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Abstract 
We present a mathematically rigorous and, at the same time, convenient method for systolic design and 

derive alternative systolic designs for one expository matrix computation problem: matrix multiplication. Each 

design is synthesized from a simple program and a proposed layout of processors. The synthesis derives (1) a 

systolic parallel execution, (2) channel connections for the proposed processor layout, and (3) an arrangement of 

data streams such that the systolic execution can begin. Our choices of alternative designs are governed by formal 

theorems. The synthesis method is implementable and is particularly effective if implemented with graphics 

capability. Our implementation on the Symbolics 3600 displays the resulting designs and simulated executions 

graphically on the screen. The method has also been successfully applied to other matrix computation problems. 

1. Introduction 
The development of programs need not immediately address implementation concerns. Instead, one can 

proceed in stages. One can first derive a program that conforms with the problem specification, and then derive 

an execution (or "trace") and provide an architecture, Programs do not contain concepts of execution but, from 

programs, executions can be derived for a variety of computer architectures. Such an approach bridges the gap 

between two separate concerns: correctness and efficiency. To keep the correctness proof simple, the program 

which is shown to solve the given problem should be simple. After correctness has been established, the 

program's execution can be complicated into a more desirable execution, The complicated execution must have 

exactly the input-output behavior established for the program. 

This division of concerns can be of great help in program development. In the best of all worlds, where there 

is a proven, mechanical way to obtain efficient, complicated executions from simple programs, the programmer 

never has to go beyond the program in his understanding of the problem solution. In fact, he or she might even get 

help in constructing a suitable computer architecture without delving into the intricacies of program execution. 

We will provide a glimpse into such a world. We cannot deal with all programming problems, but the horizons of 

our world are expanding. Presently, it contains sorting problems [15J and matrix computation problems [9]. Our 

notion of efficiency is parallelism. Programs do not address the question of sequencing but may result in compli- 
cated, i.e., parallel executions. 

For exposition, we will confine ourselves here to matrix computations - in fact, to just one matrix computa- 
tion problem: matrix multiplication. We will present matrix multiplication programs and, automatically, derive 

parallel executions for them. We will then proceed to propose architectures that can perform these parallel 

executions. Our architectures will be systolic [t 1J, i.e., they will be networks of processors that are connected in 

simple pattems and perform simple operations under gIobal synchronization. We wilt only have to propose the 

layout of the processors. If it is suitable for our execution, the links of communication channels between proces- 

sors and the layout and direction of the data traveIling through the network can be synthesized automatically, 

After scrutiny of the resulting design, we might want to improve it by altering either the processor layout or the 

program. In our example, matrix multiplication, we will make one adjustment to the processor layout and then one 

adjustment to the program. Our search for alternative designs is guided by a number of theorems about our design 

method. 
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2. The Design Method 

2.1. Programs 
Our programs are expressed in a refinement language with the following features: 

• The definition of  a refinement consists o f  a refinement name with an optional list o f  formal parameters, 
separated by a colon from a refinement body. The following are the only three choices of  a refinement body. 

• The null statement, skip, does nothing. 

• The basic statement is a statement that is not refined any further. For matrix multiplication, we will use a basic 
statement called the inner product step [11]. An inner product step accesses the elements ai, l~ bl~ j and cij of  
three distinct matrices A, B, and C, respectively, and performs the operation 

cij  := cij  + ai. k * bkj  

If variables A, B, and C are fixed, we can express the inner product step solely in terms of  the matrix sub- 
scripts i,], and k. We will use the notation (i:j:k). 

• The composition SO;S1 of  refinements SO and $1 applies S1 to the results o f  SO. Each of  SO and $1 can be a 
refinement call (i.e., a refinement name, maybe, with an actual parameter list), a basic statement, or the null 
statement. Sequences of  compositions SO;S1;...;Sn are also permitted. Refinement calls may be recursive. 

2.2. Traces 
Following the conventional implementation of composition as sequential execution, a sequential execution is 

obtained from a refinement by replacing every semicolon with a right-pointing arrow. That is, program SO;S1 has 

trace SO-->S1. This implementation of  composition is always safe, but may be overly restrictive. We can trans- 

form it into different executions with the same effect. Such transformations can relax sequencing and incorporate 

parallelism into executions. In certain cases we will execute program SO;S1 by trace <SO $1> (angle brackets 

denote parallel execution). We call <SO $1> a parallel command, and a trace with parallel commands a parallel 

trace. 

We denote the length of a trace S by ISI and define it as follows: 

lstatl =def t for every basic statement stat 

ISO-->Sll =clef ISOI + tSli 

I<SO $1>I =clef max(ISOl,IS]l) 

The length of  a trace serves as an estimate of  the trace's execution time. Our estimate is rather crude. For more 

accurate estimates, the previous definitions can be adjusted accordingly. 

2.3. Trace Transformations 
Our intent is to shorten the length of  a trace by a sequence of  transformations. Each transformation must 

preserve the trace's effect. Trace transformations are justified by semantic relations that program components 

may or may not satisfy: 

(1) A program component S that is idempotent can be executed once or any number of  times consecu- 
tively with identical effect. Thus, S--+S in a trace may be transformed to S, and vice versa. The 
idempotence of  S is declared as: idem S. 

(2) A program component S that is neutral has no effect other than that it may take time to execute. 
Thus, S may be omitted from or added to a trace. Neutrality implies idempotence. The neutrality of  
S is declared as: ntr S. 

(3) Two program components SO and $1 that are commutative can be executed in any order with iden- 
tical effect. Thus, SO-->S1 in a trace may be transformed to S1--->SO. The commutativity of  SO and $1 
is declared as: SO com $1. 

(4) Two program components SO and $1 that are independent can be executed in parallel and in se- 
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quence with identical effect. Thus SO--~S1 in a trace may be transformed to <SO $1>. Independence 
implies commutativity. The independence of  SO and $1 is declared as: SO ind $1. 

Semantic relations are made explicit by declarations that accompany the refinement program. The format of  a 

semantic declaration is: 

enabling predicate ~ semantic relation 

The enabling predicate is a condition on the parameters of  the program components that are semantically related. 

Just like the correctness of  refinements, the correctness of  semantic declarations can be proved formally [14]. 

We will exploit semantic declarations for different programs in one and the same way. After having obtained 

a sequential trace, say l, from the program, we transform this trace into concurrency by exploiting the declared 

semantic relations according to the following pattern: 

transform(l) = remove-aU-ntr(ravet-trans(l)) 

Informally, ravet-trans(l) ravels all basic statements in l, one by one, from right to left to a parallel trace. First, the 

right-most basic statement is ravelled into the empty trace to form a single-statement parallel command. Then 

each of  the remaining basic statements in l is ravelled into the parallel trace produced so far. Duplicate idempotent 

statements are discarded if  possible. The ravelling process merges the basic statement with the right-most possible 

parallel command as permitted by the declared semantic relations; otherwise, it commutes the basic statement to 

the right-most possible position and forms another single-statement parallel command. Then remove-all-ntr 

removes all neutral basic statements. This transformation strategy is the heart of  our method. It has been defined 

formally in the Boyer-Moore computational logic [1] and mechanically proved correct [9]. 

2.4. Architectures 
A parallel trace specifies a partial order of  basic statements without reference to a particular architecture. We 

will develop systolic arrays that can execute the parallel trace. We specify a systolic array with the help of  four 

functions. 

The first two functions are called step and place. The domain of  both functions is the set of  basic statements 

that occur in the parallel trace. Step determines when basic statements are to be executed, and place determines 

where basic statements are to be executed. 1 

Step maps basic statements to the integers. The intention is to count the parallel commands of  the parallel 

trace in their order of  execution. Step is derived from the parallel trace. The derivation of  step must adhere to two 

conditions: 
(S1) basic statements of  the same parallel command must be mapped to the same integer, 

($2) basic statements of  adjacent parallel commands must be mapped to consecutive integers. 

We are free to choose an appropriate integer, fs, for the basic statements of  the first parallel command. If step 

satisfies conditions (S1) and ($2), any two basic statements in the same parallel command must have identical 

step values. Step can be derived by solving a system of  equations whose formulation is guided by conditions (S1) 

and ($2) (see the next section). 

Place maps basic statements to an integer space of  some dimension d. We assume that every point of  that 

space is occupied by a processor. The intention is to assign basic statements to the processors. Processors that are 

not assigned a statement at some step simply forward the data on their input channels to the corresponding output 

channels during that step. Processors that are at no step assigned a statement need not be implemented. Place is 

not derived from the parallel trace but proposed separately. Place has to satisfy the following condition: 

tin general, we must distinguish multiple occurrences of identical basic statements - by some sort of counter, say. However, we omit this 
Irivial complication here. Matrix multiplication leads to traces whose basic statements are all distinct. 
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(P1) basic statements of  the same parallel command must be assigned distinct points. 

We have a simple condition that establishes whether our proposals forplace satisfy (P1) (see the next section). 

In programs, data are represented by variables. In systolic computations, data, i.e., variables travel between 

processors. A variable may be accessed by one processor at one step and by another processor at a later step. We 

have to specify a layout and flow of  variables that provides each processor with the expected inputs at the steps at 

which it is supposed to execute its basic statement. At present, our method is confined to systolic arrays in which 

processors are only connected by unidirectional channels to processors that occupy neighboring points. 2 For 

designs with these characteristics, we can synthesize the input pattern and flow of  data from step and place. To 

this end, we introduce two more functions: pattern and flow. The domain of  both functions is the set o f  program 

variables. Flow specifies the direction of  data movement, and pattern specifies the initial data layout. 

Flow maps program variables to the same d-dimensional integer space as place. The intention is to indicate, 

for every processor in the network, which of its neighbors receive its output values at the next execution step, i.e., 

to which of  its neighbors it must be connected by an outgoing channel. Flow is synthesized from step and place 

as follows: if variable v is accessed by distinct basic statements sO and sl, 

flow(v) =clef (place(sl)-place(sO))/(step(sl)-step(sO)) 

For variables v that are accessed by only one basic statement, we must provide the definition of f low explicitly. 

Flow is only well-defined if  its images do not depend on the particular choice of  pairs sO and sl .  

Pattern maps program variables to the same space as place. The intention is to lay out the input data for the 

various processors in an initial pattern such that the systolic execution can begin. (Flow describes the propagation 

of  the data towards and through the network as the execution proceeds.) With constant fs  being the arbitrary step 

value that we choose for the first parallel command, pattern is synthesized from step, place, andflow as follows: 

if variable v is accessed by basic statement s, 

pattern(v) = clef place(s)- (step(s) -fs)*flow(v) 

Pattern is only well-defined if its images do not depend on the particular choice of  basic statement s. With 

pattern specifying the initial data layout, we can derive the data layout for successive steps of  the systolic execu- 

tion: the data layout after k steps is given by pattern(v)+k*flow(v). 

2.5. The Graphics System 
We have implemented the transformation strategy and the computation of  the previous functions in a graphics 

system on the Symbolics 3600. Our system can display two-dimensional processor layouts and simulate se- 

quences of  execution steps on them. At any fixed step, it displays the data layout and flow and indicates the 

active processors. The figures in this paper are hard-copies of  images produced by our system. 

3. Theorems for Linear Systolic Designs 
A number of  researchers have analyzed systolic designs with notions of  linear algebra [7, 16, 17, 19, 20]. We 

shall do something similar here. In this section, we investigate a specific class of  systolic designs: linear systolic 

designs. We defer the proofs of  theorems to the appendix. 

A systolic design is linear if it is specified by linear step and place functions. Linear systolic designs are 

particularly interesting because their data movement proceeds at a fixed rate in straight lines. We limit our 

~rwo points (Po,'",Pd - 1 ) and (qo," ",qa- 1 ) of the d-dimensional integer space are neighbors if 0 <- ~i - qi I <- 1, where 0 -< i < d. 
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theoretical discussion to programs with only one type of basic statement. 3 Let us denote the basic statement by 

S(XO,Xl,...,Xr_l). Also, we use s[xl/x i] to denote the substitution of x~ for argument x i in basic statement 

S(Xo,Xl,...,X r _ 1 ). 

Formally, a systolic design is linear, if step and place are described by the following linear equations: 

(El) step(s(Xo,Xl,...,Xr_l)) = IXo,oXo+(XO, lXl+...+(XO,r_lXr_l+tXO,r 

(E2) ptace(s(xoOq,...,Xr_ l)) = 
(~Xl,0X0 + {Xl,IX1 + " "  + CZl,r - l Xr - 1 + IX l,r . . . . .  O~ d, OXO + f£ d, l X1 + " "  + a d,r - I Xr - 1 + O~ d,r ) 

where the range of place is the &dimensional integer space. In a non-linear systolic design, equations (El) and 

(E2) would be of a higher degree. We shall explain the derivation of step and discuss theorems about place, flow, 

and pattern that provide guidance in the choice of a place function. 

Consider a non-empty parallel trace. The images of its individual basic statements under step, as defined in 

(El), constitute a set of linear formulas. Take the image of the first basic statement in the parallel trace and equate 

it with a chosen number. Impose conditions (S 1) and ($2) to derive equations for the other basic statements. The 

result is a set of linear equations in the variables %.0, %,1 ..... % , r -  1' and %,r' whose solution determines step. 

However, the equations do not guarantee the existence of a unique solution. For example, if the parallel trace 

consists of only one statement, there are infinitely many solutions for step, all of which satisfy conditions (S1) and 

($2). It is also possible that no solution exists at all. 

While conditions (S1) and ($2) are, generally, sufficient to synthesize step, condition (P1) is not sufficient to 

synthesize place. We must propose place independently and test whether it satisfies (~1). The following theorem 

provides such a test. 

Theorem 1: Let step be a linear step function for parallel trace t that satisfies (S1) and ($2). Letplace be a linear 

place function for t. Place satisfies (P1) if the following equations have the zero vector as the unique solution: 

%,oUo + %,l ut +'" + %~,- l Ur- 1=0 
Ctl,0U0 + (Xl,lUl +"" + Ot'l,r- l U r -  1 = 0 

~Xd,OUO +O~d, lUl  + ' "  +O~d,r- lUr - 1 = 0  

where r is the number of arguments of basic statement s. In particular, if place maps to r - 1  dimensions, i.e., 

d= r -  1, place satisfies (P1) if the coefficient determinant of this previous system of equations is not zero. 

Given a linear step function satisfying (S1) and ($2) and a linear place function satisfying (PI), we can 

compute flow and pattern. The computation of flow and pattern must be well-defined, that is, their result must not 

depend on the choice of basic statements. Matrix computation programs use subscripted variables. In our pro- 

gramming language, the variable subscripts appear as arguments of the program's basic statements. If the variable 

subscripts are determined by r -  1 arguments of the r-argument statement, then the flow of the variable derived 

from step and place is well-defined. This property is stated in Theorem 2. In our programming example, matrix 

multiplication, matrix elements accessed by a basic statement are determined each by two of the statement's three 

arguments (Section 4). 

Theorem 2: Let step be a linear step function for parallel trace t that satisfies (SI) and ($2). Letplace be a linear 

place function for t that satisfies (P1). If the subscripts of variable v are determined by all but one of the r 

arguments of the basic statement, thenflow is well-defined for variable v. 

3This restriction is not as severe as it may seem. While matrix multiplication only requires slngle-type basic statements, we have been 
able to apply our theorems also to other programs that use basic statements of several types [10], 
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Given a parallel trace t which satisfies conditions (S1), ($2), and (P1), no two basic statements in t can be 

identical. If a variable's subscripts are determined by all r, not just r - l ,  arguments of a basic statement, this 

variable can be accessed by at most one basic statement. Therefore, we cannot derive its flow function, and have 

to provide that explicitly. In general, while the processor layout for a program with r-argument basic statements 

requires dimension r - 1, the data layout requires dimension r. An example is matrix-vector multiplication [ 11]. 

Given a step function satisfying (S1) and ($2), a place function satisfying (P1), and a well-clef'reed flow 

function, the derived pattern function is well-defined. This property is stated by Theorem 3. 

Theorem 3: Let step be a linear step function for parallel trace t that satisfies (S1) and ($2). Letplace be a linear 

place function for t that satisfies (P1). Let flow, derived from step and place, be weU-def'med. Then pattern, 
derived from step, place, andflow, is well-defined. 

4. Systolic Designs of Matrix Multiplication 
The problem is to multiply two distinct n x n matrices A and B and assign the product to a third n x n matrix C, 

such that 

n-1 
cij = k~o= (aMc*bl:J) for O<i<n- landO<j<n-1  

With inner product steps, the following program is a simple solution to matrix multiplication; it is assumed 

that matrix C is initially everywhere zero: 

for i from 0 to n -  1 do 
fo r j  from 0 to n -  1 do 

for k from 0 to n -  1 do (i:j:k) 

Translated to our programming language, this program becomes: 

matrix-matrix(n): product(n- 1,n- 1) 

product(O,n): row(O,n,n) 
{i>0} product(i,n): product(i- l,n); row(i,n,n) 

row( i,O,n ) : inner-product( i,O,n ) 
{j>0} row(id,n): row(i j -  l,n); inner-product(ij, n) 

inner-product( ij,O) : (i:j:0) 
{k>0} inner-product(ij,k): inner-product(ij,k- 1); (i:j:k) 

The curly brackets on the left contain entry conditions on the formal parameters of the refinements. Our rather 

complex syntax has the advantage that each composition of two basic statements is represented explicitly by a 

semicolon. This will simplify the translation of the program into a sequential execution. 

We consider matrices whose non-zero values are concentrated in a "band" around the diagonal. An inner 

product step (i:j:k) containing off-band elements all: or b/c J does not change the value of ci j ,  i.e., is neutral. We 

exploit this neutrality. To identify off-band elements of the matrix, we must precisely describe the width of the 

band of non-zero elements around the diagonal. This band width is determined by two natural numbers: the 

largest distance p, of a potentially non-zero element in the upper triangle from the diagonal, and the largest 

distance, q, of a potentially non-zero element in lhe lower triangle from the diagonal. The distance of a matrix 

element from the diagonal is the absolute value of the difference of its two subscripts. In the following systolic 

designs, we fix the band widths of matrices A and B each to p=  1 and q = 1. As a result, the band width of matrix C 

i sp=2  and q=2. 

Only neutral inner product steps are idempotent. Since we exploit their neutrality, we do not exploit their 

idempotence. 
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On a parallel architecture that permits the sharing of  variables, two inner product steps (iO:jO:kO) and 

( i l : j l : k l )  are independent if their target variables Ciojo and Cil,j I are distinct. 4 But we are interested in executions 

on particular, systolic architectures that do not permit the sharing of  variables. Therefore, we must use a stronger 

independence criterion and require that aio,k 0 and ail,k t are distinct, bkodo and bgld I are distinct, and Ciojo and 

Cilj1 are distinct. Recall that the three variables of  an individual inner product step are distinct by assumption. 

All inner product steps are commutative. This makes commutativity, per se, meaningless. We do not exploit 

commutativity in trace transformations unless it is a consequence of  independence. 

Therefore, we declare the following semantic relations of  neutrality and independence for inner product steps: 

(D1) l < k - i  v l < i - k v  l < j - k  v l < k - j  ~ ntr(i:j:k) 

(D2) ( io~ i  I v jo~J l )  ^ ( io¢i  I v ko~k l )  ^ ( jo~Jl v ko~k l )  ~ (io:Jo:ko) ind (il:Jl:kl) 

4.1. The First Design 
Substituting ";" with "---~" in the program to obtain a sequential trace, and then applying transform to the 

sequential trace, we derive a parallel trace. For example, the parallel trace for the multiplication of  two 4×4 

matrices (matrix-matrix(4)) expands to: 

< ( 0 : 0 : 0 ) >  
-~ <(0:0:1) (0:1:0) (1:0:0)> --~ <(0:1:1) (1:0:1) (1:1:0)> 
--~ <(0:2:1) (1:1:1) (2:0:1)> --~ <(1:1:2) (1:2:1) (2:1:1)> 
--~ <(1:2:2) (2:1:2) (2:2:1)> --~ <(1:3:2) (2:2:2) (3:1:2)> 
--~ <(2:2:3) (2:3:2) (3:2:2)> -~ <(2:3:3) (3:2:3) (3:3:2)> 
--~ <(3:3:3)> 

This trace has length 10. In general, the length of the parallel trace is 3 n - 2  and is independent of the band width. 

But the band width influences the width of  the trace, i.e., the degree of  concurrency. 

The step function is derived from the parallel trace. Let the step function be a linear function: 

step((i:j:k)) = ~.o*i+ctl*j+¢x2*k+ff, 3 

Recall that we are allowed to choose the step value of  the first parallel command. We choose the value to make 

the constant term, ¢~3, 0. In this case, tile step value of  the first parallel command is 0. Applying the step function 

to the basic statements in the first two parallel commands of  the above parallel trace, we obtain the following 

equations: 

step((O:O:O)) = tx 3 = 0 

step((O:O:l)) = ff,2+tx3 = 1 
step((O:l:O)) = CXl+~ 3 = 1 
step((l:O:O)) = ~O+t~3 = 1 

The solution to these equations is ct0= tx I =or 2 = 1 and tx 3 = 0. The solution is consistent for the equations obtained 

by applying the step function to the rest of  the basic statements. Therefore, the derived step function is: 

step((i:j:k)) = i ÷ j + k  

The place fimction cannot be derived from the parallel trace but must be proposed separately. It seems 

promising to lay the processors out in a plane, i.e., in our method, on the two-dimensional integer lattice. Our first 

idea is to assign each basic statement to the point whose coordinates match the indices of  the statement's target 

variable. This decision is rather arbitrary. At this stage, we do not have any information that might guide us in the 

choice of  a processor layout. As we shall see later, other layouts are possible. Inner product step (i:j:k) has target 

variable c i j .  We propose: 

4See the Independence Theorem of [13], 
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place((i:j:k)) =clef (i4) 

The dimension of place is two which is one less than the number of the arguments in (i:j:k). By Theorem 1, place 
satisfies condition (P1), because the determinant constructed from the coefficients of  step andplace is not zero: 

I l i l l  1 0 = 1  
0 0 

where the first row, (1 1 1), is constructed from step, the second row, (1 0 0), from the first dimension of p/ace, 

and the third row, (0 1 0), from the second dimension of  place. 

Variable ai, k appears in basic statements (i:j:k) and (i:j+ l:k), and these two statements are executed in con- 

secutive steps. Therefore, we can derive the flow of ai,l~ 

flow(ai,k) = place((i:j+ l:k))-place((i:j:k)) 
= (0,1) 

Similarly, we derive the flows of bk, j and cij : 

flow(bkj) = place((i + l:j:k))-place((i:j:k)) 
= (1 ,O)  

f low(cij)  = place((i:j:k + l))-place((i:j:k)) 
= (0,0) 

Variables cij stay stationary during the computation. By Theorem 2,f low is well-defined. 

With functions step, place, andflow, we derive the initial data layout as follows: 

pattern(ai,k) = ptace((i:j:k))-step((i:j:k))*flow(ai~ ) 
= ( i , - i - k )  

pattern(b~) = place((i:j:k))-step((i:j:k))*flow(bkj ) 
= ( - j - k j )  

pattern(cij) = place((i:j:k))-step((i:j:k))*flow(cid ) 
= (ij) 

By Theorem 3, pattern is well-defined. 

The network of processors and the initial data layout, as produced by the graphics system, is depicted in 

Figure 1. Each dot represents an inner product step processor. Arrows represent the propagation of data. A vari- 

able name labelling an arrow indicates the location of that variable. If the arrow points to a processor, this variable 

is input to that processor at the current step of the systolic execution. 

The processor layout of this design mirrors the band of matrix C. The number of processors depends on the 

size of the input. For matrices with large size, this design may require a large number of processors. We can 

improve this situation by proposing a different place function. 

4.2.  T h e  S e c o n d  D e s i g n  

Let us assume that we will keep the band widths of the input matrices constant. That is, when increasing the 

size of the input, we never widen the matrices' bands. Under this assumption, we can derive for the same matrix 

multiplication program another design whose number of processors is constant. We must simply fred a place 

function whose coordinates depend only on the band widths of the input matrices but not on their size. The band 

widths of the input matrices are determined by the differences of i and k and o f j  and k (see the enabling condition 

of our neutrality declaration). We choose our coordinates from these differences: 
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place((i:j:k)) =def ( i - k j - k )  

Again, other choices are possible. By Theorem 1, this place function also satisfies (P1): 

I1 1 111 I 0 = 3  
0 1 

With the new proposed function, we derive the followingflow and pattern: 

flow(ai,k) = (0,1) 
f/ow(b~d) = (1,0) 
ftow(cij) = ( -  1 , -  I) 

pattern(ai,k) = ( i - k , - i - 2 k )  
pattern(bgj) = ( - j - 2 k d - k )  
pattern(ci) = (2i+ hi+ 2j) 

Flow and pattern are, again, well-defined. 

The network of processors and the initial data layout is depicted in Figure 2. This design is presented in [11]. 

The number of processors is (PA + qA + 1 )* (PB + qB + 1 ). It is independent of the size of the input. 

After arriving at an improved processor layout, we now modify the program to improve execution speed. We 

could have proceeded in the converse order. 

4.3, T h e  T h i r d  Design 

Recall that any two inner product steps are commutative. In Sect. 4.1, we decided not to declare this com- 
mutativity. A search reveals that a commutation in the definition of refinement inner-product yields the shortest 
trace: 

inner-product(ij,O): (i:j:0) 
{k>0} inner-product(ij,k): (iT:k); inner-product(ij,k-1) 

The parallel trace obtained for the multiplication of two 4 x 4 matrices (matrix-matrix(4)) expands to: 

<> ~ <> 
-~ <(0:0:I)> 

--> <(0:0:0) (0:1:1) (1:0:1) (1:1:2)> 

--~ <(0:I:0) (0:2:1) (I:0:0) (i:i:I) (1:2:2) (2:0:1) (2:1:2) (2:2:3)> 
-~ <(1:1:0) (1:2:1) (1:3:2) (2:1:1) (2:2:2) (2:3:3) (3:1:2) (3:2:3)> 
--~ <(2:2:1) (2:3:2) (3:2:2) (3:3:3)> 
-~ <(3:3:2)> 
--> <> --> <> 

If we do not consider band width, i.e., do not exploit neutrality, this trace has the same length as previous trace: 10 

or, in general, 3n-2 .  But, contrary to the previous trace, a consideration of band width can shorten this trace: the 

leading and trailing empty paral/el commands result from the elimination of neutral basic statements. Not count- 
ing the empty parallel commands, this trace has length 6 or, in general, n+min(PA,qB)+min(qA~B). Hence, for 

constant band width and large n, we achieve a speed-up by a factor of 3. The effect of the commutation in 

inner-product is that, in the execution, k is counted down, not up. Therefore, the derived step function contains a 
subtraction rather than an addition of k: 

step((i:j:k)) = i + j - k  

The step value of the first (non-empty) parallel command is - 1  or, in general, -min(pA,qB ). We keep the place 
function of the second design: 

place((i'.j:k)) = ( i - k j - k )  

Again, we derive well-defined flow and pattern functions: 
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fIow(ai,k) = (0,1) 
flow(bkj) = (1,0) 
flOW(Cij ) = (1,1) 

pattern(ai,k) = ( i-k ,- i -min(PA,qB))  
pattern(bk,j) = (--j--min(Pa,qB)j--k) 
pattern(cid) = (-j-min(PA,qB),-i-min(PA,qB)) 

Note that pattern depends on the band width because the value of  the first step does. 

The network of  processors and the initial data layout (at the first inner product step) is depicted in Figure 3. 

This design is also presented in [23]. 

5. Evaluation 
Let us review how we develop systolic executions and designs. We provide a program (in form of a 

refinement) and a processor layout (in form of  a place function). Given to us are properties of  the programming 

language (in form of  semantic relations) and restrictions on the architecture (implicit in the requirements on step, 
place, flow, and pattern). From this information, we synthesize, via a sequential execution, a parallel execution of  

the program and, via a step function, the data layout and movement (in form of  a flow function and a pattern 

function). We could also exchange what we propose and derive. For example, if we proposed the data movement, 

we could synthesize the data layout and the processor layout. 

Our work is distinguished by the combination of  three factors. Embedding systolic design into a general view 

of programming enables us to separate distinct concerns properly. The explicit formulation of  a parallel execution 

provides a precise link between the two components proposed by the human in a systolic design: the program and 

the processor layout. Our insistence on formal rigor at every stage expedites the automation of  a large part of the 

development. Theorems aid the human in his part o f  the development. The systolic design at which we arrive can 

be informally (graphically) conveyed to the human, but it also has a precise mathematical description. 

These benefits are demonstrated by our graphics implementation. As a consequence of the isolation of 

different development stages (program, execution, architecture) in our method, we can quickly and easily change 

different parameters, one at a time, and obtain a clear display of the effect on the systolic design. 

The pairing of  a program with a processor layout makes the evaluation of  a design particularly convenient: 

the program determines the execution speed (as the length of  the parallel trace) and the processor layout deter- 

mines the size of  the design (as the number of  processors). The density of  the data layout is determined only by 

the pair but not by either component alone. 5 For example, our first and second designs of  matrix multiplication 

are based on the same program but the densities of  their data layouts differ. Similarly, our second and third 

designs have the same processor layout, but the densities of  their data layouts differ. 

At present, we use transform as a heuristic. Our initial definition of  it removed neutral elements first, not 

last. In some cases, this version of  transform leads to faster executions. We still abandoned it, because it also leads 

to more complicated step functions, and simplicity is important to us. Transform is just another variable in our 

method. So far, our specific transformation strategy has served us remarkably well [9, 10]. 

We are not very satisfied with the way in which we identified the commutation in the definition of 

inner-product that led to our third design for matrix multiplication. We also attempted commutations in the other 

refinements, product and row, but they lead to executions that are never shorter and sometimes longer. All we can 

5In fact, it is given by the absolute value of the determinant derived from the coefficients of step andplace. We have proved a theorem to 
that effect. 
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provide at this time is an implemented system that lets us conduct these searches conveniently. The fact that all 

statements of  the matrix multiplication program are commutative is discouraging. It provides us with no infor- 

marion of  what execution to pick. 

To reach the first step of  our parallel systolic execution, several steps of  "soaking up" data may have to be 

taken. Similarly, after the last step of  our execution, data remaining in the network may have to be "drained". 

After arriving at a particular design, we can compute the lengths of  the soaking and draining phases from step and 

place. Soaking and draining influences the performance of the design. 

We have applied our method of incremental systolic design to other problems like LU-decomposition 

[11] and polynomial evaluation [12]. Our method is particularly suitable for a search of  different systolic designs 

for some fixed problem. An impressive example is our treatment of  the Algebraic Path Problem. The Algebraic 

Path Problem subsumes many matrix computation problems, among them matrix inversion, transitive closure, and 

shortest paths. Its solutions are complicated systolic designs with seven different types of operations and different 

data items being reflected in different directions up to four times on their path through the processor array [21]. 

For variables whose flow is not constant over the entire execution, the well-definedness of flow and pattern is 

violated. However, we can cope with such cases in an incremental fashion. We can extend the parallel execution 

with statements that copy variables (whose direction of  flow changes) to new variables (at the points of change). 

The flow of  each of  the resulting variables is then constant. We have obtained an algorithm by which the parallel 

execution can be successively enhanced with such reflection operations [10]. 

Programs lend themselves to a systolic implementation if they combine a few simple operations in a highly 

repetitive way. It is not easy to tell by looking at the program whether it permits a nice systolic implementation. 

We have not addressed this problem here. What we offer is a fast way to try. Our method works the better, the 

fewer types of  basic operations need to be considered. Many different types of  processors can cause an explosion 

in the number of  semantic declarations. We expect our method to work best for problems in which the program 

does not reflect aspects of  the systolic architecture. However, at least in the treatment of the Algebraic Path 

Problem, we were able to add operations imposed by the architecture at a later stage. 

Our description of  systolic designs does not explicitly address the propagation of  synchronization signals as 

does, for instance, Snepscheut's systolic design for transitive closure [22]. We capture issues of  synchronization, 

quite abstractly, in the parallel trace. They may be realized by synchronization signals or by some other means. 

For example, we think of  our systolic designs as communicating an identification of  the variable together with the 

variable's value. So far, all our examples have lead to systolic designs in which a processor can decide what 

operation to perform simply be inspecting the identifications of  its input data. 

Many researchers have investigated methods of systolic design in recent years (see the next section). All 

these methods require two kinds of input: one component that can be thought of  as a program, and one component 

that gives some clue about the structure of  the systolic array. In our approach both these inputs need not be 

cleverly chosen. Of the program, we require only that it solve the numerical problem at hand. For the place 

function, we can start with a simple proposition that looks promising. After evaluating the result of our inputs, we 

can make incremental variations. These variations may be random, or they may be carefully selected. In our 

matrix multiplication example, we adjusted each of the two inputs once. 

6. Related Research 
Chen [5, 6] chooses the inverse of  our derivation. She supplies a "network", which is the analogue of our 

flow function, and an "abstract process structure" (a set of  recurrence equations), which is the analogue of  our 

refinement. Her informal derivation results in a "concrete structure", which is the analogue of our step and place 

functions. Chen does not spell out systolic executions, as we do with traces, and is, in general, less formal. 
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Like us, Moldovan and Fortes [19] require the input of a program, but their program must be augmented with 

"artificial" variables [18]. This augmentation is meant to specify parallelism and corresponds roughly to our 

semantic relations - except that semantic relations are properties of the programming language, not properties of 

individual programs. (The detection of parallelism receives more attention in another of their papers [8].) Systolic 

arrays are described by a space transformation which corresponds to our function place and a time transformation 

which corresponds to our function step. Moldovan and Fortes require the input of both transformations, while we 

only require the input of place (or even only part of place). Similarly to Chert, Moldovan and Fortes present an 

algorithm by which the space transformation can be derived from a set of proposed flow vectors. Mirankler and 

Winlder [17] employ the same space-time transformation as Moldovan but use a graph representation. Moldovan 

and Fortes propose guidelines for the derivation of some programs. 

Chandy and Misra [4] propose an "invariant", which corresponds to our step function, and, with some ad- 

ditional assumptions, derive a systolic program from it. A program in their language, Unity [3], is a repeating 

multiple assignment statement. Chandy and Misra envision Unity as a tool in which programming solutions for 

many different architectures can be expressed with equal convenience. They equate the Unity programs that they 

derive with systolic executions and, indeed, with systolic architectures. An essential aspect of our synthesis 

method is that we distinguish the three concepts of a program, a trace, and an architecture. 

Lam and Mostow [12] employ an implemented method of transformation similar to ours but, again, less 

precise. They require annotations to the Pascal-like program that give a clue about the processor layout ("in place" 

or "in parallel"). 

Cappello and Steiglitz [2] describe a method of systolic design by geometric transformation. They derive a 

first data flow scheme from a sequential program execution. The data flow scheme is expressed geometrically in 

space-time and is, usually, not well-suited for implementation. It is then improved by geometric transformations 
proposed by the human. As many other approaches in VLSI theory, this one aims at chip layout, not at program- 

ming. Our centerpiece, the parallel execution, is missing. 

Systolic design spans several levels of abstraction, from a specification to a chip layout. The two ends of this 

spectrum are, at present, best understood. The front end is the refinement of a specification into an abstract 
program. Solutions to this end are offered by work in programming methodology. The back end is the refinement 

of an abstract systolic architecture into an optimized concrete one. Solutions to this end are offered by work in 

VLSI design. Our work provides a connection of both ends: it links an abstract program with an abstract systolic 

architecture. 
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Appendix :  Proofs  
w e  restate and prove Theorems 1, 2, and 3 of Section 3. 

Theorem 1: Let s tep  be a linear step function for parallel trace t that satisfies (S1) and ($2). L e t p l a c e  be a lineal 

place function for t, P l a c e  satisfies (P1) if the following equations have the zero vector as the unique solution: 

050,0U0 + ff'0,1Ul + "'" + 0 5 0 , r -  l U r - 1 = 0  

051,0U0 + 051,1Ul +""  + 05t¢-  lUr - 1 = 0  

O~d,oUo+ IXd,1Ul +""  + O~d,r - 1 U r -  1 = 0 

where r is the number  of arguments of  basic statement s. 

Proof: 

P l a c e  satisfies (P1) 

= {conditions (S1), ($2) and (P1)} 

for all basic statements S(Xo,Xl,. . . ,x r - 1) and s(YO,Yl, . . . ,yr_ I) in t, 

S ( X o ' X l ' " " x r -  1) ~ S ( Y o ' Y l " ' " Y r -  1) ^ s t ep ( s (xO 'X l" ' "Xr -  1 ) ) = s t e p ( s ( Y o ' Y l " " , Y r -  1)) 
p lace ( s ( xO 'X l , ' - 'Xr -  1)) ¢:p lace ( s (Yo 'Y l ' " "Yr -  1)) 

= {s tep and p l a c e  are linear, and equations (E 1) and (E2)} 

for all basic statements S(Xo,Xl, . . . ,xr_ 1) and s (Yo ,Yl ,_ . , yr_  1) in t, 

s(x0'xt '""Xr - 1) #S(YO,Yl ,"" 'Yr - 1 ) 
^ O~o,oXo+O~o, lXl+.. .+050,r_lXr_l+O~O,r=050,oYo+O~o, l Y l + . . + O t O , r _ l Y r _ l + ( X O , r  

: :¢"  ( I X l , O X O + ( X l , l X l + - ' + 0 5 1 , r - t X r - 1 + a l  ....... 05d, oXo+05d, lX l+" '+05d ,  r - l X r - l + 0 5 d , r  ) 
;e (051,0Y0 + 051,1Yl + - '  + 051,r- lYr - 1 + 051,r" .... 05d, oYo + 05d, lY l  +"" + 05d, r - lYr - 1 + Ctd, r) 

= {algebraic simplification} 

for all basic s ta tements  S(Xo,Xl , . . . , x  r - 1 ) and S ( Y o , Y t , . . . , y r _  1) in t, 

s(x0"xl'""Xr- 1) ~ S ( Y o ' Y l " " ' Y r -  1) 
^ Oto,oXo+050,lXl+...+CtO, r_lXr_l+050.r=ff .o,oYo+ff .O,  l Y l + . . . + 0 5 0 , r _ l Y r _ l + 0 5 0 , r  

=:¢" 051,0x0 + 051,1Xl + ' "  + C~l,r- lXr -  1 + 051,r ;e oL 1,OyO + ¢XI,lY 1 +"" + 051,r- l Y r -  1 + 051,r 
V ... 

v 05d,OXo+C~d, lXl+.. .+CXd, r _ l X r _ l + 0 5 d ,  r;e05d,oYo+O~d, l Y l + . . . + 0 5 d , r _ l Y r _ l + 0 5 d , r  

= {algebraic simplification} 

for all basic statements S(Xo,Xl ,...,X r_  1) and s(Y0,Yl,...,yr_ 1) in t, 

S( XO'X l '" "Xr - 1) * s(Y O'Y l " " 'Y r -  1) 
A (Y.o,o(Xo--Yo)+050,1(X1 -Y l )  + "'" + 050 , r -  l (Xr  - 1 - Y r -  i ) = 0  

0 5 1 , o ( X o - - Y o ) + 0 5 1 , i ( X l - - Y 1 ) + . . .  +051,r_  l ( X r _  l - - Y r _  l ) ; e O  
v ... 

v 05d,o(Xo--Yo)+ad, l ( X l - - Y l ) + . . . + 0 5 d , r _ l ( X r _ l - - Y r _ l ) ; ~ O  

= {predicate calculus} 

for all basic statements S(Xo,Xl,. . . ,x r - 1) and  S(Yo,Yi, . . . ,y  r - I) in t, 

f f 'O,O(xO-Yo)+O;O,l(xl-Yl)  + ' "  +050,r - l(Xr - 1 - Y r -  1 ) = 0  
^ 051 ,0 (Xo-Yo)+IXI , l (X l -Y l  ) + ' ' '  +051,r- l(Xr - 1 - Y r -  1) =0  
A ... 

^ °;d,o(Xo-Yo) + C~d,l(Xl --Yl) + ' ' '  +05d, r -  l(Xr - 1 - - Y r -  1) =0  
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¢:= 

S(Xo'Xl"'"xr- 1) =SO'o,Yl,'",Yr- 1) 

{algebraic simplification} 

%,0U0+ Ct0,1UI + "" + O~O,r - l Ur - 1 = 0  
0~l,0U0 + 0~1, lUl + "'" + 0~l,r- 1Ur- 1 = 0 

O~d, oUo + CLd, lUl +"" + O~d,r- lUr-  1 = 0 

have the zero vector as the unique solution. 

(End of Proof) 

T h e o r e m  2: Let step be a linear step function for parallel trace t that satisfies (S1) and ($2). Letp lace  be a linear 

place function for t that satisfies (P1). If the subscripts o f  variable v are determined by all but one of  the r 

arguments of  the basic statement, thenf/ow is well-defined for variable v. 

Proof:  Let Sx=S(Xo,...,xi,...,x r_ 1), Sx' =Sx[Xi/Xi], Sy=Sx[Yi/Xi], and Sy, =Sx[Y}/Xl]. Let the subscripts of  variable v be 

Xo . . . . .  x i -  1, xi+ 1 .. . . .  and x r - 1, that is, the arguments of  basic statement s x, except the ( i+ 1)-st one, x i . Then, s x , 

s x, , s y ,  and sy, all access variable Vxo....,xi_1,xi+l,..,x_{ Assuming step(sx)~step(sx, ), and step(sy)~step(sy,), we 

carl conclude: 

f l o w  is well-defined for variable Vxo,...zi _ 1,xi + 1,...~r - 

= { well-definedness } 

(place(sx)-place(sx,  ) ) / (s tep(sx)-  step(sx, ) ) = (place(sy)-place(sy,  ) ) /(step(sy)-  step(sy, ) ) 

= {step and place are linear, and s x , s x, , sy,  and sy, have identical arguments in all positions but i} 

( O~l.i(X i -  3dii),..,,O~ d,i(X i -  x~) )/ txO,i(X i -  x~) = ((X 1,i(yi-y~),-.,O~d,i(y i -  y ~) )/ (XO,i(y i -  y~) 

= {algebraic simplification} 

( O~ l ,i] ~O,i,.. . , O~ d,i/ OtO,i) = ( a i ,i/ (XO, i, . . . , a  d, i/ O~O, i ) 

= {algebraic simplification} 

true 

(End of  Proof) 

T h e o r e m  3: Let step be a linear step function for parallel trace t that satisfies (S1) and ($2). Letp lace  be a linear 

place function for t that satisfies ~ 1 ) .  Let f low,  derived from step and place, be wel~-def'med. Then pattern, 

derived from step, place, andf low,  is well-defined. 

Proof:  If basic statements sO and s l  are distinct and access variable v of  identical subscripts: 

pattern is well-defined for variable v 

= { well-definedness } 

place(sO)-  (step(sO)-fs)*flow(v) =p lace ( s1 ) -  (s tep(s l ) - f s )* f low(v)  

= {algebraic simplification} 

place(sO) -p lace(s1  ) = (step(sO)- step(s1 )) *flow(v) 

= {definition o f  f low}  

true 

(End of Proof) 
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Figure 1. Matrix Multiplication -- The First Design 
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Figure 3. Matrix Multiplication -- The Third Design 


