
Universität Passau
Fakultät für Mathematik und Informatik

Extending the Polyhedron Model to
Inequality Systems with Non-linear

Parameters using Quantifier Elimination

Diplomarbeit

Autor:
Armin Größlinger

Aufgabensteller:
Prof. Christian Lengauer, Ph.D.
Lehrstuhl für Programmierung

Universität Passau

Betreuer:
Dr. Martin Griebl

Passau, 23. September 2003

Abstract

The polyhedron model has proved to be a useful tool in studying methods for the automatic
parallelization of loop nests. Most of the mathematical tools developed for the polyhedron
model require the coefficients of variables to be constants.This restriction has turned out
to be a severe limitation for several recent developments inthe polyhedron model. We
show how the polyhedron model can be generalized to allow non-linear parameters, i.e.,
parameters appearing in the coefficients of variables. The mathematical method we use
for this generalization is quantifier elimination in the real numbers. We demonstrate how
existing algorithms can be generalized by the use of decision methods and give examples of
new algorithms which use quantifier elimination directly tosolve common problems in the
polyhedron model.

Acknowledgements

The work presented in this thesis has only been possible because of the support
I got from the following people. First of all, I have to thank my tutor Dr. Martin
Griebl for the many discussions about this thesis, his valuable suggestions, and
for proofreading the text of this thesis. I am grateful to Prof. Christian Lengauer,
Ph.D. for giving me the possibility to explore the topic treated here and the
opportunity to write a diploma thesis about it. He read a draft of this thesis
and improved my usage of the English language. My thanks alsogo to Dr.
Andreas Dolzmann for his help with REDUCE/REDLOG and the discussions
about quantifier elimination in general. I thank Peter Faberfor reading an early
draft of this thesis and for the discussions together with the other members of
theLooPo team, Michael Classen, Tobias Langhammer, and Thomas Wondrak.
Lorenz Lang helped me with some LATEX-typesetting issues.

Contents

1 Introduction 1
1.1 The Polyhedron Model . 1
1.2 Introductory Example with Non-linear Parameters 2

2 Mathematical Prerequisites 7
2.1 Polyhedra . 7

2.1.1 Definitions . 7
2.1.2 Fourier-Motzkin Elimination .. 8
2.1.3 Polyhedra and Integers . 10
2.1.4 Polyhedra with Parameters . 11

2.2 Logic . 14
2.3 Algebra . 19

2.3.1 Rings . 19
2.3.2 The Real Numbers asΣord-Structure 19
2.3.3 Polynomial Rings . 20
2.3.4 Real Roots of Polynomials . 25
2.3.5 Algebraic Numbers . 26

3 Quantifier Elimination 29
3.1 Definitions . 29
3.2 Virtual Substitution .. 30

3.2.1 Prerequisites . 31
3.2.2 The Basic Algorithm for Linear Formulas 32
3.2.3 Virtual Substitution and Non-linear Terms 38
3.2.4 Multiple Quantifiers . 39
3.2.5 Quantifier Elimination with Answer 39
3.2.6 Generalized Method with Infinitesimals 40

3.3 Cylindrical Algebraic Decomposition 41
3.3.1 Definitions . 42
3.3.2 Projection Phase . 44
3.3.3 Base Case . 45
3.3.4 Complete CAD Procedure . 46
3.3.5 Example . 47

3.4 Integers . 50
3.5 Implementations Used for this Thesis 51

4 Applying Quantifier Elimination to the Polyhedron Model 53
4.1 The Generalized Polyhedron Model 54

4.1.1 Tree Representation of Case Distinctions 54
4.1.2 Representing Results from Quantifier Elimination with Answer as

Trees . 56
4.2 Recipe for the Generalization of Algorithms to Non-linear Parameters . . . 57

4.2.1 A Generalized Fourier-Motzkin Algorithm 58
4.2.2 Simplifying the Decision Trees 61

4.3 New Algorithms based on Quantifier Elimination 63
4.3.1 Lexicographic Minima and Maxima 63
4.3.2 Sorting a System of Inequalities 64
4.3.3 Convex and Disjoint Unions of Polyhedra 68

5 Sample Applications 75
5.1 Convex and Disjoint Union .75

5.1.1 Convex Union . 75
5.1.2 Disjoint Union . 76

5.2 Tiling an Index Space . 78
5.2.1 The Principle of Tiling . 78
5.2.2 Simple Tiling . 78
5.2.3 Tiling and Communication . 80

5.3 Observations . 81

6 Conclusion 83

Chapter 1

Introduction

1.1 The Polyhedron Model

The field of automatic parallelization has been a research area for many years now. Different
approaches to transform a sequential input program into a parallel target program have been
developed. One of these is parallelization based on thepolyhedron model[Len93]. In this
approach the operations performed by the input program are described by polyhedra (subsets
of then-dimensional space of real numbers bounded by hyperplanes)or polytopes (bounded
polyhedra) and a partial ordering on them, called the dependence relation. All the analysis
and the transformations are performed in this mathematicalmodel of the original program.
The final target program is then generated from the resultingpolyhedra. It is clear that the
power and the limitations of this approach lie entirely in the expressivity of the polyhedron
model and the transformations which can be performed therein.

for i := 0 to n do

for j := 0 to i+2 do

A(i, j) = A(i−1, j) + A(i, j−1);

od

od

for t := 0 to 2n+2 do

forall p := max(0, t−n) to min(t, ⌊t/2⌋+1) do

A(t−p, p) = A(t−p−1, p) + A(t−p, p−1);

od

od

i

j
p

t

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

������������

������������������������

������������

������������

������������

������������

������������

������������

������������

������������

������������

��������������������������

����������������������������

��������������

��������������

��������������

��������������

��������������

����������������������������

��������������

���������
���������
���������
���������

���������
���������
���������
���������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

Figure 1.1: Loop transformations in the polyhedron model

Figure 1.1 shows a sketch of the complete process. From the program text a description
of the source program in terms of a polyhedron is derived (left side). The polyhedron is
then transformed (bottom) and a new program (the “target program”) is obtained from the

2 1. Introduction

resulting polyhedron (right side). This process happens atcompile time, i.e., it is performed
once when the target program is constructed and compiled.

Over the last decades powerful methods for the manipulationof polyhedra to achieve
different goals (obtain parallelism, perform cache optimization, etc.) have been developed
and used in compilers and meta-programming systems (e.g.,LooPo [GL97]).

Most of the libraries and tools which have been developed forthe polyhedron model
(e.g., PIP [FCB02], Polylib [Wil93]) rest on the supposition that the variables of the equa-
tions and inequalities describing the polyhedra have constant coefficients. This is a reason-
able choice for several reasons. First, the polyhedron model (and the older polytope model)
were applied to describe programs which are nests offor -loops with affine bounds and uni-
form dependences [Lam74]. Even after the extensions from uniform to affine dependences
and from the polytope model to the polyhedron model, many programs and the necessary
transformations could still be described by systems with constant coefficients. Second, many
algorithms depend on the signs of the coefficients, so non-constant coefficients would require
the result to contain case distinctions (see Section 2.1.4).

However, for some problems the limitation to constant coefficients is too restrictive.
As we will see in Section 1.2 and in greater detail in Section 5.2, the problem of tiling an
index space of a program with a parametric tile size requiresparameters to appear in the
coefficients of some variables and can therefore not be solved with the existing techniques
for systems with constant coefficients.

The main observations which motivated this thesis are:

(1) Generalizing existing algorithms of the polyhedron model to handle parametric coeffi-
cients requires the results of the algorithms to contain case distinctions with conditions
depending on the non-linear parameters (Section 4.2).

(2) The case distinctions are in general very large and therefore must be simplified as
much as possible.

(3) One method to simplify these case distinctions requiresquantifier elimination (Chap-
ter 3).

(4) Quantifier elimination can itself be used to compute someof the results often required
when working in the polyhedron model (Section 4.3).

In this thesis we introduce some concepts from the theory of polyhedra, algebra, and logic
(Chapter 2), introduce our main mathematical tool (quantifier elimination) in Chapter 3,
elaborate on how we generalize the polyhedron model and someof its algorithms to non-
linear parameters in Chapter 4, and show some applications of the generalized algorithms in
Chapter 5.

1.2 Introductory Example with Non-linear Parameters

We illustrate the principal difficulty of introducing non-constant coefficients to the polyhe-
dron model with a simple example. Suppose we are given the following program forn≥ 0:

for i = 0 to n
A[i] := f (i)

This program assigns, for everyi ∈ {0, . . . ,n}, a new value toA[i] which is computed by the

1.2. Introductory Example with Non-linear Parameters 3

function call f (i). We assume further thatf does not have side effects, so the iterations of
the for -loop are independent of each other. Therefore, it is possible to execute the iterations
in an arbitrary order or even in parallel. What we want to do isexecute the program on a
processor grid withp processors, wherep≥ 1.

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3t=

i=
o= 0 1 2 0 1 2 0 1 2 0 1

Figure 1.2: A tiled iteration domain

What we choose to do is partition the iteration domain{0, . . . ,n} of the program into
parts (which are calledtiles) of sizep and, for every part, assign one iteration to each avail-
able processor. We are going to use tiles which spanp adjacent points from the iteration
domain. Figure 1.2 shows the iteration domain forn = 10 and the tiles we want to use for
p = 3 (in boxes). The iterations which are to be performed on the same processor are drawn
in the same color. The figure also shows that we assign each tile a numbert. The offset
of a point from the left side of the tile containing the point is calledo. o is the number of
the processor executing the respective iteration. In the depicted iteration domain, the offsets
within a tile are 0, 1, 2, from left to right. Obviously, the offsets are, in general, in the range
0, . . . , p−1.

Let us describe the tiling we desire through affine inequalities and one equation:

0≤ i ≤ n

0≤o≤ p−1

i = p· t +o

Note that the variablesi and o have constant coefficients only, whereas in the equation
i = p· t +o the variablet has the unknown coefficientp.

From this description we would like to extract twofor -loops: the first loop enumerates
the tiles and the second loop enumerates, for every tile enumerated by the first loop, the
points of the iteration domain which lie inside the tile.1

Mathematically, this can be achieved by applying Fourier-Motzkin elimination (cf. Sec-
tion 2.1.2) to the above system of inequalities and equations. We begin the elimination by
substitutingo= i− p·t (which is derived from the equation) into the inequalities.This yields

0≤ i ≤ n

0≤ i − p· t ≤ p−1

The next step is to solve the inequalities fori:

0≤ i

p· t ≤ i

i ≤ n

i ≤ p· t + p−1

(1.1)

1This loop structure has been chosen to keep the example simple. It does not yield an optimal parallel
program.

4 1. Introduction

Now we eliminatei from the system by comparing each lower bound against each upper
bound:

0≤n

0≤ p· t + p−1

p· t ≤n

p· t ≤ p· t + p−1

Here we can do an optimization step. Sincen≥ 0 andp≥ 1 is being assumed, the inequal-
ities 0≤ n and p · t ≤ p · t + p− 1 are always true and can be removed. This step is not
necessary for the correctness of the result, but it simplifies the following calculation. The
next step is to solve the remaining inequalities (0≤ p· t + p−1 andp· t ≤ n) for t, which is
done by dividing the inequalities byp. This requires a case distinction on the sign ofp since,
when p < 0, the orientation of the inequality relation changes, and,when p = 0, dividing
by p is not allowed (and the system does not restrict the values oft in any way). Since in
both inequalities the coefficient oft is unknown, we have, in principle, to make two case
distinctions:

•
p<0

kkkkkkkkkkkkkkkkkk

p=0
p>0

SSSSSSSSSSSSSSSSSS

•
p<0

��
��

��
�

p=0

p>0

??
??

??
? •

p<0

��
��

��
�

p=0

p>0

??
??

??
? •

p<0

��
��

��
�

p=0

p>0

??
??

??
?

Of course, 6 of the 9 possible cases are impossible because both case distinctions are on the
sign ofp. In addition, we have assumedp≥ 1, so the first case distinction onp is superfluous
sincep≥ 1 implies p > 0. The second case distinction on the signp can be eliminated by
the same reasoning or, alternatively, by the argument thatp > 0 (the only possibility of the
first case distinction) and this (trivially) implies thatp > 0 when the sign of the “secondp”
is required. This reasoning is simple to carry out here, but it illustrates the general problem
of avoiding unnecessary case distinctions.

Under the assumption ofp≥ 1 the solved system takes the form

1
p
−1≤ t ≤ n

p
(1.2)

Systems (1.1) and (1.2) together give us all the bounds needed to construct a parallel program
(see also Section 2.1.2):

for t = ⌈ 1
p −1⌉ to ⌊ n

p⌋
parfor i = max{0, p· t} to min{n, p· t + p−1}

A[i] := f (i)

The outerfor -loop enumerates the tilest necessary to cover the iteration domain of the
original program. The innerparallel parfor -loop enumerates every point from the iteration
domain which lies in tilet and executes them in parallel. By construction, every tile contains
p points, possibly except the last tile which may contain fewer points.

Although the example is relatively simple, some important observations can be made:

1.2. Introductory Example with Non-linear Parameters 5

• The presence of a parameter in the coefficient of a variable (in this case the parameter
p as coefficient of the variablet) introduces case distinctions in general (in our case
on the sign of the parameter).

• The parametern, which appears only in additive constants, does not cause case dis-
tinctions.

• To find out which of the case distinctions are really necessary, we have to analyze
logical consequences: to find out that the casesp< 0 andp = 0 can never happen, we
have to figure out thatp≥ 1 impliesp > 0 (in the real numbers).

Let us make the third point a bit more precise: what we had to find out exactly is, that in
the real numbers the logical formula∀p(p≥ 1→ p > 0) holds, i.e., for every real number
p it is true thatp≥ 1 implies p > 0. Note that it is necessary to use a quantifier to express
this condition. The exact definition of logical formulas will be introduced in Section 2.2
and a methods to check (i.e., decide) quantified logical formulas in the reals is presented in
Chapter 3.

Chapter 2

Mathematical Prerequisites

2.1 Polyhedra

2.1.1 Definitions

There are different mathematical ways to describe the concept of a polyhedron; the definition
we use here is based on linear equations and inequalities:

Definition 2.1 A linear equationis an equation of the form

n

∑
i=1

ci ·xi +d = 0

wherex1, . . . ,xn are the unknowns andc1, . . . ,cn,d ∈ R. An inequality of the form

n

∑
i=1

ci ·xi +d ≥ 0

is called alinear inequality. c1, . . . ,cn are calledcoefficients, andd is called theadditive
constantor additive term.

Linear equations can be expressed by two linear inequalities, since∑n
i=1cixi +d = 0 is equiv-

alent to∑n
i=1 cixi +d ≥ 0∧∑n

i=1 cixi +d ≤ 0. It is desirable to use equations whenever pos-
sible, since equations can be treated much more efficiently by many algorithms than a pair
of complementary inequalities (see, for example, Section 4.2.1).

We use also a vectorial notation for linear equations and inequalities: with
x̄ = (x1, . . . ,xn) andc̄ = (c1, . . . ,cn), they can be written as follows:

c̄· x̄+d = 0

c̄· x̄+d ≥ 0

or even (using homogeneous coordinates) as follows:

(
c̄ d

)
·
(

x̄
1

)

≥ 0

The algebraic concepts of a linear equation and inequality have direct geometric corre-
spondents:

8 2. Mathematical Prerequisites

Definition 2.2 Let ā∈ Rn\{0} andb∈ R. Then

A(ā,b) = {x̄∈ Rn | ā· x̄+b = 0}

is called ahyperplane.

A fundamental result of the theory of linear algebra states that the hyperplanes ofRn are
exactly the affine subspaces ofRn with dimensionalityn−1 (see any linear algebra book).

Definition 2.3 Let ā∈ Rn\{0} andb∈ R. The set

H(ā,b) = {x̄∈ Rn | ā· x̄+b≥ 0}

is called ahalfspaceof Rn.

Please note thatA(ā,b) = A(−ā,−b), for any ā andb, but H(ā,b) 6= H(−ā,−b). Further-
more:

H(ā,b)∩H(−ā,−b) =A(ā,b)

H(ā,b)∪H(−ā,−b) =Rn

From the correspondence between linear equations and hyperplanes it is immediately obvi-
ous that the same correspondence holds between linear inequalities and halfspaces.

Definition 2.4 A polyhedron Pin n-dimensional real space is a subset ofRn which is
an intersection of finitely many halfspaces, i.e., form ∈ N, ā1, . . . , ām ∈ Rn \ {0}, and
b1, . . . ,bm ∈ R:

P =
m

\

i=1

H(āi,bi) = {x̄∈ Rn |
m̂

i=1

āi · x̄i +bi ≥ 0}

An alternative form of describing the polyhedron is

P = {x̄∈ Rn | M · x̄+ b̄≥ 0}

where

M =

ā1
...

ām

 , b̄ =

b1
...

bm

Definition 2.5 A bounded polyhedron is called apolytope.

2.1.2 Fourier-Motzkin Elimination

One of the fundamental algorithms which can be applied to polyhedra isFourier-Motzkin
elimination ([Ban93], Section 3.8; [Sch94], Section 12.2). Given a finite setSof inequalities
with variablesx1, . . . ,xn andlinear parametersp1, . . . , pm as input, this algorithm calculates
the following two pieces of information:

2.1. Polyhedra 9

• a setF of inequalities only in the parameters such that
V

F (i.e., the conjunction of
the inequalities inF) is true for given values of the parameters if and only if the
polyhedron described by

V

S is non-empty, and

• inequality systemsLi andUi representing lower and upper bounds ofxi (for 1≤ i ≤ n)
such that

– Li contains only lower bounds ofxi , i.e., inequalities of the formxi ≥ t for some
expressiont (which does not containxi),

– Ui contains only upper bounds ofxi , i.e., inequalities of the formxi ≤ t for some
expressiont (whereinxi does not occur),

–
V

S is equivalent to
Vn

i=1(
V

Li ∧
V

Ui),

– no variablexi+1, . . . ,xn appears inUi or Li, for 1≤ i < n.

This means thatL1 andU1 contain inequalities representing lower and upper bounds for
x1 which depend only on the parameters.L2 andU2 list lower and upper bounds forx2 in
dependence ofx1 and the parameters, and so forth.

Given an affine expressiont := ∑n
i=1cixi + ∑m

i=1 di pi + e with the variablesx1, . . . ,xn,
parametersp1, . . . , pm, and additive constante, we write coeffxi (t) to denoteci , the coefficient
of xi .

The algorithm works as follows:

Sn :=S

Li :={xi ≥ xi −
t

coeffxi (t)
| (t ≥ 0) ∈ Si ,coeffxi (t) > 0} for i = n, . . . ,1

Ui :={xi ≤ xi −
t

coeffxi (t)
| (t ≥ 0) ∈ Si ,coeffxi (t) < 0} for i = n, . . . ,1

Si−1 :={t ≥ 0 | (t ≥ 0) ∈ Si ,coeffxi (t) = 0} ∪ for i = n, . . . ,1

{t ′− t ≥ 0 | (xi ≥ t) ∈ Li,(xi ≤ t ′) ∈Ui}
F :=S0

Note thatxi cancels in the expressionsxi − t
coeffxi (t)

, soLi andUi really contain inequalities

with the specified properties.
As stated above, the condition

V

F states (in dependence of the parameters) whether
V

S
has a solution or not. It is important to note that any solution is in thereals. If condition

V

F
is satisfied by the parameters, it is still possible that

V

Shas no integral solution. Algorithms
deciding the existence of integral solutions are beyond thescope of this thesis. We just show
a way to enumerate the integral points of a polyhedron in the next section.

Unfortunately, Fourier-Motzkin elimination can suffer from severe performance prob-
lems in practice. This is due to the fact that—in the worst case—the number of inequalities
is squared in every elimination step: if a given system hasb bounds, the worst case is when
half of the inequalities are lower bounds and the other half are upper bounds. The number of
inequalities in the following step is thenb2 · b

2 = b2

4 . Therefore, Fourier-Motzkin elimination
is at least doubly exponential in the number of variables in the worst case. We discuss how
to constrain this growth of inequalities in Section 4.2.1.

10 2. Mathematical Prerequisites

2.1.3 Polyhedra and Integers

In many applications one is interested in the integral points inside a polyhedron. Unfortu-
nately, there is nosimpletechnique to decide whether a polyhedron contains at least one
integral point (in dependence of the parameters), so we do not discuss this question here.
Instead, we present a method to enumerate all integral points of a polyhedron. This means
that, in the polyhedron model, we are working in the reals most of the time and only come
back to the integers in the final step when code to enumerate the integral points of the derived
polyhedra is generated.

Let Sagain be a set of inequalities in the variablesx1, . . . ,xn. Fourier-Motzkin elimina-
tion computes the sets of lower and upper bounds

Li = {xi ≥ l i,1(x1, . . . ,xi−1), . . . ,xi ≥ l i,ki (x1, . . . ,xi−1)}
Ui = {xi ≤ ui,1(x1, . . . ,xi−1), . . . ,xi ≤ ui,oi (x1, . . . ,xi−1)}

for every variablex1, . . . ,xn such that
V

S is equivalent to

l1,1, . . . , l1,k1 ≤x1 ≤ u1,1, . . . ,u1,o1

l2,1(x1), . . . , l2,k2(x1) ≤x2 ≤ u2,1(x1), . . . ,u2,o2(x1)

...

ln,1(x1, . . . ,xn−1), . . . , ln,kn(x1, . . . ,xn−1) ≤xn ≤ un,1(x1, . . . ,xn−1), . . . ,un,on(x1, . . . ,xn−1)

Of course, the parametersp1, . . . , pm can appear in everyl i, j andui, j , but the dependence of
the bounds on the parameters is left out in the notation used here for readability purposes.

We replace every lower boundl by ⌈l⌉ and every upper boundu by ⌊u⌋ and enumerate
only integral values for every variable between the (integral) lower and upper bounds. This
is usually done by constructing a nest offor -loops:

for x1 = max{⌈l1,1⌉, . . . ,⌈l1,k1⌉} to min{⌊u1,1⌋, . . . ,⌊u1,o1⌋}
for x2 = max{⌈l2,1(x1)⌉, . . . ,⌈l2,k2(x1)⌉} to min{⌊u2,1(x1)⌋, . . . ,⌊u2,o2(x1)⌋}

. . .
for xn = max{⌈l1,n(x1, . . . ,xn−1)⌉, . . . ,⌈ln,kn(x1, . . . ,xn−1)⌉} to

min{⌊un,1(x1, . . . ,xn−1)⌋, . . . ,⌊un,on(x1, . . . ,xn−1)⌋}
loop body depending on(x1, . . . ,xn)

This loop nest enumerates all points(x1, . . . ,xn) ∈ Zn which satisfy
V

S (for given values
of the parametersp1, . . . , pm). If the enumerated polyhedron has no integral solutions (but
some real solutions) at least one of thefor -loops will be empty (in the sense that its lower
bound is greater than its upper bound). This means that some superfluous work is done by
the outerfor -loops, but the enumeration is correct and complete in everycase.

This method to enumerate the integral points of a polyhedroncan be used together with
the generalized Fourier-Motzkin algorithm for inequalitysystems with non-linear parame-
ters, which we present in Section 4.2.1.

For our algorithm to compute disjoint unions of polyhedra (given in Section 4.3.3), we
need a trivial correspondence between strict and weak inequalities with respect to integral
solutions:

2.1. Polyhedra 11

Lemma 2.6 Let ∑n
i=1ci ·xi +d be an affine expression in the variables x1, . . . ,xn and coeffi-

cients c1, . . . ,cn,d ∈ Z. Then, for every(x1, . . . ,xn) ∈ Z,

n

∑
i=1

ci ·xi +d > 0 if and only if
n

∑
i=1

ci ·xi +d ≥ 1

and

n

∑
i=1

ci ·xi +d 6= 0 if and only if

(
n

∑
i=1

ci ·xi +d ≥ 1 ∨
n

∑
i=1

ci ·xi +d ≤−1

)

This lemma allows us to replace strict inequalities by weak inequalities (or a disjunction of
weak inequalities if we replace an inequality with the relation 6=), provided that the coeffi-
cients and the additive constant are integral numbers and weare only interested in integral
solutions of the inequality. That the coefficients are integral does not mean that they have to
be constant numbers fromZ; for example, they can also be polynomials in the parametersif
the parameters are assumed to be integral, too.

2.1.4 Polyhedra with Parameters

The definition of polyhedra given above states that the coefficients of the variables and the
additive constant be real numbers. From the mathematical point of view, there is little dif-
ference between using fixed numbers as coefficients, as in 2· x−4 ≥ 0, and specifying the
coefficients through parameters, as inp · x−q ≥ 0. Unfortunately, from the computational
point of view, there is a big difference between these two inequalities. This becomes clear
when one tries to solve either inequality for the only variable x.

In the case of 2· x−4 ≥ 0, the coefficient ofx is a fixed number, namely 2, and it can
be determined statically (at compile time) that 2> 0. Therefore, solving the inequality forx
yieldsx≥ 4

2.
On the other hand, the coefficient ofx in p · x− q ≥ 0 is the parameterp, whose sign

cannot be determined (without further assumptions), so to solve for x in the general case
requires a case distinction to be made:

• Case 1:p> 0. We can divide byp and the orientation of the relation symbol stays the
same:x≥ q

p.

• Case 2:p < 0. We can divide byp, but have to change the orientation of the relation
symbol:x≤ q

p.

• Case 3:p = 0. The inequality is in this case just the conditionq ≥ 0, so we cannot
solve forx here.

Looking more closely at the problems introduced by parameters, it becomes clear that dif-
ferent levels of parametrization can be distinguished:

(1) The simplest extension of practical interest is to allowparameters to appearlinearly
in the additive term,

n

∑
i=1

cixi +
m

∑
j=1

di pi +e≥ 0 (2.1)

12 2. Mathematical Prerequisites

wherex1, . . . ,xn are again the variables,p1, . . . , pm are the parameters (calledweak
parametersas they appear only linearly), and the coefficientsc1, . . . ,cn,d1, . . . ,dm∈R
and the additive constante∈ R are fixed real numbers. Handling this case is relatively
easy, and it has been done for years in the domain of automaticloop parallelization.
The reason that linear parameters are no big problem is that one can interpret Inequal-
ity (2.1) as being non-parametric and having then+mvariablesx1, . . . ,xn, p1, . . . , pm.
Then it is possible to apply all computation techniques for the non-parametric polyhe-
dron model.

(2) A step further in the direction of full parametrization would be to allow parameters to
appear non-linearly in the additive term, i.e.,

n

∑
i=1

cixi + f ≥ 0 (2.2)

where f is an arbitrary polynomial in the parametersp1, . . . , pm. But this case can be
reduced to the case with linear parameters only by introducing new linear parameters
for every polynomial appearing in the input inequalities. For example,

2x+ p2 +3≥ 0

3x− p3 +1≥ 0

can be rewritten as

2x+q1 ≥ 0

3x+q2 ≥ 0

with q1 := p2 + 3 andq2 := −p3 + 1 and the transformed system can be handled as
in case (1). After the computations are performed, the linear parametersq1 andq2 are
resubstituted with the original expressions inp.

(3) The most general and most desirable form of parametrization is to introducestrong
parameters, which can appear in arbitrary powers and products in the coefficients of a
variable or in the additive term. Then the inequalities takeagain the form

n

∑
i=1

cixi +d ≥ 0 (2.3)

but nowc1, . . . ,cn,d are polynomials inp1, . . . , pm which are the parameters of the
polyhedron.

The big difference between (1), (2) on the one hand and (3) on the other is the effect the
parameters can have on the hyperplanes and halfspaces of oneinequality (or the hyperplane
of one equation, respectively).

Parameters appearing in the additive term can only translate hyperplanes (and therefore
halfspaces) in space, but the direction does not change. This is clear from the theory of
linear algebra, since the coefficientsc1, . . . ,cn describe a normal of the hyperplane (which is
constant) and the additive constant determines the translation of the hyperplane.

In contrast, when parameters appear in the coefficients of variables, the normal depends
on parameters and its orientation (and accordingly the direction of the hyperplane) changes

2.1. Polyhedra 13

0 1 4 7

0

1

4

y

x

2 3 5 6

2

3

0 1 4 7

0

1

4

y

x

2 3 5 6

2

3

p=4
p=3

p=2
p=1

y = -0.5.x + p

p=0

p=0.5
p=1

p=-0.5
p=-1

y = p.x + (2-2.p)

Figure 2.1: Hyperplanes defined by equations with a linear and a non-linear parameter

as the parameters change. This is illustrated in Figure 2.1.The left diagram shows the hyper-
planesy = 1

2 ·x+ p for somep, and obviously they are all parallel. The right diagram shows
that the hyperplanes defined byy = p · x+ (2− 2 · p) are not parallel and their directions
change withp, sincep appears as coefficient of the variablex.

The examplep · x−q ≥ 0 at the beginning of this section shows that the orientationof
the solution space (which is a halfspace) depends on the signof p. This example also shows
that it is not sufficient to allow polynomials in the parameters as coefficients of variables. To
solve the inequalityp·x−q≥ 0 for x we have to use the fractionqp.

Another complication is that we cannot assume that the parameters do not “mix”, i.e., if
different parameters appear in the coefficients of different variables in the input, they can—
after some transformations—appear together in the same coefficient. Let us take

p·x+y≥ 0

x−q·y≤ 0

as input of an elimination step which is, e.g., found in the Fourier-Motzkin algorithm (see
Section 2.1.2). To eliminatex, we first solve the system forx (assumingp > 0):

−1
p
·y≤x

x≤ q·y

and then we eliminatex by comparing the lower bound ofx against the upper bound:

−1
p
·y≤ q·y

After merging we obtain the result:
(

q+
1
p

)

·y≥ 0

In the input, the parameterp appears only as coefficient ofx andq only appears as coefficient
of y, but after the elimination ofx both parameters appear together in the coefficient ofy.

These two observations show that, if we introduce non-linear parameters, the right
choice for the domain of the coefficients is the quotient fieldQ(p1, . . . , pn), which consists
of fractions of polynomials from the polynomial ringQ[p1, . . . , pn]. Formal definitions of
Q[p1, . . . , pn] andQ(p1, . . . , pn) are given in Section 2.3.3.

14 2. Mathematical Prerequisites

2.2 Logic

As we have seen in the introductory example in Section 1.2, concepts from the theory of logic
are needed in dealing with our problem, like implication and(first-order) quantification. This
section introduces some notation common in logic, which will be the base of our formal
approach to dealing with logical formulas in subsequent sections.

We need ordinary first-order logic. “Ordinary” is used to distinguish this logic from its
variants like intuitionistic logic. Ordinary first-order logic is the most commonly used logic
in mathematics and computer science, so the reader should befamiliar with it. “First-order”
means that quantification is possible only for individuals,i.e., for a single value, not for sets.

To deal formally with logical formulas, we must first introduce the notion of a (logical)
language. The language determines which expressions (“terms”) and formulas can be legally
formed in the logic. After that, a semantics has to be assigned to the formulas.

The base for the definition of the language is asignature. A signature is a common
concept in computer science and it plays the same role in logic. Our signatures are relatively
simple: all operands are of the same “type,” and no higher-order functions are allowed.

Definition 2.7 A signatureΣ is a triple(F ,R ,ar) consisting of the set offunction symbols
F , the set of relation symbolsR , and anarity assignment ar: F ∪R → N.

The meaning of the signature is simple: we select some symbols we want to use to denote
functions, e.g.,F = {+,−, ·,0,1}, and relations, e.g.,R = {<}, and define the arities of
the function and relation symbols, e.g.,ar(+) = ar(·) = ar(<) = 2, ar(−) = 1, ar(0) =
ar(1) = 1. This example gives us a signature with the two binary operations “+” (addition),
“ ·” (multiplication), the unary function “−” (unary negation), two nullary function symbols
(also called constants) “0”, “1”, and a binary relation “<” (less than). This signatureΣord =
(F ,R ,ar) is often called thesignature of ordered rings. We come back to this signature in
subsequent sections.

It is important to note here that the signature does not assign any meaning (i.e., se-
mantics) to the function and relation symbols. The concretemeaning of the symbols is
determined by an interpretation (see below).

Terms and formulas will have to contain variables to be useful, so we need an infinite set
V containing all variables. The alphabet of the logical language is:

L =V ∪F ∪R ∪{(,), ,,=}

Now we can define the set oftermsfor the signatureΣ.

Definition 2.8 Tm(V ,Σ), the set oftermsoverV andΣ, is inductively defined by:

(1) V ⊆ Tm(V ,Σ)

(2) if f ∈ F andar(f) = 0 then f ∈ Tm(V ,Σ)

(3) if f ∈ F , ar(f) = n > 0 andt1, . . . , tn ∈ Tm(V ,Σ) then f (t1, . . . , tn) ∈ Tm(V ,Σ)

This definition states that every variable is a term, every nullary function symbol is a term,
and every function symbol applied to an appropriate number of other terms is again a term.
To continue the above example, legal terms for the signatureΣord are, e.g.,

x +(x,1) ∗(y,+(−(x),0))

2.2. Logic 15

with x,y∈V .
The prefix notation, e.g.,+(x,1), is tedious, so the more common infix notationx+1 is

used. We also apply the usual precedence rules to save parenthesis, e.g., we writey∗(−x+0)
to denote the formal term∗(y,+(−(x),0)). In addition,x−y will be used as an abbreviation
for x+(−y).

Atomic formulas come in two variants: equations and relations.

Definition 2.9 At(V ,Σ), the set ofatomic formulas, consists of:

(1) equationst1 = t2 wheret1, t2 ∈ Tm(V ,Σ),

(2) truth constantsr wherer ∈ R , ar(r) = 0, and

(2) predicatesr(t1, . . . , tn) wherer ∈ R , n = ar(r) > 0.

As with the terms, we usually write relation symbols in infix notation. UsingΣord, for
example, we writex < y instead of< (x,y).

Definition 2.10 Fm(V ,Σ), the set offirst-order formulas, is inductively defined by:

(1) At(V ,Σ) ⊆ Fm(V ,Σ)

(2) if ϕ ∈ Fm(V ,Σ) then(¬ϕ) ∈ Fm(V ,Σ)

(3) if ϕ,ψ ∈ Fm(V ,Σ) andρ ∈ {∧,∨,→,↔} then(ϕρψ) ∈ Fm(V ,Σ)

(4) if x∈ V , ϕ ∈ Fm(V ,Σ) then(∃xϕ),(∀xϕ) ∈ Fm(V ,Σ)

Qf(V ,Σ), the set ofquantifier-free formulas, is the subset ofFm(V ,Σ) which is obtained
when rule (4) is not used in the formula construction, i.e., the formulas inQf(V ,Σ) do not
contain∃x or ∀x constructs.

Again, this definition imposes strict requirements where toput parenthesis, but we apply the
usual rules to save parenthesis: in the chain¬, ∧, ∨, →, ↔ the symbol¬ shall have the
highest, and the symbol↔ shall have the lowest precedence.

A formula for a given signature is just syntax; a semantics isonly associated with a for-
mula when we choose a structure in which the formula is to be interpreted. This is analogous
to the signature/structure concept in computer science.

A structure for a given signatureΣ defines the domain (or universe) in which the formula
is interpreted and defines mappings from the function and relation symbols ofΣ to functions
and relations over the domain of the structure.

Definition 2.11 A Σ-structure Ais a triple(A, iF , iR) where

(1) A is a non-empty set (i.e.,A 6= ∅),

(2) iF : F → S

n∈N A(An) with ar(f) = n implies iF (f) ∈ A(An),

(3) iR : R → S

n∈N 2(An) with ar(r) = n implies iR (r) ∈ 2(An)

As a short-hand notation we definef A := iF (f) for f ∈ F andrA := iR (r) for r ∈ R .

16 2. Mathematical Prerequisites

What a structureA really does (besides defining a universeA), is that it assigns to everyn-ary
function symbol f a function f A : An → A and to everyn-ary relation symbolr a relation
rA ⊆ An.

The interpretation of function symbols defined by a structureAextends naturally to terms
if we also choose anenvironment, i.e., a mappingh :V → A which assigns to every variable
a value from the domainA of the structureA.

Definition 2.12 Given a termt ∈Tm(V ,Σ), its interpretationtA
h in a structureA= (A, iF , iR)

in the environmenth : V → A is defined as follows:

(1) tA
h = h(t) if t ∈ V

(2) tA
h = f A if t ∈ F , ar(f) = 0

(3) tA
h = f A

(
(t1)

A
h , . . . ,(tn)

A
h

)
if t = f (t1, . . . , tn), ar(f) = n > 0

The interpretation of a term (in a given environment) is a value from the domain of the
structure. The interpretation of a formula is a truth value,i.e., the value “true” (denoted by
⊤) if the formula holds under the given environment, and “false” (denoted by⊥) otherwise.
Using the interpretation of terms, the interpretation of quantifier-free formulas is straight
forward:

Definition 2.13 Given a quantifier-free formulaϕ ∈ Qf(V ,Σ), its interpretationϕA
h in a

structureA = (A, iF , iR) in an environmenth : V → A is defined as follows by induction on
the formula structure:

(1) (t = t ′)A
h =

{

⊤ if tA
h = t ′Ah

⊥ otherwise

(2) if ϕ = r, r ∈ R thenϕA
h = rA

(3) if ϕ = r(t1, . . . , tn) thenϕA
h =

{

⊤ if
(
(t1)

A
h , . . . ,(tn)

A
h

)
∈ rA

⊥ otherwise

(4) (¬ϕ)A
h =

{

⊤ if ϕA
h = ⊥

⊥ otherwise

(5) (ϕ∧ψ)A
h =

{

⊤ if ϕA
h = ⊤ andψA

h = ⊤
⊥ otherwise

(6) (ϕ∨ψ)A
h =

{

⊤ if ϕA
h = ⊤ or ψA

h = ⊤
⊥ otherwise

(7) (ϕ → ψ)A
h =

{

⊤ if ϕA
h = ⊥ or ψA

h = ⊤
⊥ otherwise

(8) (ϕ ↔ ψ)A
h =

{

⊤ if ϕA
h = ψA

h

⊥ otherwise

2.2. Logic 17

The semantics of formulas with quantifiers is defined by modifying the environment. For
h,h′ : V → A the notationh′ =x h shall mean that, for ally∈ V \{x}, h′(y) = h(y), i.e., h
andh′ are the same on all variables, possibly exceptx.

(9) (∃xϕ)
A
h =

{

⊤ if there is an environmenth′ with h′ =x h andϕA
h′ = ⊤

⊥ otherwise

(10) (∀xϕ)A
h =

{

⊤ if ϕA
h′ = ⊤ for every environmenth′ with h′ =x h

⊥ otherwise

ϕA
h = ⊤ is also written asA �h ϕ. If ϕA

h = ⊤ for everyenvironmenth, we writeA � ϕ.

We must deal with the variables of a term, or the variables appearing freely (unquantified)
in a formula.

Definition 2.14 var(t), theset of variables appearing in a term t, is defined by:

(1) var(x) = {x} if x∈ V

(2) var(f) = ∅ if f ∈ F andar(f) = 0

(3) var
(

f (t1, . . . , tn)
)

=
n
S

i=1
var(ti) if f ∈ F andar(f) = n > 0

Theset of free variables frvar(ϕ) of a formulaϕ ∈ Fm(V ,Σ) is defined by:

(1) frvar(t1 = t2) = var(t1)∪var(t2)

(2) frvar(r) = ∅ if r ∈ R andar(r) = 0

(3) frvar
(
r(t1, . . . , tn)

)
=

n
S

i=1
var(ti) if r ∈ R andar(r) = n > 0

(4) frvar(¬ϕ) = frvar(ϕ)

(5) frvar(ϕρψ) = frvar(ϕ)∪ frvar(ψ) for ρ ∈ {∧,∨,→,↔}

(6) frvar(Qxϕ) = frvar(ϕ)\{x} for Q∈ {∀,∃} andx∈ V

It is sometimes easier to use an alternative notation of “extended terms” and “extended for-
mulas” instead of environments when talking about the values of formulas.

Definition 2.15 Given a term t ∈ Tm(V ,Σ) and pairwise differentx1, . . . ,xn with
var(t) ⊆ {x1, . . . ,xn}, t(x1, . . . ,xn) is called anextended term, and(x1, . . . ,xn) is called an
extension.
Given a formula ϕ ∈ Fm(V ,Σ) and pairwise different x1, . . . ,xn ∈ V with
frvar(ϕ) ⊆ {x1, . . . ,xn}, ϕ(x1, . . . ,xn) is called anextended formula, and (x1, . . . ,xn) is
called anextension.

When we select an extension of a term or a formula, it is not necessary to specify a complete
environment to determine the value of the term or formula, but it is sufficient to specify
values for the variables of the extension.

18 2. Mathematical Prerequisites

Definition 2.16 Given a termt ∈Tm(V ,Σ) or a formulaϕ∈Fm(V ,Σ) and a fixed extension
(x1, . . . ,xn), a structureA with universeA and elementsa1, . . . ,an, we define

tA(a1, . . . ,an) := tA
h

ϕA(a1, . . . ,an) := ϕA
h

for any environmenth : V → A with h(x1) = a1, . . . ,h(xn) = an.

We note here that:

• The values oftA(a1, . . . ,an) and ϕA(a1, . . . ,an) depend on the choice of the exten-
sion x1, . . . ,xn. Therefore, we say that we fix an extension before talking about
tA(a1, . . . ,an) or ϕA(a1, . . . ,an).

• The definition of an extension (Definition 2.15) ensures thattA(a1, . . . ,an) and
ϕA(a1, . . . ,an) are well-defined, because every variable int (every free variable in
ϕ, respectively) must appear in the extension.

• An extended termt(x1, . . . ,xn) defines a functiontA : An →A, and an extended formula
ϕ(x1, . . . ,xn) defines a functionϕA : An →{⊥,⊤} in a structureA with universeA. In
analogy to (unextended) formulas we writeA � ϕ(a1, . . . ,an) if ϕA(a1, . . . ,an) = ⊤.

• An extended formulaϕ(x1, . . . ,xn) defines a set ofn-tuples from the universeA:

{
(a1, . . . ,an) ∈ An | ϕA(a1, . . . ,an) = ⊤

}

In the following, we refer to this set as “the set defined byϕ” if the structureA and the
extension(x1, . . . ,xn) are clear from the context.

The notation∀(ϕ) and∃(ϕ) is a short-hand for∀x1 · · ·∀xn(ϕ) and∃x1 · · ·∃xn (ϕ), where
frvar(ϕ) = {x1, . . . ,xn}.

Definition 2.17 The (simultaneous)substitution θ := [x1/t1, . . . ,xn/tn] of the variables
x1, . . . ,xn by the termst1, . . . , tn in a term is defined by:

(1) yθ :=

{

ti if y = xi for somei ∈ {1, . . . ,n}
y otherwise

for y∈ V

(2) f θ := f for f ∈ F

(3) f (s1, . . . ,sm)θ := f (s1θ, . . . ,smθ) for f ∈ F , s1, . . . ,sm ∈ Tm(V ,Σ)

The (simultaneous)substitutionθ := [x1/t1, . . . ,xn/tn] of the variablesx1, . . . ,xn by the terms
t1, . . . , tn in a formula is defined by:

(1) (s1 = s2)θ := (s1θ = s2θ) for s1,s2 ∈ Tm(V ,Σ)

(2) rθ := r for r ∈ R

(3) r(s1, . . . ,sm)θ := r(s1θ, . . . ,smθ) for r ∈ R , s1, . . . ,sm ∈ Tm(V ,Σ)

(4) (¬ϕ)θ := (¬ϕθ)

2.3. Algebra 19

(5) (ϕ ρ ψ)θ := (ϕθ ρ ψθ) for ρ ∈ {∧,∨,→,↔}

(6) (Q yϕ)θ :=

{

Q y(ϕθ′i) if y = xi for somei ∈ {1, . . . ,n}
Q y(ϕθ) otherwise

for Q∈ {∃,∀}, y∈V , andθ′i = [x1/t1, . . . ,xi−1/ti−1,xi+1/ti+1, . . . ,xn/tn]

2.3 Algebra

2.3.1 Rings

Definition 2.18 A commutative ring with1 (in the following “ring” for short) is aΣord-
structureRwith universeR and the following properties:

Commutativity: ∀x∀y(x+y = y+x)
∀x∀y(x·y = y·x)

Associativity: ∀x∀y∀z
(
(x+y)+z= x+(y+z)

)

∀x∀y∀z
(
(x·y) ·z= x· (y·z)

)

Distributivity: ∀x∀y∀z
(
x· (y+z) = x·y+x·z

)

Identity: ∀x(x+0 = x)
∀x(x·1 = x)

Additive Inverse: ∀x
(
x+(−x) = 0

)

¬(0 = 1)

A ring R is called adomainif it has no zero divisors.

No Zero-Divisors: ∀x∀y
(
x·y = 0→ (x = 0∨y = 0)

)

A ring R is called afield if multiplicative inverses exist for every non-zero element.

Multiplicative Inverse: ∀x
(
¬(x = 0) →∃y(x·y = 1)

)

A domain or fieldR is calledordered, if

Ordering: ∀x∀y∀z(x < y→ x+z< y+z)
∀x∀y(0 < x∧0 < y→ 0 < x·y)

hold and< is a strict linear order onR.

We deal mostly with the ordered fieldR of real numbers (cf. Section 2.3.2) and its sub-fields
of rational numbersQ and algebraic numbersA (cf. Section 2.3.5). In addition, we deal
with polynomial rings (see Section 2.3.3).

2.3.2 The Real Numbers asΣord-Structure

The structureR is aΣord-structure with the domainR and the usual operations and relations.
That is, the operations+R, −R, ·R, 0R, and 1R are the usual addition, negation, multipli-
cation, zero, and one of the real numbers, and<R is the usual less-than relation. It is an
ordered field (Definition 2.18). We introduce some abbreviations.

20 2. Mathematical Prerequisites

The signatureΣord only contains the relation symbol<, so we can define:

(t1 ≤ t2) := (t1 < t2∨ t1 = t2)

(t1 6= t2) := (t1 < t2∨ t2 < t1)

(t1 ≥ t2) := (t2 < t1∨ t2 = t1)

(t1 > t2) := (t2 < t1)

Note that the definitions of these abbreviations have been chosen so as not to contain nega-
tion, since virtual substitution requires positive formulas (cf. Definition 3.6 and Lemma
3.7).

To make the following presentation easier, we treat any formula t1 ρ t2 with
ρ ∈ {=, 6=,<,≤,≥,>} as an atomic formula, although≤,≥,>, 6= are not relation symbols
from Σord. The above abbreviations show that this does not introduce hidden negations into
the formulas, which is important for algorithms which rely on positive formulas as input.

In addition, we assume that every atomic formula is of the form t ρ 0 for
ρ ∈ {=, 6=,<,≤,≥,>}, although we may still writet1 ρ t2 when appropriate. We call this
the canonical form of atomic formulas inR. This requirement is no restriction sincet1 ρ t2
is equivalent to(t1− t2) ρ 0 in R. When we speak of the “terms of a formula”ψ, we assume
that the atomic formulas inψ are in the canonical formt ρ 0 and mean the left-hand terms
t. We also write integral numbers like 3 or−2 to denote the formal terms 1+ 1+ 1 and
−(1+1), respectively.

The techniques described in Chapter 3 work in the reals, withthe exception of root iso-
lation (see Sections 2.3.4 and 3.4, which can also be used to compute exactly the integral
solutions). The problems we try to solve are usually problems in the integers, e.g., enumer-
ating the integral points in a polyhedron (cf. Section 2.1.3). We lift integral problems to the
reals before applying our techniques. This implies that we will sometimes get the answer
that some (real) solutions exist, although no integral solution exists. For Fourier-Motzkin
elimination this has already been discussed in Section 2.1.3. The final results we compute
may contain some superfluous cases (for non-integral parameter values, for example), but
this does not affect the correctness of the results. It has turned out that we need not apply any
special, integral methods to solve the problems we handle with the algorithms we develop
in Chapter 4 and apply in Chapter 5.

The input for the problems will always be rational in the sense that all numbers appear-
ing in the input are rational (or integral) numbers. This ensures that all formulas in the
input can be expressed without denominators (by multiplying the formulas with common
denominators); thereforeΣord is adequate for expressing the problems (see also Section 4.1).

2.3.3 Polynomial Rings

We assume that the reader is familiar with polynomial rings,so we do not introduce poly-
nomial rings or the concepts necessary for dealing with them. A rigorous definition of
polynomial rings via monoid rings is given in Chapter 2 of [BW93].

Definition 2.19 Let R be a domain with universeR and letx1, . . . ,xn be some new symbols
(calledindeterminates). We define the set ofmonomials M

M := {c·xe1
1 · · · · ·xen

n | c∈ R,e1, . . . ,en ∈ N}

2.3. Algebra 21

where, as usual,x0
i := 1. The polynomial ringR[x1, . . . ,xn] over R is then defined by the

universe

R[x1, . . . ,xn] := {m1 + · · ·+mk | k∈ N,m1, . . . ,mk ∈ M}
and the usual polynomial operations for+, −, ·.
If n = 1, the polynomial ring and the polynomials in it are calledunivariate; if n≥ 2 they
are calledmultivariate.

According to this definition, a monomial is a multiple of a power product of the indetermi-
nates with a coefficient from the underlying ringR. As is shown formally in [BW93], the
ring axioms are inherited byR[x1, . . . ,xn], andR[x1, . . . ,xn] is again a domain.

When we are working inR, we can identify the termsTm({x1, . . . ,xn},Σord) with the
elements of the polynomial ringZ[x1, . . . ,xn]: since associativity and commutativity hold in
R, every term inTm({x1, . . . ,xn},Σord) can be written as a sum of monomials.

Definition 2.20 Let Rbe a ring andf = ∑n
i=0 cixi ∈ R[x] with cn 6= 0. Then we call

deg(f) := n thedegreeof f ,

lc(f) := cn the leading coefficientof f ,

and for everyf = ∑n
i=0cixi ∈ R[x] we call

f ′ :=
n

∑
i=1

icix
i−1 theformal derivativeof f .

Note that the degree and leading coefficient of the 0-polynomial are undefined.

We need polynomial division and greatest common divisors ofpolynomials. We cite here
some results form Chapter 2 of [BW93]. We assume that the reader is familiar with polyno-
mial division and the Euclidean algorithm (Chapter 2 of [BW93] contains these and many
others).

Lemma 2.21 (Polynomial division)
Let Rbe a field and f,g∈ R[x] with g 6= 0. Then there exist uniquely determined q, r ∈ R[x]
with f = qg+ r anddeg(r) < deg(g) or r = 0. q is called the quotientQUOT(f ,g) of f and
g, and r is called the remainderREM(f ,g) of f and g.

If REM(f ,g) = 0, we also writef
g for QUOT(f ,g).

Definition 2.22 Let Rbe a field anda,b∈ R[x], a 6= 0 orb 6= 0. Theng∈ R[x]\{0} is called
thegreatest common divisorgcd(a,b) of a andb if

• lc(g) = 1,

• REM(a,g) = REM(b,g) = 0,

• everyg′ ∈ R[x]\{0} with REM(a,g′) = REM(b,g′) = 0 satisfies REM(g,g′) = 0.

If gcd(a,b) = 1, f andg are calledrelatively prime.
gcd(a,b) can be computed using the Euclidean algorithm.

The definition of the greatest common divisor can be extendedfrom univariate polynomial
rings to multivariate polynomial rings (cf. Section 2.5 of [BW93]) using the quotient fields
of polynomial rings (Definition 2.28).

22 2. Mathematical Prerequisites

Squarefree Part of a Real Polynomial

Definition 2.23 Let f ∈ R[x]\{0} with deg(f) ≥ 1.

f ∗ :=
f

gcd(f , f ′)

is called thesquarefree partof f .

The importance of the squarefree partf ∗ is that is has the same zeros asf , but every zero of
f ∗ is simple, that is, ifz is a zero off ∗ then the linear factor(x−z) divides f ∗, but (x−z)2

does not. This implies that the sign changes around the zeroz and this property is useful
for the root isolation described in Section 2.3.4. We note that one can also compute the
squarefree factorizationof a polynomial f

f = u· f1 · f 2
2 · f 3

3 · . . . · f n
n

whereu∈R and f1, . . . , fn ∈R[x] are squarefree and pairwise relatively prime. An algorithm
to compute a squarefree factorization can be found in Chapter 2.6 of [BW93]. The squarefree
part and squarefree factorization off have the advantage overf that the zeros off ∗ and
f1, . . . , fn are simple and that their degree is probably lower than the degree of f .

Reducta of Polynomials For cylindrical algebraic decomposition (Section 3.3) we need
to define the reducta set of a polynomial, i.e., the polynomials obtained from a given poly-
nomial f by successively removing the leading monomials. For example, consider the poly-
nomial f = 4x3 + 3x2 + 2x+ 1. The leading monomial off is 4x3 and the reductum off
(written red(f)) is 3x2 +2x+1. The second reductumred2(f) = red

(
red(f)

)
is 2x+1, and

so forth. The reducta set off (written RED(f)) is the set of all the reducta obtained fromf
(including f itself); in this case RED(f) = {4x3 +3x2 +2x+1,3x2 +2x+1,2x+1,1}.

Definition 2.24 Let Rbe a ring andf ∈ R[x]. We define thereductumof f as

red(f) :=

{

0 if f = 0

f − lc(f) ·xdeg(f) otherwise

Thereducta setof f is defined as

RED(f) :=
{

redi(f) | 0≤ i ≤ deg(f), redi(f) 6= 0
}

where redi(f) denotes the functional iteration of red onf :
red0(f) = f , redi+1(f) = redi

(
red(f)

)
.

Resultants and Subresultants Resultants play an important role in the arithmetic of al-
gebraic numbers (cf. Section 2.3.5) and in the projection operator of cylindrical algebraic
decomposition (cf. Section 3.3.2). They are defined as the determinants of certain matri-
ces constructed from the coefficients of two given polynomials. Resultants are connected to
the Euclidean algorithm: the resultant of two polynomialsf andg vanishes if and only if
deg
(
gcd(f ,g)

)
> 0. The subresultants off andg indicate whether polynomials of certain

degrees appear as remainders during the Euclidean algorithm. We use resultants and sub-
resultants in algebraic number calculus and cylindrical algebraic decomposition, but we are

2.3. Algebra 23

not discussing (sub-)resultants themselves here. Before we give their definitions, we look at
an informal definition an give an example.

Let us look at the polynomialsf = 1x2+2x+3 andg= 4x3+5x2+6x+7. The resultant
of f andg is defined as the determinant of the Sylvester matrixS0(f ,g) of f andg:

S0(f ,g) =

1 4
2 1 5 4
3 2 1 6 5

3 2 7 6
3 7

As one can see, the Sylvester matrix consists of the coefficients of f andg which are written
from top to bottom and repeated in a diagonal manner. The coefficients of f are repeated
deg(g) times, and the coefficients ofg are repeated deg(f) times. The determinant of the
Sylvester matrix is called the resultant res(f ,g) of f andg:

res(f ,g) = detS0(f ,g) = 256

The subresultants are also determinants of matrices in the coefficients of f andg. Thek-th
subresultant off andg is defined as the determinant of the matrixSk(f ,g), whereSk(f ,g) is
obtained fromS0 by deleting the last 2k rows, the lastk columns with coefficients off , and
the lastk columns with coefficients ofg. Thus,

S1(f ,g) =

1 4
2 1 5
3 2 6

S2(f ,g) =
(
1
)

and the subresultants off andg are

res1(f ,g) = detS1(f ,g) = 0

res2(f ,g) = detS2(f ,g) = 1

We now cite the formal definition of (sub-)resultants from [vzGL02].

Definition 2.25 Let Rbe a ring andf = ∑n
i=0 fixi ∈ R[x]\{0} andg = ∑m

i=0 gixi ∈ R[x]\{0}
with deg(f) = n≥ deg(g) = m. Then we define for 0≤ k≤m the(n+m−2k)×(n+m−2k)
matrix Sk(f ,g) as

Sk(f ,g) :=

fn
fn−1 fn

...
. . .

fn−m+k+1 · · · · · · fn
...

...
fk+1 · · · · · · fm

...
...

...
...

f2k−m+1 · · · · · · fk
︸ ︷︷ ︸

m−k

gm

gm−1 gm
...

. . .
gk+1 · · · · · · gm

...
. ..

gm−n+k+1 · · · · · · · · · · · · gm
...

...
...

...
g2k−n+1 · · · · · · · · · · · · gk
︸ ︷︷ ︸

n−k

24 2. Mathematical Prerequisites

where f j = 0 andg j = 0 for j < 0. Note that we assumen≥ m in the definition ofSk(f ,g)
just to be able to depict the matrixSk(f ,g) easily; the definition ofSk(f ,g) extends naturally
to the casen < m.

The matrixS0(f ,g) is called theSylvestermatrix of f andg.

Definition 2.26 Let Rbe a ring andf ,g∈ R[x]\{0}. We call

resk(f ,g) := detSk(f ,g)

thek-th subresultantof f andg for 0≤ k≤ min{deg(f),deg(g)}.
res(f ,g) := res0(f ,g) is also called theresultantof f andg.

Definition 2.27 Let Rbe a ring andf ,g∈ R[x]\{0}. We call

PSC(f ,g) := {resk(f ,g) | 0≤ k≤ min{deg(f),deg(g)}, resk(f ,g) 6= 0}

thePSC setof f andg. We additionally define PSC(f ,g) = ∅ if f = 0 or g = 0.

For the above (sub-)resultant example the PSC set is PSC(f ,g) = {res0(f ,g), res2(f ,g)} =
{256,1}, since res1(f ,g) = 0.

We note that we use the term “PSC set” here to be consistent with [ACM98]. The ab-
breviation “psc” denotes the “principal subresultant coefficient”, i.e. the coefficient ofx j

in the j-th polynomialsubresultant off andg. Our Definition 2.26 usesscalar subresul-
tants (which are exactly the principal subresultant coefficients). See [vzGL02] for detailed
descriptions of scalar and polynomial subresultants.

Quotient Field of a Polynomial Ring Finally, we introduce briefly the quotient field of a
polynomial ring since in the generalized polyhedron model the coefficients of variables are
usually taken fromQ(p1, . . . , pm) with p1, . . . , pm being the parameters (cf. Section 4.1).

Definition 2.28 Given a domainR with universeR, we define the fieldR(x1, . . . ,xn) with
universeR(x1, . . . ,xn) through

R(x1, . . . ,xn) := { f
g
| f ,g∈ R[x1, . . . ,xn],g 6= 0}

The arithmetic inR(x1, . . . ,xn) is carried out like the usual arithmetic with fractions. The
multiplicative inverse of a fractionfg ∈ R(x1, . . . ,xn)\{0} is defined as

(
f
g

)−1

:=
g
f

The details can be found in [BW93].
We can embedR[x1, . . . ,xn] into R(x1, . . . ,xn) by

f 7→ f
1

and therefore treatR[x1, . . . ,xn] as sub-ring ofR(x1, . . . ,xn).

2.3. Algebra 25

2.3.4 Real Roots of Polynomials

In the following we look at polynomialsf ∈ R[x] and discuss how to find their real zeros,
i.e., real numbersr ∈ R such thatf (r) = 0.

Definition 2.29 Let f ∈ R[x]\{0} andr ∈ R with f (r) = 0. An interval[a,b] with a,b∈ Q
is called anisolation intervalfor the zeror of f , if r ∈ [a,b] andr is the only zero off in
[a,b] (i.e., f (c) 6= 0 for everyc∈ [a,b]\{r}).

Our aim is to find isolation intervals for every root of a givenpolynomial f ∈ R[x] \ {0}
such that the intervals are pairwise disjoint. We achieve this goal using a simple method: we
start with an interval containing every zero off and successively divide the interval in two
equally-sized subintervals until every interval containsexactly one zero. This requires two
other algorithms: an algorithm to find the initial interval which includes every zero off , and
an algorithm to count the number of (distinct) zeros off in a given interval (to find out when
we are finished dividing the intervals).

Lemma 2.30 ([BW93], Exercise 8.114)
Let f = ∑n

i=0cixi ∈ R[x]\{0} with deg(f) ≥ 1 and r∈ R with f(r) = 0. Then

|r| ≤ 1+
1
|cn|

max{|c0|, . . . , |cn−1|}

Proof. The proposition is obviously true for|r| ≤ 1. Let |r| > 1. Sincecnrn = −∑n−1
i=1 cir i ,

we have

|cn| · |r|n = |
n−1

∑
i=0

cir
i | ≤

n−1

∑
i=0

|ci | · |r|i

≤ max{|c0|, . . . , |cn−1|} ·
n−1

∑
i=0

|r|i = max{|c0|, . . . , |cn−1|} ·
|r|n−1
|r|−1

≤ max{|c0|, . . . , |cn−1|} ·
|r|n

|r|−1

From this we can deduce|r| ≤ 1+ 1
|cn| max{|c0|, . . . , |cn−1|}. �

The following theorem shows how to count the number of distinct zeros in a given inter-
val. It uses the notation VARSIGN(a1, . . . ,an) to denote the number of sign changes in the
sequence(a1, . . . ,an). “Sign changes” refers to the number of changes in the signumof
the valuesa1, . . . ,an where zeros are ignored. Thus, VARSIGN(1,−2,3,4,−5) is 3: the
signum changes between 1 and−2, between−2 and 3, and finally between 4 and−5.
VARSIGN(1,0,−2,3,0,4,0,0,−5,0) is also 3 since zeros are ignored.

Theorem 2.31 (Sturm’s Theorem [BW93])
Let f ∈ R[x]\{0} with deg(f) ≥ 1 and a,b∈ R with a≤ b and f(a), f (b) 6= 0. Define

f0 := f

f1 := f ′

fi+1 := −REM(fi−1, fi) as long as fi 6= 0

26 2. Mathematical Prerequisites

Let r∈ N be maximal such that fr 6= 0. Then f has the following number of distinct zeros in
the interval[a,b]:

VARSIGN
(

f0(a), . . . , fr(a)
)
−VARSIGN

(
f0(b), . . . , fr(b)

)

A proof of Sturm’s theorem can be found in [BW93], Chapter 8.8.
Using the preceding lemma and Sturm’s theorem, it is possible to find isolation intervals

for every zero of a given polynomialf ∈ R[x]\{0}:

(1) Using Lemma 2.30, we computeM > 0 such that every root off lies in [a,b] where
a = −M andb = M.

(2) If a is a zero off , we divide f as often as possible byx− a (to eliminate the factor
x−a from f) and[a,a] is an isolation interval for the zeroa of f ; the same takes place
with x−b as factor and[b,b] as isolation interval, ifb is a zero off . Let the resulting
polynomial beg.

(3) If the number of zeros ofg in]a,b[is 0, we terminate with “no zeros in[a,b].”

(4) If the number of zeros ofg in]a,b[is 1, we terminate with the isolation interval[a,b].

(5) If there is more than one zero ofg in]a,b[, we setc := 1
2(a+b) and apply the algorithm

recursively, starting with the intervals[a,c] and[c,b] for the polynomialg at Step (2).

The intervals computed by the above algorithm are not disjoint in general: some interval
endpoints may be the identical. However, by the following lemma, it is possible to shrink
isolation intervals to become arbitrarily small.

Lemma 2.32 Let f ∈ R[x]\{0} with deg(f) ≥ 1 and [a,b] an isolation interval for a zero r
of f and c= 1

2(a+b). Then[a,c] or [c,c] or [c,b] is an isolation interval for r.

This lemma is pretty obvious. Eitherc is the only zero off in [a,b], or the zero is notc and
lies inside one of the intervals[a,c] or [c,b]. Which of the two intervals[a,c] and[c,b] the
zero lies in can be decided by counting the zeros in each interval using Sturm’s theorem. But
there is a computationally more efficient alternative usingthe squarefree partf ∗ of f : since
f —and hencef ∗—has exactly one zero in[a,b] and that zero is a single root off ∗, it follows
that the signs off ∗(a) and f ∗(b) are different, i.e.,f ∗(a) · f ∗(b) < 0. The sign off ∗(c)
determines which of the two intervals is the right one: iff ∗(a) · f ∗(c) < 0 then[a,c] is the
right interval, otherwise it is[c,b]. Using Lemma 2.32 one can make the isolation intervals
found by the preceding algorithm smaller and smaller until they are pairwise disjoint.

2.3.5 Algebraic Numbers

The previous section shows that one can find isolation intervals with rational bounds for
every zero of polynomialsf ∈ Q[x]. This means that it is possible to describe any such zero
solely by rational numbers (the coefficients off and the interval bounds).

Definition 2.33 Let A ⊂ R be the set of all zeros of polynomials overQ, i.e.,

A := {r ∈ R | there existsf ∈ Q[x] with f (r) = 0}

We callA the set ofalgebraic numbers.

2.3. Algebra 27

A is a superset ofQ, since every rational numberq∈ Q is the zero of(x−q) ∈ Q[x]. It is
possible to do arithmetic inA, that is, one can define addition, negation, multiplication, and
reciprocal values of algebraic numbers and they are again algebraic numbers.

Theorem 2.34 The algebraic numbersA form a field.

Proof: [Loo83].

The arithmetic computations inA are, in principle, always performed by the following steps:

• From the given algebraic numbers (given by their polynomials and isolation intervals)
compute a polynomials which has the result of the arithmetic operation among its
zeros.

• Compute pairwise disjoint isolation intervalsI1, . . . , In for the zeros ofs.

• From the given isolation intervals of the input numbers compute (by interval arith-
metic) an intervalK which contains the resulting algebraic number.

• If K ∩ Ii 6= ∅ for more than onei, shrink the isolation intervals of the input numbers
and compute a new, smaller intervalK from them. Repeat this untilK has a non-empty
intersection with exactly oneIi .

• The polynomialsand the intervalK describe the algebraic number resulting from the
arithmetic operation.

As an example consider the two algebraic numbersα =
√

2 andβ =
√

3. The productα ·β
is the algebraic number

√
6.

We first cite the algorithm for addition and multiplication of algebraic numbers from
[Loo83] and then show exemplarily the computation of

√
2·

√
3.

The notation resy
(

f (x,y),g(x,y)
)

is used below to express that we want to compute the
resultant off (x,y) andg(x,y) where f andg are to be treated as polynomials iny (having
coefficients fromQ[x]), i.e., the entries of the Sylvester matrix (cf. Definition 2.25) are
polynomials inx, and hence, the resultant is also a polynomial inx.

• Input: Two algebraic numbersα andβ described by their polynomialsa andb and by
their isolation intervalsI andJ.

• Compute:

– for addition:s(x) = resy
(
a(x−y),b(y)

)

for multiplication: s(x) = resy
(
ydeg(a) ·a(x/y),b(y)

)

– squarefree factorization ofs: s(x) = u·d1(x) ·d2(x)2 · . . . ·df (x) f

– pairwise disjoint isolation intervalsI1, . . . , In for every zero of everydi (1≤ i ≤ f)

– an interval which containsα+ β (or α ·β, respectively); for addition:K = I +J,
for multiplicationK = I ∗J (using interval arithmetic)

– if there is more than oneIi with K ∩ Ii 6= ∅, then bisectI andJ (using Lemma
2.32) and go back to the previous step

• Output: the polynomiald from d1, . . . ,dn which has a zero inIi and the isolation
intervalK together describe the algebraic numberγ = α+ β (or γ = α ·β).

28 2. Mathematical Prerequisites

For the exampleα =
√

2, β =
√

3 we use the defining polynomialsa(x) = x2−2 andb(x) =
x2 − 3 and the isolation interval[0,2] for both α and β. We obtain deg(a) = 2 and need
to calculate (for the multiplication ofα and β) y2 · a(x

y) = −2 · y2 + 0 · y+ x2 andb(y) =

1 · y2 + 0 · y− 3. From these polynomials we calculate the resultants(x); in the depicted
matrix we only show the entries coming from the coefficients of y2 ·a(x

y) andb(y), the other
entries are 0 by Definition 2.25:

s(x) = resy
(
y2 ·a(

x
y
),b(y)

)
= det

−2 1
0 −2 0 1
x2 0 −3 0

x2 −3

= x4−12x2 +36

A squarefree factorization ofs(x) is
(
x2−6

)2
. The zeros ofs(x) are therefore−

√
6 and√

6, and we choose[−3,−2] and [2,3] as isolation intervals for these zeros. The interval
K is now computed from the isolation intervals ofα and β, and in this case we can use
K = [0·0,2·2] = [0,4]. Only the interval[2,3] has a non-empty intersection with the interval
K and hence, the algebraic numberα · β is defined by the polynomiald(x) = x2 − 6 and
the isolation intervalK = [0,4] (we can also use[2,3], of course). Obviously,d(x) andK
describe the algebraic number

√
6, which is the product ofα andβ.

Algorithms SIMPLE and NORMAL For the cylindrical algebraic decomposition method
of Section 3.3 we need two algorithms from algebraic number calculus. We present the
specification of these algorithms as lemmas here and refer the reader to [Loo83] for the
concrete algorithms and proofs of their correctness.

Lemma 2.35 (SIMPLE)
Letα,β ∈ A. The algorithmSIMPLE computesγ ∈ A and a,b∈ Q[x] such thatα = a(γ) and
β = b(γ).

As an example for this lemma, we look atα =
√

2 andβ = 3
√

2+1. A possible output of the

algorithm SIMPLE is γ = 6
√

2 anda(x) = x3, b(x) = x2 + 1, sincea(6
√

2) = 6
√

2
3
=

√
2 = α

andb(6
√

3) = 6
√

2
2
+1 = 3

√
2+1 = β.

Lemma 2.36 (NORMAL)
Let f ∈ A[x]. The algorithmNORMAL computes g∈ Q[x] such that every zero of f is also a
zero of g, that is f(r) = 0 implies g(r) = 0 for every r∈ R.

As an example consider the polynomialf (x) = x−
√

2 ∈ A[x] with the algebraic number
coefficient

√
2. The only zero off is

√
2. The rational polynomialx2−2∈ Q[x] has rational

coefficients only and
√

2 is one of its zeros. The polynomialx2−2 has another zero, namely
−
√

2. This shows that the rational polynomial computed by NORMAL has, in general, more
zeros than the original polynomial with algebraic number coefficients.

Chapter 3

Quantifier Elimination

Section 2.2 introduces quantifier-free formulas and the first-order quantifiers∃ and∀. The
quantifiers are used to express properties of some variablesby the use of other variables.
For example, the formula∃y(x = y2) makes a statement about the variablex by claiming
the existence of a value (denoted byy) satisfying the conditionx = y2. If we are working
in the real numbers, this obviously means thatx ≥ 0, since exactly the non-negative real
numbers are squares of other real numbers. Both formulas,∃y(x = y2) andx≥ 0, make the
same statement aboutx (in the real numbers). The difference is that the latter can make this
statement without the use of quantifiers.

In the real numbers it is always possible to replace a formulawith quantifiers by an
equivalent quantifier-free formula. In this chapter we showhow to compute such quantifier-
free equivalents for some special cases using the techniques calledvirtual substitutionand
cylindrical algebraic decomposition.

3.1 Definitions

Before we start with the concrete algorithms, we give the formal definition of quantifier
elimination.

Definition 3.1 Let Σ be a signature. AΣ-structureA is said to allowquantifier elimination,
if, for every formulaϕ ∈ Fm(V ,Σ), a formulaψ satisfying the following conditions exists:

(1) ψ ∈ Qf(V ,Σ)

(2) A � ϕ ↔ ψ

(3) frvar(ψ) ⊆ frvar(ϕ)

Conditions (1) and (2) state thatψ is quantifier-free and logically equivalent toϕ in the
structureA, and condition (3) requires thatψ only contains variables which occur freely in
ϕ.

As stated above, the formula∃y(x= y2) expresses thatx is the square of some real num-
ber. In the structureR this is equivalent to saying thatx is non-negative:x≥ 0. Obviously
all three conditions of Definition 3.1 hold:

(1) (x≥ 0) ∈ Qf(V ,Σord)

30 3. Quantifier Elimination

(2) R � ∃y(x = y2) ↔ x≥ 0

(3) frvar(x≥ 0) = {x} ⊆ {x} = frvar
(
∃y(x = y2)

)
.

Definition 3.2 A decision methodfor a structureA is an algorithm which, given a formula
ϕ ∈ Fm(V ,Σ) with frvar(ϕ) = ∅ as input, computes whetherA � ϕ or A 2 ϕ holds.

A quantifier elimination method for a structureA yields a decision method under the ad-
ditional condition that atomic formulas can be decided inA. Given a formulaϕ with
frvar(ϕ) = ∅, the quantifier elimination method calculates an equivalent formula ψ with
frvar(ψ) = ∅. WhetherA � ψ or A 2 ψ holds, depends only on whether the atomic formu-
las of ψ hold in A or not (cf. Definition 2.13). Hence, if the atomic formulas ofψ can be
decided, the truth-value ofψ, which is also the truth-value ofϕ, can be computed.

Alfred Tarski proved in 1948 that the above quantifier elimination example inR does
not succeed just by chance.

Theorem 3.3 (Tarski [Tar51])
The structureR allows quantifier elimination, and there is an effective algorithm to perform
quantifier elimination on a given formula.

Since it is in principle possible to decide atomic formulas in R, this theorem also proves the
existence of a decision method forR. Since Tarski’s discovery of quantifier elimination for
R many other (and more efficient) algorithms have been found. We present briefly quantifier
elimination byvirtual substitution(Section 3.2) and a decision method based on cylindrical
algebraic decomposition (CAD, Section 3.3).

We should note here that no quantifier elimination procedurefor Σord exists inQ. In R
the formula∃y(x = y2) is equivalent tox≥ 0. In Q the conditionx≥ 0 is necessary forx
to be the square of a rational number, but it is not sufficient since, for example,x = 2 is not
a square of a rational number. No quantifier-free formula with the only variablex∈ Q can
express thatx is a square.

3.2 Virtual Substitution

Virtual substitution was discovered by Volker Weispfenning [Wei88]. It derives its name
from the way it eliminates quantifiers. To get rid of an existential quantifier, it is replaced by
a disjunction where in each disjunct the quantified variableis substituted (using the special
virtual substitution) by appropriately chosen terms (cf. Definitions 3.13, 3.14 and Theorem
3.16).

To illustrate the idea, let us look at the very simple example:

ϕ := ∃xψ
ψ := (x≥ 1∧x≤ p)

ϕ expresses that there is a real number between 1 andp, so it is obviously equivalent to
saying thatp ≥ 1. As we will see in Section 3.2.2 (Definition 3.15)—and as is probably
intuitively clear—the “critical points” forx in the formulaψ arex = 1 andx = p. Virtual
substitution now proposes thatϕ is equivalent toψ[x//1]∨ψ[x//p]. Here[·//·] denotes virtual
substitution and, in this simple case, it is the same as usualsubstitution. Thereforeψ is
equivalent to(1≥ 1∧1≤ p)∨ (p≥ 1∧ p≤ p) which can be simplified top≥ 1 and that is
the result we expect.

3.2. Virtual Substitution 31

3.2.1 Prerequisites

Virtual substitution itself cannot take every first-order formula as input for the quantifier
elimination, but it requires the formula to be prenex with a positive matrix.

Definition 3.4 A formula ϕ ∈ Fm(V ,Σ) is calledprenexif it is of the form

Q1x1 · · · Qnxn ψ

with n∈ N, Q1, . . . ,Qn ∈ {∃,∀}, x1, . . . ,xn ∈V , andψ ∈ Qf(V ,Σ). ψ is called thematrixof
the prenex formulaϕ.

Lemma 3.5 Every formulaϕ ∈ Fm(V ,Σ) is equivalent to a prenex formulaψ ∈ Fm(V ,Σ).

Proof sketch. A quantifier can always be moved to the front of a formula by applying the
following transformations as often as necessary:

For everyϕ ∈ Fm(V ,Σ) andx∈V

¬(∃xϕ) is equivalent to∀x(¬ϕ) and¬(∀xϕ) is equivalent to∃x(¬ϕ).
For everyϕ,ψ ∈ Fm(V ,Σ), ρ ∈ {∧,∨,→,↔} andx,y∈V with y /∈ frvar(ϕ)∪ frvar(ψ)

(
ϕ ρ (Qxψ)

)
is equivalent toQy

(
ϕ ρ (ψ[x/y])

)
, and

(
(Qxϕ)ρ ψ

)
is equivalent toQy

(
(ϕ[x/y])ρ ψ

)

Repeating this process for every quantifier will finally yield a prenex formula. �

Definition 3.6 A formula ϕ ∈ Qf(V ,Σ) is calledpositiveif none of the junctors¬, →, ↔
appears inϕ, i.e.,ϕ only contains∧ and∨ as junctors.

Lemma 3.7 In the structureR every formulaϕ ∈ Qf(V ,Σord) is equivalent to a positive
formulaψ ∈ Qf(V ,Σord).

Proof. Due to the definition of the semantics of→ and↔ these junctors can be replaced:
the formulaσ → τ is equivalent to(¬σ)∨ τ, andσ ↔ τ is equivalent to(σ∧ τ)∨ (¬σ∧¬τ).
A formula with the junctors¬, ∧, and∨ is made positive by “pushing” the negations into
the formula until they reach atomic formulas. This proof is by induction on the structure of
a formulaϕ ∈ Qf(V ,Σord) with the junctors¬, ∧, and∨ only:

ϕ ∈ At(V ,Σord) : ϕ is positive by definition.

ϕ = ¬(t1 < t2) : ϕ is equivalent to the positive formulat1 ≥ t2 in R.

ϕ = ¬(t1 = t2) : ϕ is equivalent to the positive formulat1 6= t2 in R.

ϕ = ¬¬ϕ1 : By induction hypothesis,ϕ1 is equivalent to a positive formulaψ, which is then
also equivalent toϕ.

ϕ = ¬(ϕ1∧ϕ2) : By induction hypotheses, there exist positive formulasψ1,ψ2 ∈
Qf(V ,Σord) with ψ1 is equivalent to¬ϕ1 and ψ2 is equivalent to¬ϕ2. Thenϕ is
equivalent to the positive formulaψ1∨ψ2.

ϕ = ¬(ϕ1∨ϕ2) : Analogous to¬(ϕ1∧ϕ2) with ∧ and∨ exchanged.

ϕ = ϕ1∧ϕ2 : By induction hypotheses there exist positive formulasψ1 andψ2 whereψ1 is
equivalent toϕ1 andψ2 is equivalent toϕ2. Thereforeϕ is equivalent toψ1∧ψ2.

32 3. Quantifier Elimination

ϕ = ϕ1∨ϕ2 : Like ϕ1∧ϕ2, just with∨ instead of∧.

The termination of this recursive transformation process is ensured by the fact that the num-
ber of junctors in the formula decreases in every stop of the recursion. �

3.2.2 The Basic Algorithm for Linear Formulas

Let us look at the elimination of a single existential quantifier. The extension of the elimina-
tion technique to more than one quantifier (and universal quantifiers) is discussed in Section
3.2.4. The presentation of the method we give here is based onthe lecture “Anwendungen
der Computerlogik” given by Dr. Andreas Dolzmann in the summer semester 2002. A de-
tailed description of the method (and proofs for lemmas which we leave out or only sketch
here) can be found in [Wei88] and [LW93].

The case we look at is a formula∃xψ, whereψ is a formula which is linear inx, positive,
and quantifier-free.

Definition 3.8 A formula ψ is called linear in {x1, . . . ,xn} ⊆ V if, for every variable
x∈ {x1, . . . ,xn}, every term appearing inψ can be written in the formt · x + t ′ with
x1, . . . ,xn /∈ var(t) andx /∈ var(t ′).

We assume thatfrvar(ψ) ⊆ {u1, . . . ,um,x} so that(u1, . . . ,um,x) is an extension ofψ in
the sense of Definition 2.15. This implies that(u1, . . . ,um) is an extension forϕ (since
x /∈ frvar(ϕ)). u1, . . . ,um are calledparameters. In the following, we always consider the
extension(u1, . . . ,um,x) for ψ.

An existential quantifier like in∃xψ claims that an element of the universe (in our case
a real number) exists which satisfies a certain condition. The idea of quantifier elimination
with virtual substitution is to find afinite set of candidates for the quantified variable such
that, if there are satisfying elements, one of the candidates is among them.

To find such finite sets of candidates (also called “test points”), let us take a closer look at
the structure of the set of all real numbers satisfying the condition ψ, called the satisfaction
set.

Definition 3.9 Let (a1, . . . ,an) = ā∈ Rn. Thesatisfaction set Sxā(ψ) of the formulaψ (with
respect to its free variablex) is defined as

Sx
ā(ψ) := {c∈ R | ψR(ā,c) = ⊤}

Lemma 3.12 states that the satisfaction set ofψ is of a special form: a union of finitely many
disjoint intervals.

Definition 3.10 S⊆ R is called aunion of finitely many disjoint maximal intervals, if

S= ˙Sk
i=1Ii, k ∈ N, I1, . . . , Ik are pairwise disjoint intervals inR, and for everyi = 1, . . . ,k

and every intervalJ, J % Ii : J * S.
Furthermore, we define the sets of weak lower boundsBwl(S), weak upper bounds

3.2. Virtual Substitution 33

Bwu(S), strict lower boundsBsl(S), and strict upper boundsBsu(S) of the intervalsI1, . . . , Ik.

Bwl(S) :={b∈ R | i ∈ {1, . . . ,k}, [b,b′] = Ii ,b
′ ∈ R} ∪

{b∈ R | i ∈ {1, . . . ,k}, [b,b′[= Ii,b
′ ∈ R∪{∞}}

Bwu(S) :={b∈ R | i ∈ {1, . . . ,k}, [b′,b] = Ii ,b
′ ∈ R} ∪

{b∈ R | i ∈ {1, . . . ,k},]b′,b] = Ii ,b
′ ∈ R∪{−∞}}

Bsl(S) :={b∈ R | i ∈ {1, . . . ,k},]b,b′] = Ii ,b
′ ∈ R} ∪

{b∈ R | i ∈ {1, . . . ,k},]b,b′[= Ii,b
′ ∈ R∪{∞}}

Bsu(S) :={b∈ R | i ∈ {1, . . . ,k}, [b′,b[= Ii,b
′ ∈ R} ∪

{b∈ R | i ∈ {1, . . . ,k},]b′,b[= Ii,b
′ ∈ R∪{−∞}}

Lemma 3.11 Let S1 = ˙Sk
i=1Ii, S2 = ˙Sl

i=1Ji be unions of finitely many disjoint maximal in-
tervals. Then

(1) S1∪S2 and S1∩S2 are unions of finitely many disjoint maximal intervals.

(2) Bτ(S1∪S2) ⊆ Bτ(S1)∪Bτ(S2) for τ ∈ {wl,wu,sl,su}

(3) Bτ(S1∩S2) ⊆ Bτ(S1)∪Bτ(S2) for τ ∈ {wl,wu,sl,su}

Let us consider the formulaα =
(
(x ≥ 0∧ 2x ≤ p)∨ x > 7

)
. The canonical form of this

formula is(x≥ 0∧2x− p≤ 0)∨x−7> 0. Obviously, the satisfaction set ofα is [0, p
2]∪]7,∞[

(where we interpret[0, p
2] as the empty set forp < 0). The finite bounds of the intervals in

the satisfaction set are the solutions of the equationsx = 0, 2x− p = 0, andx−7 = 0. The
following lemma shows that we can always find the finite interval bounds of the satisfaction
set of a formulaψ among the zeros of the terms inψ. Of course, not every zero is an
interval bound, since, for example,α∨x≥ 8 has the additional zero 8 (compared toα), but
the interval[8,∞[is a subset of the interval]7,∞[, so 8 does not appear as a bound in the
satisfaction set.

Lemma 3.12 The satisfaction set Sx
ā(ψ) of the formulaψ is a finite union of pairwise disjoint

maximal intervals. For everyτ ∈ {wl,wu,sl,su} the finite bounds in Bτ
(
Sx

ā(ψ)
)

are a subset
of the zeros of the terms inψ.

Proof sketch.

ψ = ψ1∧ψ2 :
Sx

ā(ψ1 ∧ ψ2) = Sx
ā(ψ1) ∩ Sx

ā(ψ2) by definition of Sx
ā and the semantics of∧. By

the induction hypothesis,Sx
ā(ψ1) = ˙Sk

i=1Ii and Sx
ā(ψ2) = ˙Sl

i=1Ji are finite disjoint
unions of maximal intervals and the finite bounds inBτ

(
Sx

ā(ψ1)
)
, Bτ

(
Sx

ā(ψ2)
)

(τ ∈
{wl,wu,sl,su}) are subsets of the zeros of the terms inψ1 and ψ2, respectively.
By Lemma 3.11,Sx

ā(ψ) = Sx
ā(ψ1)∩Sx

ā(ψ2) is also a union of finitely many disjoint
maximal intervals andBτ

(
Sx

ā(ψ)
)
⊆ Bτ

(
Sx

ā(ψ1)
)
∪Bτ

(
Sx

ā(ψ2)
)

for τ ∈ {wl,wu,sl,su}.
Therefore, all finite bounds inSx

ā(ψ) are zeros of terms inψ.

ψ = ψ1∨ψ2 : By the semantics of∨ and the definition ofSx
ā we haveSx

ā(ψ1 ∨ ψ2) =
Sx

ā(ψ1)∪Sx
ā(ψ2). The same reasoning as forψ1∧ψ2 applies.

34 3. Quantifier Elimination

interval type test point

]−∞,c] c
[c,d[c
[c,d] c
]d,c] c
[c,∞[c

]−∞,c[c−1
]c,d[1

2(c+d)

]c,∞[c+1

]−∞,∞[0

Table 3.1: Interval types and suitable test points for them

ψ ∈ At(V ,Σord) : ψ is of the formt · x+ t ′ ρ 0 with ρ ∈ {<,≤,=, 6=,≥,>}. Let a = tR(ā),
b = t ′R(ā), andc =−b

a if a 6= 0. The satisfaction setSx
ā(ψ) depends on the values ofa

andb as is shown in the following table:

Sx
ā(ψ) a < 0 a = 0∧b < 0 a = 0∧b = 0 a = 0∧b > 0 a > 0
<]c,∞[R ∅ ∅]−∞,c[
≤ [c,∞[R R ∅]−∞,c]
= [c,c] ∅ R ∅ [c,c]
6= R\{c} R ∅ R R\{c}
≥]−∞,c] ∅ R R [c,∞[
>]−∞,c[∅ ∅ R]c,∞[

Obviously, in every case the satisfaction setSx
ā(ψ) is a union of finitely many dis-

joint maximal intervals (note thatR\{c}=]−∞,c[∪]c,∞[) and the only finite bound
appearing in the intervals isc, the solution of the equationt · x+ t ′ = 0. When
ρ ∈ {<, 6=,>}, c is a strict bound, and whenρ ∈ {≤,=,≥} thenc is a weak bound.

�

The proof of Lemma 3.12 shows that all the finite interval bounds appearing in the satis-
faction set ofψ are a subset of the zeros of the equationst · x+ t ′ = 0 wheret · x+ t ′ ρ 0
with ρ ∈ {<,≤,=, 6=,≥,>} is an atomic formula inψ. Furthermore, atomic formulas with
ρ ∈ {<, 6=,>} contribute only to the strict bounds, and formulas withρ ∈ {≤,=,≥} con-
tribute only to the weak bounds.

Finding Test Points We can now state how the quantifier elimination method reallyworks.
To eliminate the existential quantifier in∃xψ the idea is to take a “test point” from every
maximal interval of the satisfaction set. Since the satisfaction set is the set of all values for
x whereψ becomes true,∃xψ is true if and only if at least one of the chosen test points
makesψ true. Things are a bit complicated by the fact that we do not know the intervals
themselves but the atomic formulas ofψ give us supersets of the bounds appearing in the
intervals. Therefore, we have to choose a test point for every possibleinterval which has its
bounds among the sets derived from the atomic formulas.

Table 3.1 shows which test points can be chosen for the different types of intervals in
the satisfaction set. As one can see, if an interval has a weakbound, that weak bound can

3.2. Virtual Substitution 35

be chosen as test point (since the weak bound is part of the interval). Unfortunately the
situation is more complex if the interval has strict bounds only. In the case of]−∞,c[and
]c,∞[the pointc−1 orc+1 is a valid choice for every (possible) interval. But for an interval
of the form]c,d[which has two strict bounds the valuesc+1 or d−1 cannot be used since
d−c could be less than 1. Therefore, everypair of strict boundsgenerates a new test point,
namely1

2(c+d). This gives rise to a quadratic amount of test points in the number of strict
inequalities.

For the exampleα =
(
(x≥ 0∧2x≤ p)∨x > 7

)
we have the weak interval bounds 0,p

2 ,
and the strict bound 7. According to Table 3.1 we have to choose as test points

• 0 for thepossibleintervals]−∞,0], [0,∞[, [0,7[,]7,0], [0, p
2], [p

2 ,0],]−∞,∞[,

• p
2 for thepossibleintervals]−∞, p

2], [p
2 ,∞[, [p

2 ,0], [0, p
2], [p

2 ,7[,]7, p
2],

• 6 = 7−1 for thepossibleinterval]−∞,7[,

• 8 = 7+1 for thepossibleinterval]7,∞[.

We see that superfluous test points can be chosen. By looking at the formulaα, it is clear that
7 can only be a strict lower bound and there is no need to use 6 asa test point. In general, it is
not possible to say whether an atomic formula gives rise to anupper or a lower bound (if it is
the cause for a bound at all). This can be easily seen on the exampleu1 ·x+1> 0. Therefore,
we simply use every bound found in a formulaψ as a possible lower and a possible upper
bound. Of course, the elimination set (cf. Definition 3.14) given in Theorem 3.16 can be
optimized by the knowledge that some zeros of terms can only be lower or upper bounds.
But, since we only show the principal idea of virtual substitution here, we do not go into
possible optimizations.

Division Operations The above discussion of our selection of test points uses a division
operation in two places. The (possible) interval bounds aresolutions of equationsa·x+b= 0
if a 6= 0. The solution is then−b

a. For two strict boundsc andd it is necessary to use12(c+d)
as test point. We cannot substitute formulas with division symbols into the formulaψ, since
no division symbol is part of the signatureΣord. Instead we try to find aΣord-formula which
is “equivalent” to the formula resulting from substitutinga fraction into the given formula.

We extend the signatureΣord to the signatureΣord′ with the additional unary function
symbol−1. We also extend the structureR to the structureR′ by defining

a−1 =

{
1
a if a 6= 0

0 otherwise

When we substitute a quotients·s′−1 into an atomic formulaα overΣord, the result is aΣord′-
formulaβ. But it is always possible to find aΣord-formulaγ such that, for every environment
h ∈ RV , R′

�h (β∧ s′ 6= 0) if and only if R �h (γ∧ s′ 6= 0). In other words, since we are
working in the real numbers, the absence of a division symboldoes not limit our expressivity.

As an example consider the formula 5·x+3 > 0 and let us substituteab for x (assuming

b 6= 0). The intermediate result is theΣord′-formula 5·a ·b−1 + 3 > 0. Sinceb is not zero,
b2 is positive and we can multiply both sides of the inequality to yield (after canceling)
5·a·b+3·b2 > 0, which is aΣord-formula. In case of an equation or an inequality with the
relation 6=, it suffices to multiply with the denominatorb (instead ofb2). The formalization
of this idea is calledvirtual substitutionand is presented in the next definition.

36 3. Quantifier Elimination

Definition 3.13 Let t · x+ t ′ ρ 0 be an atomic formula withρ ∈ {<,≤,=, 6=,≥,>}. The
virtual substitutionof x by s·s′−1 (s,s′ ∈ Tm(V ,Σord)) is defined as

(t ·x+ t ′ ρ 0)[x//s·s′−1] :=

{

t ·s·s′ + t ′ ·s′2 ρ 0 if ρ ∈ {<,≤,≥,>}
t ·s+ t ′ ·s′ ρ 0 if ρ ∈ {=, 6=}

For any terms∈ Tm(V ,Σord) we define

(t ·x+ t ′ ρ 0)[x//s] := (t ·x+ t ′ ρ 0)[x/s]

This definition of virtual substitution can be extended to arbitrary first-order formulas in the
same way as usual substitution.

Virtual substitution avoids division operations in formulas after substituting a fractions·s′−1

for a variablex by multiplying every equation and inequality in the intermediate Σord′-
formula by the (square of) the denominator of the fraction substituted for the variable. There
is one important thing we have to take care of when we perform the virtual substitution
ψ[x//s· s′−1]. The formulaψ[x//s· s′−1] does not ensure that the denominators′ is not zero.
This is consistent with the definition of−1, which is a totalization of the usual reciprocation
operation−1, i.e., it is also defined for the value 0. We must not forget that we have to
make a case distinction on whether the denominator is zero ornot. This is formalized in the
following definition of elimination sets, where each test point t is guarded by a conditionγ
which ensures that the denominators are not zero. Elimination sets are a central concept of
the quantifier elimination procedure shown in this section,and we present an example for an
elimination set and the use of virtual substitution after the definition.

Definition 3.14 An elimination setfor ∃xψ is a finite setE ⊆ Qf(V ,Σord)×Tm(V ,Σord′)
with the property that

R � ∃xψ ↔
_

(γ,t)∈E

(γ∧ψ[x//t])

andfrvar(γ)∪var(t) ⊆ {u1, . . . ,um} for all (γ, t) ∈ E.

As has been stated before, the idea behind the quantifier elimination procedure presented
here is to substitutex by a finite number of selected test points, such that if∃xψ holds, at
least one of the test points makesψ true. The elimination setE contains elements(γ, t) where
t represents one of the chosen test points andγ is an additional condition for the applicability
of the test pointt. The necessity of additional conditions can be seen from thefollowing
example.

Consider the equationα = (a·x−1= 0). ∃xα is equivalent to the quantifier-free formula
a 6= 0. The test points for this equation aret := 1·a−1, if a 6= 0, and 0 independently ofa (cf.
Theorem 3.16 below). Note thatα[x//t] = (a·1−1·a= 0), i.e.,α[x//t] holds forevery a∈R,
but obviouslyα is false fora = 0. Thereforeα[x//t] has to be guarded by the prerequisite
a 6= 0. In this case, a correct elimination set would beE = {(a 6= 0,1 · a−1),(0 = 0,0)}
(which makes an appropriate case distinction fora 6= 0) and the quantifier-free equivalent to
∃xα is

(a 6= 0∧a·1−1·a= 0) ∨ (0 = 0∧a·0−1= 0)

3.2. Virtual Substitution 37

which is equivalent to the expecteda 6= 0.
If we compare Definition 3.14 to Definition 3.1 of quantifier elimination, we see

that the formulaη :=
W

(γ,t)∈E
(γ ∧ ψ[x//t]) has (at most) the free variablesu1, . . . ,um since

frvar(ψ) ⊆ {u1, . . . ,um,x} has been assumed. In addition,η is quantifier-free. If we choose
the elimination setE as required by the definition,η is in fact a quantifier-free formula
equivalent to∃xψ.

The remaining problem is to find a correct elimination set. First we define the set of crit-
ical pointsCx

s(ψ) andCx
w(ψ) for the strict and weak bounds defined by the atomic formulas

of ψ. For atomic formulasa·x+bρ 0 (with ρ ∈ {<,≤, 6=,=,≥,>}) in ψ, the points−b
a (for

a 6= 0) are said to be “critical” since they determine the test points for the formula∃xψ (see
also the proof of Lemma 3.12 and the discussion of the choice of test points following that
lemma).

Definition 3.15 The sets of critical pointsC x
s (ψ) andC x

w(ψ) are defined by

C x
s (ψ) :=

{
(t 6= 0,−t ′ · t−1) | (t ·x+ t ′ ρ 0) atomic formula ofψ,ρ ∈ {<, 6=,>}

}

C x
w(ψ) :=

{
(t 6= 0,−t ′ · t−1) | (t ·x+ t ′ ρ 0) atomic formula ofψ,ρ ∈ {≤,=,≥}

}

Using the critical points, it is now possible to define an elimination set for the formula
∃xψ. As has been suggested in the discussion after Lemma 3.12, for weak inequalities and
equations the critical points are chosen as test points, whereas for every critical pointc of
the strict inequalities the pointsc−1 andc+ 1 and for every pair of critical points of strict
inequalities the arithmetic mean12(c+ d) has to be chosen as test point. Finally, the point
0 is an additional test point in case thatψ holds for allx and the atomic formulas do not
generate any critical points (e.g.,∃x(1 > 0)).

Theorem 3.16 The following set is an elimination set for∃xψ:

{(γ, t) | (γ, t) ∈ C x
w(ψ)} ∪

{(γ, t −1) | (γ, t) ∈ C x
s (ψ)} ∪

{(γ, t +1) | (γ, t) ∈ C x
s (ψ)} ∪

{(γ1∧ γ2,(t1 + t2) ·2−1) | (γ1, t1),(γ2, t2) ∈ C x
s (ψ), (γ1, t1) 6= (γ2, t2)} ∪

{(0 = 0,0)}

We have to note that the expressionst −1, t +1, and(t1+ t2) ·2−1 do not satisfy the require-
ments of virtual substitution (Definition 3.13) since, due to the definition ofCx

s(ψ), t1 + t2
is not an element ofTm(V ,Σord) but of Tm(V ,Σord′), for example. This technical difficulty
can be easily solved by applying usual arithmetic for fractions to(t1 + t2) ·2−1 to transform
it into a term of the forms1 ·s−1

2 .
Putting all these results together, we see that the elimination algorithm for the formula

∃xψ can be performed in three steps:

(1) CalculateC x
s (ψ) andC x

w(ψ).

(2) Calculate the elimination setE.

(3) The equivalent formula is then
W

(γ,t)∈E
(γ∧ψ[x//t]).

38 3. Quantifier Elimination

Example To demonstrate the complete procedure we consider the formula

ϕ = ∃x(p·x+q≥ 0∧x > q)

and try to compute a quantifier-free equivalent. The matrixψ of ϕ contains two atomic
formulas,p·x+q≥ 0 andx > q. The zero ofp·x+q is −q

p if p 6= 0, and the zero ofx−q is
q. The critical points ofψ are therefore:

Cx
w(ψ) = {(p 6= 0,(−q) · p−1)}

Cx
s(ψ) = {(1 6= 0,q)}

An elimination set according to Theorem 3.16 is then:

E = {(p 6= 0,(−q) · p−1),(1 6= 0,q−1),(1 6= 0,q+1),(0 = 0,0)}

andϕ is equivalent to:

_

(γ,t)∈E

(γ∧ψ[x//t])

=
(
p 6= 0∧ p· (−q) · p+q· p2 ≥ 0∧ (−q) · p−q· p2 > 0

)

∨
(
1 6= 0∧ p· (q−1)+q≥ 0∧ (q−1)−q> 0

)

∨
(
1 6= 0∧ p· (q+1)+q≥ 0∧ (q+1)−q> 0

)

∨
(
0 = 0∧ p·0+q≥ 0∧0−q> 0

)

This can be simplified to (the second and fourth disjunct contain a contradiction):

(
p 6= 0∧ p·q· (p+1) < 0

)
∨
(
p· (q+1)+q≥ 0

)

and this is a quantifier-free equivalent ofϕ in R.

3.2.3 Virtual Substitution and Non-linear Terms

The previous section shows how the elimination works for a formula which is linear in the
quantified variable. The principle stays the same for non-linear formulas, but the chosen test
points become in general more complex, i.e., they can contain not only quotients but also
roots and that makes the definition of the virtual substitution more complex.

If we only eliminate variables which occur linearly in a formula, the elimination method
for linear formulas is sufficient. To be more precise: ifψ ∈ Qf(V ,Σ) is linear inX ⊆ V

andx∈ X, then the quantifier-free equivalent of∃xψ is linear inX \{x}. A proof for this is
contained in the proof of Lemma 3.17.

The quantifier elimination with answer method for liner formulas described in Section
3.2.5 and the decision method for arbitrary variable free formulas (based on cylindrical al-
gebraic decomposition) described in Section 3.3 are sufficient to solve all the problems we
present in Chapter 4.

Virtual substitution has been generalized to support non-linear quantified variables. We
are not discussing this here; the interested reader is referred to [Wei97] and [Wei94].

3.2. Virtual Substitution 39

3.2.4 Multiple Quantifiers

When a formulaϕ contains more than one quantifier, the elimination is performed one quan-
tifier at a time, starting with the innermost quantifier. Letϕ = Q1 x1 · · · Qn−1 xn−1 Qn xn (ψ)
be a prenex formula withQ1, . . . ,Qn ∈ {∃,∀} and ψ quantifier-free. The quantifiers are
eliminated as follows:

• If Qn = ∃ then a quantifier-free formulaψ′ which is equivalent toQn xn (ψ) can be
computed and the elimination continues recursively withQ1 x1 · · · Qn−1 xn−1 (ψ′).

• If Qn = ∀ then∀ xn ψ is equivalent to¬∃ xn (¬ψ) and a quantifier-free formulaψ′

which is equivalent to∃ xn (¬ψ) can be computed. The elimination then continues
recursively withQ1 x1 · · · Qn−1 xn−1 (¬ψ′).

3.2.5 Quantifier Elimination with Answer

A quantifier elimination method (as in Definition 3.1) computes for a given formulaϕ an
equivalent, quantifier-free formulaϕ′. Sometimes it is desirable not only to know that there
are values for the existentially quantified variables that makeϕ true, but also to get exam-
ples of such values together withϕ′. Virtual substitution can give such examples and this
enhanced algorithm is called “quantifier elimination with answer” or “extended quantifier
elimination.”

The answers for the existentially quantified variables are simply the test points from the
elimination set.

Let ϕ = ∃x1 . . .∃xn(ψ) for an arbitrary formulaψ with extension(u1, . . . ,um). The result
of a quantifier elimination with answer is a set of pairs(γi ,{x1 = ti,1, . . . ,xn = ti,n}), for
i ∈ {1, . . . , l}, whereϕ is equivalent toγ1 ∨ ·· · ∨ γl and if γi holds (under given values for
the parametersu1, . . . ,um) then the termsti, j ∈ Tm({u1, . . . ,um},Σord′) (j ∈ {1, . . . ,n}) in the
associated substitution list{x1 = ti,1, . . . ,xn = ti,n} represent answers forx1, . . . ,xn which
makeϕ true in dependence of the parametersu1, . . . ,um.

Example ϕ = ∃x(u1 ·x+u2 = 0∧x≥ 0)
A possible result of extended quantifier elimination is

(u1 > 0∧u2 ≤ 0, {x = −u2
u1})

(u1 < 0∧u2 ≥ 0, {x = −u2
u1})

(u1 = 0∧u2 = 0, {x = 42})

Note that the choicex = 42 in the case ofu1 = 0∧ u2 = 0 is completely arbitrary, since
any non-negative real number satisfies the formula in this case. Which representative of the
solutions is returned by the extended quantifier algorithm depends on the implementation,
so we cannot make assumptions about which solution is delivered (except, of course, if
we depend on implementation details). If one desires a specific solution, one must add
constraints to the formula which express the properties of the desired solution. For example,
the formula∃x

(
ψ∧∀y(ψ[x/y] → x≤ y)

)
with ψ = (u1 ·x+u2 = 0∧x≥ 0) has (compared

to ϕ) the additional constraint that the solution forx is minimal, so for this input the answer
for the caseu1 = 0∧u2 = 0 must bex = 0.

40 3. Quantifier Elimination

Computing Answers in General To compute answers with virtual substitution, the quan-
tifier elimination for a formula∃x1 . . .∃xn ψ is performed as follows. First, the quantifiers in
the formulaψ are eliminated to yield the equivalent formulaψ′. Then, as usual, the elimi-
nation continues with∃xn ψ′. The elimination set for this formulaE = {(γ1, t1), . . . ,(γk, tk)}
contains conditionsγ(n) and solutionst(n) for xn. For every element(γ(n), t(n)) ∈ E one con-
tinues the elimination for the formula∃xn−1(γ(n) ∧ ψ′[xn//t(n)]). This is repeated for the
quantifiers∃xn−2, . . . ,∃x1, which yields a set of results each of which is of the form

γ := γ(1) ∧
(
. . .
(
γ(n−1) ∧ (γ(n)∧ψ′[xn//t(n)])[xn−1//t(n−1)]

)
. . .
)
[x1//t(1)]

Each of these results corresponds to one of the partial solutions(γ,{x1 = t(1), . . . ,xn = t(n)})
of the extended quantifier elimination.

The following lemma states that the linearity of the input formula ensures the linearity
of the answers.

Lemma 3.17 Let ψ ∈ Tm(V ,Σ) be linear in the variables{x1, . . . ,xn} and let
{(

γi ,{ti,1, . . . , ti,n}
)

| i ∈ {1, . . . ,k}
}

be the answer computed for the question∃x1 . . .∃xnψ (for some suitable k∈ N). Then every
ti, j is linear in{x1, . . . ,xi−1} (and xi , . . . ,xn /∈ var(ti, j) by the definition of quantifier elimina-
tion with answer).

Proof by induction onn.

n = 1 : All the solutionst1, j for x1 in the formula∃x1ψ areΣord′-terms in the constants only.
This implies trivially that thet1, j are linear in{x1, . . . ,x0} = ∅ due to the Definition
3.8 of linear terms.

n→ n+1 : Let ϕ = ∃xn+1ψ. Since we assume thatψ is linear in {x1, . . . ,xn+1}, every
term inψ can be written as∑n+1

l=1 al xl + a0, wherea0, . . . ,an+1 are appropriately cho-
sen terms withx1, . . . ,xn+1 /∈ var(a0)∪ ·· · ∪ var(an+1). Therefore, the critical points
of ψ are each of the form

(
−a0 −∑n

l=1 al xl
)
· a−1

n+1. The test points of the elimina-
tion set, as defined by Theorem 3.16, are derived form the critical points and each
of them can again be written in the form

(
−b0 −∑n

l=1 bl xl
)
·b−1

n+1 for suitable terms
b0, . . . ,bn+1 with x1, . . . ,xn+1 /∈ var(b0), . . . ,var(bn+1). Rewriting these terms in the

form −b0 · b−1
n+1 − ∑n

l=1(bl · b−1
n+1 · xl) shows that the answers forxn+1 are linear in

{x1, . . . ,xn}. Definition 3.13 of virtual substitution ensures thatψ[x//t], wheret is such
a test point, is linear in{x1, . . . ,xn}. In addition, the conditionsγ in the elimination set
(cf. Definition 3.16) are linear in{x1, . . . ,xn}. Therefore, the quantifier-free equiva-
lentϕ′ of ϕ is linear in{x1, . . . ,xn}. Applying the induction hypothesis to∃x1 . . .∃xn ϕ′

yields the remaining parts of the proposition.

�

3.2.6 Generalized Method with Infinitesimals

As has been note above, strict inequalities give rise to quadratically many test points in the
elimination set, since every pair of strict inequalities could cause the satisfaction set to con-
tain a maximal interval of the form]c,d[and the choice12(c+d) of the test point depends on

3.3. Cylindrical Algebraic Decomposition 41

bothc andd. To reduce the number of test points, a variant of virtual substitution has been
developed which allows to introduce infinitesimally small quantities (“ε”) and unbounded
large quantities (“∞”) during the elimination. The virtual substitution has to be extended to
deal with epsilons and infinities, but then the number of testpoints can be reduced consider-
ably.

A possible elimination set for∃x(ψ) is then

{(γ, t) | (γ, t) ∈ C x
w(ψ)} ∪

{(γ, t + ε) | (γ, t) ∈ C x
s (ψ)} ∪

{(0 = 0,−∞)}

More on this can be found in [LW93].
Unfortunately, this approach has a drawback. If one performs quantifier elimination with

answer, the epsilons and infinities can appear in the answersfor the existentially quantified
variables. This can make the result hard to interpret. In general, the substitutionε = 0
invalidates the result, since anε is always introduced with the constraintε > 0. On the
other hand, nothing is known about the magnitude ofε and it is not possible to choose some
(arbitrary) small positive value forε.

The implementation of virtual substitution we use (REDLOG [DS97a]) uses this gener-
alized method with infinitesimals. Therefore, we have to take care when we ask it to solve a
quantifier elimination with answer problem. The applications of quantifier elimination with
answer we present in Chapter 4 are formulated such that the answers do not contain infinites-
imals. Unfortunately, this makes some of the problems more complex (e.g., Section 4.3.2),
but there is currently no implementation of virtual substitution available which does not use
infinitesimals.

3.3 Cylindrical Algebraic Decomposition

The idea behind quantifier elimination with virtual substitution is to find a test point for every
possible maximal interval of the satisfaction set of the matrix of an existentially quantified
formula. Cylindrical algebraic decomposition (CAD) also calculates test points which are
substituted into the matrix of a formula. But, in contrast tovirtual substitution, CAD does not
take the satisfaction set of the matrix into account. Instead, they are based on the following
consideration.

The terms of aΣord-formula ψ are polynomialsp1, . . . , pn. If we choose test points
t1, . . . , tk which cover every possible sign combination of the polynomials p1, . . . , pn, we can
test the formulas∃(ψ) and∀(ψ) by verifying that at least one or, respectively, every test
point satisfiesψ.

Cylindrical algebraic decomposition does not compute a minimal set of test points to
cover every possible sign combination of the given polynomials. It uses a projection method
to project the polynomials to have lower dimensionality until univariate polynomial are
reached. A cylindrical decomposition for the 1-dimensional case is then computed using
root isolation. Finally, the decomposition is extended to higher dimensionalities until the
dimensionality of the original polynomials is reached. Ourpresentation of CAD is based on
[ACM98] and [Hon98].

First we first give some definitions we need to introduce cylindrical algebraic decompo-
sition.

42 3. Quantifier Elimination

3.3.1 Definitions

Definition 3.18 A non-empty connected subset ofRr (r ∈N) is called aregion. For a region
Rwe define thecylinder over R, written asZ(R), asR×R.

The cylinder overR0 = {()} is R0×R = R.

Definition 3.19 Let Rbe a region ofRr . An f -section of Z(R) is the set
{(

a, f (a)
) ∣
∣ a∈ R

}

for a continuous functionf : R→ R.
An (f1, f2)-sector of Z(R) is the set

{(
a,b
) ∣
∣ a∈ R,b∈ R, f1(a) < b < f2(a)

}

where f1 = −∞ or f1 : R→ R is continuous, andf2 = ∞ or f2 : R→ R is continuous, and
f1(x) < f2(x) for everyx∈ R.

x1

x2

sections sectors

(a)

(b)

sectors

sections

Figure 3.1: Sections and sectors

Obviously, sections and sectors are regions. Figure 3.1 shows some sections and sectors
of R1 in (a), and some sections and sectors of a cylinder over an interval in R2 in (b).
The sections and sectors shown in Figure 3.1 also form stacksas defined by the following
definition.

Definition 3.20 Let X ⊆ Rr . A decompositionof X is a finite collection of pairwise disjoint
regions whose union isX.
Let Rbe a region,k∈N, and f1, . . . , fk : R→R be continuous functions withf1(x) < f2(x) <
· · · < fk(x) for everyx∈ R. Then(f1, . . . , fk) defines a decomposition ofZ(R) consisting of
the sets

3.3. Cylindrical Algebraic Decomposition 43

• fi-sections ofZ(R) for 1≤ i ≤ k,

• (fi , fi+1)-sectors ofZ(R) for 1≤ i < k,

• the(−∞, f1)-sector ofZ(R),

• the(fk,∞)-sector ofZ(R).

Such a decomposition is called astack over Rdefined by(f1, . . . , fk).
In the case ofk = 0 the decomposition consists only of the(−∞,∞)-sector ofZ(R), i.e., the
stack consists of the single regionZ(R).

Definition 3.21 A decompositionD of Rr is calledcylindrical, if either

(1) r = 1 andD is a stack overR0, or

(2) r > 1 and there is a cylindrical decompositionD′ of Rr−1 such that, for each regionR
of D′, D contains a stack overR.

A decompositionD of Rr is calledalgebraicif each of its regionsR is a semi-algebraic set,
i.e., if Rcan be defined by a quantifier-freeΣord-formula.
A cylindrical algebraic decomposition(CAD) is a decomposition which is both cylindrical
and algebraic.

Since the terms ofΣord-formulas are polynomials, we get a CAD if we construct a cylindrical
decomposition whose stacks (i.e., sectors and sections) are defined by polynomials.

Definition 3.22 Let X ⊆ Rr andp∈ Q[x1, . . . ,xr]. We sayp is invariant on Xif one of the
following conditions holds:

• p(α) > 0 for all α ∈ X,

• p(α) = 0 for all α ∈ X,

• p(α) < 0 for all α ∈ X.

We say that a set of polynomialsA⊂Q[x1, . . . ,xr] is invariant onX, if every p∈A is invariant
on X. A decompositionD is calledA-invariant if A is invariant on every region ofD.

Our aim is to construct—for a given quantifier-free formulaψ—a cylindrical decomposition
such that the terms ofψ are invariant on the regions of the decomposition. We are not
interested in the regions of the decomposition themselves,but in computing a test point for
each of the regions. Since the terms ofψ are invariant on each of the regions, the truth value
of ψ is also invariant on the regions. We can then substitute the test points into the formula
ψ to compute the truth value ofψ on each region. Ifψ is true on every region, the formula
∀(ψ) is true; if ψ is true on at least one region, the formula∃(ψ) is true.

44 3. Quantifier Elimination

3.3.2 Projection Phase

The projection phase of the CAD algorithm has the purpose to project a finite set of poly-
nomialsA ⊂ Q[x1, . . . ,xr] to a finite set PROJ(A) ⊂ Q[x1, . . . ,xr−1] of polynomials in one
indeterminate less. The condition this projection has to satisfy is: if D′ is a CAD of Rr−1

such thatD′ is PROJ(A)-invariant, then it is possible to construct a stack over each region of
D′ such that all these stacks together form a CADD which isA-invariant.

Central for the correctness of a projection is the notion of delineability.

Definition 3.23 Let p∈ Q[x1, . . . ,xr] andRbe a region ofRr−1. p is calleddelineableonR
if the portion of the set of zerosV(p) = {x̄∈ Rr | p(x̄) = 0} of p which lies inZ(R) consists
of pairwise disjoint sections ofZ(R).

x1

x2

not a stack

x1

x2

3 stacks

Figure 3.2: Delineability of a polynomial

To put this definition in other words: the zeros ofp define a stack overR, since the different
branches of the zeros ofp “do not cross” overR. Figure 3.2 shows an interval and the zeros
of a hypothetical polynomialp over that interval.p is not delineable over the whole interval
and, therefore, the zeros ofp do not define a stack over the interval, butp is delineable over
the three regions outlined in the right part of the figure.

The correctness of a projection is characterized by two conditions. For any PROJ(A)-
invariant regionR the following must hold:

(1) Eachp∈ A is delineable onR, or p(x̄) = 0 for everyx̄∈ Z(R).

(2) The sections ofZ(R) belonging to differentp,q∈ A are either disjoint or identical.

Condition (1) ensures that everyp∈Agives rise to a stack overR(or p is the zero polynomial
overR) and condition (2) states that all the polynomials inA together define a stack.

Different projection operations have been proposed in the literature. Our implementation
is based on the projection operator from [Hon98]:

3.3. Cylindrical Algebraic Decomposition 45

Theorem 3.24 A projection operator satisfying the conditions (1) and (2)is

PROJ(A) :=
[

p∈A
r∈RED(p)

(
{lc(r)}∪PSC(r, r ′)

)
∪

[

p,q∈A
p<q

[

r∈RED(p)

PSC(r,q)

where< denotes an arbitrary linear ordering of the polynomials in A.

For the operations RED, lc, and PSC, we view the polynomialsp∈ Q[x1, . . . ,xr] as elements
of
(
Q[x1, . . . ,xr−1]

)
[xr], i.e., we treat them as polynomials inxr having coefficients from

Q[x1, . . . ,xr−1].

3.3.3 Base Case

The base case of the CAD algorithm is reached when—by applying the PROJ operatorr −1
times—the polynomials inA⊂Q[x1, . . . ,xr] have been projected to univariate polynomials in
PROJr−1(A) ⊂ Q[x1]. In the univariate case it is possible to compute a cylindrical algebraic
decomposition by root isolation. The CAD is constructed as follows:

• First we make sure that no two polynomials have the same zero.To achieve this, we
repeatedly take two polynomialsp,q∈ A with g := gcd(p,q) 6= 1 and replace the set
A by the set(A\{p,q})∪{ p

g , q
g,g} until the polynomials inA are pairwise relatively

prime.

• Using root isolation, one can find isolation intervals for the zeros of every polynomial
p∈ A.

• The isolation intervals can be refined to be pairwise disjoint. The zerosρ1 < ρ2 <
· · · < ρk then define algebraic numbers

Algebraic number Isolation interval Defining polynomial

ρ1 [a1,b1] p1
...

...
...

ρk [ak,bk] pk

• The regions of the CAD are

]−∞,ρ1[, {ρ1},]ρ1,ρ2[, {ρ2}, . . . ,]ρk−1,ρk[, {ρk},]ρk,∞[.

• Test points for the regions can be chosen according to the following table:
Region Test point

]−∞,ρ1[a1

{ρ1} ρ1

]ρ1,ρ2[b1

{ρ2} ρ2
...

...
]ρk−1,ρk[bk−1

{ρk} ρk

]ρk,∞[bk

46 3. Quantifier Elimination

• If the polynomials inA do not have any zeros, we choose]−∞,∞[as the only region
of the CAD with the test point 0.

Since the polynomials inA are continuous functions and the regions of the CAD are defined
using the zeros of these polynomials, it is clear that the CADis A-invariant. It is also clear
from the above table of test points that we can choose rational numbers as test points for the
regions which are intervals. The regions which consist onlyof a single zero have, of course,
that zero as test point, and in general this is an algebraic number.

3.3.4 Complete CAD Procedure

After the projection phase and the base case, the extension phase constructs a CAD ofRr ,
that is, test points for its regions, from given test points of a CAD of Rr−1.

We show the extension phase as part of the complete CAD procedure which computes,
givenA⊂ Q[x1, . . . ,xr], a set of test pointsT for the regions of anA-invariant CAD:

(1) If A⊂ Q[x1], we are in the base case andT is computed as outlined in Section 3.3.3.

(2) Otherwise:

(a) Compute a setT ′ of test points for a PROJ(A)-invariant CAD ofQ[x1, . . . ,xr−1]
by recursively applying the CAD method to PROJ(A) ⊂ Q[x1, . . . ,xr−1].

(b) For everyα = (α1, . . . ,αr−1) ∈ T ′ compute

Pα :=
{

p(α1, . . . ,αr−1,xr)
∣
∣ p∈ A, p(α1, . . . ,αr−1,xr) 6= 0

}

(c) Isolate the zeros of the polynomials inPα and construct test pointsTα :=
{τα,1, . . . ,τα,kα} from the zeros the same way it is done in the base case (Sec-
tion 3.3.3) for everyα ∈ T ′.

(d) The test points representing the regions of anA-invariant CAD are

T := {(α1, . . . ,αr−1,τ) | (α1, . . . ,αr−1) ∈ T ′,τ ∈ T(α1,...,αr−1)}

Remarks:

• By the notationp(α1, . . . ,αr−1,xr) we mean that we substituteα1, . . . ,αr−1 ∈ A for
the indeterminatesx1, . . . ,xr−1 in p and obtain a univariate polynomial in the only
indeterminatexr .

• p(α1, . . . ,αr−1,xr) 6= 0 is used to express that, after substitutingα1, . . . ,αr−1 into p,
the resulting univariate polynomial is not the zero polynomial.

• The polynomialsp(α1, . . . ,αr−1,xr) in Pα are elements ofA[xr], i.e., the coefficients of
these polynomials are algebraic numbers, in general. We canstill apply the techniques
of Section 2.3.4 to isolate the zeros of ap(α1, . . . ,αr−1,xr), but a naive application of
these techniques is extremely inefficient: all the computations to isolate the zeros of
such a polynomial have to be performed with polynomials fromA[xr] and, therefore,
the arithmetic operations on the coefficients of these polynomials are operations with
algebraic numbers. There are different ways around these “stacked algebraic num-
bers”:

3.3. Cylindrical Algebraic Decomposition 47

– Using the algorithm NORMAL, one can compute a polynomialq ∈ Q[xr] for
every p∈ Pα such that every zero ofp is also a zero ofq. The disadvantage of
usingq instead ofp is thatq has, in general, more zeros thanp, and this causes
more test points to be calculated than necessary.

– A more rigorous solution to this problem involves a more complex representation
of algebraic numbers. The idea is to represent a test point(β1, . . . ,βr−1) by a
primitive algebraic numberγ and polynomialsb1, . . . ,br−1 ∈ Q[x] such thatβi =
bi(γ) (computed using the algorithm SIMPLE). The arithmetic withβ1, . . . ,βr−1

can then be done usingb1, . . . ,br−1 in the quotient fieldQ[x]/(µ) whereµ∈ Q[x]
is the minimal polynomial ofγ.

3.3.5 Example

As an example for the computation of a cylindrical algebraicdecomposition, let us look at
the formulaψ = (a− 3 ≥ 0 → a2 + b2 − 1 > 0) and the decision problem∀a∀b(ψ). The
formula ψ contains the two polynomialsp1(a,b) = a2 + b2− 1 andp2(a,b) = a− 3. The
zeros ofp1 and p2 are shown in Figure 3.3. The polynomialp1 has a negative sign inside

a

b

10 3

1 a2+b2-1=0 a-3=0

Figure 3.3: Zeros of the polynomials in the CAD example

the circle around the origin and a positive sign outside the circle; p2 is negative left of the
straight line and positive on the other side.

We are looking for a cylindrical algebraic decomposition ofR2 which is sign invariant
for p1 andp2. We choose to process the dimensions in the orderb,a, i.e., we first project the
b-dimension away, then construct a decomposition of thea-dimension, and finally extend
the decomposition toR2.

By looking at the zeros ofp1 and p2, we can see that, fora < 1, 1< a < 3, anda > 3,
both polynomials have no zeros. Ata = −1 anda = 1 the polynomialp1 has one zero, and
for −1 < a < 1 the zeros ofp1 consist of two separate branches.p2 is identical to the zero
polynomial fora = 3.

48 3. Quantifier Elimination

Projection Phase To calculate the projection of{p1, p2} to thea-dimension, we need the
reducta ofp1 andp2 with respect to the variableb:

RED(p1) = {b2 +(a2−1),a2−1}
RED(p2) = {a−3}

We now compute PROJ({p1, p2}) (cf. Theorem 3.24). Note that the operations lc and resk

are performed with respect tob, which is the main variable of the input polynomials. First
we show the calculation of the leading coefficients and the PSC sets of every reductum with
its formal derivative:

r = b2 +(a2−1) :
r ′ = 2b
lc(r) = 1

res0(r, r ′) = det

1 2 0
0 0 2

a2−1 0 0

= 4a2−4

res1(r, r ′) = det
(
2
)

= 2
PSC(r, r ′) = {4a2−4,2}

r = a2−1 :
r ′ = 0
lc(r) = a2−1
PSC(r, r ′) = ∅

r = a−3 :
r ′ = 0
lc(r) = a−3
PSC(r, r ′) = ∅

The second part of PROJ({p1, p2}) calculates PSC sets of reducta derived from different
polynomials in{p1, p2}:

r = b2 +(a2−1), s= a−3 :

res0(r,s) = det

(
a−3 0

0 a−3

)

= (a−3)2

PSC(r,s) =
{
(a−3)2

}

r = a2−1, s= a−3 :
res0(r,s) = 1
PSC(r,s) = {1}

Putting these results together, we have

PROJ({p1, p2}) =
{

4a2−4,a2−1,(a−3)2,2,1
}

Since 1 and 2 are constant polynomials and 4a2 −4 is a multiple ofa2−1, we can use the
setA = {a2−1,(a−3)2} as input for the CAD computation in thea-dimension.

3.3. Cylindrical Algebraic Decomposition 49

Base case With A= {a2−1,(a−3)2} we have reached the base case, since the polynomi-
als inA are univariate. The zeros of the polynomials inA are{−1,1,3}, and from this we
easily construct the regions and test points of a CAD of thea-dimension:

region test point
]−∞,−1[−2
{−1} −1

]−1,1[0
{1} 1
]1,3[2
{3} 3
]3,∞[4

The regions constructed from the zeros of the polynomials inA are exactly the intervals we
discovered by looking at the branches of the zeros of{p1, p2}.

Extension Phase The final step in our CAD computation is to extend the CAD of thea-
dimension found in the base case to a{p1, p2}-invariant CAD ofR2. For every region in the
CAD of R1 already computed, we substitute the region’s test point into the polynomials in
P= {p1, p2} (for the indeterminatea) and isolate the zeros of the resulting polynomials. We
use the notationP[a/t] as abbreviation for{p1[a/t], p2[a/t]}.

• region]−∞,−1[:

P[a/−2] = {b2 +3,−5} No zeros, test point 0.

region test point
]−∞,−1[×R (−2,0)

• region{−1}:

P[a/−1] = {b2,−4} One zero atb = 0, test points−1, 0, 1.

region test point
{−1}×]−∞,0[(−1,−1)

{(−1,0)} (−1,0)
{−1}×]0,∞[(−1,1)

• region]−1,1[:

P[a/0] = {b2−1,−3} Two zerosb = −1 andb = 1, test points−2,−1, 0, 1, 2.

region test point
{(a,b) | −1 < a < 1,b < −a2} (0,−2)

{(a,−a2) | −1 < a < 1} (0,−1)
{(a,b) | −1 < a < 1,−a2 < b < a2} (0,0)

{(a,a2) | −1 < a < 1} (0,1)
{(a,b) | −1 < a < 1,a2 < b} (0,2)

• region{1}: Similar to region{−1}.

• region]1,3[: Similar to region]−∞,−1[.

50 3. Quantifier Elimination

• region{3}:
P[a/3] = {b2+8,0} The zero polynomial inP[a/3] is ignored;b2+8 has no zeros.
The only test point is 0.

region test point
{3}×R (3,0)

• region]3,∞[: Similar to region]−∞,−1[.

a

b

10 3

1

2-1-2

2

-1

-2

4

Figure 3.4: Test points for a{a2 +b2−1,a−3}-invariant CAD

Figure 3.4 shows the test points for each region. These test points can be used to decide the
formula∀a∀b(a−3≥ 0→a2+b2−1> 0). If we evaluateψ = (a−3≥ 0→a2+b2−1> 0)
for each of our test points, we see thatψ holds for every test point, and hence,∀a∀bψ holds
in R.

3.4 Integers

Virtual substitution and cylindrical algebraic decomposition both work in the real numbers,
and their answer for a question∃(ψ) states whether values for the variables infrvar(ψ) exist
such thatψ becomes true in the reals. They cannot be used to analyze the feasibility of a
formula in the integers, in general. We are not elaborating much on integral solutions in
this thesis since, in general, the existence of integral solutions is undecidable, and it turned
out that quantifier elimination in the reals is sufficient to solve the problems we show in
Chapter 5.

Here is the idea for finding the integral zeros of univariate polynomials. To decide
whether integral zeros of a polynomialp exist, one can isolate the zeros ofp and make
every isolation interval[a,b] so small thatb−a < 1. The interval then contains at most one
integral point. [a,b] contains the integral point⌈a⌉ if and only if ⌈a⌉ ≤ b. If ⌈a⌉ is part of
the interval, one checks whetherp(⌈a⌉) = 0. With this method one can find every integral
zero ofp.

3.5. Implementations Used for this Thesis 51

To find the integral solutions forp > 0, one constructs test points like in the CAD base
case (Section 3.3.3) and testsp(t) > 0 for every such test point. From this, one infers which
integral points between the zeros (and possibly below the smallest and above the biggest
zero) solvep > 0. The procedure is analogous for<,≤,≥, 6=.

3.5 Implementations Used for this Thesis

The previous sections outline virtual substitution as a quantifier elimination procedure and
cylindrical algebraic decomposition as a decision method.We use both algorithms in our
practical experiments (Chapter 5):

• The commercial computer algebra system REDUCE [Hea99, Red] includes a quantifier
elimination package (REDLOG [DS97a]) which is written by Andreas Dolzmann and
Thomas Sturm and is based on virtual substitution.

• An implementation of cylindrical algebraic decomposition(and its sub-algorithms like
root isolation, algebraic number arithmetic, SIMPLE, NORMAL) are provided together
with other algorithms (e.g., the generalized Fourier-Motzkin method from Section
4.2.1) in our implementation. Although arithmetic inQ[x]/(µ) (for a minimal poly-
nomialµ) is available in the implementation,1 the CAD procedure uses the “simple”
method of replacing everyp∈ Pα ⊂ A[xr] by aq∈ Q[xr] in the extension phase of the
CAD procedure (cf. Section 3.3.4).

The implementation of cylindrical algebraic decomposition is by far not as optimized as the
REDLOG system. Therefore, we generally expect that the use of REDUCE instead of our
own cylindrical algebraic decomposition has a (probably big) performance advantage. The
disadvantage of using REDUCE is mainly that there is some overhead in passing formulas to
REDUCEand reading back the results into our implementation’s datastructures. See Chapter
5 for selected results of our experiments.

1The implementation does not require the computation of minimal polynomials (since this would require
an algorithm for polynomial factorization which we did not implement), because the arithmetic is performed
in the ringQ[x]/(δ) whereδ is a defining polynomial for an algebraic numberα (and hence a multiple ofµ);
additionally, the knowledge of an isolation interval forα is used to simulate the arithmetic of the fieldQ[x]/(µ)
in the ringQ[x]/(δ).

Chapter 4

Applying Quantifier Elimination to
the Polyhedron Model

The algorithms used in the context of the polyhedron model describe transformations on
polyhedra. That means that they usually take one polyhedronor several polyhedra as input
an return a new polyhedron or some new polyhedra. The most elementary operation which
many algorithms have to perform on a polyhedron is to solve one of the inequalities describ-
ing the polyhedron for a variablex. As has been outlined in Section 2.1.4, there is (from
the algorithmic point of view) a difference between fixed real coefficients and coefficients
depending on parameters: if the value of the coefficient ofx is known, its sign is also known;
if, on the other hand, the coefficient depends on parameters,its sign (possibly) depends on
the parameters, and the result of the computation has to include a case distinction on the
sign of the parameter. Therefore, if we generalize the algorithms of the polyhedron model
to allow non-linear parameters, they have to be changed in the sense that they will have to
return not a single polyhedron as before, but case distinctions consisting of conditions (in
the parameters) and results valid for a given condition.

These case distinctions can be represented in different ways. Two very basic possibilities
are

• a list (or set) of condition/result pairs,

• a decision tree, carrying conditions at its inner nodes (or its edges) and results at its
leaf nodes.

Quantifier elimination with answer (as described in Section3.2.5) delivers a set of condi-
tion/result pairs. In most cases, however, we prefer the tree representation of results gener-
ated by the generalized algorithms. We make this choice because tree representations have
some advantages for our purposes:

• Decision trees are easily constructed when performing a generalized version of algo-
rithms depending on the sign of coefficients, like Fourier-Motzkin elimination.

• Using alazy language for the implementation of the generalized algorithm, the algo-
rithm itself and a top-down tree simplifier can be implemented as separate modules.

Our implementation language is Haskell [PJ03], a lazy, purely functional programming lan-
guage. We present some of the algorithms and data structuresin this section in a Haskell-like

54 4. Applying Quantifier Elimination to the Polyhedron Model

notation. Therefore, we assume that the reader is familiar with Haskell. An introduction to
Haskell can be found in [HPF00].

In this chapter we first define the possible input formats for the generalized polyhedron
model (Section 4.1). We then introduce a representation of the decision trees (Section 4.1.1)
we use to represent the results of generalized algorithms. We develop a general “recipe” to
generalize existing algorithms to handle non-linear parameters (Section 4.2). As an exam-
ple for a generalized algorithm constructed using the recipe, we present a Fourier-Motzkin
algorithm for non-linear parameters (Section 4.2.1). After that, we are taking a different
approach: we develop new algorithms using quantifier elimination (with and without an-
swer), mainly an algorithm equivalent to a generalized Fourier-Motzkin (Section 4.3.2) and
algorithms for computing unions of polyhedra (Section 4.3.3).

4.1 The Generalized Polyhedron Model

As is outlined in Section 2.1.4, we deal with inequalities ofthe form

n

∑
i=1

ci ·xi +d ≥ 0 (4.1)

wherex1, . . . ,xn are variables andc1, . . . ,cn,d are the coefficients of the inequality which
may depend on the parametersp1, . . . , pm. In general, we have to chooseQ(p1, . . . , pm) as
domain forc1, . . . ,cn,d since we want to divide by (non-zero) coefficients to solve for a
variable.Q(p1, . . . , pm) is a field and therefore closed under division (by non-zero divisors).

The disadvantage of usingQ(p1, . . . , pm) as domain for the coefficients is that Inequality
(4.1) is not aΣord-formula. Some algorithms which we present here require theinput to be
given asΣord-formulas. We can always write Inequality (4.1) equivalently as aΣord-formula
(under the assumption that the denominators of the coefficients are non-zero). We calculate
the least common multiplel of the denominators ofc1, . . . ,cn,d. l is a polynomial from
Q[p1, . . . , pm] and if we multiply Inequality (4.1) byl or l2, all the denominators cancel out
and the resulting inequality is aΣord-formula. If we can determine thatl > 0 holds under the
assumptions we make about the parameters, it suffices to multiply Inequality (4.1) withl ,
otherwise we must usel2 sincel2 is always greater than zero. If we rewrite an equation (or
an inequality with the relation6=), it suffices to usel as multiplier in any case since the sign
of l is irrelevant in this case.

Whether the assumptions about the parameters ensure thatl > 0 holds can be decided
using quantifier elimination. Assume that the quantifier-free formulaχ expresses the as-
sumptions we make. We then decide the formula

∀p1 · · ·∀pm(χ → l > 0)

in R, and the truth value of this formula tells us whether the assumptions imply thatl is
greater than zero or not. In the following, we will not talk about the conversion of coefficients
form Q(p1, . . . , pm) to Q[p1, . . . , pm] explicitly, we assume that the inequality systems are
transformed before applying one of our algorithms if necessary.

4.1.1 Tree Representation of Case Distinctions

To show the code for a simple decision tree, let us takep · x−q ≥ 0 as an example. If we
solvep·x−q≥ 0 for x we get this case distinction:

4.1. The Generalized Polyhedron Model 55

if p < 0 then
x≤ q

p
else if p = 0 then

q≤ 0
else if p > 0 then

x≥ q
p

end if

This case distinction could be represented by a tree carrying the results (likex ≤ q
p) at the

leaves and the conditions (likep < 0) at the edges,

•
p<0

vvvvvvvvv

p=0
p>0

HHHHHHHHH

x≤ q
p q≤ 0 x≥ q

p

but, since all the conditions (p< 0, p= 0, p> 0) share the same polynomialp, we represent
the case distinction by a node carrying the polynomialp and having sub-trees for each of the
cases< 0, = 0, > 0. As abbreviations we write− for < 0, 0 for= 0, and+ for > 0 :

p

−
wwwwwwwww

0
+

GGGGGGGGG

x≤ q
p q≤ 0 x≥ q

p

Special cases of this ternary case distinction occur, when two of the three cases share the
same sub-tree. Therefore, our tree data type has three different constructors for inner nodes
of the tree:

• SCond p t− t0 t+

p
−

~~
~~

~~
~

0
+

@@
@@

@@
@

t− t0 t+

t− for p < 0, t0 for p = 0, andt+ for p > 0.

• EqCond p t0 t±

p
0

��
��

��
� ±

??
??

??
?

t0 t±

t0 for p = 0 andt± for p 6= 0

• GeCond p t0+ t−

p
0+

}}
}}

}}
}} −

??
??

??
?

t0+ t−

t0+ for p≥ 0 andt− for p < 0

56 4. Applying Quantifier Elimination to the Polyhedron Model

Another case which can occur (especially when we want to represent the result of an external
tool as a tree) is that we do not want to make a distinction on the sign of a polynomial but
use an arbitrary quantifier-free formula to discriminate two cases. For this purpose, we add
a fourth constructor:

• FCond ϕ t⊤ t⊥

ϕ
⊤

��
��

��
�� ⊥

??
??

??
??

t⊤ t⊥

t⊤ whenϕ is true andt⊥ whenϕ is false.

In summary, the definition of our decision tree datatype as analgebraic data type in a
Haskell-like notation is:

data Treeα = Leaf α
| SCond Polynomial(Treeα) (Treeα) (Treeα)
| EqCond Polynomial(Treeα) (Treeα)
| GeCond Polynomial(Treeα) (Treeα)
| FCond QfFormula(Treeα) (Treeα)

The decision trees which can be constructed with these five constructors always represent a
completecase distinction, since every constructor for inner nodes holds sub-trees for every
possible case. When incomplete case distinctions are required, we use trees carrying values
of typeMaybeα instead ofα

data Maybeα = Nothing
| Justα

where the valueNothingis used to express the notion of “no solution.”

4.1.2 Representing Results from Quantifier Elimination with Answer as Trees

The node constructorFCondis mainly used to represent the result of a quantifier elimination
with answer as a decision tree. As noted in Section 3.2.5, theresult of a quantifier elimination
with answer is a set

{(γ1, r1), . . . ,(γk, rk)}

where eachγi represents a condition under which the answerr i (which is a list of substitu-
tions, i.e., values for the existentially quantified variables) is a solution of the input formula.
We transform this result into the following tree:

4.2. Recipe for the Generalization of Algorithms to Non-linear Parameters 57

γ1

⊤
tttttttttt

⊥
FF

FF
FF

FF
F

Just r1 γ2

⊤
xx

xx
xx

xx
x

⊥

FFFF
FFFF

FF

Just r2

γk

⊤

yy
yy

yy
yy

y
⊥

GG
GG

GG
GG

G

Just rk Nothing

Note that the tree is carrying values of typeMaybe Substitutioninstead of justSubstitution,
since a decision tree always represents a complete case distinction and we use the value
Nothingto stand for “no solution” in the case¬γ1∧ ·· ·∧¬γk.

A formal description of this transformation process is given by the following Haskell
code using thefoldr combinator, which performs a right-to-left list reduction:

qeaToTree :: [(Formula,α)] → Tree(Maybeα)
qeaToTree qeaRes= foldr combine (Leaf Nothing) qeaRes

where
combine(γ, r) subtree= FCond γ (Leaf r) subtree

The functionqeaToTreeworks not only with substitutions as results, but for arbitrary types
since we will occasionally transform the result (e.g., to inequalities) before changing the
structure to the tree representation.

4.2 Recipe for the Generalization of Algorithms to Non-linear
Parameters

As is outlined in Section 2.1.4, the fundamental operation of many algorithms used in the
polyhedron model is solving an equation or an inequality fora given variable. Since the
signum of the coefficient of the variable determines how the respective equation or inequality
is handled, algorithms usually contain constructs like

casesignum cof
Negative→ t−
Zero → t0
Positive → t+

The signum ofc is determined statically by the input of the algorithm sincethe coefficient
is a fixed real (usually even rational) number. Depending on this signum, the computation
continues with either of the subprogramst−, t0, or t+.

In a generalized version of the algorithm, the coefficients are rational functions in the
parameters, i.e.,c∈ Q(p1, . . . , pn). Thenc can be represented by a fraction of polynomials,
c = c1

c2
for c1,c2 ∈ Q[p1, . . . , pn], c2 6= 0. The signum ofc is then equal to the signum of the

58 4. Applying Quantifier Elimination to the Polyhedron Model

polynomialc1 · c2. Therefore, the case distinction on the sign ofc is transformed into the
tree node

SCond(c1 · c2) t− t0 t+

If the case distinction is only binary, i.e.,c = 0 vs. c 6= 0 or c ≥ 0 vs. c < 0, then one of
the other constructors (EqCondor GeCond) can be used to avoid the duplication of sub-
trees. This rewriting rule replaces all case distinctions in thecodeof the algorithm by case
distinctions in the resultdata structure.

Obviously, some other changes in the implementation of the algorithm are necessary.
When a final resultz is returned, the correct tree representation forz is Leaf z. The typeα of
the result has to be changed toTreeα. Finally, if a resultz (of former typeα) is used as the
argument of another function, i.e.,f z, then the application off has to be “lifted” correctly
to the whole tree using a higher-order combinator. We have todistinguish two cases here:

1. If the functionf works without modification on the generalized input, i.e., the result
type β of f need not be changed toTreeβ, then a combinator usually calledfmap in
Haskell is appropriate to applyf to all the leaves of a tree with a callfmap f zinstead
of the originalf z:

fmap :: (α → β) → Treeα → Treeβ
fmap f (Leaf z) = Leaf (f z)
fmap f (SCond p t− t0 t+) = SCond p(fmap f t−) (fmap f t0) (fmap f t+)
fmap f (EqCond p t0 t±) = EqCond p(fmap f t0) (fmap f t±)
fmap f (GeCond p t0+ t−) = GeCond p(fmap f t0+) (fmap f t−)
fmap f (FCondϕ t⊤ t⊥) = FCondϕ (fmap f t⊤) (fmap f t⊥)

2. If the function f has to be generalized such that its result type changes fromβ to
Treeβ, the application off using thefmapcombinator, like infmap f z, would yield a
result of typeTree(Treeβ). Using a different combinator we can “flatten” this tree of
trees into a single tree:

treeMap :: (α → Treeβ) → Treeα → Treeβ
treeMap f(Leaf z) = f z
treeMap f(SCond p t− t0 t+) = SCond p(treeMap f t−) (treeMap f t0) (treeMap f t+)
treeMap f(EqCond p t0 t±) = EqCond p(treeMap f t0) (treeMap f t±)
treeMap f(GeCond p t0+ t−) = GeCond p(treeMap f t0+) (treeMap f t−)
treeMap f(FCondϕ t⊤ t⊥) = FCondϕ (treeMap f t⊤) (treeMap f t⊥)

The difference betweenfmapandtreeMapis in the base case, wheretreeMapdoes not
produce a leaf carrying the resultf z, but simply returns the tree produced byf z.

4.2.1 A Generalized Fourier-Motzkin Algorithm

The Fourier-Motzkin algorithm, as described in Section 2.1.2, can only handle inequality
systems with constant coefficients of the variables. This restriction is inherently built into
the algorithm, since the construction of the setsLi andUi of lower and upper bounds depends
on the signs of the coefficients ofxi .

4.2. Recipe for the Generalization of Algorithms to Non-linear Parameters 59

The generalized version of the Fourier-Motzkin algorithm presented here works as fol-
lows. Whenever the inequalities are to be solved for a variable xi , then a case distinction
on the signs of all terms appearing as coefficients ofxi is made and the setsLi andUi are
determined for each of the cases. In other words, this is an application of the recipe (Section
4.2) for generalizing algorithms to non-linear parameters. We do not start with an imple-
mentation of the Fourier-Motzkin algorithm and apply formally the recipe from Section 4.2
to it, since this produces clumsy code. We just follow the idea and give a more readable
implementation of the algorithm in pseudo-Haskell, which takes a set of inequalitiesSand
the number of variablesn as input (Figure 4.1).

fourierMotzkin :: Int → Set Inequality→
Tree

(
Maybe[(Set Inequality, Set Inequality)]

)

fourierMotzkin n S= fourier n S[]

fourier :: Int → Set Inequality→ [(Set Inequality, Set Inequality)] →
Tree

(
Maybe[(Set Inequality, Set Inequality)]

)

fourier 0 S0 LUs= FCond (
V

S0)
(
Leaf (Just LUs)

)
(Leaf Nothing)

fourier n Sn LUs= eliminate Sn ∅ ∅ ∅
where

eliminate ∅ Snew L U =
fourier (n−1) (Snew∪ S′new) (LUs ++ [(L,U)])
where

S′new = {t′− t ≥ 0 | (x≥ t) ∈ L, (x≤ t′) ∈ U}
eliminate (S∪̇{ t1

t2
· xn + t′ ≥ 0}) Snew L U =

SCond(t1 · t2)
(eliminate S Snew L (U∪{xn ≤ − t′· t2

t1
}))

(eliminate S (Snew∪{t′ ≥ 0}) L U)
(eliminate S Snew (L∪{xn ≥ − t′· t2

t1
}) U)

Figure 4.1: Generalized Fourier-Motzkin elimination for non-linear parameters.

The algorithm works like the original Fourier-Motzkin algorithm, except that it has to
make case distinctions when constructing the sets of lower and upper bounds. The third
parameter of functionfourier serves as an accumulator for the upper and lower bounds which
have already been found. The construction of the case distinction is done by the function
eliminate. It handles recursively every inequality from the setSn passed to it as its first
parameter, and makes a case distinction on whether the selected inequality represents a lower
bound, an upper bound, or no bound for the highest remaining variablexn. The second, third,
and fourth argument ofeliminateare accumulators for the already found lower bounds, non-
bounds, and upper bounds, respectively. When all inequalities have been analyzed (and the
first parameters becomes the empty set),eliminateconstructs the projection ofSn to the lower
dimensions (Snew∪S′new) and passes this projection, together with the updated accumulator
of lower and upper bounds, to a recursive invocation offourier.

Whenfourier is called with argument 0, the procedure has eliminated every variable and
the setS0 contains conditions in the parameters only. The accumulator LUshas collected all
the lower and upper bounds, i.e.,LUs= [(L1,U1), . . . ,(Ln,Un)], whereLi andUi are the sets
of lower and upper bounds forxi . The input inequality system is feasible (in the particular

60 4. Applying Quantifier Elimination to the Polyhedron Model

case determined by the cast distinction constructed byeliminate“above” this base case) if
and only if

V

S0 holds. Therefore, we guard the solutionJust LUswith the condition
V

S0

(and provide the valueNothing, for “no solution”, in the other case).
In case we are not interested in when the given inequality system S is feasible (in the

reals) and when not, but are interested in a (possibly empty)description of the points in the
polyhedron described byS, we need not make the case distinction on

V

S0 in the base case
of fourier. Then it is sufficient to use

fourier 0 S0 LUs= Leaf (Just LUs)

as base case for the recursion infourier and ignore the conditions inS0.
Not shown in Figure 4.1, but part of our implementation, is that Fourier-Motzkin can

be significantly sped up by exploiting equations if they are present in the input. The imple-
mentation of this is fairly simple. Assume we have an equation c · xn = e for some linear
expressione with variablesx1, . . . ,xn−1. Before we eliminatexn using the actual Fourier-
Motzkin method, we make a case distinction on whetherc is zero or not. Ifc is not zero,
we can substituteec for xn in the inequalities and the equations.e

c is then a lower and up-
per bound forxn. If c is zero, we replace the equationc · xn = e by 0 = e and check the
other equations (or perform Fourier-Motzkin elimination for xn if no further equations are
available).

Note that the results computed by Fourier-Motzkin elimination often contain superflu-
ous bounds. For example, it can easily happen that the lower bounds forx2 contain both
x2 ≥ 2x1 + p andx2 ≥ 2x1 + p+3. In this case, the bound 2x1 + p is superfluous, since it is
dominated (for every value of the parameterp) by the bound 2x1 + p+3. Another example
is x2 ≥ 2x1 andx2 ≥ 2x1− p if we know that eitherp≥ 0 or p≤ 0; e.g., in the casep≥ 0, the
only relevant bound isx2 ≥ 2x1. Our implementation contains some optimizations for the
bound sets which exploits such situations. We describe these optimizations here for lower
bounds; it is analogous for upper bounds.

We check, for two given lower boundsl1 and l2, if d := l1 − l2 is independent of the
variables, i.e., ifd∈ Q(p1, . . . , pn). If this is not the case, we leave bothl1 andl2 in the set of
bounds and go on checking other combinations of bounds. Ifd ∈ Q(p1, . . . , pn), we check
whetherd ∈ Q, that is, whether the difference ofl1 andl2 is a constant. Ifd ∈ Q andd ≥ 0,
then l1 dominatesl2 and we can removel2 from the set of lower bounds. Ifd ≤ 0, we can
removel1. Whend /∈ Q, then we check if the contextC for the part of the decision tree we
are in implies thatd ≥ 0 ord ≤ 0 holds. This is, of course, solved by deciding the problems

R � ∀
(^

C→ d ≥ 0
)

and

R � ∀
(^

C→ d ≤ 0
)

using a quantifier elimination method. If the context implies one of the two conditions, either
l2 or l1 can be removed from the set of lower bounds.

Obviously, comparing every lower (upper) bound against every other lower (upper)
bound gives rise to a quadratic amount of comparisons in the number of lower (upper)
bounds. The experiments we conducted with our implementation showed that, for simple ex-
amples, this causes a moderate slowdown but, for more complex examples, the optimization
is vital for obtaining a result at all.

4.2. Recipe for the Generalization of Algorithms to Non-linear Parameters 61

4.2.2 Simplifying the Decision Trees

The previous section shows that a naive application of the recipe for generalizing algorithms
to non-linear parameters leads to huge decision trees with alot of superfluous case distinc-
tions. Since we use a lazy implementation language, it is notnecessary to build simplifica-
tion algorithms into the generalized algorithms. Instead,the simplification of the decision
trees can be implemented completely separately from the generalized algorithm, since the
laziness of the implementation language guarantees that irrelevant parts of the decision tree
are never computed.

We implement a top-down simplification method. This method starts with some as-
sumptions on the parameter values, represented as logical formulas. For example,p≥ 0 is
a common assumption. These assumptions are called thecontextwith respect to which the
simplification is performed. The actual simplification begins at the root of the decision tree.
At every node which represents a case distinction, it is checked whether the context implies
one of the conditions which make a certain sub-tree of the node applicable. If the context
implies one of these conditions, the node is replaced by the respective sub-tree and the sim-
plification continues on this sub-tree. If the context does not imply any of the conditions,
then the node is retained and the simplification is performedon each sub-tree after the con-
dition required for the sub-tree to be applicable is added tothe context for the simplification
of the sub-tree.

As an example consider the simplification of the noden = (SCond p t− t0 t+) under a
contextC. If the logical formula

V

C→ p > 0 holds inR, it is clear that, under the assump-
tion thatC holds, the sub-treest− andt0 of n are irrelevant and the noden can be replaced
by t+. The same simplification can be performed if

V

C → p = 0 or
V

C → p < 0 holds.
If, for example,

V

C → p > 0 and
V

C → p = 0 do not hold, but
V

C → p ≥ 0 holds, the
ternary constructorSCondcan be replaced by the simplerEqCond: sincet− is irrelevant,
n can be expressed by the binary case distinctionEqCond p t0 t+. Similar optimizations
can be performed in some other cases; the complete simplification procedure is shown in a
pseudo-Haskell notation in Figure 4.2.

The simplification procedure in Figure 4.2 uses a predicateimplies and a function
simplifyFormulanot shown in the figure. The predicateimpliesis a function whose specifi-
cation is given by

implies :: Set Formula→ Formula→ Bool
implies contextϕ = if

(
R � ∀(

V

context→ ϕ)
)

then TrueelseFalse

impliestakes care of deciding whether a set of formulas (the contextcontext) logically im-
plies another formulaϕ in R. The notation∀(

V

context→ ϕ) is used to express that the
formula

V

context→ ϕ is to be prefixed with a universal quantifier for every free variable of
V

context→ ϕ.
To decide∀(

V

context→ ϕ), a quantifier elimination method like virtual substitution
(Section 3.2) or (since the formula has no free variables) a decision method like cylindrical
algebraic decomposition (Section 3.3) can be used. It is obvious, that when simplifying a
SCondnode, very similar formulas have to be decided, namely

V

context→ pρ0 for dif-
ferent relationsρ ∈ {<,≤,=, 6=,≥,>}. The simplification procedure has been chosen such
that at most 3 different formulas have to be decided (of the possible 6 ones). When we
use REDLOG to implement theimpliesfunction, we have to make these similar calls to the
quantifier elimination procedure. But with our CAD implementation we need not repeat the
whole work thrice: The terms in the formulas are the same for each of the six cases, so the

62 4. Applying Quantifier Elimination to the Polyhedron Model

simplify :: Set Formula→ Treeα → Treeα
simplify context(Leaf z) = Leaf z
simplify context(SCond p t− t0 t+) =

if implies context(p≥ 0) then
if implies context(p > 0) then simplify context t+
else if implies context(p = 0) then simplify context t0
else EqCond p

(
simplify(context∪{p = 0}) t0

)

(
simplify(context∪{p > 0}) t+

)

else if implies context(p≤ 0) then
if implies context(p < 0) then simplify context t−
else EqCond p

(
simplify(context∪{p = 0}) t0

)

(
simplify(context∪{p < 0}) t−

)

else if implies context(p 6= 0) then GeCond p
(
simplify(context∪{p > 0}) t+

)

(
simplify(context∪{p < 0}) t−

)

else SCond p
(
simplify(context∪{p < 0}) t−

)

(
simplify(context∪{p = 0}) t0

)

(
simplify(context∪{p > 0}) t+

)

simplify context(EqCond p t0 t±) =
if implies context(p = 0) then simplify context t0
else if implies context(p 6= 0) then simplify context t±
else EqCond p

(
simplify(context∪{p = 0}) t0

)

(
simplify(context∪{p 6= 0}) t±

)

simplify context(GeCond p t0+ t−) =
if implies context(p≥ 0) then simplify context t0+

else if implies context(p < 0) then simplify context t−
else GeCond p

(
simplify(context∪{p ≥ 0}) t0+

)

(
simplify(context∪{p < 0}) t−

)

simplify context(FCondϕ t⊤ t⊥) =
if implies contextϕ then simplify context t⊤
else if implies context(¬ϕ) then simplify context t⊥
else FCondψ

(
simplify(context∪{ψ}) t0+

)

(
simplify(context∪{¬ψ}) t−

)

where
ψ = simplifyFormula contextϕ

Figure 4.2: Top-down simplifying algorithm for decision trees

4.3. New Algorithms based on Quantifier Elimination 63

test points computed by the CAD procedure are the same. We only calculate the test points
once, keep only the points where

V

contextis true (since if
V

contextis false, the implication
V

context→ pρ0 a is true anyway), and check the sign ofp for the remaining points.
The function simplifyFormula is used to simplify a quantifier-

free formula in the context of a set of formulas. For example,
simplifyFormula{p > 0,q≤ 4}

(
p≥ 1∧ (q≤ 3∨ q≥ 5)

)
could yield the simpler

formula q ≤ 3. We do not give a simplification algorithm here; good algorithms can be
found in the literature, e.g., in [DS97b]. The formula simplification algorithm may require
the context to be given as a set ofatomicformulas. In this case,simplifyFormulashould take
care of replacing conjunctions of atomic formulas by the individual formulas and dropping
additional formulas from the context before passing the context to the simplification
algorithm.

4.3 New Algorithms based on Quantifier Elimination

The previous section focuses on generalizing an existing algorithm of the polyhedron model
to non-linear parameters. In this approach, quantifier elimination (or a decision method)
is used to reduce the size of decision trees by detecting irrelevant branches. In this sec-
tion, we discuss some direct applications of quantifier elimination, where we use quantifier
elimination with answer to calculate some desired results instead of generalizing an existing
algorithm of the polyhedron model. Of course, this requiresthat the problem we wish to
solve can be expressed as a first-order formula inR.

We show how the lexicographic minimum of a polyhedron can be found (Section 4.3.1),
how a sorting of an inequality system, which is equivalent toFourier-Motzkin elimination,
can be computed using quantifier elimination (Section 4.3.2), and how to find convex and
disjoint unions of polyhedra (Section 4.3.3).

4.3.1 Lexicographic Minima and Maxima

The calculation of lexicographic minima and maxima plays animportant role in optimization
problems in the polyhedron model.

The procedure for calculating lexicographic minima and maxima differs only in the ori-
entation of some relation symbols in the input formula. Therefore, we only show how to
deal with the lexicographic minimum.

The lexicographic minimum of a polyhedronP is a pointx ∈ P inside the polyhedron
which is lexicographically less than or equal to every pointy∈ P. We denote “lexicographi-
cally less than or equal” with the symbol�. The signatureΣord does not contain a symbol for
lexicographic ordering, but the usual recursive definitionof (a1, . . . ,an)� (b1, . . . ,bn) gives,
in fact, aΣord-formula for lexicographic ordering, and we use the notation (a1, . . . ,an) �
(b1, . . . ,bn) as a short hand for the first-order formula defined as follows:

a1 � b1 := a1 ≤ b1

(a1, . . . ,an) � (b1, . . . ,bn) := a1 < b1∨
(
a1 = b1∧ (a2, . . . ,an) � (b2, . . . ,bn)

)
(for n≥ 2)

We are now able to express that(x1, . . . ,xn) is the lexicographic minimum of a polyhedronP
as a first-order formula. Assume thatP is defined by the first-order formulaϕ (usuallyϕ is
a conjunction of linear inequalities) andfrvar(ϕ) = {x1, . . . ,xn, p1, . . . , pm}, wherex1, . . . ,xn

64 4. Applying Quantifier Elimination to the Polyhedron Model

are the variables describing the dimensions of the polyhedron andp1, . . . , pm are the param-
eters the polyhedron is parametrized with. Let, for some newvariablesy1, . . . ,yn,

ψ := ϕ∧∀y1 · · ·∀yn
(
ϕ[x1/y1, . . . ,xn/yn] → (x1, . . . ,xn) � (y1, . . . ,yn)

)

This formula expresses that(x1, . . . ,xn) is a point inP (because of theϕ conjunct) and that,
if (y1, . . . ,yn) is any point inP, then(x1, . . . ,xn) is lexicographically less than or equal to
(y1, . . . ,yn).

To get values forx1, . . . ,xn (which are uniquely determined if they exist), we apply the
generalized quantifier elimination to the following formula:

∃x1 · · ·∃xnψ

The result is (as described in Section 3.2.5) a set

{(γ1,{x1 = t1,1, . . . ,xn = t1,n}),
· · · ,
(γk,{x1 = tk,1, . . . ,xn = tk,n})}

of conditionsγi and the respective lexicographic minimum(ti,1, . . . , ti,n). The formulaγi and
the termsti,1, . . . , ti,n contain the parametersp1, . . . , pm as variables. We can transform this
result set into a tree for further use as presented in Section4.1.2.

4.3.2 Sorting a System of Inequalities

The Fourier-Motzkin algorithm, as defined in Section 2.1.2,solves the problem of sorting
an inequality system. Unfortunately, the Fourier-Motzkinelimination is (in the worst case)
at least doubly exponential in the number of variables of theinput system. Therefore, the
worst case complexity of the generalized Fourier-Motzkin algorithm of Section 4.2.1 is also
at least doubly exponential in the number of variables. Experiments conducted with the
loop parallelizerLooPo showed that usually problems with constant coefficients and6 to
8 variables can be solved in reasonable time on current desktop computers with Fourier-
Motzkin, but we encounter problems with more than 10 variables. Therefore, we have been
looking for an alternative algorithm which produces outputequivalent to Fourier-Motzkin
elimination and which also works in the presence of non-linear parameters.

Given a polyhedronP in the variablesx1, . . . ,xn, Fourier-Motzkin successively calculates
projections ofP to the dimensionsx1, . . . ,xi , for i ∈ {1, . . . ,n}, and (at the same time) finds
the lower and upper bounds forxi in terms ofx1, . . . ,xi−1.

Our approach is to calculate instead the lower and upper bounds for the dimensions
x1, . . . ,xn using quantifier elimination (without explicit projections). We have to solve two
main problems to achieve this:

(1) We have to find a logical formula with describes the property “ . . . is a lower (upper)
bound” of a certain dimension.

(2) Since we are working with inputs containing non-linear parameters, we cannot simply
use all lower and upper bounds together in a single solution,but we have to arrange
appropriate conditionals for the different possible casesand output only the respective
lower and upper bounds in each of the cases. In addition, we have to look for the
condition under which the polyhedron does not contain a lower/upper bound for a
given variable.

4.3. New Algorithms based on Quantifier Elimination 65

We have tried several different ways to express (1) and (2) asquantifier elimination prob-
lems. Unfortunately, we discovered that most of them do not work satisfactorily. The main
difficulties are to avoid the generation of infinitesimals (cf. Section 3.2.6) in the answers and
to minimize the number of cases produced by the algorithm. Wehave found an algorithm
which works but fails to outperform Fourier-Motzkin in practice (see Chapter 5). We present
a sketch of this algorithm in the following:

Step (1) Let ϕ be a formula describing the polyhedronP. We note thatfrvar(ϕ) =
{x1, . . . ,xn}∪{p1, . . . , pm}, wherep1, . . . , pm are the (possibly non-linear) parameters of the
polyhedronP. To find the lower and upper bounds for a variablexi , we look for the minimum
or maximum ofxi in P in dependence ofx1, . . . ,xi−1.

Given some fresh variabley, the formula

ψ := ∃xi+1 · · ·∃xn
(
ϕ∧∀y∀xi+1 · · ·∀xn(ϕ[xi/y] → xi ≤ y)

)

expresses that, for given values ofp1, . . . , pm andx1, . . . ,xi−1, there exists a pointp∈ P with
p = (x1, . . . ,xi−1,xi , . . .), andxi is minimal for the given choice ofx1, . . . ,xi−1.

If we now submit the formula∃xi ψ to a quantifier elimination with answer system and
demand answers forxi , we will get a list

{
(δ j ,{xi = t j}) | j ∈ {1, . . . ,k}

}
(4.2)

for some k ∈ N, conditions δ j ∈ Qf({x1, . . . ,xi−1, p1, . . . , pm},Σord), and terms
t j ∈ Tm({x1, . . . ,xi−1, p1, . . . , pm},Σord′).

When a conditionδ j holds for given values ofp1, . . . , pm andx1, . . . ,xi−1, thent j is the
minimum ofxi in P (in dependence ofx1, . . . ,xi−1 and p1, . . . , pm). Since the formulaψ is
linear in{x1, . . . ,xn,y}, Lemma 3.17 implies that the termt j is linear in{x1, . . . ,xi−1}.

Step (2) To construct an appropriate case distinction for our result, we now ask the ques-
tion, when (i.e., under which condition depending on the parameters) a givent j is a lower
bound forxi . Note that the boundst j from above are guarded with conditionsδ j , which are
in the parameters and the variablesx1, . . . ,xi−1 and express thatt j is the minimum ofxi . We
are now looking for the conditionsγ j in the parameters only, which describe thatt j is a lower
bound, possibly not a sharp bound, forevery x1, . . . ,xi−1.

In quantifier elimination, this question is expressed by thefollowing formula

µj := denom(t j) 6= 0∧∀x1 · · ·∀xn(ϕ → β j) (4.3)

whereβ j := (xi ≥ y)[y//t j] (for some freshy∈ V) and

denom(t) :=

{

s2 if t is of the forms1 ·s−1
2

1 otherwise

expresses that—for given values of the parameters—t j is defined (since its denominator is
not zero) and thatt j is a lower bound forxi . The formulaβ j is constructed formt j using
virtual substitution, sincet j is aΣord′-term, butµj must be aΣord-formula.

Calculating quantifier-free equivalents of theµj , we get formulasλ j which are in the
parameters only, and eachλ j is equivalent tot j being a lower bound forxi . We now get a set
of condition/bound pairs

B =
{
(λ j , t j) | j ∈ {1, . . . ,k}

}

66 4. Applying Quantifier Elimination to the Polyhedron Model

wheret j is a (probably not sharp) lower bound if and only ifλ j holds. Our implementation
tries to minimize the number of elements inB by checking whether∀(λ j → λ j ′) holds for
some j 6= j ′: in this case,t j ′ is dominated byt j and we can remove(λ j ′ , t j ′) from B. We
construct a condition/set-of-bounds set where each condition guards exactly the terms which
are bounds under that condition:

L :=
{(^

j∈J

λ j ∧
^

j /∈J

¬λ j ,{t j | j ∈ J}
) ∣
∣∅ 6= J ⊆ {1, . . . ,k}

}

In other words, we construct a complete case distinction on which λ j hold and which do
not hold. Using the technique outlined in Section 4.1.2, we construct a decision tree fromL
whose leaves are the lower bounds forxi (guarded with conditions in the parameters at the
inner nodes of the tree). This takes care of the case that the polyhedron has a lower bound
for xi , but we have to consider the case that the polyhedron is unbounded. The formulaν
(with a fresh variabley) expresses that the polyhedron is non-empty and has no lowerbound
for xi :

ν := ∃x1 · · ·∃xn
(
ϕ∧∀y(ϕ[xi/y] → ϕ[xi/y−1])

)

The quantifier-free equivalent is a formula in the parameters, and this condition can be added
to the case distinction for the additional case “no lower bound forxi .”

Constructing the solution We can repeat Steps (1) and (2) for everyxi with i ∈ {1, . . . ,n}
and also for the upper bounds instead of the lower bounds (only the orientation of some
relation symbols has to be changed, and the−1 in the formula for unboundedness has to
be changed to+1). This yields decision trees for the lower and upper boundsof everyxi .
Combining these trees into one big tree by “appending” one tree to all the leaves of another
tree repeatedly for all the trees and collecting the sets of lower and upper bounds at the final
leaves (e.g., by repeatedly using thetreeMapcombinator from Section 4.2), we finally get
a decision tree carrying appropriate lower and upper boundsfor each variable at its leaves.
This result is equivalent to applying the generalized Fourier-Motzkin algorithm to the given
inequality system.

This algorithm is largely obvious, but there is a potential problem hidden in it. Let us
look at Figure 4.3 to illustrate this. The only necessary lower bound forx2 in the depicted
triangle isx2 ≥ 1, so we would like the Set (4.2) to be

{(1≤ x1∧x1 ≤ 7,x2 = 1)}

in this case. Unfortunately, another correct quantifier elimination result is

{(1≤ x1∧x1 ≤ 7∧x1 6= 4, x2 = 1),

(x1 = 4, x2 = x1−3)}

Obviously, the hyperplanex2 = x1−3 (depicted as a dashed line in Figure 4.3) isnotsuitable
for a sorted description of the triangle. The problem which arises from this is not that
such unsuitable bounds are mixed among the desired bounds: the unsuitable bounds will
be filtered by Formula (4.3), sinceµj is equivalent to false for such bounds. Theoretically,
a necessary bound (in our examplex2 = 1) could be missing from the computed answer,
because all the points on it are covered by unsuitable bounds.

4.3. New Algorithms based on Quantifier Elimination 67

0 1 4 7

0

1

4

x2

x1

Figure 4.3: An undesired lower bound forx2

We have not developed a formal proof showing that the hypothetical situation just de-
scribed can never happen. The reason is that, as our experiments in Chapter 5 show, we do
not achieve better performance than Fourier-Motzkin elimination with this approach (and it
often fails due to memory exhaustion), although we spent quite some time experimenting
with different variants. We just present a conjecture stating formally that Set (4.2) contains
all the necessary lower bounds (upper bounds are similar), i.e., terms which have the geo-
metric properties required for a sorted description of the input polyhedron. We also give our
ideas for the reasoning in a formal proof of the conjecture.

Conjecture 4.1 Let P be a polyhedron in the variables x1, . . . ,xn and parameters p1, . . . , pm,
and let Pi be the projection of P to the dimensions x1, . . . ,xi . Let (y1, . . . ,yi) be a point of Pi
such that yi is minimal with respect to(y1, . . . ,yi−1). Then there exists a term t in Set(4.2)
such that the hyperplane h defined by xi = t and the halfspace H defined by xi ≥ t have the
following properties:

(a) (y1, . . . ,yi) ∈ h

(b) Pi ⊆ H

Proof idea. Let Pi be the projection ofP to the dimensionsx1, . . . ,xi . For any point
(y1, . . . ,yi) ∈ Pi, whereyi is minimal with respect toy1, . . . ,yi−1, there exists a halfspaceG
defined by the inequalityxi ≥ e (for a terme which is linear inx1, . . . ,xi−1) with associated
hyperplaneg which satisfies the following conditions:Pi ⊆ G, (y1, . . . ,yi) ∈ g, b := Pi ∩ g
has maximal dimensionality for all possibleG. Sinceb cannot be represented as a union of
finitely many sets whose dimensionalities are lower than thedimensionality ofb, and every
point in b satisfies an equationxi = t j for some j ∈ {1, . . . ,k} (every point fromb is lexico-
graphically minimal inPi by definition), there exists anl ∈ {1, . . . ,k} in Set (4.2) such that
b is a subset of the hyperplaneh defined byxi = tl . The hyperplaneh and the halfspaceH
defined byxi ≥ tl have the properties stated in the conjecture. �

68 4. Applying Quantifier Elimination to the Polyhedron Model

4.3.3 Convex and Disjoint Unions of Polyhedra

Beside calculating a sorted description of polyhedra, other algorithms used in the polyhe-
dron model are the calculation of convex unions and disjointunions of polyhedra. Convex
unions are often used to calculate an “approximation” of a set of polyhedra through a single
polyhedron which is a superset of the individual polyhedra.

Definition 4.2 Given the finitely many polyhedraP1, . . . ,Pn, theconvex unionof these poly-
hedra is a polyhedronP which satisfies the following two conditions:

(1) Pi ⊆ P for everyi ∈ {1, . . . ,n},

(2) No polyhedronQ $ P satisfies (1), i.e.,P is the smallest polyhedron satisfying (1)
(with regard to set inclusion).

A disjoint union of polyhedra is a representation of the union of given polyhedra through
pairwise disjoint polyhedra.

Definition 4.3 Given finitely many polyhedraP1, . . . ,Pn, adisjoint unionof these polyhedra
is a finite set of polyhedraQ1, . . . ,Qk which satisfies the following two conditions:

(1) P1∪ ·· ·∪Pn = Q1∪ ·· ·∪Qk,

(2) Q1, . . . ,Qk are pairwise disjoint, i.e.,Qi ∩Q j = ∅ for 1≤ i < j ≤ k.

Disjoint unions of polyhedra are needed in loop parallelization during code generation when
the iteration domains of different statement are combined.The iteration domain of each
statement is described by a polyhedron. The polyhedra need not be disjoint, i.e., different
statements can share points in the iteration domain. Usually it is desired to enumerate every
point of the iteration domain only once (for all the statements). This can be achieved by two
methods. The simple method is to calculate a convex union of the given iteration domains
(or even a “bigger” superset of them, e.g., a rectangular superset) and to enumerate every
point of this superset. It is then necessary—for every pointwhich is enumerated—to test
which of the given polyhedra the point is a member of. The morecomplex method is to
calculate a disjoint union of the given polyhedra and to enumerate the polyhedra resulting
from that calculation. This ensures that exactly the pointsin the given iteration domains
are enumerated, and it can be statically determined which polyhedron enumerates points for
which statement.

Although the use of a disjoint union ensures that no superfluous points are enumerated,
it can still be desirable to use a convex union (or other, simply described superset) since
the enumeration of a disjoint union can be much more complex,so that enumerating some
superfluous points from the chosen superset can still be moreefficient.

Convex Unions

We give here the definition of convexity and a well-known theorem about polyhedra:

Definition 4.4 A setC is calledconvex, if for every a,b ∈C and everyr ∈ [0,1] it follows
thatr ·a+(1− r) ·b∈C.

4.3. New Algorithms based on Quantifier Elimination 69

Theorem 4.5 Let P1, . . . ,Pk be polyhedra. Then the set

C := {
k

∑
i=1

r i · pi | p1 ∈ P1, . . . , pk ∈ Pk, r1, . . . , rk ≥ 0,
k

∑
i=1

r i = 1}

is the convex union of P1, . . . ,Pk and C is a polyhedron.

This theorem yields a method to compute the convex union of given polyhedra. LetP1, . . . ,Pk

be (parametric) polyhedra defined by the formulasψ1, . . . ,ψk. We assume that the free
variables ofψ1, . . . ,ψk are{x1, . . . ,xn, p1, . . . , pm}, wherex1, . . . ,xn denote then dimensions
of the polyhedra andp1, . . . , pm are the parameters the polyhedra are parametrized with.
Then the following formulaϕ describes the convex union ofP1, . . . ,Pk:

ϕ := ∃r1 · · ·∃rk ∃x1,1 · · ·∃x1,n · · · ∃xk,1 · · ·∃xk,n

(
k̂

i=1

ψi [x1/xi,1, . . . ,xn/xi,n] ∧
n̂

j=1

k

∑
i=1

(r i ·xi, j) = x j ∧
k̂

i=1

r i ≥ 0∧
k

∑
i=1

r i = 1
)

This works as follows: the formulaϕ claims

• the existence of a pointpi = (xi,1, . . . ,xi,n) in the polyhedron Pi (since
ψi [x1/xi,1, . . . ,xn/xi,n] holds) for everyi ∈ {1, . . . ,k},

• the existence of coefficientsr1, . . . , rk ≥ 0 with ∑k
i=1 r i = 1, and

• that the point p = (x1, . . . ,xn) is a (r1, . . . , rk)-combination of the pointspi :
p = ∑k

i=1 r i · pi .

Theorem 4.5 shows that this claim is true (for given values ofthe parametersp1, . . . , pm) if
and only if the point(x1, . . . ,xn) lies in the convex union ofP1, . . . ,Pk. Theorem 4.5 also
states thatϕ describes a polyhedron. Hence,ϕ describes the convex union ofP1, . . . ,Pk in
the variablesx1, . . . ,xn and the parametersp1, . . . , pm.

Therefore, it is possible to feed the formulaϕ (or its quantifier-free equivalent) into the
sorting algorithm of Section 4.3.2 to get a description of the convex union in terms of a
sorted inequality system.

Disjoint Unions

We have calculated convex unions by describing the desired result with a first-order formula
and, since the convex union is again a polyhedron, used a sorting algorithm to get a descrip-
tion of that polyhedron in an adequate form. The situation isdifferent for disjoint unions,
since the desired solution consists of an unknown number of (disjoint) polyhedra.

To find a description of the disjoint union we use an approach that manipulates a
quantifier-free formula and extracts descriptions of the individual disjoint polyhedra from
it. The main transformation step is the conversion of a formula into disjunctive normal form.

Lemma 4.6 For every positive formulaψ ∈ Qf(V ,Σ) there exist n∈ N, k1, . . . ,kn ∈ N and
atomic formulas ai, j ∈ At(V ,Σ) (i ∈ {1, . . . ,n}, j ∈ {1, . . . ,ki}) such that

�

(

ψ ↔
n

_

i=1

kî

j=1

ai, j

)

Wn
i=1

Vki
j=1 ai, j is called adisjunctive normal formof ψ.

70 4. Applying Quantifier Elimination to the Polyhedron Model

Proof. Let ψ be a positive quantifier-free formula. We show the existenceof a positive
formula which is equivalent toψ and in disjunctive normal form by induction on the structure
of ψ.

ψ ∈ At(V ,Σ) : ψ is in disjunctive normal form by definition.

ψ = (ψ1∨ψ2) : By the induction hypothesis, there exist positive formulas ϕ1 andϕ2 which
are in a disjunctive normal form and logically equivalent toψ1 andψ2, respectively.
Thenϕ1∨ϕ2 is in disjunctive normal form, positive, and logically equivalent toψ.

ψ = (ψ1∧ψ2) : By the induction hypothesis,ψ1 is equivalent to
Wn

i=1 ϕi andψ2 is equiv-
alent to

Wm
j=1ϕ′

j , for somem,n ≥ 1, and ϕ1, . . . ,ϕn,ϕ′
1, . . . ,ϕ′

m are conjunctions
of atomic formulas. ψ is equivalent to

Wn
i=1 ϕi ∧

Wm
i=1 ϕ′

i, which is equivalent to
Wn

i=1(ϕi ∧
Wm

j=1 ϕ′
j). This formula is in turn equivalent to

Wn
i=1

(
Wm

j=1(ϕi ∧ϕ′
j)
)
, and

this is a positive formula in disjunctive normal form.

�

Since, in the structureR, every quantifier-free formula is equivalent to a positive formula
(cf. Lemma 3.7), we have the following corollary:

Corollary 4.7 In the structureR, every quantifier-free formulaψ ∈ Qf(V ,Σord) is equiva-
lent to a positive formulaϕ which is in disjunctive normal form.

Using this corollary we can construct a disjunctive normal form
Wl

i=1 γi (for somel ∈ N) of
a formulaϕ such that

R � ϕ ↔
l

_

i=1

γi

R � ¬(γi ∧ γ j) for all i, j ∈ {1, . . . , l}, i 6= j

(4.4)

i.e., the sets defined by theγi are pairwise disjoint. The following algorithm, which we call
disj, computes a set of formulas{γ1, . . . ,γl} with the properties stated in the Specification
(4.4):

Algorithm disj

1. Calculate a positive disjunctive normal form ofϕ, i.e., find (for somek∈ N) formulas
ψ1, . . . ,ψk which are conjunctions of atomic formulas such thatR � ϕ ↔ Wk

i=1ψi . To
ensure termination, the positive disjunctive normal form must satisfy the following
two conditions:

(p1) Every term appearing in the formula
Wk

i=1 ψi also appears inϕ either as-is or
negated.

(p2) ψ1 in
Wk

i=1ψi is feasible, i.e., there exists an environmenth ∈ RV such that
R �h ψ1.

2. If k = 0 we define

disj(ϕ) := ∅

to be the result of the algorithmdisj in this case.

4.3. New Algorithms based on Quantifier Elimination 71

3. Otherwise, construct the formulasδ1, . . . ,δk from ψ1, . . . ,ψk according to the follow-
ing schema:

δ1 := ψ1

δ2 := ψ2∧¬ψ1

δ3 := ψ3∧¬ψ1∧¬ψ2

...

δk := ψk∧¬ψ1∧ ·· ·∧¬ψk−1

4. The result ofdisj(ϕ) is computed as follows:

disj(ϕ) := {δ1}∪
k

[

i=2

disj(δi)

This means thatδ1 is directly part of the result and the recursive applicationof the
algorithm yields appropriate formulas (i.e., conjunctions of atomic formulas) which
describeδ2, . . . ,δk disjointly.

As an example for the application of the algorithmdisj, let us look at the set depicted in
Figure 4.4 (a). It is a union of two rectangles defined byψ1 = (x ≥ 1∧ x ≤ 4∧ y ≥ 1∧
y ≤ 3) and ψ2 = (x ≥ 2∧ x ≤ 5∧ y ≥ 2∧ y ≤ 5). If we now computedisj(ψ1 ∨ψ2), a
possible disjunctive normal form ofψ1 ∨ψ2, is, of course, the formulaψ1∨ψ2 itself, and
this disjunctive normal form satisfies both properties (p1)and (p2). The algorithm constructs
the two formulasδ1 = ψ1 and δ2 = ψ2 ∧¬ψ1; the disjoint sets defined byδ1 and δ2 are
shown in Figure 4.4 (b). Figure 4.4 (c) and (d) illustrate therecursive application ofdisj to
the formulaδ2. A possible positive disjunctive normal form forδ2 is ψ′

1∨ψ′
2 with ψ′

1 = (x>
4∧x≤ 5∧y≥ 2∧y≤ 5) andψ′

2 = (x≥ 2∧x≤ 5∧y > 3∧y≤ 5). This gives again rise to
two δ-formulas,δ′1 = ψ′

1 andδ′2 = ψ′
2∧¬ψ′

1. A positive disjunctive normal form forδ′2 is
x≥ 2∧x≤ 4∧y > 3∧y≤ 5, which consists of one disjunct only. The recursion then stops
and a disjoint union of the set defined byψ1∨ψ2 is given by{δ1,δ′1,δ′2}.

The termination ofdisj depends on the properties of the algorithm used to compute the
positive disjunctive normal form ofϕ in Step 1 of the algorithm. It is possible thatdisj never
terminates if “unfortunate” disjunctive normal forms are computed. For example, if we start
with the one-dimensional polyhedron[0,4] described by the formulaϕ = (x ≥ 0∧ x ≤ 4),
a valid disjunctive normal form is(x≥ 0∧ x < 2)∨ (x≥ 2∧ x≤ 4) which leads to the two
δ-formulasδ1 = (x≥ 0∧x < 2) andδ2 =

(
(x≥ 2∧x≤ 4)∧¬(x≥ 0∧x < 2)

)
. δ2 simplifies

to x≥ 2∧x≤ 4 and a valid disjunctive normal form for this formula is(x≥ 2∧x< 3)∨(x≥
3∧x≤ 4). This, again, leads to twoδ-formulas and the process of dividingδ2 into two small
intervals at each step can be repeated ad infinitum.

Such a recursion process which “invents” new sub-polyhedradoes not have property
(p1): The given formulax≥ 0∧x≤ 4 has the two termsx andx−4 (if we write the formula
in the canonical formx≥ 0∧x−4≤ 0, where the right side of an atomic formula is always
0), but the given disjunctive normal form contains the atomic formulax≤ 2 and hence the
term x−2 (of the canonical formx−2 ≤ 0), which did not appear in the original formula
(nor did−(x−2)). This invention of new terms can lead to the nonterminationof disj. The
rationale for (p2) is that an infeasibleψ1 could always appear as the first disjunct of the

72 4. Applying Quantifier Elimination to the Polyhedron Model

1 4

1

4

2 3 5

2

3

5

x

y

0
0

1 4

1

4

2 3 5

2

3

5

x

y

0
0

1 4

1

4

2 3 5

2

3

5

x

y

0
0

1 4

1

4

2 3 5

2

3

5

x

y

0
0

(a) (b)

(c) (d)

ψ1

ψ2

δ1

ψ/
1

ψ/
2

δ/
1

δ/
2

δ1δ1

δ2

Figure 4.4: Algorithmdisj in an example

normal form so that—even ifϕ is infeasible—the casek = 0 might never occur during the
recursion.

The existence of an algorithm to compute a positive disjunctive normal form of any given
quantifier-free formulaϕ in R which satisfies (p1) is shown by the proofs of Lemma 3.7
and Lemma 4.6. The transformation rules given there transform ϕ into a positive disjunctive
normal form without using terms not appearing inϕ (except for negations of given terms). To
satisfy (p2), one can test the feasibility of everyψi (e.g., by applying quantifier elimination
to the formula∃(ψi)). Only theψi with R � ∃(ψi) are retained in the disjunctive normal
form and the others are dropped.

Theorem 4.8 Let ϕ ∈ Qf(V ,Σord). Then disj(ϕ) terminates if properties (p1) and (p2) are
satisfied by the algorithm computing the positive disjunctive normal form in Step 1 of algo-
rithm disj, and the result is a set

disj(ϕ) = {γ1, . . . ,γl}

4.3. New Algorithms based on Quantifier Elimination 73

for some l∈ N, γ1, . . . ,γl ∈ Qf(V ,Σord) such that the conditions

R � ϕ ↔
l

_

i=1

γi

R � ¬(γi ∧ γ j) for all i , j ∈ {1, . . . , l}, i 6= j

from Specification(4.4)hold and theγi are conjunctions of atomic formulas.

Proof. First, we prove inductively the correctness of the algorithm disj with regard to the
given specification:

(a) By construction,
Wk

i=1ψi is equivalent toϕ (in R). In the casek = 0 (which means that
ϕ is infeasible), the algorithm returns∅ and since the empty disjunction is logically
equivalent to “false”, the algorithm returns a correct result.

(b) For the casek ≥ 1, we prove thatR �
Wk

i=1 ψi ↔
Wk

i=1 δi. Let h∈ RV be an environ-
ment. Assume thatR �h

Wk
i=1 ψi . Then there is at least onei ∈ {1, . . . ,k}, such that

R �h ψi . Let j ∈ {1, . . . ,k} be minimal withR �h ψ j . Then, fori ∈ {1, . . . , j − 1},
we haveR �h ¬ψi and, therefore,R �h δ j , sinceδ j = ψ j ∧

V j−1
i=1 ¬ψi . This shows that

R �h
Wk

i=1 δi.

Conversely, assumeR �h
Wk

i=1δi . Then there exists somej ∈ {1, . . . ,k} with R �h δ j .
Sinceδ j = ψ j ∧

V j−1
i=1 ¬ψi this impliesR �h ψ j and henceR �h

Wk
i=1 ψi .

(c) The sets defined byδ1, . . . ,δk are pairwise disjoint, since for any 1≤ l < m≤ k, we
haveδl ∧δm =

(
ψl ∧

Vl−1
i=1¬ψi

)
∧
(
ψm

Vm−1
i=1 ¬ψi

)
, but this conjunction contains both

ψl and¬ψl and can never be true.

(d) By hypothesis, the recursive application ofdisj calculates, fori ∈ {2, . . . ,k}, sets
disj(δi) such thatR �

W

disj(δi) ↔ δi, and the setsdisj(δi) consist of formulas which
are conjunctions of atomic formulas defining pairwise disjoint sets. Together with (b)
and (c) this implies that

R � ϕ ↔ δ1∨
k

_

i=2

(_

disj(δi)
)

and all the formulas in{δ1}∪
Sk

i=2disj(δi) are conjunctions of atomic formulas which
describe pairwise disjoint sets.

The following part of the proof establishes thatdisj eventually terminates.
We define the following notation: for a given quantifier-freeformula σ, let Sbe the set

defined byσ. Define

S(σ) := {A | A⊆ SandA can be defined by a quantifier-free formulaτ
whose terms appear negated or unnegated inσ}

Since there is only a finite number of terms inσ, the number of atomic formulas which can
be constructed from these terms (and their negations) is also finite. This implies that the set
S(σ) is finite.

74 4. Applying Quantifier Elimination to the Polyhedron Model

If the above properties (p1) and (p2) hold, we can argue as follows that |S(ϕ)| is a
termination function. Due to property (p1) each of the formulas δ1, . . . ,δk defines a set
from S(ϕ). Property (p2) ensures thatδ1 (= ψ1) defines a setD 6= ∅. The construction of
δ2, . . . ,δk now makes sure that everyδi for i ∈ {2, . . . ,k} defines a set fromS(ϕ)\{D}. This
means thatS(δi) $ S(ϕ) and hence|S(δi)| < |S(ϕ)|. �

Remarks:

• disj is easily used to compute a disjoint union of (parametric) polyhedra. Letϕ1, . . .ϕr

be formulas describing (parametric) polyhedra. Obviouslyϕ := ϕ1∨·· ·∨ϕr describes
the union of these polyhedra and, hence,disj(ϕ) represents a disjoint union of the
polyhedra described byϕ1, . . . ,ϕr .

• Through the negations involved in the construction of theδi formulas,disj(ϕ) can
contain strict inequalities, even ifϕ only contains weak inequalities. We can transform
the strict inequalities into weak ones, if we know that the parameters are integral and
we are only interested in the integral points in the disjointunion (cf. Section 2.1.3).

• Looking more closely at the proof, it is clear that (p2) ensures that everyγ ∈ disj(ϕ)
is feasible. This does not mean that everyγ ∈ disj(ϕ) represents a non-empty polyhe-
dron. We have to remember that we did not make any distinctions between variables
and parameters in the algorithmdisj: it treats the parameters like variables. What (p2)
ensures is that for everyγ ∈ disj(ϕ) there are values for the variables and the parame-
ters which makeγ true, but there can be values for the parameters such that no values
for the variables makeγ true. If we want to ensure that we only enumerate non-empty
polyhedra (if we produce code from the result calculated bydisj), we can compute for
everyγ ∈ disj(ϕ) a quantifier-free equivalent of

∃x1 · · ·∃xn(γ)

which is a condition in the parameters and expresses thatγ represents a non-empty
polyhedron. We can then make case distinctions on these conditions and form a deci-
sion tree carrying only the non-empty polyhedra of the disjoint union at its leaves.

Chapter 5

Sample Applications

In this chapter, we discuss briefly some experiments we conducted with the implementations
of the algorithms described in the previous sections. We cannot show all the intermediate
formulas and the final results here, since even simple inputsoften yield very big outputs
(compared to the input).

We ran the experiments on an AMD AthlonTM XP 1700+ Processor with 1467 MHz and
512 MB RAM. The software we used is REDUCE 3.7 and the Glasgow Haskell Compiler
(GHC) Version 5.04.1.

5.1 Convex and Disjoint Union

5.1.1 Convex Union

1 4

1

4

2 3 5

2

3

5

x1

x2

0
0

p

Figure 5.1: Convex union example

As an example of the convex union of polyhedra, let us look at the two polyhedra shown
in Figure 5.1. We are looking for the convex union of the square with corners(0,0), (4,0),

76 5. Sample Applications

(0,4), (4,4) and the triangle with corners(0,0), (0,4), (p,0) for p > 0. The formulas
defining these polyhedra are

σ := 0≤ x1 ∧ 0≤ x2 ∧ x1 ≤ 4∧x2 ≤ 4

for the square and

τ := 0≤ x1 ∧ 0≤ x2 ∧ p·x2 ≤−4·x1+4· p

for the triangle. Figure 5.1 shows the missing part to make the union of the square and the
triangle convex (in the casep > 4), indicated by a dashed line. Using the method outlined
in Section 4.3.3, we can construct a formulaϕ expressing the convex union. Then, we cal-
culate a quantifier-free equivalentψ of ϕ. We do this by first applying REDLOG’s quantifier
elimination method, followed by a degree decreaser (to replace some atomic formulas with
quadratic terms by linear formulas), and finally a formula simplifier (a so-called Groebner
simplifier). The resulting formulaψ consists of 149 atomic formulas. The sorting algorithm
(Section 4.3.2) produces a decision tree with 11 leaves. Unfortunately, the case distinction
contained in this tree has a total of 204 atomic formulas and the application of REDLOG’s
formula simplifiers did not reduce this number considerably.

The total computation time was 96 seconds.

5.1.2 Disjoint Union

1 4

1

4

2 3 5

2

3

5

x1

x2

0
0

6

p=1 p=8p=3

7 8

Figure 5.2: Disjoint union example

For the disjoint union example, we use again a triangle and a square, but in different
positions. As is shown in Figure 5.2, the square has its corners at(2,1), (4,1), (4,3), and
(2,3). The triangle has two fixes corners at(0,0) and(0,4) and a variable corner at(p,2)
for p≥ 0. The figure illustrates that, forp≥ 2, the triangle and the square share points and
for p≥ 8 the square is a subset of the triangle.

5.1. Convex and Disjoint Union 77

1 4

1

4

2 3 5

2

3

5

x1

x2

0
0

γ1

γ3

γ2

Figure 5.3: Result of algorithmdisj for p = 3

The inequalities for the square are

σ := 2≤ x1 ∧ x1 ≤ 4 ∧ 1≤ x2 ∧ x2 ≤ 3

and for the triangle

τ := 0≤ x2 ∧ 2·x1 ≤ p·x2 ∧ p·x2 ≤−2·x1 +4· p

Applying the algorithmdisj to the formulaσ∨ τ yields (after less than one second of com-
putation time) the result{γ1,γ2,γ3}. The sets defined byγ1, γ2, γ3 for p = 3 are shown in
Figure 5.3. We convert the strict inequalities in the formulasγ1, γ2, γ3 into systems of weak
inequalities (assuming thatp is integral and that we are only interested in the integral points
of the disjoint union, cf. Lemma 2.6) and get three pairwise disjoint polyhedraG1, G2, G3

(whereGi is derived fromγi , for i ∈ {1,2,3})):

G1 G2 G3

−2x1− px2 +4p≥ 0 2x1 + px2−4p−1≥ 0 −2x1− px2+4p≥ 0
−2x1 + px2≥ 0 x1≥ 2 2x1− px2−1≥ 0

x1≥ 0 x1≤ 4 x1≥ 2
x2≥ 1 x1≤ 4
x2≤ 3 x2≥ 1

x2≤ 3

The main part of algorithmdisj is the computation of a disjunctive normal form of the input
formula. The above example also shows that the result computed bydisj depends on how
the disjunctive normal form is computed. If we give our implementation ofdisj the formula
τ∨σ (instead ofσ∨ τ), the final result consists of 5 polyhedra, instead of 3. The reason is
that the squareσ is retained as one of the result polyhedra, and this requiresthat 4 polyhe-
dra “surrounding” the square are produced. Maybe a more extensive analysis of algorithm
disj for bigger inputs (with many more polyhedra) may reveal a heuristics for ordering the
disjuncts of the computed disjunctive normal form.

78 5. Sample Applications

5.2 Tiling an Index Space

Tiling is a well-known technique of partitioning an index space into congruent partitions. It
is used to change the enumeration of an index space into an enumeration of the partitions
(“tiles”) and individual enumerations of the points in eachpartition. This technique is ap-
plied for cache optimization, to achieve parallelism in loop programs or to coarsen the gran-
ularity of program communications after space-time mapping. Since the mathematical tools
used in the traditional polyhedron model only deal with linear parameters, some desirable
applications could not be handled, especially, partitioning an index space with a parametric
number of processors and arbitrary tile shapes is not possible. Wieninger [Wie97] computes
a solution for parametric tiling withrectangulartiles only by hand.

5.2.1 The Principle of Tiling

We need three pieces of input to tile an index space [AI91]:

• an index space described by an inequality systemS in the variablesx1, . . . ,xn,

• a base tile, i.e., an inequality systemT describing the shape of the tiles using an
inequality system in the variableso1, . . . ,on,

• n-dimensional vectorsl1, . . . , ln describing the translations between the base tile and
the other tiles inn directions; then×n-matrix L = (l1 · · · ln) is called alattice.

The systemT describes the shape of the tiles, whereas the latticeL describes how the tiles
are placed next to each other. The lattice must match the systemT so that the tiles do neither
overlap nor leave holes in the index space, i.e., points which are not covered by any tile.

In [AI91] the inequality systemsS may contain linear parameters. The systemT must
be parameter-free, since the latticeL must be a matrix with fixed numbers as entries. Using
our techniques for the polyhedron model with non-linear parameters, we can now deal with
lattices containing parameters and, therefore, with tile shapesT which depend on parame-
ters.

5.2.2 Simple Tiling

The first example we present in detail is simply the tiling of atwo-dimensional index space
with a parametric tile size. We give the inequality systems in usual notation and in matrix
notation. We choose a triangular index space with the corners (0,0), (n,0), and(0,n):

0≤x1

0≤x2

x1 +x2 ≤ n

1 0 0
0 1 0
−1 −1 n

 ·

x1

x2

1

≥ 0 (5.1)

We assumen≥ 0 to guarantee that the index space is not empty. As tile shapewe use

0≤o2

o2 ≤ p2−1

o2 ≤o1

o1 ≤ o2 + p1−1

0 1 0
0 −1 p2−1
1 −1 0
−1 1 p1−1

·

o1

o2

1

≥ 0 (5.2)

5.2. Tiling an Index Space 79

5 20

5

20

10 15 25

10

15

25

-5
x1

x2

Figure 5.4: Simple tiling example forn = 24, p1 = 7, p2 = 4.

which describes a parallelogram with the corners(0,0), (p1−1,0), (p1+ p2−2, p2−1), and
(p2−1, p2−1). The parametersp1 andp2 are the “width” and “height” of the parallelogram.
We assumep1, p2 ≥ 1 to make the tiles non-empty. A lattice which matches this tile shape
is

L =

(
p1

0

∣
∣
∣
∣

p2

p2

)

This lattice represents a tile layout as in Figure 5.4 forn = 24, p1 = 7, andp2 = 4. The
figure shows all the tiles with integral points in the triangle, and the integral points within
the base tile (the tile at(0,0)) are shown as little circles.

A description of the tiling is the system consisting of Systems (5.1) and (5.2) together
with the equation (cf. [AI91])

(
x1

x2

)

= L ·
(

t1
t2

)

+

(
o1

o2

)

(5.3)

The complete system (consisting of Systems (5.1), (5.2), (5.3)) has 6 variables and 3 pa-
rameters. Two of the parameters occur non-linearly. We ask our implementation to sort the
system such that the variables are in the ordert1, t2,x1,x2

The result of the sorting is shown in Figure 5.2.2. The total computation time of applying
the generalized Fourier-Motzkin to find the bounds for the dimensionst1, t2,x1,x2 and sim-
plifying the decision tree (to yield a tree with a single leafonly) was 5 seconds when using
REDLOG to simplify the decision tree and 9 seconds when using our CADimplementation.
The sorting algorithm of Section 4.3.2 yielded a result after 10 seconds, but the formula

80 5. Sample Applications

p1t1 + p2t2 ≤x1

p1t1 ≤x1
−p1−n+1

p1
≤t1 0≤x1

t1≤ n
p1

x1≤ n

x1≤ p1
2 t1 + p1+n−1

2
x1≤−p2t2 +n
x1≤ p1t1 + p2t2 + p1

+p2−2
−p1
p2

t1 + −p1−p2+2
p2

≤t2 −p1t1 +x1− p1 +1≤x2
−p2+1

p2
≤t2 p2t2 ≤x2

t2≤ −p1
2p2

t1 + n
2p2

0≤x2

t2≤ −p1
p2

t1 + n
p2

x2≤−p1t1 +x1

t2≤ n
p2

x2≤ p2t2 + p2−1
x2≤−x1 +n

Figure 5.5: Sorted inequality system for the simple tiling example

simplifiers were not able to reduce the result to a decision tree with only one leaf: the result
had 17 leaves and 30 atomic formulas in the conditions.

5.2.3 Tiling and Communication

As a final example, let us look at another tiling problem. The previous section shows how to
enumerate the points in the index space in a tiled fashion: enumerate the tiles and, for every
tile, the points within the tile. Let us now look at the communications necessary between
the tiles. Let us assume that every point(x1,x2) in the 2-dimensional index space represents
an operation which depends on some values computed by the operation at(x1 − 2,x2− 1)
(if (x1−2,x2−1) is part of the index space). The problem we want to solve is to compute
which tiles have to communicate with each other. To put it in other words: the points within
one tile must communicate with other points (in the same or some other tiles). We want
to know between which tiles communications take place (and which points are involved).
This is used in loop parallelization to avoid communications between the individual points;
instead, communication is done at the tile level, i.e., every tile communicates once with its
communication partners and this communication transfers all the values the points in the
sending tile need to transfer to the receiving tile.

We use the same index space, tile shape, and lattice as in the previous section. The
difference is that—since we are talking about sending and receiving tiles—we have to use
separate variables for the sender and the receiver. We uset1, t2,x1,x2,o1,o2 for the sender
coordinates andt ′1, t

′
2,x

′
1,x

′
2,o

′
1,o

′
2 for the receiver coordinates.

The connection between the senders and the receivers is madethrough two equations.
Since we assume that(x1,x2) sends data to(x1 + 2,x2 + 1) (if both points are in the index
space), we have the additional equationsx′1 = x1 +2 andx′2 = x2 +1.

5.3. Observations 81

The complete inequality system describing the communications is:

0≤x1 0≤x′1
0≤x2 0≤x′2

x1 +x2 ≤ n x′1 +x′2 ≤ n

0≤o2 0≤o′2
o2 ≤ p2−1 o′2 ≤ p2−1

o2 ≤o1 o′2 ≤o′1
o1 ≤ o2 + p1−1 o′1 ≤ o′2 + p1−1

(
x1

x2

)

=L ·
(

t1
t2

)

+

(
o1

o2

) (
x′1
x′2

)

=L ·
(

t ′1
t ′2

)

+

(
o′1
o′2

)

x′1 = x1 +2

x′2 = x2 +1

(5.4)

If we wanted to generate code for the communication between the tiles, we would have
to calculate two separate pieces of information: we would need to compute which tile a
given tile sends its data to (variable orderingt1, t2, t ′1, t

′
2, . . .), and which tiles a given tile

receives data from (variable orderingt ′1, t
′
2, t1, t2, . . .). We discuss here only the calculation

for the sender code. An appropriate variable ordering for this problem ist1, t2, t ′1, t
′
2,x1,x2

(projecting away the other dimensions). If we look at the inequalities oft ′1 andt ′2, we get an
enumeration of the destination tiles in dependence oft1 andt2. And, for every(t ′1, t

′
2), we

have an enumeration of the source points(x1,x2) whose data must be sent to(t ′1, t
′
2). (The

question of which points inside the target tile need data from which source point is solved
on the receiver side).

Projecting System (5.4) to the variablest1, t2, t ′1, t
′
2,x1,x2 without calculating bounds for

t1 andt2 (i.e., the elimination stopped after finding the bounds fort ′1 in dependence oft1 and
t2) took 36 seconds using REDLOG for tree simplification, and 87 seconds when we used our
CAD implementation to simplify the decision tree.

Computing also the bounds fort1 andt2 took considerably longer. We could not wait for
an answer to the whole problem; we had to specialize System (5.4), for example withp2 = 4.
In this case, the full projection took 450 seconds using REDLOG for tree simplification, and
294 seconds with the CAD based simplifier. The sorting algorithm from Section 4.3.2 could
not deliver a result at all in any case, it overflowed REDUCE’s maximum heap size of 128
MB after two hours of computation.

5.3 Observations

During the experiments reported in this chapter and other applications of our procedures,
we made some general observations concerning our implementation. We briefly summarize
these observations:

• We consider the use of REDLOG’s quantifier elimination features as a decision method
for logical formulas to simplify decision trees very successful. Most of the problems
were solved in less than one second (including the startup time for REDUCE).

82 5. Sample Applications

• Our CAD implementation was sufficient to simplify the decision trees in the examples
of this chapter. The performance was (as expected) most of the time not as good as
REDLOG’s, but it was sufficient to get results in reasonable time. The examples we
chose are “friendly” in the sense that the polynomials appearing in the decision trees
do not have a high total degree (usually less than 3) and at most 3 parameters. This
is a reason for the good performance of our CAD implementation, since we observed
severe performance degradation with inputs of polynomialswith a total degree of 4
and higher.

• There is some potential for better performance of the CAD approach: the simplifi-
cation of the decision trees, as shown in Section 4.2.2, addsformulas to the context
during the recursion over the decision tree. This means that, when the simplifier de-
scends a branch of the tree, the setP of polynomials in the context is extended to a new
setP′ ⊇ P in each step. Our CAD implementation computes a fresh decomposition of
P′ without taking advantage of the decomposition already computed forP. In all three
steps of the CAD procedure (projection, base case, extension) some work is repeated,
since some of the polynomials and zeros are the same. We have not optimized our
implementation to avoid these redundant computations, since this would corrupt its
modular structure. This kind of optimization is not possible with REDUCE, since we
have no access to the internal state of its quantifier elimination procedure.

• The use of quantifier elimination with answer seems to be problematic, since the al-
gorithms relying on it tend to produce huge outputs (see the convex union example
and the simple tiling example) or need more computation timethan the approach us-
ing Fourier-Motzkin elimination (see the tiling examples)and sometimes run out of
memory.

These points suggest some topics for further research:

• Currently, our implementation starts a new REDUCE process every time a quantifier
elimination problem has to be solved. Although the start-upof REDUCE is very fast,
a closer connection between REDUCE and our system could eliminate some of the
invocation costs for every quantifier elimination call.

• An analysis of the decision problems occurring in practicalproblems during decision
tree simplification could lead to a CAD implementation whichis optimized for the
situations which appear frequently when using our methods in real-world applications.

• The use of quantifier elimination to solve some problems directly requires further in-
vestigation on how the questions we ask the quantifier elimination with answer method
can be reformulated such that the algorithms construct smaller results in less compu-
tation time.

Chapter 6

Conclusion

We have demonstrated that we can extend the existing polyhedron model with linear parame-
ters to a more general model with non-linear parameters. Themain difference to the classical
polyhedron model is that, in the generalized model, one cannot determine the signs of every
coefficient in a given inequality system statically. The consequence is that algorithms which
do not require case distinctions in the classical case now produce results with case distinc-
tions. A good example of this difference is the Fourier-Motzkin elimination method, which
is described in Sections 2.1.2 and 4.2.1.

The challenge which arises in this enriched model is to simplify the decision trees rep-
resenting the case distinctions. We chose to achieve this simplification by using quantifier
elimination to check whether some condition implies another condition. We decided to use
two different implementations of quantifier elimination: the REDLOG package of the com-
puter algebra system REDUCE and our own implementation of a decision method based on
cylindrical algebraic decomposition (CAD). Since our CAD implementation is not highly
optimized, the performance is better when using REDLOG, in most cases, but the CAD im-
plementation is good enough to solve some not too complex problems in reasonable time.

We discovered that we can use quantifier elimination in two different ways to obtain
algorithms for the generalized polyhedron model. The first of the two approaches is to
transform an existing algorithm for the classical polyhedron model into an algorithm which
can handle non-linear parameters. We outlined this procedure in Section 4.2, and showed a
generalized version of Fourier-Motzkin elimination as an example of this approach (Section
4.2.1). Algorithms generalized this way can produce large case distinctions (on the signs of
parametric coefficients). Our implementation offers REDLOG or our CAD implementation
to simplify these case distinctions top-down using the procedure shown in Section 4.2.2.

Working with REDLOG suggested a second approach to get generalized algorithms:ex-
pressing some problems directly as first-order logical formulas and using quantifier elimi-
nation to solve these problems. This enables us to solve somemore problems. We outlined
how to compute lexicographic minima and maxima (Section 4.3.1) and convex unions of
polyhedra (Section 4.3.3). The convex union algorithm usesthe method to calculate a sorted
description of an inequality system which is equivalent to applying Fourier-Motzkin de-
scribed in Section 4.3.2. Although we spent quite some time tuning the implementation
of this method and tried some variants, it turned out that good performance is not easy to
achieve. The main problem seems to be that REDLOG has been designed as a general quan-
tifier elimination tool, so it cannot take advantage of special properties of the input. We
frequently observed that quantifier elimination results got very big (compared to the input),

84 6. Conclusion

#Vars #Params
#Vars in FM + FM +

QE-Sort
projection REDLOG CAD

2-dim. Tiling 6 3 4 5 sec. 9 sec. 10 sec.
Communication

12 3 4 36 sec. 87 sec. —
in 2-dim. Tiling
2-dim. Tiling &

12 2 12 450 sec. 294 sec. —
Comm. partners

Table 6.1: Summary of experiments conducted with our sorting algorithms

and this often leads to big decision trees carrying complex conditions with up to some thou-
sands of atomic formulas. More investigation is required onwhich (of the many) switches
controlling REDLOG’s behavior should be activated or deactivated and how the problems
can be formulated differently so REDLOG can find simple descriptions of the results more
easily.

The sample applications in Chapter 5 show that our existing implementation can be used
to solve some simple problems with non-linear parameters. Table 6.1 shows a summary of
the running times of some of the experiments we conducted. Itcompares the performance
of our generalized Fourier-Motzkin algorithm (denoted by “FM”) together with REDLOG or
CAD as decision method used by the tree simplifier and the sorting algorithm of Section
4.3.2 (denoted by “QE-Sort”) which uses REDLOG’s quantifier elimination with answer.
The table lists the number of variables and parameters in theinput system and the number
of variables on which we project the input system to solve therespective problem. The table
shows that the sorting algorithm based on quantifier elimination only works for small inputs
and it is slower than Fourier-Motzkin, unfortunately. The Fourier-Motzkin implementation
is cappable of sorting bigger systems which have nearly real-world application size. Our
CAD implementation was faster than REDLOG in one of the shown experiments; this is
mainly due to the fact that the respective experiment generates 3413 calls to the quantifier
elimination procedure and the start-up costs for the REDUCE algebra system are relatively
high compared to the complexity of the decision problems occurring in this example.

Beside the sorting algorithms, we also considered algorithms for convex and disjoint
unions of polyhedra. The usability of the convex union algorithm is restricted by its depen-
dence on the quantifier elimination based sorting algorithm. Therefore, it cannot be used
for real-world problems currently. Our method to compute disjoint unions of polyhedra de-
pends mainly on the computation of disjunctive normal formsof logical formulas and is
much faster: the computation time for the example in Section5.1.2 is less than one second.

We expect that further research in the area of non-linear parameters will bring improve-
ments of the algorithms and the implementations, and we hopethat finally problems like
parametric tile sizes in automatic loop parallelization (which originally spurred our interest
in non-linear parameters) can be handled for real-world inputs.

Bibliography

[ACM98] Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical Alge-
braic Decompositions I: The Basic Alogrithm. In Bob F. Caviness and Jeremy R.
Johnson, editors,Quantifier Elimination and Cylindrical Algebraic Decomposi-
tion, pages 136–151. Springer-Verlag, 1998.

[AI91] Corinne Ancourt and François Irigoin. Scanning Polyhedra with DO Loops.
Third ACM SIGPLAN Symposium on Priciples & Practice of Parallel Program-
ming, 26(7):39–50, July 1991.

[Ban93] Utpal Banerjee.Loop Transformations for Restructuring Compilers: The Foun-
dations. Kluwer Academic Publishers, 1993.

[BW93] Thomas Becker and Volker Weispfenning.Gröbner Bases: A Computational
Approch to Commutative Algebra. Springer-Verlag, New York, 1993.

[DS97a] Andreas Dolzmann and Thomas Sturm. Redlog: Computer algebra meets com-
puter logic.ACM SIGSAM Bulletin, 31:2–9, June 1997.

[DS97b] Andreas Dolzmann and Thomas Sturm. Simplification of quantifier-free formulae
over ordered fields.Journal of Symbolic Computation, 24:209–231, August 1997.

[FCB02] Paul Feautrier, Jean-François Collard, and CédricBastoul. Solving systems of
affine (in)equalities. Technical report, PRiSM, Versailles University, 2002.

[GL97] Martin Griebl and Christian Lengauer. The loop parallelizer LooPo—
Announcement. In David Sehr, Utpal Banerjee, David Gelernter, Alex Nico-
lau, and David Padua, editors,Languages and Compilers for Parallel Computing
(LCPC’96), LNCS 1239, pages 603–604. Springer-Verlag, 1997. More details at
http://www.fmi.uni-passau.de/loopo.

[Hea99] Anthony C. Hearn. REDUCE User’s Manual, Version 3.7, July 1999. http:
//www.zib.de/Optimization/Software/Reduce/moredocs/reduce.pdf.

[Hon98] Hoon Hong. An Improvement of the Projection Operator in Cylindrical Algebraic
Decomposition. In Bob F. Caviness and Jeremy R. Johnson, editors,Quantifier
Elimination and Cylindrical Algebraic Decomposition, pages 166–173. Springer-
Verlag, 1998.

[HPF00] Paul Hudak, John Peterson, and Joseph Fasel. GentleIntroduction To Haskell,
version 98, June 2000.http://haskell.org/tutorial/.

86 Bibliography

[Lam74] Leslie Lamport. The parallel execution of DO loops.Communications of the
ACM, 17(2):83–93, February 1974.

[Len93] Christian Lengauer. Loop Parallelization in the Polytope Model. In Eike Best,
editor, CONCUR’93, Lecture Notes in Computer Science 715, pages 398–416.
Springer-Verlag, 1993.

[Loo83] Rüdiger Loos. Computing in Algebraic Extensions. In Bruno Buchberger,
George E. Collins, and Rüdiger Loos, editors,Computer Algebra, Symbolic and
Algebraic Computation, pages 173–187. Springer-Verlag, New York, second edi-
tion, 1983.

[LW93] Rüdiger Loos and Volker Weispfenning. Applying Linear Quantifier Elimination.
The Computer Journal, 36(5):450–462, 1993. Special issue on computational
quantifier elimination.

[PJ03] Simon Peyton Jones.Haskell 98 Language and Libraries. Cambridge University
Press, 2003.

[Red] http://www.zib.de/Symbolik/reduce/.

[Sch94] Alexander Schrijver.Theory of Linear and Integer Programming. John Wiley &
Sons, 1994.

[Tar51] Alfred Tarski. A Decision Method for Elementary Algebra and Geometry, Uni-
versity of Califonia Press, 2nd edition, revised, 1951.

[vzGL02] Joachim von zur Gathen and Thomas Lücking. Subresultants revisited.Theoret-
ical Computer Science, 297(1–3):199–239, March 2002.

[Wei88] Volker Weispfenning. The Complexity of Linear Problems in Fields.Journal of
Symbolic Computation, 5(1&2):3–27, February–April 1988.

[Wei94] Volker Weispfenning. Quantifier elimination for real algebra—the cubic case. In
Proceedings of the International Symposium on Symbolic andAlgebraic Compu-
tation (ISSAC 94), pages 258–263. ACM Press, July 1994.

[Wei97] Volker Weispfenning. Quantifier elimination for real algebra—the quadratic case
and beyond.Applicable Algebra in Engineering Communication and Computing,
8(2):85–101, February 1997.

[Wie97] Martina Wieninger. Partitionierung von parallelen Schleifenprogrammen.
Diplomarbeit, Universität Passau, 1997.

[Wil93] Doran K. Wilde. A library for doing polyhedral operations. Technical Report
785, IRISA, 1993.

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides Statt, dass ich die vorliegendeDiplomarbeit selb-
ständig und ohne Benutzung anderer als der angegebenen Quellen und Hilfsmit-
tel angefertigt habe und alle Ausführungen, die wörtlich oder sinngemäß über-
nommen wurden, als solche gekennzeichnet habe, sowie dass diese Diplom-
arbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde
vorgelegt wurde.

Passau, den 23. September 2003

(Armin Größlinger)

