly, we assume that the inequality systems are
transformed before applying one of our algorithms if neagss

4.1.1 Tree Representation of Case Distinctions

To show the code for a simple decision tree, let us fake— g > 0 as an example. If we
solvep-x—q > 0 for x we get this case distinction:
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if p< Othen
xg%

else if p=0then
q<o0

else ifp> Othen
x> 3

end if

This case distinction could be represented by a tree cariyia results (likex < %) at the
leaves and the conditions (like< 0) at the edges,

w

g<o x>

p=0

x <

ola
ola

but, since all the conditionp(< 0, p= 0, p > 0) share the same polynomig|we represent
the case distinction by a node carrying the polynomiahd having sub-trees for each of the
cases< 0,= 0, > 0. As abbreviations we write for < 0, 0 for= 0, and+ for > 0:

PR

g<o x>

x <

ola
ola

Special cases of this ternary case distinction occur, wivenof the three cases share the
same sub-tree. Therefore, our tree data type has threeediffeonstructors for inner nodes
of the tree:

e SCond pt tyty

p
SN
t to t,
t_ for p< 0,tp for p=0, andt, for p> 0.

e EqCond p ¢ tv

p
AN
to t
to for p=0 andt.. for p#£0
e GeCond pg, t_

p
N
t()+ t,

to, forp>0andt_forp<O0
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Another case which can occur (especially when we want tesgmt the result of an external
tool as a tree) is that we do not want to make a distinction erstgn of a polynomial but
use an arbitrary quantifier-free formula to discriminate tases. For this purpose, we add
a fourth constructor:

e FCond ¢ ty t,

¢
7N
tr t,
t+ when¢ is true and; when¢ is false.

In summary, the definition of our decision tree datatype aslgebraic data type in a
Haskell-like notation is:

data Treea = Leaf a
| SCond Polynomia|Treea) (Treea) (Treeq)
| EqCond Polynomia(Treea) (Treeq)
| GeCond Polynomia|Treea) (Treea)
| FCond QfFormulgTreea) (Treea)

The decision trees which can be constructed with these fivsteators always represent a
completecase distinction, since every constructor for inner nod#dshsub-trees for every
possible case. When incomplete case distinctions arerestjwire use trees carrying values
of type Maybea instead ofu

data Maybea = Nothing
| Justa

where the valudothingis used to express the notion of “no solution.”

4.1.2 Representing Results from Quantifier Elimination with Answer as Trees

The node constructdfCondis mainly used to represent the result of a quantifier elitiona
with answer as a decision tree. As noted in Section 3.2.3ethdt of a quantifier elimination
with answer is a set

{(y17r1)7" i) (Vk,rk)}

where eacly; represents a condition under which the answéwhich is a list of substitu-
tions, i.e., values for the existentially quantified valiée is a solution of the input formula.
We transform this result into the following tree:
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Y1
/ \
Just n Y2
/ \
Just

N

Just I Nothing

Note that the tree is carrying values of tyljgaybe Substitutioinstead of jusSubstitution
since a decision tree always represents a complete cagectilist and we use the value
Nothingto stand for “no solution” in the casey; A -+ - A —k.

A formal description of this transformation process is gi\®/ the following Haskell
code using théoldr combinator, which performs a right-to-left list reduction

geaToTree ;2 [(Formula a)] — Tree(Maybeq)
geaToTree geaResfoldr combine (Leaf Nothing geaRes
where

combine (y,r) subtree= FCond vy (Leaf r) subtree

The functiongeaToTreavorks not only with substitutions as results, but for adoigrtypes
since we will occasionally transform the result (e.g., tegunalities) before changing the
structure to the tree representation.

4.2 Recipe for the Generalization of Algorithms to Non-linar
Parameters

As is outlined in Section 2.1.4, the fundamental operatibmany algorithms used in the
polyhedron model is solving an equation or an inequalitydagiven variable. Since the
sighum of the coefficient of the variable determines how ¢ispective equation or inequality
is handled, algorithms usually contain constructs like

casesignum oof
Negative— t_
Zero — 1o
Positive —t,

The signum oft is determined statically by the input of the algorithm sitioe coefficient
is a fixed real (usually even rational) number. Dependinghisgignum, the computation
continues with either of the subprogramnsty, ort, .

In a generalized version of the algorithm, the coefficiemésrational functions in the
parameters, i.ec € Q(py,...,Pn). Thenc can be represented by a fraction of polynomials,
c= g—; for c1,c2 € Q[pa, ..., Pn, C2 # 0. The signum ot is then equal to the signum of the
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polynomialc; - c,. Therefore, the case distinction on the sigrca$ transformed into the
tree node

SCond(cy- cp) t- to ty

If the case distinction is only binary, i.ec=0vs. c# 0 orc > 0 vs. ¢ < 0, then one of
the other constructorEEgiCondor GeCond can be used to avoid the duplication of sub-
trees. This rewriting rule replaces all case distinctianthe codeof the algorithm by case
distinctions in the resultiata structure

Obviously, some other changes in the implementation of therithm are necessary.
When a final resultis returned, the correct tree representatiorzfisieaf z The typea of
the result has to be changedTieea. Finally, if a resultz (of former typea) is used as the
argument of another function, i.d.z, then the application df has to be “lifted” correctly
to the whole tree using a higher-order combinator. We hadistinguish two cases here:

1. If the functionf works without modification on the generalized input, i.be tesult
type 3 of f need not be changed Tweef3, then a combinator usually calldchapin
Haskell is appropriate to appfyto all the leaves of a tree with a céithap f zinstead
of the originalf z

fmap (a—B)— Treea — Treef

fmap f(Leaf 2 = Leaf (f 2)

fmap f(SCond pt tot;) =SCond gfmapf t.) (fmapf b) (fmapf t.)
fmap f (EqCond p§t.) =EqCond p(fmap f ) (fmap f t.)

fmap f(GeCond pg, t-) = GeCond pfmap f t,) (fmapf t.)

fmap f(FCondd t+t,) =FCond¢ (fmapf t-) (fmapft,)

2. If the functionf has to be generalized such that its result type changes ffroon
Treep, the application of using thefmapcombinator, like infmap f z would yield a
result of typeTree(Treef). Using a different combinator we can “flatten” this tree of
trees into a single tree:

treeMap (o — TreeB) — Treea — Treef

treeMap f(Leaf 2 =fz

treeMap f(SCond pt tpt;) = SCond ptreeMap f ) (treeMap f p) (treeMap f t.)
treeMap f(EqCond p§t.) = EqCond p(treeMap f §) (treeMap f t.)

treeMap f(GeCond p¢; t-) = GeCond ptreeMap f ) (treeMapf t.)

treeMap f(FCond¢ t+t,) = FCond¢ (treeMap f t) (treeMap f t )

The difference betwedmapandtreeMapis in the base case, whereeMapdoes not
produce a leaf carrying the reséilz, but simply returns the tree produced by

4.2.1 A Generalized Fourier-Motzkin Algorithm

The Fourier-Motzkin algorithm, as described in Section2.tan only handle inequality
systems with constant coefficients of the variables. Tha#ricgion is inherently built into
the algorithm, since the construction of the dgtandU; of lower and upper bounds depends
on the signs of the coefficients gt
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The generalized version of the Fourier-Motzkin algorithragented here works as fol-
lows. Whenever the inequalities are to be solved for a virigh then a case distinction
on the signs of all terms appearing as coefficient; @ made and the sets andU; are
determined for each of the cases. In other words, this is plicagion of the recipe (Section
4.2) for generalizing algorithms to non-linear parametafée do not start with an imple-
mentation of the Fourier-Motzkin algorithm and apply foflyp@he recipe from Section 4.2
to it, since this produces clumsy code. We just follow theaided give a more readable
implementation of the algorithm in pseudo-Haskell, whiakes a set of inequaliti€Sand
the number of variables as input (Figure 4.1).

fourierMotzkin  :: Int — Set Inequality—
Tree (Maybe|(Set Inequality Set Inequality})
fourierMotzkin n S= fourier n S]]

fourier :: Int — Set Inequality— [(Set Inequality Set Inequality] —
Tree(Maybe[(Set Inequality Set Inequality})
fourier 0§ LUs= FCond (A &) (Leaf (Just LUg) (Leaf Nothing
fourier n §, LUs=eliminate § @ @ @
where
eliminate @ Sew L U =
fourier (N—1) (SewU Sien) (LUs ++[(L,U)])

where
Shew = {t—t= 0 |(x= D€ L, (x< t) € U}
eliminate (SU{Z- % +t>0}) Sew L U =
SCond( 1° tz)
(eliminate S Sw L (VUDa< —52})
(eliminate S (S,ewU{t'> 0}) L u
(eliminate S S (Lu{x> -5} U )

Figure 4.1: Generalized Fourier-Motzkin elimination farnlinear parameters.

The algorithm works like the original Fourier-Motzkin aligbm, except that it has to
make case distinctions when constructing the sets of lowdrupper bounds. The third
parameter of functiofourier serves as an accumulator for the upper and lower bounds which
have already been found. The construction of the case distmis done by the function
eliminate It handles recursively every inequality from the Sgtpassed to it as its first
parameter, and makes a case distinction on whether theesklaequality represents a lower
bound, an upper bound, or no bound for the highest remairadrighlex,. The second, third,
and fourth argument afliminateare accumulators for the already found lower bounds, non-
bounds, and upper bounds, respectively. When all ineggsliave been analyzed (and the
first parameters becomes the empty ssininateconstructs the projection &, to the lower
dimensions &ewU S,e) and passes this projection, together with the updatednagietor
of lower and upper bounds, to a recursive invocatiofodfier.

Whenfourier is called with argument 0, the procedure has eliminatedyexamiable and
the setS contains conditions in the parameters only. The accunmulats has collected all
the lower and upper bounds, i.els=[(L1,U1),...,(Ln,Un)], whereL; andU; are the sets
of lower and upper bounds fog. The input inequality system is feasible (in the particular
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case determined by the cast distinction constructedlinyinate“above” this base case) if
and only if A S holds. Therefore, we guard the solutidast LUswith the conditionA\ &
(and provide the valuBlothing for “no solution”, in the other case).

In case we are not interested in when the given inequalitiesyS is feasible (in the
reals) and when not, but are interested in a (possibly engatsgription of the points in the
polyhedron described b$ we need not make the case distinction/®& in the base case
of fourier. Then it is sufficient to use

fourier 0 S LUs = Leaf (Just LUg

as base case for the recursiorfonrier and ignore the conditions i%.

Not shown in Figure 4.1, but part of our implementation, iattRourier-Motzkin can
be significantly sped up by exploiting equations if they aespnt in the input. The imple-
mentation of this is fairly simple. Assume we have an equatiox, = e for some linear
expressiore with variablesxs,...,x,_1. Before we eliminate, using the actual Fourier-
Motzkin method, we make a case distinction on whethix zero or not. Ifc is not zero,
we can substitut€ for x, in the inequalities and the equation$.is then a lower and up-
per bound forx,. If cis zero, we replace the equatienx, = e by 0= e and check the
other equations (or perform Fourier-Motzkin eliminatiar &k, if no further equations are
available).

Note that the results computed by Fourier-Motzkin elimimratften contain superflu-
ous bounds. For example, it can easily happen that the loands forx, contain both
Xo > 2X1 + pandxy > 2x; + p+ 3. In this case, the bound2+ pis superfluous, since it is
dominated (for every value of the paramep@tby the bound 2, + p+ 3. Another example
IS Xp > 2x1 andx, > 2x; — p if we know that eithep > 0 or p < 0; e.g., in the casp > 0, the
only relevant bound ig, > 2x;. Our implementation contains some optimizations for the
bound sets which exploits such situations. We describeetbpmizations here for lower
bounds; it is analogous for upper bounds.

We check, for two given lower bounds andl,, if d :=I; — I, is independent of the
variables, i.e., ifl € Q(pa,..., pn). If this is not the case, we leave bdihandl, in the set of
bounds and go on checking other combinations of boundd.€lfQ(ps,..., pn), we check
whetherd € Q, that is, whether the difference lfandl is a constant. 1fl € Q andd > 0,
thenl; dominated, and we can removk from the set of lower bounds. & < 0, we can
removel;. Whend ¢ Q, then we check if the conte for the part of the decision tree we
are in implies thatl > 0 ord < 0 holds. This is, of course, solved by deciding the problems

REV(AC—d=>0)
and

REV(AC—d<0)

using a quantifier elimination method. If the context imglame of the two conditions, either
[, or |1 can be removed from the set of lower bounds.

Obviously, comparing every lower (upper) bound againstewther lower (upper)
bound gives rise to a quadratic amount of comparisons in timeber of lower (upper)
bounds. The experiments we conducted with our implememiatiowed that, for simple ex-
amples, this causes a moderate slowdown but, for more caragéamples, the optimization
is vital for obtaining a result at all.
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4.2.2 Simplifying the Decision Trees

The previous section shows that a naive application of tbipedor generalizing algorithms

to non-linear parameters leads to huge decision trees Withad superfluous case distinc-
tions. Since we use a lazy implementation language, it isxacéssary to build simplifica-

tion algorithms into the generalized algorithms. Insteéd, simplification of the decision

trees can be implemented completely separately from thergkred algorithm, since the
laziness of the implementation language guarantees teéhiant parts of the decision tree
are never computed.

We implement a top-down simplification method. This methtatts with some as-
sumptions on the parameter values, represented as logicalifas. For examplegy > 0 is
a common assumption. These assumptions are callezbtitextwith respect to which the
simplification is performed. The actual simplification begat the root of the decision tree.
At every node which represents a case distinction, it isk#dabevhether the context implies
one of the conditions which make a certain sub-tree of theragplicable. If the context
implies one of these conditions, the node is replaced byatgerctive sub-tree and the sim-
plification continues on this sub-tree. If the context doesimply any of the conditions,
then the node is retained and the simplification is perfororedach sub-tree after the con-
dition required for the sub-tree to be applicable is adddtieacontext for the simplification
of the sub-tree.

As an example consider the simplification of the node (SCond pt tpt;) under a
contextC. If the logical formulaAC — p > 0 holds inR, it is clear that, under the assump-
tion thatC holds, the sub-treds andtp of n are irrelevant and the nodecan be replaced
by t,. The same simplification can be performed\i€C — p =0 or AC — p < 0 holds.

If, for example, AC — p > 0 and AC — p = 0 do not hold, buiA\C — p > 0 holds, the
ternary constructoSCondcan be replaced by the simplEgCond sincet_ is irrelevant,
n can be expressed by the binary case distinckgg€ond p4t.. Similar optimizations
can be performed in some other cases; the complete simfiifigarocedure is shown in a
pseudo-Haskell notation in Figure 4.2.

The simplification procedure in Figure 4.2 uses a predigaiglies and a function
simplifyFormulanot shown in the figure. The predicadtapliesis a function whose specifi-
cation is given by

implies :: Set Formula— Formula— Bool
implies contexth = if (R F V(A context— ¢)) then TrueelseFalse

impliestakes care of deciding whether a set of formulas (the comimxtex) logically im-
plies another formulg in R. The notationv(/ context— ¢) is used to express that the
formula A context— ¢ is to be prefixed with a universal quantifier for every fredalale of

/\ context— ¢.

To decideV(A context— ¢), a quantifier elimination method like virtual substitution
(Section 3.2) or (since the formula has no free variable®cstbn method like cylindrical
algebraic decomposition (Section 3.3) can be used. It isoaby that when simplifying a
SCondnode, very similar formulas have to be decided, namebontext— ppO0 for dif-
ferent relationp € {<,<,=,#,>,>}. The simplification procedure has been chosen such
that at most 3 different formulas have to be decided (of thesipte 6 ones). When we
use REDLOG to implement thémpliesfunction, we have to make these similar calls to the
quantifier elimination procedure. But with our CAD implent&tiion we need not repeat the
whole work thrice: The terms in the formulas are the samedichef the six cases, so the
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simplify .. Set Formula— Treea — Treea
simplify contex{Leaf 2 = Leaf z
simplify contex{SCond pt tot,) =
if implies contextp > 0) then
if implies contextp > 0) then simplify context t
else ifimplies context{p = 0) then simplify contextd
else EqCond (simplify (contextu {p = 0}) to)
(simplify (contextU {p > 0}) t,)
else ifimplies contextp < 0) then
if  implies contex{p < 0) then simplify context t
else EqCond fsimplify (contextJ {p = 0}) 0)
(simplify (contextJ {p < 0}) t)
else ifimplies contextp # 0) then GeCond f§simplify (contextJ {p > 0}) t+)
(simplify (contextJ {p < 0}) t_)
else SCond gsimplify (contexty {p < 0}) t_)
(simplify (contextu {p = 0}) to)
(simplify (context {p > 0}) t )
simplify contex{EqCond p§t.) =

if implies contextp = 0) then simplify contextd
else ifimplies contextp # 0) then simplify context t
else EqCond gsimplify (contextJ {p = 0}) to)

(simplify (contexty {p # 0}) t.)
simplify contex{GeCond pd; t_) =

if implies contextp > 0) then simplify contextd,
else ifimplies contex{p < 0) then simplify context t
else GeCond fsimplify (context) {p > 0}) to. )

(simplify (contexty {p < 0}) t_)
simplify contextFCond¢ t+t,) =

if implies contextp  then simplify context+
else ifimplies context—¢) then simplify context t
else FCondy(simplify (contexty {y}) to..)

(simplify (contexty {—}) t_)

where
Y = simplifyFormula contex$

Figure 4.2: Top-down simplifying algorithm for decisiorés
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test points computed by the CAD procedure are the same. Wecaldulate the test points
once, keep only the points whefecontextis true (since ifA\ contextis false, the implication
A\ context— ppO0 a is true anyway), and check the signpdbr the remaining points.

The function simplifyFormula is used to simplify a  quantifier-
free formula in the context of a set of formulas. For example,
simplifyFormula{p > 0,q < 4} (p> 1A(q< 3V g> 5)) could vyield the simpler
formulag < 3. We do not give a simplification algorithm here; good altioris can be
found in the literature, e.g., in [DS97b]. The formula siifiphtion algorithm may require
the context to be given as a setaddbmicformulas. In this casesimplifyFormulashould take
care of replacing conjunctions of atomic formulas by thevimial formulas and dropping
additional formulas from the context before passing thetexdnto the simplification
algorithm.

4.3 New Algorithms based on Quantifier Elimination

The previous section focuses on generalizing an existimpgriéhm of the polyhedron model
to non-linear parameters. In this approach, quantifierigfition (or a decision method)
is used to reduce the size of decision trees by detectintpveet branches. In this sec-
tion, we discuss some direct applications of quantifier iglation, where we use quantifier
elimination with answer to calculate some desired reso#iead of generalizing an existing
algorithm of the polyhedron model. Of course, this requites the problem we wish to
solve can be expressed as a first-order formul.in

We show how the lexicographic minimum of a polyhedron candomd (Section 4.3.1),
how a sorting of an inequality system, which is equivalentaooirier-Motzkin elimination,
can be computed using quantifier elimination (Section 4.&2d how to find convex and
disjoint unions of polyhedra (Section 4.3.3).

4.3.1 Lexicographic Minima and Maxima

The calculation of lexicographic minima and maxima playgéamortant role in optimization
problems in the polyhedron model.

The procedure for calculating lexicographic minima and imaxdiffers only in the ori-
entation of some relation symbols in the input formula. Ef@re, we only show how to
deal with the lexicographic minimum.

The lexicographic minimum of a polyhedrdhis a pointx € P inside the polyhedron
which is lexicographically less than or equal to every pgiatP. We denote “lexicographi-
cally less than or equal” with the symbsgl The signatur& g does not contain a symbol for
lexicographic ordering, but the usual recursive definitbay, . ..,an) < (by,...,by) gives,
in fact, aXqg-formula for lexicographic ordering, and we use the notafiay,...,a,) <
(b1,...,bn) as a short hand for the first-order formula defined as follows:

a; Xbp:=a; <by
(a1,...,an) 2 (by,....bn) i=a1 < b1V (ag =b1A(az,...,a0) < (ba,...,by)) (forn>2)
We are now able to express thai, ..., X,) is the lexicographic minimum of a polyhedréh

as a first-order formula. Assume thHais defined by the first-order formulia (usually ¢ is
a conjunction of linear inequalities) afidar(¢) = {x1,...,%n, P1,---, Pm}, Wherexy,... X,
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are the variables describing the dimensions of the polyiredndp;, ..., pm are the param-
eters the polyhedron is parametrized with. Let, for some vemiablesy, .. ., Vn,

o= OAVYL W (OXa /Y1 X /Yn) = (X2, %0) = (Y1,---5Yn)

This formula expresses thaty,...,X,) is a point inP (because of thg conjunct) and that,
if (y1,...,Yn) is any point inP, then(x,...,X,) is lexicographically less than or equal to
(Vs -+ Yi).

To get values foky, ..., X, (which are uniquely determined if they exist), we apply the
generalized quantifier elimination to the following forraul

IXg .- Ixp P
The result is (as described in Section 3.2.5) a set

{(yr, {x1 =t11,... . % =t1n}),
(Vi {X1 =t1,-- - Xn =tkn}) }

of conditionsy; and the respective lexicographic minimityy, .. ..t ). The formulay; and
the termg; 1,...,t h contain the parameters, ..., pm as variables. We can transform this
result set into a tree for further use as presented in SeétibA.

4.3.2 Sorting a System of Inequalities

The Fourier-Motzkin algorithm, as defined in Section 2.5d@yes the problem of sorting
an inequality system. Unfortunately, the Fourier-Motzklimination is (in the worst case)
at least doubly exponential in the number of variables ofitipeit system. Therefore, the
worst case complexity of the generalized Fourier-Motzkgoegthm of Section 4.2.1 is also
at least doubly exponential in the number of variables. ERrRpents conducted with the
loop parallelizerLooPo showed that usually problems with constant coefficients Gial

8 variables can be solved in reasonable time on current @esidmputers with Fourier-
Motzkin, but we encounter problems with more than 10 vaesbiherefore, we have been
looking for an alternative algorithm which produces outpgtiivalent to Fourier-Motzkin
elimination and which also works in the presence of nondirarameters.

Given a polyhedrof® in the variablexq, . . ., X,, Fourier-Motzkin successively calculates
projections ofP to the dimensiongy, ..., X, fori € {1,...,n}, and (at the same time) finds
the lower and upper bounds fgrin terms ofxy, ..., %_1.

Our approach is to calculate instead the lower and upperdsofor the dimensions
X1,...,X%n using quantifier elimination (without explicit projectisn We have to solve two
main problems to achieve this:

(1) We have to find a logical formula with describes the propér.. is a lower (upper)
bound” of a certain dimension.

(2) Since we are working with inputs containing non-lineargmeters, we cannot simply
use all lower and upper bounds together in a single solubohwe have to arrange
appropriate conditionals for the different possible caseboutput only the respective
lower and upper bounds in each of the cases. In addition, we twalook for the
condition under which the polyhedron does not contain a taypger bound for a
given variable.
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We have tried several different ways to express (1) and (2juastifier elimination prob-
lems. Unfortunately, we discovered that most of them do ravkwgatisfactorily. The main
difficulties are to avoid the generation of infinitesimals @ection 3.2.6) in the answers and
to minimize the number of cases produced by the algorithm.h¥ve found an algorithm
which works but fails to outperform Fourier-Motzkin in ptee (see Chapter 5). We present
a sketch of this algorithm in the following:

Step (1) Let ¢ be a formula describing the polyhedréh We note thatfrvar(¢p) =
{Xt,.- - Xn} U{P1,---, Pm}, Whereps,..., pm are the (possibly non-linear) parameters of the
polyhedronP. To find the lower and upper bounds for a variakleve look for the minimum
or maximum ofx; in P in dependence of,...,%_1.

Given some fresh variablg the formula

Pi= Iigpa (G AVYX 1 V(01X /Y] — X < Y))

expresses that, for given valuesmf . .., pm andxy, ..., X_1, there exists a poirp € P with
p=(X1,...,%-1,%,...), andx is minimal for the given choice of,...,X_1.

If we now submit the formulax; Y to a quantifier elimination with answer system and
demand answers fog, we will get a list

{3, {x=t})]je{L... . k}} (4.2)

for some k € N, conditions §; € Qf({Xt,...,%-1,P1,---,Pm},Zord), and terms
tJ S Tm({xl, oy Xie1, P, pm},Zord/).

When a conditiord; holds for given values ofy, ..., pm andxy,...,X_1, thent; is the
minimum ofx; in P (in dependence ofy,...,x_1 andps,..., pm). Since the formulap is
linear in{xy,...,%, Yy}, Lemma 3.17 implies that the tertpis linear in{xy,...,X_1}.

Step (2) To construct an appropriate case distinction for our restdtnow ask the ques-
tion, when (i.e., under which condition depending on theapaaters) a givety is a lower
bound forx;. Note that the bounds from above are guarded with conditiods which are
in the parameters and the variables. .., x_1 and express thaf is the minimum ofx;. We
are now looking for the conditiong in the parameters only, which describe th)as a lower
bound, possibly not a sharp bound, &ery x,...,X_1.

In quantifier elimination, this question is expressed byftlewing formula

Yj := denonftj) # 0AVXy--- V¥ (¢ — Bj) (4.3)
wheref; = (x > y)[y/tj] (for some fresty € V) and

s if tis of the forms; -s;*
1 otherwise

denontt) := {

expresses that—for given values of the parametéyss-defined (since its denominator is
not zero) and thattj is a lower bound fox. The formulaf; is constructed fornt; using
virtual substitution, sincg is aZqg-term, buty; must be & q4-formula.

Calculating quantifier-free equivalents of thg we get formulas\; which are in the
parameters only, and eaghis equivalent td; being a lower bound fax. We now get a set
of condition/bound pairs

B={(\.tj) |je{L....k}}
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wheret; is a (probably not sharp) lower bound if and onlyifholds. Our implementation
tries to minimize the number of elementsBrby checking whethe¥(A; — Aj/) holds for
somej # j": in this casefj is dominated byt; and we can remové\j,t;) from B. We
construct a condition/set-of-bounds set where each dondjuards exactly the terms which
are bounds under that condition:

L::{(/\)\j/\/\—')\j,{tj|j€J}) | @;&Jg{l,...,k}}

jed j¢d

In other words, we construct a complete case distinction bitiwA; hold and which do
not hold. Using the technique outlined in Section 4.1.2, westruct a decision tree fron
whose leaves are the lower bounds Xpfguarded with conditions in the parameters at the
inner nodes of the tree). This takes care of the case thatollghguiron has a lower bound
for x;, but we have to consider the case that the polyhedron is wmoleou The formulas
(with a fresh variablg) expresses that the polyhedron is non-empty and has no mued

for x;:

V=3 I (O AVY(OX /Y] — 0% /y—1]))

The quantifier-free equivalent is a formula in the paranset@nd this condition can be added
to the case distinction for the additional case “no lowerrubfor x;.”

Constructing the solution We can repeat Steps (1) and (2) for everwith i € {1,...,n}
and also for the upper bounds instead of the lower boundy tbel orientation of some
relation symbols has to be changed, and ttfein the formula for unboundedness has to
be changed ta-1). This yields decision trees for the lower and upper bowfdsveryx;.
Combining these trees into one big tree by “appending” oge o all the leaves of another
tree repeatedly for all the trees and collecting the setsvaéit and upper bounds at the final
leaves (e.g., by repeatedly using teeMapcombinator from Section 4.2), we finally get
a decision tree carrying appropriate lower and upper bofordsach variable at its leaves.
This result is equivalent to applying the generalized Fatkotzkin algorithm to the given
inequality system.

This algorithm is largely obvious, but there is a potentialglem hidden in it. Let us
look at Figure 4.3 to illustrate this. The only necessarydoWound forx, in the depicted
triangle isx, > 1, so we would like the Set (4.2) to be

{(l <XIAXL < T, X = 1)}
in this case. Unfortunately, another correct quantifianilation result is

{A<xaAx <TAX #4, % =1),
(X1 =4, % =x-3)}

Obviously, the hyperplane = x; — 3 (depicted as a dashed line in Figure 4.3)assuitable
for a sorted description of the triangle. The problem whiclses from this is not that
such unsuitable bounds are mixed among the desired bounesinsuitable bounds will
be filtered by Formula (4.3), singg is equivalent to false for such bounds. Theoretically,
a necessary bound (in our example= 1) could be missing from the computed answer,
because all the points on it are covered by unsuitable bounds
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Figure 4.3: An undesired lower bound for

We have not developed a formal proof showing that the hypictilesituation just de-
scribed can never happen. The reason is that, as our exjpgsimeChapter 5 show, we do
not achieve better performance than Fourier-Motzkin elation with this approach (and it
often fails due to memory exhaustion), although we spertecgome time experimenting
with different variants. We just present a conjecture stpformally that Set (4.2) contains
all the necessary lower bounds (upper bounds are similar),térms which have the geo-
metric properties required for a sorted description of thmut polyhedron. We also give our
ideas for the reasoning in a formal proof of the conjecture.

Conjecture 4.1 Let P be a polyhedron in the variableg x. . ,x, and parameters 93.. ., Pm,

and let R be the projection of P to the dimensions x.,X;. Let(yi,...,Yi) be a point of P
such that yis minimal with respect tdy,...,Yi_1). Then there exists a termt in Sdt2)

such that the hyperplane h defined by=¢ and the halfspace H defined byt have the
following properties:

@ (y1,...,¥i) €h
(b) RCH

Proof idea. Let B, be the projection oP to the dimensions,...,%. For any point
(Y1,---,¥i) € B, wherey; is minimal with respect tg;,...,Yi_1, there exists a halfspace
defined by the inequality; > e (for a terme which is linear inx,...,%_1) with associated
hyperplaneg which satisfies the following condition$? C G, (y1,...,Yi) €9, b:=RnNg
has maximal dimensionality for all possib& Sinceb cannot be represented as a union of
finitely many sets whose dimensionalities are lower thardthmensionality ofb, and every
point in b satisfies an equatiag = t; for somej € {1,...,k} (every point fromb is lexico-
graphically minimal inP by definition), there exists dne {1,...,k} in Set (4.2) such that

b is a subset of the hyperplamedefined byx; =t;. The hyperplandr and the halfspackl
defined byx; > t; have the properties stated in the conjecture. O
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4.3.3 Convex and Disjoint Unions of Polyhedra

Beside calculating a sorted description of polyhedra, rodthgorithms used in the polyhe-
dron model are the calculation of convex unions and disjoimibns of polyhedra. Convex
unions are often used to calculate an “approximation” oftatpolyhedra through a single
polyhedron which is a superset of the individual polyhedra.

Definition 4.2 Given the finitely many polyhedma,, ..., P,, theconvex uniorof these poly-
hedra is a polyhedroR which satisfies the following two conditions:

(1) R C Pforeveryi € {1,...,n},

(2) No polyhedronQ ;Cé P satisfies (1), i.e.P is the smallest polyhedron satisfying (1)
(with regard to set inclusion).

A disjoint union of polyhedra is a representation of the andd given polyhedra through
pairwise disjoint polyhedra.

Definition 4.3 Given finitely many polyhedr®;, ..., R,, adisjoint unionof these polyhedra
is a finite set of polyhedr®;, ..., Qk which satisfies the following two conditions:

(1) PLU---UPy=Q1U---UQx,
(2) Qu,...,Q are pairwise disjoint, i.,eQiNQ; =2 for1<i < j<k

Disjoint unions of polyhedra are needed in loop paralléiiraduring code generation when
the iteration domains of different statement are combin€Hde iteration domain of each
statement is described by a polyhedron. The polyhedra neeblendisjoint, i.e., different
statements can share points in the iteration domain. Usiiédl desired to enumerate every
point of the iteration domain only once (for all the statetsgnThis can be achieved by two
methods. The simple method is to calculate a convex uniohefjiiven iteration domains
(or even a “bigger” superset of them, e.g., a rectangulaersagp) and to enumerate every
point of this superset. It is then necessary—for every peimtch is enumerated—to test
which of the given polyhedra the point is a member of. The ntam@plex method is to
calculate a disjoint union of the given polyhedra and to eenatte the polyhedra resulting
from that calculation. This ensures that exactly the paimtthe given iteration domains
are enumerated, and it can be statically determined whilgfih@dron enumerates points for
which statement.

Although the use of a disjoint union ensures that no suparfymints are enumerated,
it can still be desirable to use a convex union (or other, Bindescribed superset) since
the enumeration of a disjoint union can be much more comglexhat enumerating some
superfluous points from the chosen superset can still be efficent.

Convex Unions

We give here the definition of convexity and a well-known tteo about polyhedra:

Definition 4.4 A setC is calledconvex if for everya,b € C and everyr € [0,1] it follows
thatr-a+(1—r)-beC.
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Theorem 4.5 Let R, ..., PR be polyhedra. Then the set

k k
C:{ rp|p1€P177pk€Pk,r1,7rk20’ r:l}
i;I | i;I

is the convex union ofiP..., P and C is a polyhedron.

This theorem yields a method to compute the convex uniorveigoolyhedra. Le®y,. .., P

be (parametric) polyhedra defined by the formulas..., k. We assume that the free
variables of)y, ..., Yy are{xa,..., X, P1,---, Pm}, Wherexs, ..., X, denote then dimensions

of the polyhedra ang, ..., pm are the parameters the polyhedra are parametrized with.
Then the following formulap describes the convex unionBf, ..., Pk:

¢ = Jry---Irg X1 1o IXen - X Ien

k n k k k
( AWilxa/%i1,--- % /%in] AN\ Zl(fi-xi,j)zxj A \Ti >0A eri =1)
i=1 = i=1 i=

j=1i
This works as follows: the formulé claims

e the existence of a pointp; = (Xi1,...,%n) in the polyhedron B (since
Pi[X1/%i 1, .., % /X n] holds) for everyi € {1,... k},

¢ the existence of coefficients,...,rx > 0 with z!‘zlri =1, and

e that the pointp = (X,...,%) is a (ri,...,rg)-combination of the pointsp;:
pP=34iri-pi.

Theorem 4.5 shows that this claim is true (for given valuethefparameterg;, ..., pm) if
and only if the point(xy,...,Xy) lies in the convex union oPy,...,P. Theorem 4.5 also
states thaty describes a polyhedron. Hendedescribes the convex union Bf,... P in
the variablesq, ..., X, and the parameters, ..., Pm.

Therefore, it is possible to feed the formylgor its quantifier-free equivalent) into the
sorting algorithm of Section 4.3.2 to get a description @& donvex union in terms of a
sorted inequality system.

Disjoint Unions

We have calculated convex unions by describing the desé®mdtrwith a first-order formula
and, since the convex union is again a polyhedron, usediagaitgorithm to get a descrip-
tion of that polyhedron in an adequate form. The situatiodifferent for disjoint unions,
since the desired solution consists of an unknown numbaetigjb{nt) polyhedra.

To find a description of the disjoint union we use an approdeit tanipulates a
quantifier-free formula and extracts descriptions of ttaividual disjoint polyhedra from
it. The main transformation step is the conversion of a fdenmto disjunctive normal form.

Lemma 4.6 For every positive formuld € Qf(7/,%) there exist re N, kg, ..., ky € N and
atomic formulas g € At(7,%) (i € {1,...,n}, j€ {1,...,k}) such that

h<‘IJH\n//KV\"J‘L,J)

i=1j=1

\/i”:l/\'f:lam is called adisjunctive normal fornof .
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Proof. Let ) be a positive quantifier-free formula. We show the existenfca positive
formula which is equivalent tgy and in disjunctive normal form by induction on the structure

of .
W € At(7,%) : Wis in disjunctive normal form by definition.

W = (Y1 Vo) : By the induction hypothesis, there exist positive fornsdia and¢, which
are in a disjunctive normal form and logically equivalentjtpandy,, respectively.
Thend1 V §» is in disjunctive normal form, positive, and logically egalient toy.

Y = (Y1 A ) : By the induction hypothesisy; is equivalent toy/; ¢; andy, is equiv-
alent to \/[2; ¢, for somemn > 1, and ¢s,...,¢n,93,...,¢p, are conjunctions
of atomic formulas. Y is equivalent to\/{'; ¢i A /"1 ¢{, which is equivalent to
ViLi($i A VL1 %), This formula is in turn equivalent tg/; (\V]1,(¢i A %)), and
this is a positive formula in disjunctive normal form.

O

Since, in the structur®, every quantifier-free formula is equivalent to a positivenfula
(cf. Lemma 3.7), we have the following corollary:

Corollary 4.7 In the structureR, every quantifier-free formuls € Qf (7, Zoq) is equiva-
lent to a positive formul# which is in disjunctive normal form.

Using this corollary we can construct a disjunctive nornoahf \/!:M (for somel € N) of
a formula¢ such that

|
REd < /v

i=1
RE-(yiAy;) foralli,je{l,....1},i#]
i.e., the sets defined by tlyeare pairwise disjoint. The following algorithm, which wellca

disj, computes a set of formuldg, ...,y } with the properties stated in the Specification
(4.4):

(4.4)

Algorithm disj

1. Calculate a positive disjunctive normal formdnfi.e., find (for someék € N) formulas
Y1, ..., Pk which are conjunctions of atomic formulas such tRat ¢ « \/}‘:l Yi. To
ensure termination, the positive disjunctive normal formsinsatisfy the following
two conditions:

(p1) Every term appearing in the formulta{‘:1 y; also appears ip either as-is or
negated.

(p2) Yy in \/E(lelJi is feasible, i.e., there exists an environmént R? such that
R Fp Y.

2. If k=0 we define
disj(¢) =@

to be the result of the algorithulisj in this case.
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3. Otherwise, construct the formulas, ..., from Yy,..., Py according to the follow-
ing schema:

o1 =1
& =Y A
O3 1= Pz AP A=y

O 1= Pk AP A Ak g

4. The result oflisj(¢) is computed as follows:

k
disj($) := {81} U disi(&)

i=2

This means thad, is directly part of the result and the recursive applicatidrihe
algorithm yields appropriate formulas (i.e., conjunciasf atomic formulas) which
described,, . .., o disjointly.

As an example for the application of the algorithtisj, let us look at the set depicted in
Figure 4.4 (a). It is a union of two rectangles definedyoy= (X > 1AX < 4Ay > 1A
y<3)andyp = (x>2AXx<5Ay>2Ay<5). If we now computedisj(y; V Y5), a
possible disjunctive normal form afi, \/ i, is, of course, the formuld; Vv @, itself, and
this disjunctive normal form satisfies both properties @id (p2). The algorithm constructs
the two formulasd; = Y, andd, = Yo A —1; the disjoint sets defined by, and o, are
shown in Figure 4.4 (b). Figure 4.4 (c) and (d) illustrate itheursive application ddisj to
the formulad,. A possible positive disjunctive normal form &z is g VV W, with ) = (x>
ANX<5AYy>2Ay<5)andy, = (x>2Ax<5Ay>3Ay<5). This gives again rise to
two &-formulas,d; = Y] andd, = Y, A —j. A positive disjunctive normal form fod, is
X>2AX< 4Ny >3Ay <5, which consists of one disjunct only. The recursion thepst
and a disjoint union of the set defined §y v Y5 is given by{8,,8/,d,}.

The termination oflisj depends on the properties of the algorithm used to compate th
positive disjunctive normal form df in Step 1 of the algorithm. It is possible ttdisj never
terminates if “unfortunate” disjunctive normal forms amputed. For example, if we start
with the one-dimensional polyhedrd, 4] described by the formulg = (x > 0Ax < 4),

a valid disjunctive normal form iéx > 0AX < 2) V (x > 2A X < 4) which leads to the two
d-formulasd; = (x> 0AX < 2) andd, = (x> 2AX < 4) A—(x > 0AX < 2)). &, simplifies
tox > 2Ax < 4 and a valid disjunctive normal form for this formula(is> 2Ax < 3) vV (X >
3Ax<4). This, again, leads to twdformulas and the process of dividildg into two small
intervals at each step can be repeated ad infinitum.

Such a recursion process which “invents” new sub-polyheitres not have property
(p1): The given formula > 0A x < 4 has the two termsandx — 4 (if we write the formula
in the canonical fornx > 0AXx— 4 < 0, where the right side of an atomic formula is always
0), but the given disjunctive normal form contains the atformulax < 2 and hence the
termx — 2 (of the canonical fornx — 2 < 0), which did not appear in the original formula
(nor did —(x— 2)). This invention of new terms can lead to the nonterminatibdisj. The
rationale for (p2) is that an infeasibl; could always appear as the first disjunct of the
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y y
51 51
4T W 4 5
3+ 3+
2 2 %
-
14 14 %// %
0 X 0 —t—F+—+—+—+ X
0 0 1 2 3 4 5
(b)
y y
5-1 5-1 R
44 44 &
2 6/1§
3+ 3L \
| N\
24 24+ | N
| &, |
| |
14+ 14+ :
0 —t—F+—+—+—+ X 0 —t—F+—*+—+—+ X
0 1 2 3 5 0 1 2 3 4 5

Figure 4.4: Algorithndisj in an example

normal form so that—even if is infeasible—the cask= 0 might never occur during the
recursion.

The existence of an algorithm to compute a positive disjuactormal form of any given
quantifier-free formulap in R which satisfies (p1) is shown by the proofs of Lemma 3.7
and Lemma 4.6. The transformation rules given there tramsfointo a positive disjunctive
normal form without using terms not appearingpifexcept for negations of given terms). To
satisfy (p2), one can test the feasibility of every(e.g., by applying quantifier elimination
to the formula3(y;)). Only they; with R E 3(g;) are retained in the disjunctive normal
form and the others are dropped.

Theorem 4.8 Let ¢ € Qf (7, Z4¢). Then disjp) terminates if properties (p1) and (p2) are
satisfied by the algorithm computing the positive disjwgctiormal form in Step 1 of algo-
rithm disj, and the result is a set

disj(¢) = {v1,....¥i}
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for some le N, yi,...,yi € Qf (7, Zy4) such that the conditions

|
RE® < \/v

i=1
RE=(yAY;) foralli,je{l,... I} i#]

from Specificatior{4.4) hold and they; are conjunctions of atomic formulas.

Proof. First, we prove inductively the correctness of the alganittiisj with regard to the
given specification:

(a) By construction\/X_, y; is equivalent ta (in R). In the casé = 0 (which means that
¢ is infeasible), the algorithm returms and since the empty disjunction is logically
equivalent to “false”, the algorithm returns a correct tesu

(b) For the cas& > 1, we prove thaR = \/*_; g — V., 5. Lethe R" be an environ-
ment. Assume thak =, /K, yi. Then there is at least one= {1,...,k}, such that
R En ;. Letj e {1,...,k} be minimal withR =, ;. Then, fori € {1,...,j—1},
we haveR Fn —; and, thereforeR F, 9, sinced; = Pj A /\i';lﬁtpi. This shows that
R Vi, 8.

Conversely, assunie = \/ik:15i- Then there exists somjec {1,...,k} with R Fp, ;.
Sinced; = Y; A /\ij;ll—'llJi this impliesR =y Y and henc Fy, \/!‘:1 U;.

(c) The sets defined b, ..., 0 are pairwise disjoint, since for any<ll < m<k, we
haved| Adm= (U AAIZT-Wi) A (Wm A3 =), but this conjunction contains both
) and—{; and can never be true.

(d) By hypothesis, the recursive application di§j calculates, for € {2,...,k}, sets
disj(&) such thafR  \/ disj(&;) < &, and the setdisj(;) consist of formulas which
are conjunctions of atomic formulas defining pairwise digjsets. Together with (b)
and (c) this implies that

k

REG— OV \/(\/diSj(5i))

i=2

and all the formulas ifd; } UK, disj(5;) are conjunctions of atomic formulas which
describe pairwise disjoint sets.

The following part of the proof establishes tlulisj eventually terminates.
We define the following notation: for a given quantifier-fifeemula o, let S be the set
defined byo. Define

S(o) :={A| AC SandA can be defined by a quantifier-free formala
whose terms appear negated or unnegatexd in

Since there is only a finite number of termsdnthe number of atomic formulas which can
be constructed from these terms (and their negations)adiaise. This implies that the set
S(o) is finite.
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If the above properties (p1) and (p2) hold, we can argue dswielthat|S($)| is a
termination function. Due to property (pl) each of the folas,,...,d defines a set
from S(¢). Property (p2) ensures thét (= ;) defines a sed # @. The construction of
Oy,...,0k now makes sure that evedyfor i € {2,... k} defines a set frons(¢) \ {D}. This
means thas (&) & S(¢) and hences(&i)| < [S(9)]. O

Remarks:

o disjis easily used to compute a disjoint union of (parametri¢yipedra. Let,... o,
be formulas describing (parametric) polyhedra. Obviogshke ¢,V ---V ¢, describes
the union of these polyhedra and, hendgsj(¢) represents a disjoint union of the
polyhedra described by, ..., ¢;.

e Through the negations involved in the construction of &héormulas, disj(¢) can
contain strict inequalities, evengfonly contains weak inequalities. We can transform
the strict inequalities into weak ones, if we know that theapzeters are integral and
we are only interested in the integral points in the disjaimion (cf. Section 2.1.3).

e Looking more closely at the proof, it is clear that (p2) eesuthat every < disj(¢)
is feasible. This does not mean that every disj($) represents a non-empty polyhe-
dron. We have to remember that we did not make any distinetimtween variables
and parameters in the algorithalisj: it treats the parameters like variables. What (p2)
ensures is that for everye disj(¢) there are values for the variables and the parame-
ters which makey true, but there can be values for the parameters such thatlnesv
for the variables maketrue. If we want to ensure that we only enumerate non-empty
polyhedra (if we produce code from the result calculatedibj), we can compute for
everyy € disj(¢) a quantifier-free equivalent of

which is a condition in the parameters and expressesythggiresents a non-empty
polyhedron. We can then make case distinctions on theseétiomsdand form a deci-
sion tree carrying only the non-empty polyhedra of the d@isjonion at its leaves.



Chapter 5

Sample Applications

In this chapter, we discuss briefly some experiments we adadwith the implementations
of the algorithms described in the previous sections. Waakshow all the intermediate
formulas and the final results here, since even simple inpitiés yield very big outputs
(compared to the input).

We ran the experiments on an AMD Athloh XP 1700+ Processor with 1467 MHz and
512 MB RAM. The software we used isHRUCE 3.7 and the Glasgow Haskell Compiler
(GHC) Version 5.04.1.

5.1 Convex and Disjoint Union

5.1.1 Convex Union

5

Figure 5.1: Convex union example

As an example of the convex union of polyhedra, let us lookattivo polyhedra shown
in Figure 5.1. We are looking for the convex union of the squaith cornerg0,0), (4,0),
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(0,4), (4,4) and the triangle with cornerf,0), (0,4), (p,0) for p > 0. The formulas
defining these polyhedra are

Q

= 0< X A0 AX <4AX <4
for the square and
T =0<XxA0<ApPX<—-4X1+4-p

for the triangle. Figure 5.1 shows the missing part to makeutiiion of the square and the
triangle convex (in the cage> 4), indicated by a dashed line. Using the method outlined
in Section 4.3.3, we can construct a form@laxpressing the convex union. Then, we cal-
culate a quantifier-free equivaletitof ¢. We do this by first applying BDLOG's quantifier
elimination method, followed by a degree decreaser (taampsome atomic formulas with
quadratic terms by linear formulas), and finally a formulaglifier (a so-called Groebner
simplifier). The resulting formulg consists of 149 atomic formulas. The sorting algorithm
(Section 4.3.2) produces a decision tree with 11 leavesottinfately, the case distinction
contained in this tree has a total of 204 atomic formulas aedapplication of RDLOG's
formula simplifiers did not reduce this number considerably

The total computation time was 96 seconds.

5.1.2 Disjoint Union

I I
3 4 5 6 7 8
Figure 5.2: Disjoint union example

For the disjoint union example, we use again a triangle anguars, but in different
positions. As is shown in Figure 5.2, the square has its cera2,1), (4,1), (4,3), and
(2,3). The triangle has two fixes corners(@0) and(0,4) and a variable corner &p,2)
for p > 0. The figure illustrates that, fqgy > 2, the triangle and the square share points and
for p > 8 the square is a subset of the triangle.
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Figure 5.3: Result of algorithrdisj for p=3

The inequalities for the square are
O =2<XAXI<ANLI<XAX<3
and for the triangle
T =0<A2X<pPpXAp-X<—-2-X1+4-p

Applying the algorithmdisj to the formulac Vv T yields (after less than one second of com-
putation time) the resulfy;,y»,ys}. The sets defined by, y», y3 for p =3 are shown in
Figure 5.3. We convert the strict inequalities in the forasyh, y», y3 into systems of weak
inequalities (assuming thatis integral and that we are only interested in the integraitgo
of the disjoint union, cf. Lemma 2.6) and get three pairwisgoiht polyhedraG;, Gy, Gz
(whereG; is derived fromy;, fori € {1,2,3})):

Gy Gz Gs
—2X1 — pX+4p>0 | 20+ P —4p—1>0 | —2x1 — pxp+4p>0
—2X1+ px>0 X1> 2 2X1— p%—1>0
Xlzo X1§4 X122
Xzzl X1§4
X< 3 Xo>1
X2§3

The main part of algorithndisj is the computation of a disjunctive normal form of the input
formula. The above example also shows that the result cadputdisj depends on how
the disjunctive normal form is computed. If we give our impkntation ofdisj the formula
TV o (instead ofo Vv 1), the final result consists of 5 polyhedra, instead of 3. Hason is
that the square is retained as one of the result polyhedra, and this reqthegs4 polyhe-
dra “surrounding” the square are produced. Maybe a moragixte analysis of algorithm
disj for bigger inputs (with many more polyhedra) may reveal arisdas for ordering the
disjuncts of the computed disjunctive normal form.
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5.2 Tiling an Index Space

Tiling is a well-known technigue of partitioning an indexage into congruent partitions. It
is used to change the enumeration of an index space into amegation of the partitions
(“tiles™) and individual enumerations of the points in egmdrtition. This technique is ap-
plied for cache optimization, to achieve parallelism indgwograms or to coarsen the gran-
ularity of program communications after space-time mapp8ince the mathematical tools
used in the traditional polyhedron model only deal with éinparameters, some desirable
applications could not be handled, especially, partitigran index space with a parametric
number of processors and arbitrary tile shapes is not des8Nieninger [Wie97] computes
a solution for parametric tiling withectangulartiles only by hand.

5.2.1 The Principle of Tiling

We need three pieces of input to tile an index space [AI91]:
e an index space described by an inequality syskeémthe variablesq, ..., Xy,

e a base tile, i.e., an inequality systéemdescribing the shape of the tiles using an
inequality system in the variables, . .., 0p,

e n-dimensional vectors, ..., |, describing the translations between the base tile and
the other tiles im directions; then x n-matrixL = (I1---I,)) is called dattice.

The systenT describes the shape of the tiles, whereas the ldttidescribes how the tiles
are placed next to each other. The lattice must match theraylsso that the tiles do neither
overlap nor leave holes in the index space, i.e., pointsiwaie not covered by any tile.

In [AI91] the inequality system$ may contain linear parameters. The sysfEmmust
be parameter-free, since the latticenust be a matrix with fixed numbers as entries. Using
our techniques for the polyhedron model with non-lineaapseters, we can now deal with
lattices containing parameters and, therefore, with tipgsT which depend on parame-
ters.

5.2.2 Simple Tiling

The first example we present in detail is simply the tiling ¢#va-dimensional index space
with a parametric tile size. We give the inequality systemsasual notation and in matrix
notation. We choose a triangular index space with the cefi®e®), (n,0), and(0,n):

0<x 1 0 0\ /x
0<% 0 1 0]-Ix]|=>0 (5.1)
XL+ X <N -1 -1n \1

We assume > 0 to guarantee that the index space is hot empty. As tile slvapese

00 o 1 o0
(0)
0p<p—-1 0 -1 p—1 O; -0 5.2)
0, <0y 1 -1 0 1] '

00<02+p1—1 -1 1 p-1
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N
)
e N

=
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N

000000
000000
e

-5 5 10 15 20 25

Figure 5.4: Simple tiling example for=24,p1 =7, po = 4.

which describes a parallelogram with the corn@®), (p1—1,0), (p1+ p2—2,p2—1), and
(p2—1, p2—1). The parameterp; andp; are the “width” and “height” of the parallelogram.
We assumep,, p2 > 1 to make the tiles non-empty. A lattice which matches thésshape

is
P1 | P2
L=
(51%)
This lattice represents a tile layout as in Figure 5.4rfet 24, py = 7, andp, = 4. The
figure shows all the tiles with integral points in the triamghnd the integral points within

the base tile (the tile 40,0)) are shown as little circles.
A description of the tiling is the system consisting of Syste(5.1) and (5.2) together

with the equation (cf. [AI91])
X t 0]
Ge) ()= () &

The complete system (consisting of Systems (5.1), (5.23)X%Has 6 variables and 3 pa-
rameters. Two of the parameters occur non-linearly. We askngplementation to sort the
system such that the variables are in the otdes, x;,X>

The result of the sorting is shown in Figure 5.2.2. The tadahputation time of applying
the generalized Fourier-Motzkin to find the bounds for thaeatisiond,t,,x1, X, and sim-
plifying the decision tree (to yield a tree with a single leaty) was 5 seconds when using
REDLOG to simplify the decision tree and 9 seconds when using our @Alementation.
The sorting algorithm of Section 4.3.2 yielded a resultrati@ seconds, but the formula
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Pats + P2tz <x1

pits <X1
—p—n+l
%Stl 0<xq
t1 < X1 < n

P1
+n-1
X1 < —glt]_—{— ptn—2 2n

X < —poto+n
X1 < pity + poto+ p1

+P2—2
_p—?tl%- 7—[)1;2[324-2 <t —pititxi—p1+1<x
%,jlétz P2tz <Xz
< ot + oy 0<x
o< _Epltﬁ-% Xo < —piti + X1
tzS% X< pata+p2—1
X< —=Xp+nN

Figure 5.5: Sorted inequality system for the simple tilixgmple

simplifiers were not able to reduce the result to a decisiea Wwith only one leaf: the result
had 17 leaves and 30 atomic formulas in the conditions.

5.2.3 Tiling and Communication

As a final example, let us look at another tiling problem. Thevjpus section shows how to
enumerate the points in the index space in a tiled fashiommenate the tiles and, for every
tile, the points within the tile. Let us now look at the comriaations necessary between
the tiles. Let us assume that every pdixt, ;) in the 2-dimensional index space represents
an operation which depends on some values computed by thatiopeat(x; —2,x; — 1)

(if (xg —2,x2— 1) is part of the index space). The problem we want to solve iDtopute
which tiles have to communicate with each other. To put ittheowords: the points within
one tile must communicate with other points (in the same aresother tiles). We want
to know between which tiles communications take place (ahithvpoints are involved).
This is used in loop parallelization to avoid communicatitmetween the individual points;
instead, communication is done at the tile level, i.e., yW& communicates once with its
communication partners and this communication transfiérhe values the points in the
sending tile need to transfer to the receiving tile.

We use the same index space, tile shape, and lattice as irrdhi®ys section. The
difference is that—since we are talking about sending anéiving tiles—we have to use
separate variables for the sender and the receiver. Wa ise&, X2, 01,0, for the sender
coordinates ant],t5, X, %5, 0,0, for the receiver coordinates.

The connection between the senders and the receivers isthradgh two equations.
Since we assume thét;,Xx>) sends data tox; + 2,x + 1) (if both points are in the index
space), we have the additional equatighs- x; + 2 andx, = xo + 1.
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The complete inequality system describing the commurinatis:

0<x1 Ofxll

0<x Ofxlz
X1+X2 <n X +X <n

0<0, 0<0,
0 <p—1 0, <pr—1

0, <01 0, <0} (5.4)
00<0+p1—1 0] <0+p—1

x\ _, (u 01 x\ _, (4 0y
() = (2)+ (&) () () (@
X/2:X2—{—l

If we wanted to generate code for the communication betweeiles, we would have
to calculate two separate pieces of information: we wouledn® compute which tile a
given tile sends its data to (variable orderifigtz,t7,t5,...), and which tiles a given tile
receives data from (variable orderitigt),t1,t5,...). We discuss here only the calculation
for the sender code. An appropriate variable ordering fisr pihoblem isty,to, 7,15, X1, %2
(projecting away the other dimensions). If we look at thegiradities oft; andt,, we get an
enumeration of the destination tiles in dependenct ahdt,. And, for every(t;,t5), we
have an enumeration of the source poifs x2) whose data must be sent {g,t5). (The
question of which points inside the target tile need datenfrehich source point is solved
on the receiver side).

Projecting System (5.4) to the variablggty, t],t5, x1, X2 without calculating bounds for
t; andt; (i.e., the elimination stopped after finding the boundstfan dependence df and
ty) took 36 seconds usingeE®LOG for tree simplification, and 87 seconds when we used our
CAD implementation to simplify the decision tree.

Computing also the bounds farandt, took considerably longer. We could not wait for
an answer to the whole problem; we had to specialize Systel)) {br example withp, = 4.
In this case, the full projection took 450 seconds usimpEROG for tree simplification, and
294 seconds with the CAD based simplifier. The sorting algorifrom Section 4.3.2 could
not deliver a result at all in any case, it overflowedRCEs maximum heap size of 128
MB after two hours of computation.

5.3 Observations

During the experiments reported in this chapter and othpliGgtions of our procedures,
we made some general observations concerning our impletientWe briefly summarize
these observations:

e We consider the use of®LOG's quantifier elimination features as a decision method
for logical formulas to simplify decision trees very sucsfes Most of the problems
were solved in less than one second (including the stamop fior REDUCE).
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e Our CAD implementation was sufficient to simplify the deaisirees in the examples
of this chapter. The performance was (as expected) moskdirte not as good as
REDLOG's, but it was sufficient to get results in reasonable timee €kamples we
chose are “friendly” in the sense that the polynomials appgan the decision trees
do not have a high total degree (usually less than 3) and at 3npsrameters. This
is a reason for the good performance of our CAD implememasce we observed
severe performance degradation with inputs of polynomidik a total degree of 4
and higher.

e There is some potential for better performance of the CADr@gugh: the simplifi-
cation of the decision trees, as shown in Section 4.2.2, fatdwilas to the context
during the recursion over the decision tree. This means Wian the simplifier de-
scends a branch of the tree, theRef polynomials in the context is extended to a new
setP’ D P in each step. Our CAD implementation computes a fresh deositign of
P’ without taking advantage of the decomposition already agetpforP. In all three
steps of the CAD procedure (projection, base case, ext®nsione work is repeated,
since some of the polynomials and zeros are the same. We bawaptimized our
implementation to avoid these redundant computationgesihnis would corrupt its
modular structure. This kind of optimization is not possillith REDUCE, since we
have no access to the internal state of its quantifier elitiwingrocedure.

e The use of quantifier elimination with answer seems to belproétic, since the al-
gorithms relying on it tend to produce huge outputs (see timvex union example
and the simple tiling example) or need more computation tima@ the approach us-
ing Fourier-Motzkin elimination (see the tiling examples)d sometimes run out of
memory.

These points suggest some topics for further research:

e Currently, our implementation starts a nevedBRUCE process every time a quantifier
elimination problem has to be solved. Although the starcliREDUCE is very fast,
a closer connection betweereRuce and our system could eliminate some of the
invocation costs for every quantifier elimination call.

e An analysis of the decision problems occurring in practmrablems during decision
tree simplification could lead to a CAD implementation whisloptimized for the
situations which appear frequently when using our methodsdél-world applications.

e The use of quantifier elimination to solve some problemsctliygequires further in-
vestigation on how the questions we ask the quantifier etitron with answer method
can be reformulat