
A Transformational Approahwhih Combines Size Infereneand Program OptimizationPosition PaperChristoph A. Herrmann and Christian LengauerFakultät für Mathematik und Informatik,Universität Passau, Germany{herrmann,lengauer}�fmi.uni-passau.dehttp://www.fmi.uni-passau.de/l/hd/Abstrat. We propose a alulus for the analysis of list lengths in fun-tional programs. In ontrast to ommon type-based approahes, it isbased on the syntatial struture of the program. To our knowledge, noother approah provides suh a detailed analysis of nested lists.The analysis of lists is preeded by a program transformation whihmakes sizes expliit as program values and eliminates the hain of onsoperations. This permits alternative implementations of lists, e.g., byfuntions or arrays. The tehnique is being implemented in an experi-mental parallelizing ompiler for the funtional language HDC.We believe that analysis and parallelization work best if higher-orderfuntions are used to ompose the program from funtional buildingbloks, so-alled skeletons, instead of using unrestrained reursion. Skele-tons, e.g., data-parallel ombinators ome with a theory of sizes andparallelization.1 IntrodutionIf funtional programs are to be used for high-performane omputing, e�ientdata representations and operations must be provided. Our ontribution is aalulus for the analysis of the lengths of (nested) lists and a transformation intoa form whih is liberated from the hain of ons-operations and whih sometimespermits array implementations even if the length depends on run-time values.A major advantage of funtional programs vs. imperative programs is that de-pendene analysis is muh easier, due to the absene of reassignments. One severedisadvantage of funtional programs as of yet is that e�ient, mahine-orienteddata strutures (like the array) �absolutely neessary for high-performane om-puting� play a minor role in many language implementations sine they do notharmonize with funtional evaluation shemata (like graph redution), whih areat a higher level of abstration.We propose to onstrut programs by omposition of skeletons, i.e., funtionalbuilding bloks with a prede�ned, e�ient implementation [9℄. From the view



200 Christoph A. Herrmann and Christian Lengauerof the soure program, they are higher-order funtions whih are instantiatedwith problem-spei�, ustomizing funtions. We implement skeletons in an im-perative language lose to the mahine. In the ompilation of the program partswhih are not skeletons, funtional onepts are suessively eliminated suhthat these parts an be linked together with the skeleton implementations. Inthis proess, the most important step is the replaement of funtional argumentsby data strutures of the soure language [1℄.Aside from instantiation of skeletons, funtional arguments should be usedmoderately sine they inur overhead and might introdue undesired depen-denes. Reursion should be replaed by skeletons, e.g., the reursive funtionmap, whih applies a funtion to eah element of a list, an be replaed by adata-parallel implementation. The need for a size analysis arises from the use ofsimple indutive data strutures, e.g., the list. With knowledge of its length, thelist might be implemented more e�iently as an array.Our size analysis alulates information about the sizes of lists at ompiletime, in terms of strutural parameters, i.e., symboli names assigned to thelengths of lists in the input. Charateristi for our approah is that the sizeanalysis also omputes a funtion whih maps indies to elements. The result ofthe analysis an then be used for optimization by program transformations, e.g.,intermediate lists ould be eliminated, similar to deforestation or map distributionover omposition [3℄. The transformations provide the basis for a renewed sizeinferene and subsequent optimization, in an iterative proess whih terminatesaording to riteria spei�ed by ompiler settings or diretives.Our inferene and transformation rules are based on a view of lists whihabstrats from the hain of elements present in many standard representations.Due to the absene of side e�ets, the ompiler is not obliged to preserve apartiular representation of data strutures, i.e., a list may be eliminated, fusedwith some other list, represented by an array, reprodued by a funtion, et.Data aggregates treated in suh an abstrat fashion are known as data �elds [15,24℄.As far as we know, we are the �rst to derive ompile-time information abouteah element of a list in terms of its position. This is possible by a symbolirepresentation of a funtion mapping indies to elements � a tehnique whihprovides the potential for a preise size analysis of nested lists and for their �atimplementations [30℄. Flat strutures an lead to e�ieny inreases in mem-ory alloation and release, aess and update of elements and marshaling forommuniation.Through size inferene, the program an beome amenable to further trans-formation, sine ompile-time information beomes visible at points where it wasnot visible before. With this kind of ompilation, the e�ieny of the generatedode beomes sensitive to small hanges in the program and, thus, small ationsof program maintenane may have dramati e�ets. Note that we aim for highperformane of seleted program parts, ahieved with the programmer's inter-ation, not for a ompiler whih produes good ode fully automatially in theaverage ase. The novie programmer an interat by setting ompiler swithes



Size Inferene and Program Optimization 201and providing program annotations. The advaned (parallel) programmer anadd skeleton implementations whih apture omputation shemata not previ-ously known to the ompiler.Set. 2 reviews related approahes to size inferene. As a motivation for sizeinferene, we present our experimental ompiler in Set. 3. Set. 4 presents atransformation of the list data type whih makes size expressions expliit in theprogram. In Set. 5, we disuss the simpli�ation of size expressions in a littleauxiliary language, whih need not �and, indeed, does not� ontain lists, beausesize expressions have been disentangled from the list ontents by the transforma-tion in Set. 4. Set. 6 presents an example for whih an exat treatment of thesizes of nested lists is useful: the multipliation of polynomials with oe�ientsrepresented by lists of digits. In Set. 7, we summarize our statements and pointto future work.2 Related WorkThe data �eld approah of Hammarlund and Lisper [15℄ inspired us to abstratfrom atual representations of aggregate data objets, in favor of minimizingdependenes between data and inreasing the potential for parallelism. By us-ing an indexing funtion to refer to elements of an aggregate struture, manyarrangement operations an be performed without visiting the data at all, justby modi�ation of the indexing funtion: permutation, broadast, partitioning,et. We apply the data �eld approah to the parallelization of lists. As far aswe know, the list is the most important aggregate data struture in funtionalprogramming, and it has a rih theory [3, 28℄.As Lisper and Collard [24℄ have pointed out, size inferene an be viewed asa form of abstrat interpretation [8℄. One kind of abstrat information of a listis its length. The length funtion is a monoid homomorphism that maps fromthe onrete domain of lists to the abstrat domain of natural numbers. Theempty list is mapped to zero and the funtion whih adds an element to a list ismapped to the suessor funtion. Unfortunately, this nie property of the listlength is only one side of the oin. The power of abstrat interpretation omesfrom the fat that the alulation is performed solely in the abstrat domain.A ompliation with lists is that they an ontain lists as elements. Applyingthe abstration at the outer nesting level inurs a loss of information about thelengths of the lists at inner nesting levels, while an abstration at an inner levelmeans that the outer lists remain part of the abstrat domain.We employ a representation of lists whih isolates the size information whilepreserving all other program information. Thus, we are doing something similarto abstrat interpretation by performing a stati analysis of the isolated sizeinformation. For nested lists, this means �rst to perform a stati analysis of thelengths of the lists at the outer nesting level, then to ontinue with the analysisof the elements of that list, and so on.The standard onstrution of lists is indutive and exludes a global view ofthe size or a possibility to aess an element by index diretly. Our new repre-



202 Christoph A. Herrmann and Christian Lengauersentation of lists has onsequenes for element aess beyond program analysis.In his views approah, Wadler [31℄ proposes pattern mathing with onstrutorsthat do not form the representation of the data struture. We apply this prini-ple to lists: the representation is subjet to optimization by the ompiler, whilethe standard list onstrutors are still available for user programs. In addition,a new list onstrutor is introdued internally, whih permits symboli patternmathing of a list against its size and its indexing funtion. We took the idea ofsuh non-standard list onstrutors from ons-sno lists and distributable homo-morphisms [13℄ and powerlists [26℄. In ontrast to them, our approah stritlyseparates length and ontent of a list, with the need to add auxiliary funtions tothe program, mapping list indies to elements. Later in the ompilation proess,inlining of these funtions an improve e�ieny.Our approah di�ers signi�antly from others in three aspets: (1) the impatof the suess of the analysis and the way it is integrated into a ompilation, (2)the role of types for size inferene and (3) the restritions of the soure language:1. Our size analysis is an optional part of the ompilation. Its suess �morepreisely, the degree of its suess� determines the e�ieny of the targetode but annot lead to a failure of the ompilation or a rejetion of theprogram.Size inferene or size heking appears in other approahes at the front endof a ompilation proess, even in transformational approahes [12℄. Our sizeanalysis is loated in the middle of the bak end of the ompilation, insidean optimization loop. The analysis and subsequent program transformationsare performed in a yle and, thus, funtions are analyzed that never existedin the soure program.2. Other researhers base size analysis, be it inferene or heking, on types.(a) Some groups draw a strong onnetion between types and sizes. Bellèand Moggi [2℄ apply size inferene in an intermediate language with atwo-level type system that distinguishes between ompile-time and run-time values [27℄. Xi and Pfenning [32℄ use dependent types and per-form type heking modulo onstraint satisfation. Singleton types en-able the generation of lists of a partiular size, dependent on integervalues. Jay and Sekanina [23℄ desribe type heking in a language VECon vetors, whih distinguishes between so-alled shapely types and non-shapely types. They distinguish two kinds of onditionals. The shapelyonditional, whih requires the ondition to be of shapely type, is used toanalyze reursive size funtions but annot deal with arbitrary programvalues. The non-shapely onditional an deal with all program valuesbut annot be used to de�ne sizes. A surprisingly large lass of programsan be handled with this approah: all usual array indexing operationsand linear algebra. Hofmann [21℄ uses a linear type system to ontrolthe size of lists and permit an in-plae update whih is espeially usefulfor sorting. Chin and Khoo [6℄ infer the sizes of reursive funtions by a�xed-point alulation.



Size Inferene and Program Optimization 203(b) Others perform type inferene �rst, to keep it deidable, and then infersizes based on the type information. Hughes, Pareto and Sabry [22℄ em-ploy three separate, suessive steps: (1) Hindley-Milner inferene, (2)derivation of the size information and (3) onstraint solving. Loidl andHammond [25℄ followed this approah. Our initial attempts were similar[17℄, but we reognized that the treatment of nested lists in the typeinformation leads to a formalism whih is di�ult to apply. Now, we areusing types only to ount the levels of nesting of the list, but do nottag type information with size information. As far as we know, the othergroups are onsidering nested lists of retangular shape only, i.e., thoseisomorphi to multi-dimensional arrays. This simpli�es their treatmentin the type system signi�antly. Fradet and Mallet [12℄ use prediates torestrit operations to a subset of this retangular shape.3. We do not impose restritions on the soure language to perform size anal-ysis. As a neessary onsequene, arbitrary size expressions may enter theanalysis and, thus, onditions on sizes may be undeidable. Sine our typeinferene happens in an earlier ompiler phase and is ompletely unrelatedto our stati size analysis, the size analysis may fail but the program maystill be typable.In all other stati approahes whih we are aware of size inferene is deid-able. Chin and Khoo [6℄, Fradet and Mallet [12℄ and Xi and Pfenning [32℄use linear inequalities for onstraints, i.e., Presburger arithmeti. Bellè andMoggi [2℄, Jay and Sekanina [23℄ and Hofmann [21℄ ahieve the deidabilitythrough their type system.Limitation to Presburger arithmeti already rules out the following simplefuntion f whih is likely to appear in an N -body omputation: f takes alist of size m as input and produes a list that ontains all element pairs andwhose size expression m2 is not permitted in a Presburger formula.Although formulas of number theory are, in general, undeidable, there is agood hane that one an solve more formulas than just those of Presburgerarithmeti. Our approah is based on an extensible library of formula pat-terns and their simpli�ations, whih are being onsulted in size inferene.3 The HDC CompilerFuntional languages are well suited for program parallelization beause of thesimpliity of program analysis and transformation ompared to imperative lan-guages. However, if funtional languages are to be ompetitive, their ompilersmust produe similar target ode, without overhead for memory management orauxiliary data strutures. This has motivated us to develop our own ompilerfor a funtional language, with a strong fous on the ode it produes. Skeletonsare a suitable vehile for ahieving high e�ieny [19℄.We name our soure language HDC, for Higher-order Divide-and-Conquer,whih re�ets our belief in the produtivity that higher-order funtions lend to



204 Christoph A. Herrmann and Christian Lengauerprogramming. We have foussed on divide-and-onquer beause of its high po-tential for parallelism. E�ient parallel implementations of divide-and-onquerskeletons have been added to the ompiler and have been used to express al-gorithms like Karatsuba's polynomial multipliation and the n-queens problem[20℄.The syntax of HDC is a subset of Haskell [16℄, sine we found language on-struts like the list omprehension superior onerning notational onvenieneand style. In ontrast to Haskell, the semantis of HDC is strit. This is to guar-antee that the spae-time mapping �that is, the assignment of operations to timeand proessors made at ompile time� is respeted in the atual exeution.Brie�y, the HDC ompiler [18℄ onsists of the following parts:1. front end: sanning, parsing, desugaring, �-lifting, type inferene/heking2. bak end, pre-optimization part: monomorphization, elimination of fun-tional arguments, elimination of mutual reursion, ase-elimination, gen-eration of a direted ayli program graph, tuple elimination3. bak end, optimization yle:(a) inlining (unfolding of funtion appliations)(b) rule-based optimizations by transformation (Set. 4)() size inferene (Set. 5)4. bak end, post-optimization part: abstrat ode generation, spae-time map-ping (parallelization), ode generation, skeleton instantiationIn order to inrease ode e�ieny, size inferene and ode optimizing trans-formations are performed alternatingly in several iterations. The size informationan be used to ontrol program transformations in the next iteration. Addition-ally, the size information is useful in the parallelization and for memory assign-ment in the ode generation.Due to the omplexity of the task, the implementation of size inferene is stillat an early stage. Thus, the experimental results available to-date [18, 20℄ do notre�et the impat of the methods presented here.4 A List Transformation for Size InfereneThis setion is about the transformation whih makes size information expliitfor the later size analysis. In the soure, lists are represented by the onstrutornil ([ ℄) for the empty list and the onstrutor ons (:) for appending a newelement at the front of a list. The dependenes introdued by ons rule outa onstant-time aess to all list elements and ompliate the analysis. Afterthe transformation, eah list is represented by a pair of its size and a funtionmapping indies to elements. The transformation itself appears straightforwardwith the alulus presented in Set. 4.2. The di�ulty is simplifying the ourringexpressions of the result to a losed form � in general, this is undeidable.



Size Inferene and Program Optimization 2054.1 A New Representation for ListsTo maintain the list xs as a data objet, its length (#xs) and its indexing funtion(�i:xs!!i) are not kept separate but are ombined by a new onstrutor whih wedenote by � . In the new representation, (� f n) denotes a list of length n and itsi-th element (i � 0) has the value f(i), e.g., the indexing funtion f for the list[0; 1; 4; 9; 16℄ is given by f(i) = i2. The indexing funtions of lists appearing asformal parameters and at the left side of let-de�nitions are referred to by freshvariables. For other lists, like the arithmeti sequene [m..n℄, whih ontains allintegers from m to n, a new auxiliary funtion is generated and its name is usedin the � -expression. The indexing funtions are inspeted and simpli�ed duringthe analysis. In the next iteration of the optimization yle, they may disappearagain due to inlining. We onsider two distint implementations of � -expressions:(1) preferably using an expliit indexing funtion and (2) alternatively using anarray in the ase that run-time values are to be stored.In ontrast to abstrat interpretation, our transformation makes the infor-mation we want to reason about �the length� expliit without inurring a lossof information. To emphasize this fat, we all this hange of representation ahange of basis. We use the notion basis for a set of onstrutors that onstitutea data type.Lemma 1 (Existene of an index/length basis). All �nite lists an be ex-pressed in a basis whih makes their length and their indexing funtion expliit.Proof. By an isomorphism of types [11℄ indued by the funtions to-� andfrom-� de�ned below. The domain of to-� is the set of all �nite lists, theodomain is restrited to the image of to-� and is taken for the domain offrom-� . map applies f to eah element of this list. � an be de�ned as analgebrai data type (data).data �� = � (N ! �) Nto-� 2 [�℄!��to-� xs = � (�i:xs!!i) (#xs)from-� 2 ��! [�℄from-� (� f n) = map f [0..n�1℄� Due to this isomorphism, we identify the types �� and [�℄ and enable theompiler to apply to-� and from-� where an adaptation is required. The no-tation we use is adapted from the language Haskell [16℄.4.2 Rewriting in the � -CalulusThe � -alulus is a set of rules that an be used for onverting the standard listrepresentation to � -form. Tab. 1 explains the notation used in the alulus. Wesplit the rules into three lasses. The top of Fig. 1 gives a omplete spei�ation



206 Christoph A. Herrmann and Christian Lengauerof the semantis of � . In the middle part of the �gure, we de�ne the basi listfuntions in terms of � . Sine pattern mathing has been eliminated in an earlierompiler phase, we rely on a prediate for the empty list and two funtions forseleting head and tail of a list, in addition to nil and ons. The rules for thesebasi funtions are onsistent with the de�nition based on the representationwith nil and ons.a#b / a"b minimum/maximum of a and ba lhighlow = (a" low) #high
 for an arbitrary binary operator of type �! � ! �eOhighi=low xi = (((e
 xlow)
 :::) 
 xhigh; if low � highe otherwisee[x:=v℄ substitute every free ourrene of x in e by v� k xi the highest j, for whih Pj�1i=0 xi (xi 2 N) does not exeed kTable 1. Notation used in the alulusThe rules in the lower part of Fig. 1 are derived from the basi list funtionsand simpli�ed. Our strategy is to use as many rules as possible to aeleratethe simpli�ation of size information. Every list funtion, for whih a rule is notstated, must be analyzed itself.The following lemma states that these rules an be used to onstrut a ter-minating rewrite system. (We do not need on�uene, sine we do not omparethe simpli�ed program parts.)Lemma 2 (Termination of the redued rewrite system). In the � -aluluswithout rule intr-� , rewriting terminates with an expression whih ontains nei-ther the onstrutors nil and ons nor any list funtion on the left side of a rule.Proof sketh. The number of ourrenes of nil, ons and list funtions in anexpression is �nite. Eah appliation of a rule stritly dereases this number byat least one. �4.3 The List Transformation AlgorithmIn many irumstanes, the hange of basis delivers a form of the funtion whihexpresses the lengths of the result lists in terms of the lengths of the argumentlists. The di�ulty is that this redued form will likely inherit the reursion ofthe original. In Set. 5, we takle reursion elimination and other simpli�ationsof size expressions in a little language. This language has only the value domains



Size Inferene and Program Optimization 207
intr-� fxs is a listg xs fresh i�! � (�i:xs!!i) (#xs)elim-� .0 # (� _ n) �! nelim-� .1 (� f n)!!i �! if 0� i<n then f i else ?null-� null (� _ n) �! n = 0nil-� [ ℄ �! � (onst ?) 0ons-� x : � f n fresh i�! � (�i:if i==0 then x else f (i�1)) (n+1)head-� head (� f n) �! if n>0 then f 0 else ?tail-� tail (� f n) �! if n>0 then � (f Æ (+1)) (n�1) else ?sequene-� [a..b℄ �! � (+a) ((b�a+1)"0)take-� take k (� f n) �! � f (kln0 )drop-� drop k (� f n) �! � (f Æ (+(kln0 ))) (n� (kln0 ))map-� map g (� f n) �! � (g Æ f) nfoldl-� foldl 
 e (� f n) fresh i�! eOn�1i=0 (f i)sanl-� sanl 
 e (� f n)fresh i;j�! � (�j: eOj�1i=0 (f i)) (n+1)append-� � f m ++ � g nfresh i�! � (�i:if i<m then f i else g (i�m)) (m+n)onat-� onat (� (�i:(� (�j:ei;j) ni)) m)fresh k�! � (�k:((ei;j [i := � k ni℄)[j := k�P� k ni�1i=0 ni℄)) (Pm�1i=0 ni)Fig. 1. Rewrite rules



208 Christoph A. Herrmann and Christian Lengauerof numbers and Booleans, but ontains symboli redution operators, e.g., sum-mation. The symboli alulation is neessary sine the lengths of the argumentlists are unknown at ompile time and are, thus, represented by variables.Our algorithm works on the syntax tree of the funtion. From an algorithmipoint of view, the hange of basis simpli�es our transformation, sine eah list(in � -form) arries its (symboli) length information along. If lengths were madepart of the type information, the orretness of the transformation ould notbe established solely by equational reasoning about the funtional expressions.Also, nested lists an be treated preisely, sine the length of an inner list anbe expressed in terms of its index in the outer list. Algorithm LISTSIMP (Fig. 2)performs a omplete hange of basis on the lists in the expression given to it.INPUT: expression e and a set of onstraintsOUTPUT: expression semantially equivalent to e whih does notontain list operations in the standard basisif e is a onstant or variablethen if e is not of a list typethen return eelse substitute every ourrene of e by (� f n)where f and n are fresh nameselse (e is a ompound expression):1. apply LISTSIMP to eah omponent of e; the result is alled e02. perform simpli�ations in the size language of all arithmeti ex-pressions in e0, yielding e003. eliminate the standard list onstrutors and funtions from theurrent node of the syntax tree by applying the rule of the � -alulus that mathes, obtaining e0004. if e000 is not of a list type then return e000else (e000 is a list, represented by, say (� h m)):(a) apply LISTSIMP to the expression m, getting m0(b) apply LISTSIMP to the expression h using knowledge of m0,yielding h0() return (� h0 m0)Fig. 2. Algorithm LISTSIMPWe demonstrate the algorithm on a tiny, non-reursive funtion. Funtionrotate performs a yli shift of the elements of a list. Appliation areas arehardware desription/simulation or onvolution.The beauty of lists for this purpose is obvious: to rotate the �rst eight itemsof a list xs, we just write: rotate (take 8 xs) ++ drop 8 xs.1. The initial funtion is as follows:rotate xs = if #xs < 2 then xs else tail xs ++ [head xs℄



Size Inferene and Program Optimization 209Note that a straightforward ompilation of this funtion would produe nastyode. On the one hand, the expression tail xs annot be shared beause[head xs ℄ has been appended at the end. On the other hand, it annot beupdated in-plae, although it is not shared.2. Aording to the algorithm, eah ourrene of the list variable xs is replaedby (� f n), where f and n are fresh variables:rotate (� f n) = if #(� f n) < 2 then � f nelse tail (� f n) ++ [head (� f n)℄3. Appliation of the rules for #, tail and head:rotate (� f n) = if n<2 then � f nelse � (�i:f (i+1)) (n�1) ++ [f 0℄4. Appliation of the rules for nil and ons to [f 0℄:rotate (� f n) = if n<2 then � f nelse � (�i:f (i+1)) (n�1)++ � (�i:if i == 0 then f 0 else ?) 15. Appliation of the append rule:rotate (� f n) = if n<2 then � f nelse � (�i:if i<n�1 then f (i+1) else f 0) n6. Simpli�ation of the onditional, using information about the length:rotate (� f n) = � (�i:f ((i+1) mod n)) nAll rule appliations aside from the simpli�ation at the end are straightfor-ward aording to the rules. The suess of the simpli�ation enables furtherpossibilities, e.g., an optimization of a sequene of k rotations, given by thefollowing equality:rotatek (� f n) = � (�i:f ((i+k) mod n)) n5 Simpli�ation of Size ExpressionsIn the previous setion, we have deomposed list data objets into two inde-pendent omponents: indexing funtion and length � both symboli arithmetiexpressions. Further simpli�ations need not resort to the list data type anymore.The proess of size inferene abstrats temporarily from the program repre-sentation to fous on mathematial issues. Our intention is to handle onstraintsolving, simpli�ation, et. in a separate pakage whih need not know anythingabout the syntax or semantis of the funtional programming language. In thispakage, we use a small, �rst-order funtional language, the size language. It



210 Christoph A. Herrmann and Christian Lengaueronsists of a set of (possibly reursive) funtion de�nitions and a single expres-sion whih de�nes a size dependent on symboli names and whih an use theset of funtions.The size language still needs to ontain reursion. E.g., here is the size funtionobtained from a reursive reverse funtion:reverseSize n = if n == 0 then n else reverseSize (n�1) + 1Simpli�ation must solve this reursion. We will disuss that in Set. 5.3.5.1 The Syntax of Size ExpressionsAtomi size expressions are onstants and variables. Size expressions an be om-posed by arithmeti operators, onditionals, redution operators (e.g., summa-tion) and appliations of size funtions. Variables are used to represent unknownvalues and for indexing elements in a redution.Strutural parameters are those unknowns whih refer to input values ofthe funtion to be analyzed. Espeially useful input values are list lengths andnatural numbers whih are deremented in reursive alls. However, the ompilermay not always be able to deide whih parameters are meant to be used asstrutural parameters. The user an point the ompiler to a useful parameter�say n� for the problem size or depth of reursion by �branding� its name inthe program: n�. We believe that this kind of annotation is easier to use thanannotations of the type language with size expressions.The size information, expressed in terms of strutural parameters, is derivedby following the data �ow of the funtion [4℄. Our hoie of a referentially trans-parent language enables a loal analysis of eah funtion. Where a funtion f isapplied to an argument x, the size information of the result an often be om-puted by an appliation of the size funtion of f to the size information of x.We prefer to enode all funtional losures by �rst-order data strutures of thesoure language. Then, x will never be a funtional losure.In the alulation of sizes, rational numbers an appear as intermediate values.Exat rational arithmeti guarantees that no approximation errors will produean inorret integral size. Integers and natural numbers are treated as subtypesof the rational numbers. The integrality of deision variables an be enfored bysubtype delarations. Boolean values are used for onstraints.We present the abstrat syntax of our size language in Fig. 3. Sine we areworking with syntax trees only and abstrat from parenthesization, puntuation,et. of a potential soure language, we use algebrai data type de�nitions insteadof BNF rules. Like BNF, these algebrai data types an be used to de�ne ontext-free expressions and, in addition, onstitute a set of patterns to be used intransformations.� A size program P onsists of a list of funtion de�nitions (F) and an expressionS to be evaluated.� In a funtion de�nition (name,(as,rs)) of type F, name is the name of thefuntion, as is a list of its parameter names and rs a tuple of result sizes.Funtions an be de�ned reursively.



Size Inferene and Program Optimization 211type P = ([F℄,S)type F = (Id,([Id℄,[S℄))type Id = Stringdata T = TBool | TNat | TInt | TRatdata S = Num Rational | SV Id T| BTrue | BFalse| S:+:S | S:-:S | S:*:S | S:/:S | S:�:S| Floor S | Ceil S | Fra S| Abs S | Sgn S | Min S S | Max S S| S:=:S | S:<:S | S:<=:S| IsRat S | IsInt S | IsNat S| Not S | S:&:S | S:|:S | S:<=>:S| Case [(S,S)℄ S| Let (Id,S) S| Apply Id [S℄ [Id℄ S| Redue (ROp,Id,S,S,S) S| Reur [[S℄℄ S [S℄data ROp = Sum | Prod | Minimum | Maximum | And | OrFig. 3. The size language� Id represents identi�ers.� T is a olletion of types assigned to variables: TBool (Booleans), TNat (nat-ural numbers), TInt (integers) and TRat (rational numbers). There is theusual inlusion relation between the number types whih allows oering inevaluation. Thus, there need not be a spei� integral division. The typeinformation is used by solvers as onstraint information.� S is the type of syntax trees for size expressions. Eah alternative on theright side orresponds to a partiular kind of node, named by a onstrutor.There are two kinds of onstrutors: in�x onstrutors are denoted withsurrounding olons (e.g., :+:), the other onstrutors are pre�x onstrutors(e.g., Floor). The parts of an alternative aside from the onstrutor eitherontain subtrees (S) or attributes (e.g., ROp).� ROp desribes the set of redution operators, i.e., aumulated appliationsof a binary assoiative and ommutative operator.5.2 SemantisThe meaning of size expressions is de�ned by the following denotation, whereI[[ exp ℄℄ is the interpretation of expression exp.� I[[Num r ℄℄ = r: a number, represented by an exat rational number. Due tothe number type inlusion, it an also arry a natural or an integer.� (SV name t) represents the variable name of type t. The value of a variablemay be used as a value of a superset but, in onstraint solving, the obtainedresult must math the type.



212 Christoph A. Herrmann and Christian Lengauer� I[[BTrue℄℄ = True and I[[ BFalse℄℄ = False: the boolean onstants.� I[[a:~:b℄℄ = I[[ a ℄℄~ I[[ b ℄℄ for eah binary operator ~.� I[[Floor x ℄℄ = bI[[x ℄℄, I[[Ceil x ℄℄ = dI[[x ℄℄e,I[[Fra x ℄℄ = I[[x ℄℄� bI[[x ℄℄, I[[Abs x ℄℄ = jI[[x ℄℄j,I[[Sgn x ℄℄ = signum (I[[x ℄℄)� I[[Min x y ℄℄ = I[[x ℄℄ # I[[ y ℄℄, I[[ Max x y ℄℄ = I[[x ℄℄ "I[[ y ℄℄� I[[IsRat x ℄℄ = (I[[x ℄℄ 2 Q), I[[IsInt x ℄℄ = (I[[x ℄℄ 2 Z),I[[IsNat x ℄℄ = (I[[x ℄℄ 2 N)� I[[Not x ℄℄ = :(I[[x ℄℄), I[[a:&:b℄℄ = I[[ a ℄℄ ^ I[[ b ℄℄,I[[a:|:b℄℄ = I[[ a ℄℄ _ I[[ b ℄℄, I[[a:<=>:b℄℄ = I[[ a ℄℄, I[[ b ℄℄� I[[Case [(0; v0); :::; (n; vn)℄ vn+1 ℄℄ = I[[ vj ℄℄, where j is smallest suh thatI[[ j ℄℄ = True, with I[[ n+1 ℄℄ = True by default.� I[[Let (x; v) e ℄℄ = I[[ (e[x := v℄) ℄℄. The purpose of an auxiliary de�nition(Let) is to exploit ommon subexpressions.� The semantis of (Apply f [e0,...,en℄ [v0,...,vm℄ exp) is that the size funtion fis applied to the size expressions e0 to en. f returns a tuple of size expressionswhih are bound to the variables v0 to vm. Then, the expression exp, de�nedin terms of these variables, is delivered.� I[[Redue (�; i; low; high; ondi) elemi ℄℄ = Li2I elemi:a redution with a ommutative and assoiative binary operator �, whereI = fi 2 Z j I[[ low ℄℄ � i � I[[ high ℄℄ ^ I[[ ondi ℄℄ = Trueg.� I[[Reur Â n̂ ê ℄℄ = �0Ane, where A is an m�m matrix, n 2 N and e an m-olumn vetor. A = I[[ Â ℄℄, n = I[[ n̂ ℄℄ and e = I[[ ê ℄℄. Reur expressionsprovide a losed form for some reurrenes without using roots. E.g., theFibonai number n an be expressed by fib(n) = (1 0) ( 1 11 0 )n ( 01 ).5.3 Simpli�ation HeuristisAfter the transformation of a reursive list funtion into � -form, length ex-pressions may still be expressed reursively. Using knowledge about frequentdeomposition patterns, one an provide a heuristi proedure to �nd losedforms.Probably the patterns most often used are the deomposition of a list into(1) head and tail and (2) the left part and the right part [13, 26℄. We disussbrie�y head/tail deomposition here. If we are luky, we obtain a reursive sizefuntion and its losed form of the following kind, where a 2 N and b 2 N ! N:s(n) = � a ; if n=0s(n�1) + b(n) ; otherwise� = a+ nXi=1 b(i)If b is a polynomial or another simple kind of funtion, we an eliminate thesummation operator [14℄. E.g., if the size funtion originates from �attening atriangular matrix, we have a = 0 and b(n) = n. In this ase, we obtain:s(n) = 0 + nXi=1 i = n(n+ 1)2



Size Inferene and Program Optimization 213We advoate the use of an extensible library of patterns. Unfortunately, weannot hope to �nd the pattern by a syntati math. E.g., instead of the ex-pression s(n�1) + n, we may enounter the expression bn=2+ s(n�1) + dn=2ewhih is equal. Thus, we apply the following proedure:1. Selet a pattern whih appears appropriate sine it is known to be usefulfor the operators that appear in the expression. E.g., polynomials an beappropriate for expressions that ontain only addition and multipliation.2. Interpolate the expression with the pattern, obtaining values for the param-eters of the pattern.3. Run many tests with the instantiated pattern, to exlude a non-�tting pat-tern as quikly as possible.4. Verify symbolially that the instantiated pattern equals the expression.5. Simplify the pattern, exploiting properties gained by speialization.We do not advoate interpolating the reursive funtion as a whole beausea suessful math will be very unlikely, even with a high number of attempts.Instead, we are looking for patterns for parts of the reursive funtion, whihare (1) the ondition that indiates the reursive ase, (2) the value in the non-reursive ase, (3) the expression whih modi�es the arguments for the reursivealls and (4) the expression whih ombines the result of the reursive alls.Then, we apply a reurrene elimination funtion aording to the ensemble ofpatterns we obtained. A promising approah is to searh for the power series ofthe generating funtion of the reursion [14℄. The n-th oe�ient of the powerseries arries the value of the reursive funtion for the input n. Chin and Khoo[5℄ developed a tupling method to redue, in some ases, reursion in multiplevariables to reursion in a single variable.6 Example: Nested Lists in Multiple Preision ArithmetiA major di�erene between our approah and those of others, e.g., [32℄, is thatour size information an refer to the partiular position in a surrounding datastruture. Polynomial multipliation with multiple preision arithmeti makesuse of this; here the bitsize of a oe�ient in the result depends on its position.6.1 Types and RepresentationIn order to make the maximal amount of information statially derivable, ourprograms resemble spei�ations of abstrat digital designs [7, 10, 29℄. The basiarithmeti funtions �whih are not presented here� are produing output liststhat depend statially on the size of input lists. E.g., a funtion whih adds twonumbers delivers a sum whose size is the maximum of both inputs; a potentialarry over�ow is delivered in a separate omponent.Eah number is represented by a list of bits. Element i of eah number rep-resents the fator (2 f0; 1g) of 2i. We de�ne the type Polynomial, whose valuesare polynomials in X , represented by their list of oe�ients. Coe�ients arethemselves numbers. Element i of the polynomial represents the oe�ient ofX i.



214 Christoph A. Herrmann and Christian Lengauerpolymul 2 Polynomial! Polynomial ! Polynomialpolymul xss yss =let m = # xssn = # yssin [ let low = 0"(k�n+1)high = (m�1)#kin sumN [ mul (xss!!i) (yss!!(k�i)) j i [low..high℄ ℄j k [0..m+n�2℄ ℄polymul (� (�i:� (�j:fi;j) pi) m) (� (�i:� (�j:gi;j) qi) n)= � (� k: let low = 0"(k�n+1)high = (m�1)#kr = high�low+Redue (Maximum; i; 0; high�low; BTrue)(p(low+i) + q(k�(low+i)))(� h r) = sumN (� (� i : mul (� (�j:fi;j) pi) (� (�j:gk�i;j) qk�i))(high�low+1))in (� h r))(m+n�1) Fig. 4. Transformation of polymul into � -form6.2 The Soure FuntionThe upper part of Fig. 4 shows the de�nition of funtion polymul. The applia-tion of sumN sums, for eah oe�ient k, the produts of the oe�ients of thetwo polynomials xss and yss. low and high are the index bounds of the oe�ientsof xss, in dependene of k. We de�ne m as the length of xss and n as the lengthof yss. The degree of the produt polynomial is the sum of the degree m�1 of xssand the degree n�1 of yss. Thus, it has m+n�1 oe�ients, for X0 to Xm+n�2.We use a Haskell [16℄ list omprehension to express this. A list omprehensionhas �in our ase� the form [ expi j i  [lowbound..highbound℄ ℄ where the in-dex variable i is taken from the integer range [lowbound..highbound℄ and expidenotes the element of the list assoiated with index i. Note that list ompre-hensions an be desugared in an early ompiler phase; our ompiler performs adesugaring into the form map (�i:expi) [lowbound..highbound℄.6.3 Transformation into � -FormThe result of the transformation is shown in the lower part of Fig. 4. In � -form,we use m for the length of xss and n for the length of yss. The elements of xssand yss are expressed in terms of their position. xss!!i is itself a list, in � -form:(� (�j:fi;j) pi). Here, pi is the length of xss!!i, and fi;j its element with indexj. The representation of yss!!i is analogous, with q instead of p and g instead off . The analysis should infer a simpli�ed � -expression for the body of polymul



Size Inferene and Program Optimization 215with respet to the following appliation, where xss and yss have been replaedby their � -form, as desribed above:polymul (� (�i:� (�j:fi;j) pi) m) (� (�i:� (�j:gi;j) qi) n)With this denotation of the parts of xss and yss, we analyze and transform thebody of polymul. The �rst step is to transform the outer nesting level of theresult list into � -form. We use expk as an abbreviation for element k of this list.Remember that the list omprehension[ expk j k  [0..m+n�2℄ ℄has been desugared by an earlier ompiler phase into:map (�k:expk) [0..m+n�2℄Applying the rules of the � -alulus to the desugared form yields:� (�k:expk) (m+n�1)Next, we look at the transformation of expk and infer the length of:sumN [ mul (xss!!i) (yss!!(k�i)) j i [low..high℄ ℄After desugaring and translation into � -form, we have:sumN (� (�i:mul (� (�j:fi;j) pi) (� (�j:gk�i;j) qk�i)) (high�low+1))We skip a lot of formal treatment here and present diretly the size r of theresult of the sumN appliation:high�low+Redue (Maximum; i; 0; high�low; BTrue)(p(low+i) + q(k�(low+i)))6.4 Bene�t of the TransformationWe have inferred that the result polynomial has m+n�1 oe�ients, and o-e�ient k an be represented by r digits with r as stated above. If r is notsimpli�ed, its value must be omputed quikly at run time. Funtion h is basedon the reursive funtion sumN and annot be stated as a simple losed expressionsine it depends on many run-time values. Inlining of sumN ould, in priniple,be done after this transformation, but very likely sumN will not be inlined dueto its omplexity.The omputation of the digits of eah oe�ient k remains the task of funtionsumN. However, the size r is su�ient for our purpose, sine we an alloate thememory for the oe�ients of the result in advane:1. In a parallel omputation of the oe�ients, the number of bytes to be allo-ated for eah ommuniation bu�er is known in advane. Thus, an appro-priate representation assumed, the �nal loation of a oe�ient an alreadybe used to reeive the message.2. A simulator of a digital design an statially alloate the exat amount ofmemory ells required to store the values, i.e., no dynami data struturesare required. A ompiler whih produes a hardware design has knowledgeof the exat amount of bits required for eah oe�ient, if the values of thestrutural parameters are �xed.



216 Christoph A. Herrmann and Christian Lengauer7 Summary and PerspetivesSize inferene enhanes the possibilities for a ompilation of funtional programsof high e�ieny. Obviously, if a list an be represented by an array beause itslength is known in advane, at least the amount of spae for haining the elementsan be saved. Loss of dependenes inreases the potential for parallelization.Often, intermediate opies of data objets an be saved sine the result anbe put immediately at the plae where it is required. This makes ommuniationmore e�ient.The analysis is inherently undeidable and must be based on heuristis, e.g.,partial evaluation, onstraint solving, solving of reurrene equations, simpli�-ation of symboli expressions and pattern mathing with uni�ation. We arepursuing the following strategy, whih we hold to be quite promising: iteratealternatingly through applying size inferene and then exploiting the resultsvia program transformations. Possible transformations are inlining, fusion, de-forestation and program speialization. The iterative proess propagates statiinformation suessively deeper into the program struture, until the e�ort toevaluate the symboli expressions at run time exeeds the gain.We are going to implement size inferene and the list transformation into ourompiler. We have not been able to �nd a tool whih provides adequate supportfor simpli�ation of size expressions as we require; we may have to implementthe simpli�er ourselves. Furthermore, the ompiler is undergoing a redesign inwhih the front end is being replaed by the front end of the Glasgow Haskellompiler.AknowledgementsWe are grateful to Peter Faber, Paul Feautrier, John O'Donnell and GregorSnelting for fruitful disussions. Mihael Mendler, Walid Taha and the anony-mous referees gave us valuable hints about related work. The work was supportedby the German Researh Foundation (DFG).Referenes1. Je�rey M. Bell, Françoise Bellegarde, and James Hook. Type-driven defuntional-ization. SIGPLAN Noties, 32(8):25�37, 1997.2. Gianni Bellè and Eugenio Moggi. Typed intermediate languages for shape-analysis.In Typed Lambda Caluli and Appliations (TLCA'97), Leture Notes in ComputerSiene 1210, pages 11�29. Springer-Verlag, 1997.3. Rihard S. Bird. Algebrai identities for program alulation. The ComputerJournal, 32(2):122�126, 1989.4. Siddharta Chatterjee, Guy E. Blelloh, and Allan L.Fisher. Size and aess infer-ene for data-parallel programs. Tehnial Report CMU-CS-91-118, Dept. Com-puter Siene, Carnegie-Mellon Univ., 1991.
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