
An Implemented Method for Incremental Systolic Design

Chua-Huang Huang & Christian Lengauer

Department of Computer Sciences

The University of Texas at Austin

Austin, Texas 78712-1188, U.S.A.

Abstract
We present a mathematically rigorous and, at the same time, convenient method for systolic design and

derive alternative systolic designs for one expository matrix computation problem: matrix multiplication. Each

design is synthesized from a simple program and a proposed layout of processors. The synthesis derives (1) a

systolic parallel execution, (2) channel connections for the proposed processor layout, and (3) an arrangement of

data streams such that the systolic execution can begin. Our choices of alternative designs are governed by formal

theorems. The synthesis method is implementable and is particularly effective if implemented with graphics

capability. Our implementation on the Symbolics 3600 displays the resulting designs and simulated executions

graphically on the screen. The method has also been successfully applied to other matrix computation problems.

1. Introduction
The development of programs need not immediately address implementation concerns. Instead, one can

proceed in stages. One can first derive a program that conforms with the problem specification, and then derive

an execution (or "trace") and provide an architecture, Programs do not contain concepts of execution but, from

programs, executions can be derived for a variety of computer architectures. Such an approach bridges the gap

between two separate concerns: correctness and efficiency. To keep the correctness proof simple, the program

which is shown to solve the given problem should be simple. After correctness has been established, the

program's execution can be complicated into a more desirable execution, The complicated execution must have

exactly the input-output behavior established for the program.

This division of concerns can be of great help in program development. In the best of all worlds, where there

is a proven, mechanical way to obtain efficient, complicated executions from simple programs, the programmer

never has to go beyond the program in his understanding of the problem solution. In fact, he or she might even get

help in constructing a suitable computer architecture without delving into the intricacies of program execution.

We will provide a glimpse into such a world. We cannot deal with all programming problems, but the horizons of

our world are expanding. Presently, it contains sorting problems [15J and matrix computation problems [9]. Our

notion of efficiency is parallelism. Programs do not address the question of sequencing but may result in compli-
cated, i.e., parallel executions.

For exposition, we will confine ourselves here to matrix computations - in fact, to just one matrix computa-
tion problem: matrix multiplication. We will present matrix multiplication programs and, automatically, derive

parallel executions for them. We will then proceed to propose architectures that can perform these parallel

executions. Our architectures will be systolic [t 1J, i.e., they will be networks of processors that are connected in

simple pattems and perform simple operations under gIobal synchronization. We wilt only have to propose the

layout of the processors. If it is suitable for our execution, the links of communication channels between proces-

sors and the layout and direction of the data traveIling through the network can be synthesized automatically,

After scrutiny of the resulting design, we might want to improve it by altering either the processor layout or the

program. In our example, matrix multiplication, we will make one adjustment to the processor layout and then one

adjustment to the program. Our search for alternative designs is guided by a number of theorems about our design

method.

161

2. The Design Method

2.1. Programs
Our programs are expressed in a refinement language with the following features:

• The definition of a refinement consists o f a refinement name with an optional list o f formal parameters,
separated by a colon from a refinement body. The following are the only three choices of a refinement body.

• The null statement, skip, does nothing.

• The basic statement is a statement that is not refined any further. For matrix multiplication, we will use a basic
statement called the inner product step [11]. An inner product step accesses the elements ai, l~ bl~ j and cij of
three distinct matrices A, B, and C, respectively, and performs the operation

cij := cij + ai. k * bkj

If variables A, B, and C are fixed, we can express the inner product step solely in terms of the matrix sub-
scripts i,], and k. We will use the notation (i:j:k).

• The composition SO;S1 of refinements SO and $1 applies S1 to the results o f SO. Each of SO and $1 can be a
refinement call (i.e., a refinement name, maybe, with an actual parameter list), a basic statement, or the null
statement. Sequences of compositions SO;S1;...;Sn are also permitted. Refinement calls may be recursive.

2.2. Traces
Following the conventional implementation of composition as sequential execution, a sequential execution is

obtained from a refinement by replacing every semicolon with a right-pointing arrow. That is, program SO;S1 has

trace SO-->S1. This implementation of composition is always safe, but may be overly restrictive. We can trans-

form it into different executions with the same effect. Such transformations can relax sequencing and incorporate

parallelism into executions. In certain cases we will execute program SO;S1 by trace <SO $1> (angle brackets

denote parallel execution). We call <SO $1> a parallel command, and a trace with parallel commands a parallel

trace.

We denote the length of a trace S by ISI and define it as follows:

lstatl =def t for every basic statement stat

ISO-->Sll =clef ISOI + tSli

I<SO $1>I =clef max(ISOl,IS]l)

The length of a trace serves as an estimate of the trace's execution time. Our estimate is rather crude. For more

accurate estimates, the previous definitions can be adjusted accordingly.

2.3. Trace Transformations
Our intent is to shorten the length of a trace by a sequence of transformations. Each transformation must

preserve the trace's effect. Trace transformations are justified by semantic relations that program components

may or may not satisfy:

(1) A program component S that is idempotent can be executed once or any number of times consecu-
tively with identical effect. Thus, S--+S in a trace may be transformed to S, and vice versa. The
idempotence of S is declared as: idem S.

(2) A program component S that is neutral has no effect other than that it may take time to execute.
Thus, S may be omitted from or added to a trace. Neutrality implies idempotence. The neutrality of
S is declared as: ntr S.

(3) Two program components SO and $1 that are commutative can be executed in any order with iden-
tical effect. Thus, SO-->S1 in a trace may be transformed to S1--->SO. The commutativity of SO and $1
is declared as: SO com $1.

(4) Two program components SO and $1 that are independent can be executed in parallel and in se-

162

quence with identical effect. Thus SO--~S1 in a trace may be transformed to <SO $1>. Independence
implies commutativity. The independence of SO and $1 is declared as: SO ind $1.

Semantic relations are made explicit by declarations that accompany the refinement program. The format of a

semantic declaration is:

enabling predicate ~ semantic relation

The enabling predicate is a condition on the parameters of the program components that are semantically related.

Just like the correctness of refinements, the correctness of semantic declarations can be proved formally [14].

We will exploit semantic declarations for different programs in one and the same way. After having obtained

a sequential trace, say l, from the program, we transform this trace into concurrency by exploiting the declared

semantic relations according to the following pattern:

transform(l) = remove-aU-ntr(ravet-trans(l))

Informally, ravet-trans(l) ravels all basic statements in l, one by one, from right to left to a parallel trace. First, the

right-most basic statement is ravelled into the empty trace to form a single-statement parallel command. Then

each of the remaining basic statements in l is ravelled into the parallel trace produced so far. Duplicate idempotent

statements are discarded if possible. The ravelling process merges the basic statement with the right-most possible

parallel command as permitted by the declared semantic relations; otherwise, it commutes the basic statement to

the right-most possible position and forms another single-statement parallel command. Then remove-all-ntr

removes all neutral basic statements. This transformation strategy is the heart of our method. It has been defined

formally in the Boyer-Moore computational logic [1] and mechanically proved correct [9].

2.4. Architectures
A parallel trace specifies a partial order of basic statements without reference to a particular architecture. We

will develop systolic arrays that can execute the parallel trace. We specify a systolic array with the help of four

functions.

The first two functions are called step and place. The domain of both functions is the set of basic statements

that occur in the parallel trace. Step determines when basic statements are to be executed, and place determines

where basic statements are to be executed. 1

Step maps basic statements to the integers. The intention is to count the parallel commands of the parallel

trace in their order of execution. Step is derived from the parallel trace. The derivation of step must adhere to two

conditions:
(S1) basic statements of the same parallel command must be mapped to the same integer,

($2) basic statements of adjacent parallel commands must be mapped to consecutive integers.

We are free to choose an appropriate integer, fs, for the basic statements of the first parallel command. If step

satisfies conditions (S1) and ($2), any two basic statements in the same parallel command must have identical

step values. Step can be derived by solving a system of equations whose formulation is guided by conditions (S1)

and ($2) (see the next section).

Place maps basic statements to an integer space of some dimension d. We assume that every point of that

space is occupied by a processor. The intention is to assign basic statements to the processors. Processors that are

not assigned a statement at some step simply forward the data on their input channels to the corresponding output

channels during that step. Processors that are at no step assigned a statement need not be implemented. Place is

not derived from the parallel trace but proposed separately. Place has to satisfy the following condition:

tin general, we must distinguish multiple occurrences of identical basic statements - by some sort of counter, say. However, we omit this
Irivial complication here. Matrix multiplication leads to traces whose basic statements are all distinct.

163

(P1) basic statements of the same parallel command must be assigned distinct points.

We have a simple condition that establishes whether our proposals forplace satisfy (P1) (see the next section).

In programs, data are represented by variables. In systolic computations, data, i.e., variables travel between

processors. A variable may be accessed by one processor at one step and by another processor at a later step. We

have to specify a layout and flow of variables that provides each processor with the expected inputs at the steps at

which it is supposed to execute its basic statement. At present, our method is confined to systolic arrays in which

processors are only connected by unidirectional channels to processors that occupy neighboring points. 2 For

designs with these characteristics, we can synthesize the input pattern and flow of data from step and place. To

this end, we introduce two more functions: pattern and flow. The domain of both functions is the set o f program

variables. Flow specifies the direction of data movement, and pattern specifies the initial data layout.

Flow maps program variables to the same d-dimensional integer space as place. The intention is to indicate,

for every processor in the network, which of its neighbors receive its output values at the next execution step, i.e.,

to which of its neighbors it must be connected by an outgoing channel. Flow is synthesized from step and place

as follows: if variable v is accessed by distinct basic statements sO and sl,

flow(v) =clef (place(sl)-place(sO))/(step(sl)-step(sO))

For variables v that are accessed by only one basic statement, we must provide the definition of f low explicitly.

Flow is only well-defined if its images do not depend on the particular choice of pairs sO and sl .

Pattern maps program variables to the same space as place. The intention is to lay out the input data for the

various processors in an initial pattern such that the systolic execution can begin. (Flow describes the propagation

of the data towards and through the network as the execution proceeds.) With constant fs being the arbitrary step

value that we choose for the first parallel command, pattern is synthesized from step, place, andflow as follows:

if variable v is accessed by basic statement s,

pattern(v) = clef place(s)- (step(s) -fs)*flow(v)

Pattern is only well-defined if its images do not depend on the particular choice of basic statement s. With

pattern specifying the initial data layout, we can derive the data layout for successive steps of the systolic execu-

tion: the data layout after k steps is given by pattern(v)+k*flow(v).

2.5. The Graphics System
We have implemented the transformation strategy and the computation of the previous functions in a graphics

system on the Symbolics 3600. Our system can display two-dimensional processor layouts and simulate se-

quences of execution steps on them. At any fixed step, it displays the data layout and flow and indicates the

active processors. The figures in this paper are hard-copies of images produced by our system.

3. Theorems for Linear Systolic Designs
A number of researchers have analyzed systolic designs with notions of linear algebra [7, 16, 17, 19, 20]. We

shall do something similar here. In this section, we investigate a specific class of systolic designs: linear systolic

designs. We defer the proofs of theorems to the appendix.

A systolic design is linear if it is specified by linear step and place functions. Linear systolic designs are

particularly interesting because their data movement proceeds at a fixed rate in straight lines. We limit our

~rwo points (Po,'",Pd - 1) and (qo," ",qa- 1) of the d-dimensional integer space are neighbors if 0 <- ~i - qi I <- 1, where 0 -< i < d.

164

theoretical discussion to programs with only one type of basic statement. 3 Let us denote the basic statement by

S(XO,Xl,...,Xr_l). Also, we use s[xl/x i] to denote the substitution of x~ for argument x i in basic statement

S(Xo,Xl,...,X r _ 1).

Formally, a systolic design is linear, if step and place are described by the following linear equations:

(El) step(s(Xo,Xl,...,Xr_l)) = IXo,oXo+(XO, lXl+...+(XO,r_lXr_l+tXO,r

(E2) ptace(s(xoOq,...,Xr_ l)) =
(~Xl,0X0 + {Xl,IX1 + " " + CZl,r - l Xr - 1 + IX l,r O~ d, OXO + f£ d, l X1 + " " + a d,r - I Xr - 1 + O~ d,r)

where the range of place is the &dimensional integer space. In a non-linear systolic design, equations (El) and

(E2) would be of a higher degree. We shall explain the derivation of step and discuss theorems about place, flow,

and pattern that provide guidance in the choice of a place function.

Consider a non-empty parallel trace. The images of its individual basic statements under step, as defined in

(El), constitute a set of linear formulas. Take the image of the first basic statement in the parallel trace and equate

it with a chosen number. Impose conditions (S 1) and ($2) to derive equations for the other basic statements. The

result is a set of linear equations in the variables %.0, %,1 % , r - 1' and %,r' whose solution determines step.

However, the equations do not guarantee the existence of a unique solution. For example, if the parallel trace

consists of only one statement, there are infinitely many solutions for step, all of which satisfy conditions (S1) and

($2). It is also possible that no solution exists at all.

While conditions (S1) and ($2) are, generally, sufficient to synthesize step, condition (P1) is not sufficient to

synthesize place. We must propose place independently and test whether it satisfies (~1). The following theorem

provides such a test.

Theorem 1: Let step be a linear step function for parallel trace t that satisfies (S1) and ($2). Letplace be a linear

place function for t. Place satisfies (P1) if the following equations have the zero vector as the unique solution:

%,oUo + %,l ut +'" + %~,- l Ur- 1=0
Ctl,0U0 + (Xl,lUl +"" + Ot'l,r- l U r - 1 = 0

~Xd,OUO +O~d, lUl + ' " +O~d,r- lUr - 1 = 0

where r is the number of arguments of basic statement s. In particular, if place maps to r - 1 dimensions, i.e.,

d= r - 1, place satisfies (P1) if the coefficient determinant of this previous system of equations is not zero.

Given a linear step function satisfying (S1) and ($2) and a linear place function satisfying (PI), we can

compute flow and pattern. The computation of flow and pattern must be well-defined, that is, their result must not

depend on the choice of basic statements. Matrix computation programs use subscripted variables. In our pro-

gramming language, the variable subscripts appear as arguments of the program's basic statements. If the variable

subscripts are determined by r - 1 arguments of the r-argument statement, then the flow of the variable derived

from step and place is well-defined. This property is stated in Theorem 2. In our programming example, matrix

multiplication, matrix elements accessed by a basic statement are determined each by two of the statement's three

arguments (Section 4).

Theorem 2: Let step be a linear step function for parallel trace t that satisfies (SI) and ($2). Letplace be a linear

place function for t that satisfies (P1). If the subscripts of variable v are determined by all but one of the r

arguments of the basic statement, thenflow is well-defined for variable v.

3This restriction is not as severe as it may seem. While matrix multiplication only requires slngle-type basic statements, we have been
able to apply our theorems also to other programs that use basic statements of several types [10],

165

Given a parallel trace t which satisfies conditions (S1), ($2), and (P1), no two basic statements in t can be

identical. If a variable's subscripts are determined by all r, not just r - l , arguments of a basic statement, this

variable can be accessed by at most one basic statement. Therefore, we cannot derive its flow function, and have

to provide that explicitly. In general, while the processor layout for a program with r-argument basic statements

requires dimension r - 1, the data layout requires dimension r. An example is matrix-vector multiplication [11].

Given a step function satisfying (S1) and ($2), a place function satisfying (P1), and a well-clef'reed flow

function, the derived pattern function is well-defined. This property is stated by Theorem 3.

Theorem 3: Let step be a linear step function for parallel trace t that satisfies (S1) and ($2). Letplace be a linear

place function for t that satisfies (P1). Let flow, derived from step and place, be weU-def'med. Then pattern,
derived from step, place, andflow, is well-defined.

4. Systolic Designs of Matrix Multiplication
The problem is to multiply two distinct n x n matrices A and B and assign the product to a third n x n matrix C,

such that

n-1
cij = k~o= (aMc*bl:J) for O<i<n- landO<j<n-1

With inner product steps, the following program is a simple solution to matrix multiplication; it is assumed

that matrix C is initially everywhere zero:

for i from 0 to n - 1 do
fo r j from 0 to n - 1 do

for k from 0 to n - 1 do (i:j:k)

Translated to our programming language, this program becomes:

matrix-matrix(n): product(n- 1,n- 1)

product(O,n): row(O,n,n)
{i>0} product(i,n): product(i- l,n); row(i,n,n)

row(i,O,n) : inner-product(i,O,n)
{j>0} row(id,n): row(i j - l,n); inner-product(ij, n)

inner-product(ij,O) : (i:j:0)
{k>0} inner-product(ij,k): inner-product(ij,k- 1); (i:j:k)

The curly brackets on the left contain entry conditions on the formal parameters of the refinements. Our rather

complex syntax has the advantage that each composition of two basic statements is represented explicitly by a

semicolon. This will simplify the translation of the program into a sequential execution.

We consider matrices whose non-zero values are concentrated in a "band" around the diagonal. An inner

product step (i:j:k) containing off-band elements all: or b/c J does not change the value of ci j , i.e., is neutral. We

exploit this neutrality. To identify off-band elements of the matrix, we must precisely describe the width of the

band of non-zero elements around the diagonal. This band width is determined by two natural numbers: the

largest distance p, of a potentially non-zero element in the upper triangle from the diagonal, and the largest

distance, q, of a potentially non-zero element in lhe lower triangle from the diagonal. The distance of a matrix

element from the diagonal is the absolute value of the difference of its two subscripts. In the following systolic

designs, we fix the band widths of matrices A and B each to p= 1 and q = 1. As a result, the band width of matrix C

i sp=2 and q=2.

Only neutral inner product steps are idempotent. Since we exploit their neutrality, we do not exploit their

idempotence.

166

On a parallel architecture that permits the sharing of variables, two inner product steps (iO:jO:kO) and

(i l : j l : k l) are independent if their target variables Ciojo and Cil,j I are distinct. 4 But we are interested in executions

on particular, systolic architectures that do not permit the sharing of variables. Therefore, we must use a stronger

independence criterion and require that aio,k 0 and ail,k t are distinct, bkodo and bgld I are distinct, and Ciojo and

Cilj1 are distinct. Recall that the three variables of an individual inner product step are distinct by assumption.

All inner product steps are commutative. This makes commutativity, per se, meaningless. We do not exploit

commutativity in trace transformations unless it is a consequence of independence.

Therefore, we declare the following semantic relations of neutrality and independence for inner product steps:

(D1) l < k - i v l < i - k v l < j - k v l < k - j ~ ntr(i:j:k)

(D2) (io~ i I v jo~J l) ^ (io¢i I v ko~k l) ^ (jo~Jl v ko~k l) ~ (io:Jo:ko) ind (il:Jl:kl)

4.1. The First Design
Substituting ";" with "---~" in the program to obtain a sequential trace, and then applying transform to the

sequential trace, we derive a parallel trace. For example, the parallel trace for the multiplication of two 4×4

matrices (matrix-matrix(4)) expands to:

< (0 : 0 : 0) >
-~ <(0:0:1) (0:1:0) (1:0:0)> --~ <(0:1:1) (1:0:1) (1:1:0)>
--~ <(0:2:1) (1:1:1) (2:0:1)> --~ <(1:1:2) (1:2:1) (2:1:1)>
--~ <(1:2:2) (2:1:2) (2:2:1)> --~ <(1:3:2) (2:2:2) (3:1:2)>
--~ <(2:2:3) (2:3:2) (3:2:2)> -~ <(2:3:3) (3:2:3) (3:3:2)>
--~ <(3:3:3)>

This trace has length 10. In general, the length of the parallel trace is 3 n - 2 and is independent of the band width.

But the band width influences the width of the trace, i.e., the degree of concurrency.

The step function is derived from the parallel trace. Let the step function be a linear function:

step((i:j:k)) = ~.o*i+ctl*j+¢x2*k+ff, 3

Recall that we are allowed to choose the step value of the first parallel command. We choose the value to make

the constant term, ¢~3, 0. In this case, tile step value of the first parallel command is 0. Applying the step function

to the basic statements in the first two parallel commands of the above parallel trace, we obtain the following

equations:

step((O:O:O)) = tx 3 = 0

step((O:O:l)) = ff,2+tx3 = 1
step((O:l:O)) = CXl+~ 3 = 1
step((l:O:O)) = ~O+t~3 = 1

The solution to these equations is ct0= tx I =or 2 = 1 and tx 3 = 0. The solution is consistent for the equations obtained

by applying the step function to the rest of the basic statements. Therefore, the derived step function is:

step((i:j:k)) = i ÷ j + k

The place fimction cannot be derived from the parallel trace but must be proposed separately. It seems

promising to lay the processors out in a plane, i.e., in our method, on the two-dimensional integer lattice. Our first

idea is to assign each basic statement to the point whose coordinates match the indices of the statement's target

variable. This decision is rather arbitrary. At this stage, we do not have any information that might guide us in the

choice of a processor layout. As we shall see later, other layouts are possible. Inner product step (i:j:k) has target

variable c i j . We propose:

4See the Independence Theorem of [13],

167

place((i:j:k)) =clef (i4)

The dimension of place is two which is one less than the number of the arguments in (i:j:k). By Theorem 1, place
satisfies condition (P1), because the determinant constructed from the coefficients of step andplace is not zero:

I l i l l 1 0 = 1
0 0

where the first row, (1 1 1), is constructed from step, the second row, (1 0 0), from the first dimension of p/ace,

and the third row, (0 1 0), from the second dimension of place.

Variable ai, k appears in basic statements (i:j:k) and (i:j+ l:k), and these two statements are executed in con-

secutive steps. Therefore, we can derive the flow of ai,l~

flow(ai,k) = place((i:j+ l:k))-place((i:j:k))
= (0,1)

Similarly, we derive the flows of bk, j and cij :

flow(bkj) = place((i + l:j:k))-place((i:j:k))
= (1 ,O)

f low(cij) = place((i:j:k + l))-place((i:j:k))
= (0,0)

Variables cij stay stationary during the computation. By Theorem 2,f low is well-defined.

With functions step, place, andflow, we derive the initial data layout as follows:

pattern(ai,k) = ptace((i:j:k))-step((i:j:k))*flow(ai~)
= (i , - i - k)

pattern(b~) = place((i:j:k))-step((i:j:k))*flow(bkj)
= (- j - k j)

pattern(cij) = place((i:j:k))-step((i:j:k))*flow(cid)
= (ij)

By Theorem 3, pattern is well-defined.

The network of processors and the initial data layout, as produced by the graphics system, is depicted in

Figure 1. Each dot represents an inner product step processor. Arrows represent the propagation of data. A vari-

able name labelling an arrow indicates the location of that variable. If the arrow points to a processor, this variable

is input to that processor at the current step of the systolic execution.

The processor layout of this design mirrors the band of matrix C. The number of processors depends on the

size of the input. For matrices with large size, this design may require a large number of processors. We can

improve this situation by proposing a different place function.

4.2. T h e S e c o n d D e s i g n

Let us assume that we will keep the band widths of the input matrices constant. That is, when increasing the

size of the input, we never widen the matrices' bands. Under this assumption, we can derive for the same matrix

multiplication program another design whose number of processors is constant. We must simply fred a place

function whose coordinates depend only on the band widths of the input matrices but not on their size. The band

widths of the input matrices are determined by the differences of i and k and o f j and k (see the enabling condition

of our neutrality declaration). We choose our coordinates from these differences:

168

place((i:j:k)) =def (i - k j - k)

Again, other choices are possible. By Theorem 1, this place function also satisfies (P1):

I1 1 111 I 0 = 3
0 1

With the new proposed function, we derive the followingflow and pattern:

flow(ai,k) = (0,1)
f/ow(b~d) = (1,0)
ftow(cij) = (- 1 , - I)

pattern(ai,k) = (i - k , - i - 2 k)
pattern(bgj) = (- j - 2 k d - k)
pattern(ci) = (2i+ hi+ 2j)

Flow and pattern are, again, well-defined.

The network of processors and the initial data layout is depicted in Figure 2. This design is presented in [11].

The number of processors is (PA + qA + 1)* (PB + qB + 1). It is independent of the size of the input.

After arriving at an improved processor layout, we now modify the program to improve execution speed. We

could have proceeded in the converse order.

4.3, T h e T h i r d Design

Recall that any two inner product steps are commutative. In Sect. 4.1, we decided not to declare this com-
mutativity. A search reveals that a commutation in the definition of refinement inner-product yields the shortest
trace:

inner-product(ij,O): (i:j:0)
{k>0} inner-product(ij,k): (iT:k); inner-product(ij,k-1)

The parallel trace obtained for the multiplication of two 4 x 4 matrices (matrix-matrix(4)) expands to:

<> ~ <>
-~ <(0:0:I)>

--> <(0:0:0) (0:1:1) (1:0:1) (1:1:2)>

--~ <(0:I:0) (0:2:1) (I:0:0) (i:i:I) (1:2:2) (2:0:1) (2:1:2) (2:2:3)>
-~ <(1:1:0) (1:2:1) (1:3:2) (2:1:1) (2:2:2) (2:3:3) (3:1:2) (3:2:3)>
--~ <(2:2:1) (2:3:2) (3:2:2) (3:3:3)>
-~ <(3:3:2)>
--> <> --> <>

If we do not consider band width, i.e., do not exploit neutrality, this trace has the same length as previous trace: 10

or, in general, 3n-2 . But, contrary to the previous trace, a consideration of band width can shorten this trace: the

leading and trailing empty paral/el commands result from the elimination of neutral basic statements. Not count-
ing the empty parallel commands, this trace has length 6 or, in general, n+min(PA,qB)+min(qA~B). Hence, for

constant band width and large n, we achieve a speed-up by a factor of 3. The effect of the commutation in

inner-product is that, in the execution, k is counted down, not up. Therefore, the derived step function contains a
subtraction rather than an addition of k:

step((i:j:k)) = i + j - k

The step value of the first (non-empty) parallel command is - 1 or, in general, -min(pA,qB). We keep the place
function of the second design:

place((i'.j:k)) = (i - k j - k)

Again, we derive well-defined flow and pattern functions:

169

fIow(ai,k) = (0,1)
flow(bkj) = (1,0)
flOW(Cij) = (1,1)

pattern(ai,k) = (i-k ,- i -min(PA,qB))
pattern(bk,j) = (--j--min(Pa,qB)j--k)
pattern(cid) = (-j-min(PA,qB),-i-min(PA,qB))

Note that pattern depends on the band width because the value of the first step does.

The network of processors and the initial data layout (at the first inner product step) is depicted in Figure 3.

This design is also presented in [23].

5. Evaluation
Let us review how we develop systolic executions and designs. We provide a program (in form of a

refinement) and a processor layout (in form of a place function). Given to us are properties of the programming

language (in form of semantic relations) and restrictions on the architecture (implicit in the requirements on step,
place, flow, and pattern). From this information, we synthesize, via a sequential execution, a parallel execution of

the program and, via a step function, the data layout and movement (in form of a flow function and a pattern

function). We could also exchange what we propose and derive. For example, if we proposed the data movement,

we could synthesize the data layout and the processor layout.

Our work is distinguished by the combination of three factors. Embedding systolic design into a general view

of programming enables us to separate distinct concerns properly. The explicit formulation of a parallel execution

provides a precise link between the two components proposed by the human in a systolic design: the program and

the processor layout. Our insistence on formal rigor at every stage expedites the automation of a large part of the

development. Theorems aid the human in his part o f the development. The systolic design at which we arrive can

be informally (graphically) conveyed to the human, but it also has a precise mathematical description.

These benefits are demonstrated by our graphics implementation. As a consequence of the isolation of

different development stages (program, execution, architecture) in our method, we can quickly and easily change

different parameters, one at a time, and obtain a clear display of the effect on the systolic design.

The pairing of a program with a processor layout makes the evaluation of a design particularly convenient:

the program determines the execution speed (as the length of the parallel trace) and the processor layout deter-

mines the size of the design (as the number of processors). The density of the data layout is determined only by

the pair but not by either component alone. 5 For example, our first and second designs of matrix multiplication

are based on the same program but the densities of their data layouts differ. Similarly, our second and third

designs have the same processor layout, but the densities of their data layouts differ.

At present, we use transform as a heuristic. Our initial definition of it removed neutral elements first, not

last. In some cases, this version of transform leads to faster executions. We still abandoned it, because it also leads

to more complicated step functions, and simplicity is important to us. Transform is just another variable in our

method. So far, our specific transformation strategy has served us remarkably well [9, 10].

We are not very satisfied with the way in which we identified the commutation in the definition of

inner-product that led to our third design for matrix multiplication. We also attempted commutations in the other

refinements, product and row, but they lead to executions that are never shorter and sometimes longer. All we can

5In fact, it is given by the absolute value of the determinant derived from the coefficients of step andplace. We have proved a theorem to
that effect.

170

provide at this time is an implemented system that lets us conduct these searches conveniently. The fact that all

statements of the matrix multiplication program are commutative is discouraging. It provides us with no infor-

marion of what execution to pick.

To reach the first step of our parallel systolic execution, several steps of "soaking up" data may have to be

taken. Similarly, after the last step of our execution, data remaining in the network may have to be "drained".

After arriving at a particular design, we can compute the lengths of the soaking and draining phases from step and

place. Soaking and draining influences the performance of the design.

We have applied our method of incremental systolic design to other problems like LU-decomposition

[11] and polynomial evaluation [12]. Our method is particularly suitable for a search of different systolic designs

for some fixed problem. An impressive example is our treatment of the Algebraic Path Problem. The Algebraic

Path Problem subsumes many matrix computation problems, among them matrix inversion, transitive closure, and

shortest paths. Its solutions are complicated systolic designs with seven different types of operations and different

data items being reflected in different directions up to four times on their path through the processor array [21].

For variables whose flow is not constant over the entire execution, the well-definedness of flow and pattern is

violated. However, we can cope with such cases in an incremental fashion. We can extend the parallel execution

with statements that copy variables (whose direction of flow changes) to new variables (at the points of change).

The flow of each of the resulting variables is then constant. We have obtained an algorithm by which the parallel

execution can be successively enhanced with such reflection operations [10].

Programs lend themselves to a systolic implementation if they combine a few simple operations in a highly

repetitive way. It is not easy to tell by looking at the program whether it permits a nice systolic implementation.

We have not addressed this problem here. What we offer is a fast way to try. Our method works the better, the

fewer types of basic operations need to be considered. Many different types of processors can cause an explosion

in the number of semantic declarations. We expect our method to work best for problems in which the program

does not reflect aspects of the systolic architecture. However, at least in the treatment of the Algebraic Path

Problem, we were able to add operations imposed by the architecture at a later stage.

Our description of systolic designs does not explicitly address the propagation of synchronization signals as

does, for instance, Snepscheut's systolic design for transitive closure [22]. We capture issues of synchronization,

quite abstractly, in the parallel trace. They may be realized by synchronization signals or by some other means.

For example, we think of our systolic designs as communicating an identification of the variable together with the

variable's value. So far, all our examples have lead to systolic designs in which a processor can decide what

operation to perform simply be inspecting the identifications of its input data.

Many researchers have investigated methods of systolic design in recent years (see the next section). All

these methods require two kinds of input: one component that can be thought of as a program, and one component

that gives some clue about the structure of the systolic array. In our approach both these inputs need not be

cleverly chosen. Of the program, we require only that it solve the numerical problem at hand. For the place

function, we can start with a simple proposition that looks promising. After evaluating the result of our inputs, we

can make incremental variations. These variations may be random, or they may be carefully selected. In our

matrix multiplication example, we adjusted each of the two inputs once.

6. Related Research
Chen [5, 6] chooses the inverse of our derivation. She supplies a "network", which is the analogue of our

flow function, and an "abstract process structure" (a set of recurrence equations), which is the analogue of our

refinement. Her informal derivation results in a "concrete structure", which is the analogue of our step and place

functions. Chen does not spell out systolic executions, as we do with traces, and is, in general, less formal.

171

Like us, Moldovan and Fortes [19] require the input of a program, but their program must be augmented with

"artificial" variables [18]. This augmentation is meant to specify parallelism and corresponds roughly to our

semantic relations - except that semantic relations are properties of the programming language, not properties of

individual programs. (The detection of parallelism receives more attention in another of their papers [8].) Systolic

arrays are described by a space transformation which corresponds to our function place and a time transformation

which corresponds to our function step. Moldovan and Fortes require the input of both transformations, while we

only require the input of place (or even only part of place). Similarly to Chert, Moldovan and Fortes present an

algorithm by which the space transformation can be derived from a set of proposed flow vectors. Mirankler and

Winlder [17] employ the same space-time transformation as Moldovan but use a graph representation. Moldovan

and Fortes propose guidelines for the derivation of some programs.

Chandy and Misra [4] propose an "invariant", which corresponds to our step function, and, with some ad-

ditional assumptions, derive a systolic program from it. A program in their language, Unity [3], is a repeating

multiple assignment statement. Chandy and Misra envision Unity as a tool in which programming solutions for

many different architectures can be expressed with equal convenience. They equate the Unity programs that they

derive with systolic executions and, indeed, with systolic architectures. An essential aspect of our synthesis

method is that we distinguish the three concepts of a program, a trace, and an architecture.

Lam and Mostow [12] employ an implemented method of transformation similar to ours but, again, less

precise. They require annotations to the Pascal-like program that give a clue about the processor layout ("in place"

or "in parallel").

Cappello and Steiglitz [2] describe a method of systolic design by geometric transformation. They derive a

first data flow scheme from a sequential program execution. The data flow scheme is expressed geometrically in

space-time and is, usually, not well-suited for implementation. It is then improved by geometric transformations
proposed by the human. As many other approaches in VLSI theory, this one aims at chip layout, not at program-

ming. Our centerpiece, the parallel execution, is missing.

Systolic design spans several levels of abstraction, from a specification to a chip layout. The two ends of this

spectrum are, at present, best understood. The front end is the refinement of a specification into an abstract
program. Solutions to this end are offered by work in programming methodology. The back end is the refinement

of an abstract systolic architecture into an optimized concrete one. Solutions to this end are offered by work in

VLSI design. Our work provides a connection of both ends: it links an abstract program with an abstract systolic

architecture.

A c k n o w l e d g e m e n t s

This research was partially supported by Grant No. 26-7603-35 from the Lockheed Missiles & Space Cor-

poration and by Grant No. DCR-8610427 of the National Science Foundation.

R e f e r e n c e s

1. Boyer, R. S., and Moore, J S. A Computational Logic. ACM Monograph Series, Academic Press, I979.

2. Cappello, P. R., and Steiglitz, K. Unifying VLSI Array Design with Linear Transformations of Space-time. In
Advances in Computing Research, VoL 2:VLS1 Theory, F. P. Preparata, Ed., JAI Press Inc., 1984, pp. 23-65.

3. Chandy, M. Concurrent Programming for the Masses. Proc. 4th Ann. ACM Symp. on Principles of Dis-
tributed Computing, 1985, pp. 1-12.

4. Chandy, K. M., and Misra, J. "Systolic Algorithms as Programs". Distributed Computing 1, 3 (1986),
177-183.

172

5. Chen, M. C. Synthesizing Systolic Designs. YALEU/DCS/RR-374, Department of Computer Science, Yale
University, Mar., 1985.

6. Chen, M. C. A Parallel Language and Its Compilation to Multiprocessor Machines or VLSI. Proc. 13th Ann.
ACM Syrup. on Principles of Programming Languages, 1986, pp. 131-139.

7. Delosme, J.-M., and Ipsen, I. Overview over SAGA and CONDENSE. Yale University, Jan., 1987.

8. Fortes, J. A. B., and Moldovan, D.I. "Parallelism Detection and Transformation Techniques for VLSI
Algorithms". Journal of Parallel and Distributed Computing 2, 3 (Aug. 1985), 277-301.

9. Huang, C.-H., and Lengauer, C. The Derivation of Systolic Implementations of Programs. TR-86-10, Depart-
ment of Computer Sciences, The University of Texas at Austin, Apr., 1986. Revised: Jan., 1987, To appear in
Acta Informatica.

10. Huang, C.-H., and Lengauer, C. An Incremental, Mechanical Development of Systolic Solutions to the
Algebraic Path Problem. TR-86-28, Department of Computer Sciences, The University of Texas at Austin, Dec.,
1986.

11. Kung, H. T., and Leiserson, C. E. Algorithms for VLSI Processor Arrays. In Introduction to VLSI Systems,
C. Mead and L Conway, Eds., Addison-Wesley, 1980. Sect. 8.3.

12. Lam, M. S., and Mostow, J. "A Transformational Model of VLSI Systolic Design". Computer 18, 2 (Feb.
1985), 42-52.

13. Lengauer, C., and Hehner, E. C. R. "A Methodology for Programming with Concurrency: An Informal
Presentation". Science of Computer Programming 2, 1 (Oct. 1982), 1-18.

14. Lengauer, C. "A Methodology for Programming with Concurrency: The Formalism". Science of Computer
Programming 2, 1 (Oct. 1982), 19-52.

15. Lengauer, C., and Huang, C.-H. A Mechanically Certified Theorem about Optimal Concurrency of Sorting
Networks. Proc. 13th Ann. ACM Syrup. on Principles of Programming Languages, 1986, pp. 307-317.

16. Li, G.-H., and Wail, B. W. "The Design of Optimal Systolic Arrays". IEEE Trans. on Computers C-34, 1
(Jan. 1985), 66-77.

17. Miranker, W. L., and Winkler, A. "Spacetime Representations of Computational Structures". Computing 32,
2 (1984), 93-114.

18. Moldovan, D.I. "On the Design of Algorithms for VLSI Systolic Arrays". Proc. IEEE 71, 1 (Jan. 1983),
113-120.

19. Moldovan, D. I., and Fortes, J. A. B. "Partitioning and Mapping Algorithms into Fixed Size Systolic Arrays".
IEEE Trans. on Computers C-35, 1 (Jan. 1986), 1-12.

20. Quinton, P. Automatic Synthesis of Systolic Arrays from Uniform Recurrent Equations. Proc. l l th Ann. Int.
Symp. on Computer Architecture, 1984, pp. 208-214.

21. Rote, G. "A Systolic Array Algorithm for the Algebraic Path Problem (Shortest Paths; Matrix Inversion)".
Computing 34, 3 (1985), 191-219.

22. van de Snepscheut, J. L. A. A Derivation of a Distributed Implementation of Warshall's Algorithm
(JAN-113a). CS 8505, Dept. of Mathematics and Computing Science, University of Groningen, 1985.

23. Weiser, U., and Davis, A. A Wavefront Notation Tool for VLSI Array Design. In VLSI Systems and
Computations, H. T. Kung, B. Sproull, and G. Steele, Eds., Computer Science Press, 1981, pp. 226-234.

173

Appendix : Proofs
w e restate and prove Theorems 1, 2, and 3 of Section 3.

Theorem 1: Let s tep be a linear step function for parallel trace t that satisfies (S1) and ($2). L e t p l a c e be a lineal

place function for t, P l a c e satisfies (P1) if the following equations have the zero vector as the unique solution:

050,0U0 + ff'0,1Ul + "'" + 0 5 0 , r - l U r - 1 = 0

051,0U0 + 051,1Ul +"" + 05t¢- lUr - 1 = 0

O~d,oUo+ IXd,1Ul +"" + O~d,r - 1 U r - 1 = 0

where r is the number of arguments of basic statement s.

Proof:

P l a c e satisfies (P1)

= {conditions (S1), ($2) and (P1)}

for all basic statements S(Xo,Xl,. . . ,x r - 1) and s(YO,Yl, . . . ,yr_ I) in t,

S (X o ' X l ' " " x r - 1) ~ S (Y o ' Y l " ' " Y r - 1) ^ s t ep (s (xO 'X l" ' "Xr - 1)) = s t e p (s (Y o ' Y l " " , Y r - 1))
p lace (s (xO 'X l , ' - 'Xr - 1)) ¢:p lace (s (Yo 'Y l ' " "Yr - 1))

= {s tep and p l a c e are linear, and equations (E 1) and (E2)}

for all basic statements S(Xo,Xl, . . . ,xr_ 1) and s (Yo ,Yl ,_ . , yr_ 1) in t,

s(x0'xt '""Xr - 1) #S(YO,Yl ,"" 'Yr - 1)
^ O~o,oXo+O~o, lXl+.. .+050,r_lXr_l+O~O,r=050,oYo+O~o, l Y l + . . + O t O , r _ l Y r _ l + (X O , r

: :¢" (I X l , O X O + (X l , l X l + - ' + 0 5 1 , r - t X r - 1 + a l 05d, oXo+05d, lX l+" '+05d , r - l X r - l + 0 5 d , r)
;e (051,0Y0 + 051,1Yl + - ' + 051,r- lYr - 1 + 051,r" 05d, oYo + 05d, lY l +"" + 05d, r - lYr - 1 + Ctd, r)

= {algebraic simplification}

for all basic s ta tements S(Xo,Xl , . . . , x r - 1) and S (Y o , Y t , . . . , y r _ 1) in t,

s(x0"xl'""Xr- 1) ~ S (Y o ' Y l " " ' Y r - 1)
^ Oto,oXo+050,lXl+...+CtO, r_lXr_l+050.r=ff .o,oYo+ff .O, l Y l + . . . + 0 5 0 , r _ l Y r _ l + 0 5 0 , r

=:¢" 051,0x0 + 051,1Xl + ' " + C~l,r- lXr - 1 + 051,r ;e oL 1,OyO + ¢XI,lY 1 +"" + 051,r- l Y r - 1 + 051,r
V ...

v 05d,OXo+C~d, lXl+.. .+CXd, r _ l X r _ l + 0 5 d , r;e05d,oYo+O~d, l Y l + . . . + 0 5 d , r _ l Y r _ l + 0 5 d , r

= {algebraic simplification}

for all basic statements S(Xo,Xl ,...,X r_ 1) and s(Y0,Yl,...,yr_ 1) in t,

S(XO'X l '" "Xr - 1) * s(Y O'Y l " " 'Y r - 1)
A (Y.o,o(Xo--Yo)+050,1(X1 -Y l) + "'" + 050 , r - l (Xr - 1 - Y r - i) = 0

0 5 1 , o (X o - - Y o) + 0 5 1 , i (X l - - Y 1) + . . . +051,r_ l (X r _ l - - Y r _ l) ; e O
v ...

v 05d,o(Xo--Yo)+ad, l (X l - - Y l) + . . . + 0 5 d , r _ l (X r _ l - - Y r _ l) ; ~ O

= {predicate calculus}

for all basic statements S(Xo,Xl,. . . ,x r - 1) and S(Yo,Yi, . . . ,y r - I) in t,

f f 'O,O(xO-Yo)+O;O,l(xl-Yl) + ' " +050,r - l(Xr - 1 - Y r - 1) = 0
^ 051 ,0 (Xo-Yo)+IXI , l (X l -Y l) + ' ' ' +051,r- l(Xr - 1 - Y r - 1) =0
A ...

^ °;d,o(Xo-Yo) + C~d,l(Xl --Yl) + ' ' ' +05d, r - l(Xr - 1 - - Y r - 1) =0

174

¢:=

S(Xo'Xl"'"xr- 1) =SO'o,Yl,'",Yr- 1)

{algebraic simplification}

%,0U0+ Ct0,1UI + "" + O~O,r - l Ur - 1 = 0
0~l,0U0 + 0~1, lUl + "'" + 0~l,r- 1Ur- 1 = 0

O~d, oUo + CLd, lUl +"" + O~d,r- lUr- 1 = 0

have the zero vector as the unique solution.

(End of Proof)

T h e o r e m 2: Let step be a linear step function for parallel trace t that satisfies (S1) and ($2). Letp lace be a linear

place function for t that satisfies (P1). If the subscripts o f variable v are determined by all but one of the r

arguments of the basic statement, thenf/ow is well-defined for variable v.

Proof: Let Sx=S(Xo,...,xi,...,x r_ 1), Sx' =Sx[Xi/Xi], Sy=Sx[Yi/Xi], and Sy, =Sx[Y}/Xl]. Let the subscripts of variable v be

Xo x i - 1, xi+ 1 and x r - 1, that is, the arguments of basic statement s x, except the (i+ 1)-st one, x i . Then, s x ,

s x, , s y , and sy, all access variable Vxo....,xi_1,xi+l,..,x_{ Assuming step(sx)~step(sx,), and step(sy)~step(sy,), we

carl conclude:

f l o w is well-defined for variable Vxo,...zi _ 1,xi + 1,...~r -

= { well-definedness }

(place(sx)-place(sx,)) / (s tep(sx)- step(sx,)) = (place(sy)-place(sy,)) /(step(sy)- step(sy,))

= {step and place are linear, and s x , s x, , sy, and sy, have identical arguments in all positions but i}

(O~l.i(X i - 3dii),..,,O~ d,i(X i - x~))/ txO,i(X i - x~) = ((X 1,i(yi-y~),-.,O~d,i(y i - y ~))/ (XO,i(y i - y~)

= {algebraic simplification}

(O~ l ,i] ~O,i,.. . , O~ d,i/ OtO,i) = (a i ,i/ (XO, i, . . . , a d, i/ O~O, i)

= {algebraic simplification}

true

(End of Proof)

T h e o r e m 3: Let step be a linear step function for parallel trace t that satisfies (S1) and ($2). Letp lace be a linear

place function for t that satisfies ~ 1) . Let f low, derived from step and place, be wel~-def'med. Then pattern,

derived from step, place, andf low, is well-defined.

Proof: If basic statements sO and s l are distinct and access variable v of identical subscripts:

pattern is well-defined for variable v

= { well-definedness }

place(sO)- (step(sO)-fs)*flow(v) =p lace (s1) - (s tep(s l) - f s)* f low(v)

= {algebraic simplification}

place(sO) -p lace(s1) = (step(sO)- step(s1)) *flow(v)

= {definition o f f low}

true

(End of Proof)

175

Des49n= DESIGtl-1 w Ref t r~ .en t ce11¢ (ItRIRIX-~AIRIX 4) , Current step= O

c~3 ¢~s c~3

c ~ c;2 c~2 cs, z
b.,~., ba2-~ bl.r, , ,

Co, I %.I c&1 cs~l

~o" bo.o~°~ ° %o, %o,
%,0

~ ~o

4,

I
LIsp L is tener Z

CS.HUANG USER: Ty'~

4,

Figure 1. Matrix Multiplication -- The First Design

176

Oe|ton: gESIC~-2, ReFinement ©e11: (flRIRIX-NRTRIX 4) , Current step: 0

if"
.4, ..~ b,l,2..~ 4 .4" bo, f . ~ • •

b .+ ~cO'O

0,0

,0

t .~., t

t t o t

~" v" ~ c~'o

J~.o

Lisp L~stener 2

CS.HUANG USER: l y l R2e:PSr<CS~U~GI[V)DUmP.I~P ~24Be

Figure 2. Matrix Multiplication -- The Second Design

177

Oes49n: OESlCfl-~, Ref4nenent ~ e | l : (P~TRIH-HR|RIX 4) . C u r r e n t a t o p : -1

bZ,34 bi,24 bO, t ~ • • •

b,2.;~. ~ "b~"o, b'°~%o'o, "Too "

o,.; oJ o,.; ~ ' .: .;.o c1,0a1,2 1,1

c2,/ cp.,; c2,~ ~ ' c 2,0 "P~$ "~2 "t2, ,

¢ ~' I ,~ =is, 2 3,3 c &~ c ~, i &3

I
L~SD L~s tene r 2

CS.HUANG USER : T y t R2a,PS;(G8.It~JANG.EV)0UMP.ImP 11t776

Figure 3. Matrix Multiplication -- The Third Design

