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Abstract. Metaprogramming is a paradigm for enhancing a general-purpose program-
ming language with features catering for a special-purpose application domain, without
a need for a reimplementation of the language. In a staged compilation, the special-
purpose features are translated and optimized by a domain-specific preprocessor, which
hands over to the general-purpose compiler for translation of the domain-independent
part of the program. The domain we work in is high-performance parallel computing.
We use metaprogramming to enhance the functional language Haskell with features for
the efficient, parallel implementation of certain computational patterns, called skeletons.

1 Introduction

We present work in progress on the high-level construction of parallel programs. Our aim is
to organize the computations statically, as far as possible, i.e., to assign each operation to a
particular processor and time step, and place all required communications. To remain suffi-
ciently flexible, we must be able to gather and exploit information about values appearing
at run time. We distinguish between two kinds of run-time values: those which are useful for
controlling the parallelization and those which are not. The useful values carry information
about temporal and spatial extent of the computation, as well as the values of iteration
variables and the sizes of data structures. For instance, the length of a list can be made
explicit by a suitable, non-standard source-level representation [16]. If the actual length is
not available at compile time, a structural parameter is used to represent it.

We see our work as a contribution to the area of domain-specific program generation
and optimization — specifically, for the domain of high-performance parallel computing, but
with a relevance for other domains as well. Application programmers in the domain should
have the comfort of a relatively abstract programming style, which unburdens them from
the consideration of domain-specific implementational details. Expert programmers in the
domain should have all means at their disposal for exploiting domain-specific knowledge in
an optimizing compilation of application programs.

Concerning our specific domain, the two most common ways of infusing high-performance
parallelism into programs today are:

— implicitly, by parallelizing an imperative program automatically and
— explicitly, by augmenting it with calls of modules in a run-time library like MPI [18]
which implements interprocess operations.

Automatically parallelized programs often lack efficiency due to inherent difficulties in a
precise dependence analysis, whereas the explicit programming of parallelism burdens the
programmer with additional considerations of low-level details like memory organization,
buffering, marshaling data structures for communication, synchronization, etc.

The community of high-level parallel programming has been pursuing a third approach
based on program templates, so-called skeletons [1,4-7,11,19]. A skeleton provides an ab-
stract interface of a programming paradigm and encapsulates the concrete implementational



details. Skeletons can represent simple schemata, like vector parallelism or pipelining, and
also more complex schemata like divide-and-conquer or branch-and-bound. In our own pre-
vious work, we have identified a skeleton in a functional program by a specially named
higher-order function and have used a program generator to produce the parallel imple-
mentations of skeletons, specialized for a particular call context [15]. The parallel code
structure is specified by the skeleton designer, using his/her expert knowledge, and filled
in with sequential code parts, specified as skeleton parameters. These parts are translated
by a compiler independently from the domain. However, the compiler must be tailored for
the integration of skeletons. In our experience, engineering difficulties result from a tight
connection between the code generator for skeletons and the compiler, concerning calling
conventions, memory organization, etc. [12, 14].

Here, we outline a more flexible approach which enables us to use a general-purpose
compiler for the translation of the domain-independent part of the program. For convenience,
we use the functional language Haskell but, in principle, this approach should carry over to
imperative programming languages.

The compilation process consists of two phases, of which the first constructs an interface
between the application program and the skeletons it calls and the second organizes the par-
allelism. The following section sketches the first, the rest of the paper concentrates on the
second phase. We do not consider source programs as the object of our discussion. Instead,
we show how to construct target programs bottom up by starting with atomic operations in
the target language and combining smaller programs to larger programs, via sequential and
parallel composition. This compositional approach motivates the use of algebraic specifica-
tions in a functional language. We define the abstract syntax of the coordination language
by an algebraic data type in Haskell. Its semantics is defined by a Haskell function.

Section 3 introduces our language of symbolic expressions which enables an index-based
description of sets of parallel tasks or sequences of tasks, where the number of tasks need
not be a constant but can depend on structural parameters or iteration variables. Section 4
introduces the formal specification of parallel computations, by way of three examples.
Section 5 defines the semantics of these structures. How program properties can be calculated
is explained in Section 6. Section 7 is about the generation of parallel code. In Section 8, we
summarize and propose our plans for future work.

2 The Interface Between Compiler and Skeletons

In contrast to our previous approach in the HDC project [15], the individual requirements
of skeletons are no longer of concern to the compiler. Instead, the domain-specific side
is represented by an algebraic data type which we make powerful enough to express our
skeletons.

2.1 Example 1: Parallel map

Figure 1 depicts the parallelization of function map which takes a customizing function f and
a list xs and applies f to each element of xs, yielding a list ys. The domain-independent
parts of the program are the internals of f and xs, domain-specific is the implementation of
map and the mechanisms of dealing with its parameters and results: since the used data types
— lists and functions— are inappropriate for communication, we insert adaptation functions
(see the middle part of the figure).

In a specialization step, map is being replaced by a function mapIntVector, which op-
erates on integer vectors only. Function f is encoded by a data structure which carries all
necessary context information to work in isolation, without access to the heap in which it
has been created. In contrast to a global defunctionalization [2], as used —in a relaxed form-—
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Fig. 1. Interface between compiler and skeletons

in the HDC compiler [14], we perform this encoding only locally. We assume that program
analysis reveals that the use of map is monomorphic here.

Function mapIntVector can then be replaced by an interpretation of a structural de-
scription of how a parallel map works (right compartment of the figure). While the encoded
customizing function f is called within this description, the input vector is given as a third
argument to the interpretation. For simplicity, we refer to the length of this vector by a struc-
tural parameter "n" in the description. The first argument of the interpretation function is
an empty environment of iteration variables.

In a compilation, the interpretation function will be replaced by the implementation of
the parallel structure. The inputs and outputs of mapIntVector have to be converted by
means of a standard Haskell-to-C interface.

3 Symbolic Expressions

The static part of the parallelization of the program may depend on symbolic expressions
in multiple ways, e.g., the degree of parallelism can depend on the following;:

— The length of an input vector. In this case, we introduce the length as a structural
parameter which appears in expressions dealing with indexing, communication partners,
etc.

— The iteration count in the execution of a sequential loop. Here, we establish compile-time
access to the (virtual) iteration variable using the de Bruijn indexing schema [10].

Symbolic expressions are members of an algebraic data type SymExp, which should have
at least the following constructors:

1. C Rational: a constant number. Final results of summations which form counts of en-
tities are always integral, but non-integral numbers can appear in intermediate results
of closed forms.

2. V String: a structural parameter.

3. DB Int: a de Bruijn index, i.e., a natural number specifying how many levels in a nested
variable binding one has to traverse to reach the binding level of the variable in question.
De Bruijn indices provide a concise means of dealing with (indexing) functions in the
context-free language SymExp.! These indices represent both quantified variables in the

! Note that SymExp aims to be a short internal representation language; a specification language
given to a programmer should provide meaningful variable names.



symbolic expressions (see Sum below) and iteration variables of the loop body in which
the symbolic expression appears.?

4. Op: a binary operation, as in arithmetic or boolean expressions.

5. Quant opcode n e: an aggregated application of an associative operation opcode. This
quantification is meant to be eliminated in symbolical simplifications. At present, we
include only Add and Max. E.g., with opcode=Add, the quantification specifies Z?;OI €,
where 7 is a fresh variable and e; is obtained from e by replacing at each binding level
j all indices DB j by C i. Both n and e are symbolic expressions. Quant is used as an
intermediate form and must be either resolved at compile time® or replaced by a loop
which computes it at run time.

6. Case n zs: specifies a case distinction. The symbolic expression n determines the natural
number of the case, zs is a list of symbolic expressions, of which element n is selected
as the value of the entire case expression.

data SymExp = C Rational — constant
| v String — structural parameter
| DB Int — de Bruijn index

| Op OpCode SymExp SymExp — combining operation
| Quant OpCode SymExp SymExp — aggregated operation
| Case SymExp [SymExpl — case distinction
The data type OpCode comprises the names of all binary operations we use and may be
extended appropriately. It is also used in contexts other than in SymExp, e.g., in the type
FunSymbols presented later on.

data OpCode = Add | Sub | Mul | Pow | Min | Max | IsBitSet | BitExOr

IsBitSet applied to ¢ and n delivers the value of bit ¢ in the binary representation of
n, where 0 is the index of the least significant bit. BitExOr computes the bitwise exclusive
or of two integers.

Symbolic expressions can be used inside an environment of symbolic expressions, named
SymEnv:

newtype SymEnv = SymEnv [SymExp]
The empty symbolic environment is denoted &:

@ :: SymEnv
& = SymEnv []

An element is added to a symbolic environment with <. When doing so, de Bruijn indices
appearing in the environment have to be incremented by function incDB.

(<) :: [SymExp] — SymEnv — SymEnv
xs < (SymEnv env) = SymEnv (xs ++ map (incDB (length xs)) env)

incDB traverses a symbolic expression and increases each de Bruijn index by k.

incDB :: Int — SymExp — SymExp
incDB k (DB i) = DB (i+k)

incDB k (Op opcode a b) = Op opcode (incDB k a) (incDB k b)
incDB k (Quant opCode a b) = Quant opCode (incDB k a) (incDB k b)
incDB k (Case c xs) = Case (incDB k c¢) (map (incDB k) xs)

incDB k x = x
Function indEnv accessed positions in the environment.
indEnv :: SymEnv — Int — SymExp

indEnv (SymEnv env) i = env!li

2 Of course, the latter carry the higher numbers.
3 Simple summations can be expressed in closed form by a polynomial.
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4.1

Specification of Static Parallel Computation Structures

The Language

The entire program is inductively composed of atomic functions, and by sequential compo-
sition, parallel composition and deterministic choice of smaller programs.

In our model, we represent each of these entities by a constructor of an algebraic data

type S in Haskell. S is parameterized in the type variable a, which represents the union of
all types that are used in the application program.

data S a = Atom a

| Seq SymExp (S a)

| Alt SymExp [S al

| DPar SymExp (S a)

| ParComm { stages :: SymExp, parts :: SymExp, elemFun :: S a,
noInputs :: SymExp, sources :: SymExp }

The constructors of type S have the following meaning:

. Atom: a function which is not parallelized. Each function block takes one argument

and delivers one result. Multiple arguments and results have to be represented by an
appropriate data structure; we use only vectors of restricted integers here.

. Seq n e: a sequence of functions. Parameter n specifies the length of the sequence and e

an indexed expression which specifies a particular element in the sequence if, at nesting
level i, DB 7 is replaced by the current index in the sequence.

. A1t i alts: a deterministic choice. Parameter 4 is a symbolic expression which constitutes

an index. Parameter alts is a list of alternatives. If the value of i is not negative and falls
within the length of the list, element 7 of alts is selected. Otherwise, the last element of
alts is selected.

Intentionally, we permit case distinctions which influence the structure of parallelism to
depend on structural parameters only. The justification for this restriction is to be able
to calculate the allocation and communications at compile time.

. DPar n e: a parallel composition of disjoint tasks, i.e., tasks which do not communicate

with each other. Simplified forms of divide-and-conquer can be described with this con-
structor, e.g., the forms dcA, dcB and dcC in [13]. Parameter n specifies the number of
parallel tasks, the second parameter e part p, if at level ¢ each occurrence of DB i in e
is replaced by p.

Each tasks computes a private result vector. All vectors are then concatenated to form
the result of the entire DPar expression, following our convention that each block takes
a single input and a single output object.

. ParComm: specifies parallel tasks which communicate with each other. The explanation

of this quite sophisticated constructor is deferred to Subsection 4.5.

In order to keep the set of constructors minimal, there are no separate constructors for

sequential or parallel compositions of a fixed size. These are expressed in terms of Seq/DPar
and Alt, by the following functions:

constSeq, constDPar :: [S al] — S a
constSeq xs = Seq (C (fromIntegral (length xs))) (Alt (DB 0) xs)
constDPar xs = DPar (C (fromIntegral (length xs))) (Alt (DB 0) xs)

4.2 The Domain of Values

From a programming language design perspective, a richer type system would be desirable
but, to keep our exposition brief, we make the input and output of each atomic function



uniformly a vector (or, in Haskell, a list) of 32-bit integers. Thus, the booleans are represented
by integers (0 for False and 1 for True) and nested vectors have to be flattened. In a
sequential composition, the output of stage i becomes the input of stage i+1. In a parallel
composition, the input is broadcasted to all parts and the result vectors are concatenated
to form the entire result.
The atomic functions are built using language FunSymbols:

data FunSymbols = FOp OpCode

| Select SymExp

| Id
| IsNeg | Negate | Square
| IfThenElse FunSymbols FunSymbols FunSymbols
| Tuple [FunSymbols]

— FOp opcode combines the first two input vector elements by function opcode and produces
a single element vector.

— Select i selects element 7 of the input vector.

— 14 delivers the input vector as a result.

— IsNeg delivers True ([1]) iff the first input element is a negative number.

— Negate delivers the negation of the first input element

— Square squares the first input element.

— IfThenElse ¢ z y applies c; if the result of ¢ is True it applies z, otherwise y.

— Tuple promotes a list of atomic functions to a new atomic function which produces the
concatenation of all individual results.

4.3 Example 1, Revisited

Consider the right compartment of Fig. 1, which depicts a parallel application of function
map. Here, we use it to square each element of a list. Its representation in our formalism is
exl:: S FunSymbols

exl = DPar (V "n") (constSeq [Atom (Select (DB 1)), Atom Square])

DPar (V "n") tells us that there are n tasks to be combined in parallel. The input vector is
broadcasted to each task. Each task performs two atomic operations in sequence (constSeq):

1. Select (DB 1) selects the element whose index equals the number of the task.*
2. Square squares this number.

Each parallel task delivers a vector of length 1. The entire result is the concatenation of all
of these, i.e., a vector of length n.

4.4 Example 2: Parallel Power Computations

Fig. 2 depicts the (synthetic) example of the computation of the following Haskell function
f_ex2:
f_ex2 :: [Int] — [Int]
f_ex2 xs = let x = xs!!0 + xs!l1
y = if x<0 then (—=x)"3 else x"2

in [y]
Three parallel tasks are produced, the first evaluates x<0, the second (-x) 3 and the third
x"2.

In our formalism, the parallel computation is expressed as follows:

1 Both ParSeq and constSeq (via Seq) introduce a new iteration variable. Thus, DB 0 would refer
to the index in the sequence.
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Fig. 2. Power example

ex2 :: S FunSymbols
ex2 = constSeq
[Atom (FOp Add),
constDPar [Atom IsNeg,
constSeq [Atom Negate,
Atom (Tuple [Square,Id]),
Atom (FOp Mul)],
Atom Square],
Atom $ IfThenElse (Select $ C 0) (Select $ C 1) (Select $ C 2)]

4.5 Communicating Parallel Tasks

The structure language above permits us to define a structured task-parallel schema, in
contrast to the more error-prone fork /join parallelism. There are a number of efficient parallel
computation schemata, e.g., the butterfly schema, which require multiple exchanges of data
between processes. This can be done safely, if the communicating processes know each other
in advance and exchanges happen at defined synchronization points in the program. In
the most simple form, this is the case in data parallelism, which can be implemented by
an alternation of phase of simple local computation and a phase of global (all-to-all) data
exchange. More complex models are communication-closed layers [8] and the BSP model.

Even more flexibility can be achieved with our principle of so-called control-closed blocks
[14], in which communication-closed layers are (1) only required for a subset of processes
which do not communicate to the outside at the same time and (2) the processes inside each
layer can be partitioned into subblocks which perform the same schema independently.

Like in the case of DPar for ParComm, the input of a block is input to all subblocks resp.
atomic elements (e.g., by a broadcast) and the output of a block is formed by concatenating
the output lists of all subblocks. The difference is that there can be communications between
tasks, by synchronization of all processors of the block. The arguments of the ParComm
constructor are:

1. stages :: SymExp: the number of levels of computation which are finished by a syn-
chronization and exchange of data of the processors of the block.



2. parts :: SymExp: the number of parallel tasks which always equals the number of sub-
blocks the block is divided into.

3. elemFun :: S a: the function each of the parallel tasks performs at each stage. At the
outermost level, the index of the stage is accessible by DB 0 and the index of the task
by DB 1.

4. noInputs :: SymExp: the number of subblocks of the previous stages used to obtain the
input of each elemFun, expressed in the same two indices as in 3.

5. sources :: SymExp: those parts of the previous stage whose result vectors are concate-
nated to form the input vector of each elemFun, where the current stage is given by DB
0, the own part by DB 1 and the index of the subblock from which the input is taken by
DB 2.

At stage 0, noInputs and sources are undefined.

4.6 Example 3: Bitonic Sort

Let us take the butterfly computation schema, depicted in Fig. 3, as an example of the use
of ParComm. At stage s of n+1 stages (stage 0 does not perform exchange or computation),
each processing element with index i receives data from the processing element with index
(i BitExOr 2™ ).

L

=
=

oA\

Fig. 3. Butterfly (n=4)

The butterfly schema can be formally specified by function ex3, with the element function
customized such that the entire function of the structure computes the bitonic sort [17]:

ex3 n = ParComm (C (n+1))
(0p Pow (C 2) (C n)) — 2°n processes
(A1t (DB 0)
[Atom (Select (DB 1)),
Alt (Op IsBitSet (Op Sub (C n) (DB 0)) (DB 1))
[Atom (FOp Min), Atom (FOp Max)]])

(Cc 2) — each element has 2 inputs
(Case (DB 2) — sources of inputs
[DB 1, Op BitExOr (DB 1)
(0p Pow (C 2) (Op Sub (C n) (DB 0)))1)

5 Interpretation

Our interpreter of parallel structures is meant to define the semantics of our language and
to be used in the development of parallel designs and in extensive tests of the generated
code.



5.1 An Interface to Types of the Application Domain

The following class definition connects the Haskell language with the union a of all data
types of the application domain. This facilitates the definition of the interpreter without
knowledge of the actual application domain.

class AppDomain a where

iter :: SymEnv — (a — SymExp — a) — a — SymExp — a
mkList :: SymEnv — (SymExp — a) — SymExp — a
indexList :: SymEnv — a — SymExp — a

funEval :: SymEnv — FunSymbols — a — a

All class functions take an environment as a first argument.

— iter e f z n iterates function f n times, with initial value z, providing the current
iteration count to each application of f.

— mkList e f n constructs a list (e.g., vector) in the language a of the application domain,
i.e., the result is of type a, not [a]. n is the length of the list and f maps indices to list
elements.

— indexList e zs i takes a list (e.g., vector) zs in the language a and an index i and
delivers element i of zs.

— funEval e f z applies an atomic function f to z.

5.2 The Interpretation Function

Additionally, the interpreter requires three auxiliary functions:

— getInt :: SymEnv -> SymExp -> Int
getInt e s evaluates the symbolic expression s to a Haskell Int value.
— cI :: Int -> SymExp
cI converts a Haskell Int value into a symbolic expression.
— convertLAD :: AppDomain a => [a] -> a
convertLAD converts a Haskell list into the list type of the application domain a, using
function mkList of the class definition AppDomain.

Function interpret takes as arguments an environment of indices, the structure to be
interpreted and an input value:

interpret :: AppDomain a = SymEnv — S FunSymbols — a — a
interpret env (Atom f) x = funEval env f x
interpret env (Seq n f) x = iter env (\a i — interpret ([i] < env) f a) x n
interpret env (Alt i fs) x = let 1 = length fs
c = getInt env i
in interpret env (fs !! (if (c>0 && c<1-1)
then c else (1-1))) x
interpret env (DPar n f) x = mkList env (\i — interpret ([i] < env) f x) n
interpret env a@(ParComm {}) x
= let sts = getInt env $ stages a
bls = getInt env $ parts a
inputs i j xs = convertLAD
[ xs ! getInt ([cI i, c¢I j, cI s] < env) (sources a)
| s<[0..getInt ([cI i, cI j] <env) (noInputs a)-1] ]
stagel xs i = [ interpret ([cI i, cI j] <env) (elemFun a) (inputs i j xs)
| j < [0..b1s—1] ]
in convertLAD $ foldl stagel (take bls (repeat x)) [0..sts—1]



5.3 Application in Our Example Domain

In our example domain, all data objects are vectors (lists in Haskell) of restricted integers,
which can be communicated easily in a parallel setting. Vectors are used to pass multiple
arguments to functions and also to store temporary values in atomic computations. Booleans
are encoded by the integers 0 (for False) and 1 (for True). Composed data structures, as
far as required for our examples, are flattened. Possibly, descriptors are required to restore
the structure.

data IntVec = IV { unIV :: [Int] }

After making IntVec an instance of class AppDomain, we can apply the interpreter to
our example programs:

1. map example:
Since we have to resolve the structural parameter n in the interpretation, we modify ex1
to a specification ex1’ which uses a de Bruijn index instead.
exl’ :: S FunSymbols
ex1’ = DPar (DB 0) (constSeq [Atom (Select (DB 1)), Atom Square])
— Main> interpret ([C 4] < @) ex1’ (IV [1..10]1)
— IV{unIV=[1,4,9,16]1}
2. Power example:

— Main> interpret @ ex2 (IV ([1,1]::[Int]))
— IV{unIV=[4]1}
— Main> interpret @ ex2 (IV ([1,-3]::[Int]))
— IV{unIV=[8]}

3. Bitonic sort example:

— Main> interpret & (ex3 4) (Iv [1,3,5,7,9,11,13,15,18,16,14,12,10,8,6,4])
— Iv{unIiv<[1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18]%}

6 Calculating Program Properties

An important aspect of programming with parallelism is the analysis of program properties,
i.e., the number of operations, the free schedule, the degree of parallelism, etc. Calculated
for the entire program, these properties provide us with information about computation
time, resources and efficiency. Calculated for parts of the program, they help to identify a
suitable distribution of tasks across the parallel processors during code generation.

We calculate three program properties by a single compositional analysis, parameterized
by the particular property. Function work computes the number of atomic computations,
depth the length of the longest path and usedPEs the number of (virtual) processing el-
ements required if each operation is executed following the free schedule (i.e., as soon as
possible). The properties work and depth have been adopted from the language NESL [3].

data WDU = Work | Depth | UsedPEs
work, depth, usedPEs :: SymEnv — S a — SymExp
work = wdu Work

depth = wdu Depth
usedPEs = wdu UsedPEs

wdu :: WDU — SymEnv — S a — SymExp

For atomic functions, all three properties have the value 1.

wdu c env (Atom _) =C 1



Calculation of an alternative is done by applying the calculation to each case and reducing
the selection to a case expression in the language of symbolic expressions.

wdu c env (Alt n fs) = simplify env
(Case n (map (wdu c env) fs))

Calculation of a sequential or parallel composition is performed by a quantification over the
stages/parts, where the quantified expression is the property expression of the particular
stage/part which is expressed in terms of the position of the stage/part. This position is
accessed by DB 0. In a sequential composition, work and depth of the stages are added,
while usedPEs is given by the maximum. In a parallel composition, work and usedPEs of
all tasks are added, while depth is given by the maximum.

wdu c env (Seq n f) = simplify env
(Quant (case c of
Work — Add
Depth  — Add
UsedPEs — Max) n (wdu c¢ ([DB 0] <« env) f))
wdu c env (DPar n f) = simplify env
(Quant (case c of
Work — Add
Depth — Max
UsedPEs — Add) n (wdu c¢ ([DB 0] < env) f))

More complicated is the case of a parallel composition in which processes can communicate
with each other at certain common synchronization barriers. This has the consequence that,
for the calculation of the depth, we have to sum the maximum depths of all stages.

In order to simplify the allocation, we opted not to rebalance the load at each stage. As a
consequence, we obtain vertical barriers between parts in addition to the horizontal barriers
introduced by synchronization. This has the consequence that, for usedPEs, we have to sum
up the maximum value of usedPEs for each parallel slice.

We observe that both depth and usedPEs require a sum of maximum, but, for the depth,
the maximum is on the parts and the sum on the stages, where for usedPEs, the opposite
is the case. This occurs when assigning the quantified range (p for parts, s for stages) to n0
and n1 and the de Bruijn index for the current stage (dBs) and the current part (dBp).

wdu ¢ env (ParComm {stages=s,parts—p,elemFun—=fl})
= let (opO,n0,dBs,opl,nl,dBp) = case c of
Work — (Add,s,1,Add,p,0)
Depth — (Add,s,1,Max,p,0)
UsedPEs — (Add,p,0,Max,s,1)
in simplify env $
(Quant opO n0
(Quant opl (incDB 1 nl)
(wdu c ([DB dBs, DB dBp] <« env) f)))

Now, we can apply the calculation to our examples:

1. map example:

— Main> [ f @ exl | £ « [work,depth,usedPEs] ]

— (Quant Add (V "n") (C (2 + 1)),Quant Max (V "n") (C (2 + 1)),
— Quant Add (V "n") (C (1 + 1)))

— Main> [ £ ([C 4] <« @) exl’ | f ¢ [work,depth,usedPEs] ]

— (€ 8+1),c2+1,C (4-+1)

2. Power example:

— Main> [ f @ ex2 | £ « [work,depth,usedPEs] ]
— (7 +n,c BB+, 3B+1)



3. Bitonic sort example:

— Main> [ f @ (ex3 4) | £ « [work,depth,usedPEs] ]
— (C (80 + 1), (5+1),C (16 + 1))

7 Code Generation

In code generation, we distinguish two different approaches. The first is to compile the
program, or a part of it, for a particular instantiation of all structural parameters. The
second is to compile without instantiation.

1. If all structural parameters are instantiated, the specification may still contain symbolic
expressions which cannot be resolved. However, with an abstract interpretation of the
specification we can obtain a task graph. Via linear programming, we can compute from
this task graph a space-time mapping which is globally optimal with respect to execution
time, if given the number of processors. This can pay off frequently in practice, e.g., in
chip design or the programming of device drivers.

2. If structural parameters remain, one cannot hope to calculate the optimal space-time
mapping, since it depends on choices based on the values of these parameters and the
occurring predicates are generally undecidable. Thus, code generation must remain flex-
ible. If a condition cannot be checked at compile time but its knowledge would be useful,
an Alt construct can be inserted which prescribes an alternative parallelization, in de-
pendence of run-time values. In some cases, this A1t construct can be eliminated later
by program specialization. We explain this type of code generation in the SPMD (single-
program-multiple-data) format in more detail in the rest of the section.

7.1 Compilation to SPMD Code

Referring to the principle of control-closed blocks, each block —be it composed via Seq or
DPar, resp. ParComm- is assigned a set of (virtual) processors for exclusive use. There is
no communication of a block’s set of processors to the outside other than at the block’s
beginning and end. Each block has a temporal master processor for (1) receiving input
and sending output from the outside, (2) partitioning the block into subblocks and (3)
distributing work and receiving results of the subblocks’ masters.

Compilation is carried out recursively for each block. A code frame for each kind of block
is created, code parts for the subexpressions are created and these parts are inserted into
the code frame. In particular, this frame looks as follows:

— Atom: compute only if processor is block master.

— Seq n sub: create a sequential loop with n iterations.

— DPar ...: divide the block into subblocks. The details are explained in Section 7.2.

— ParComm . ..: divide the block into subblocks. The details are explained in Section 7.3
Alt n cases: create a switch statement.

7.2 Compilation of DPar

Tasks are mapped to blocks of natural numbers which represent identifiers of virtual proces-
sors. Each processor calculates the number of subblocks which precede it in the surrounding
block. This is done by recursively calculating the number of used processors of a sufficient
prefix of the list of parallel tasks, using function usedPEs. During this computation, the
master processors of the preceding subblocks and of the own sublock are recorded.

Then, the code for the subtask is generated. If the processor is the master of its own
subblock, it has to receive a task from the processor of the surrounding block before and to
send it back the result afterwards. Otherwise, it does not perform communication at this
level.



7.3 Compilation of ParComm

Similarly to the case of disjoint parallelism, each processor derives the extent of the part it
belongs to. The difference is that the computation of the used processing elements of each
preceding block must be computed as the maximum over all stages, whereas, in DPar, we
only have a single stage. As in the case of DPar, the processor performs communications
only at this nesting level if it is the master of its block.

Note that each task may consist of a block of processors, of which only one distinguished
processor —the master of the block— participates in the communication at the respective level,
while the other processors of the block can be used for a nested parallel subcomputation.
This is similar to the concept of an MPI intercommunicator [18].

In the case that a master performs communication, the number of receives and their
sources can be obtained by evaluating noInputs and sources. There are several options of
carrying out the communication; all of them require a computation of processor IDs of the
masters of the other parts.

1. Each processor evaluates the sources of the other masters in order to determine whether
it has to perform a send operation to a particular processors. This may be best if the
evaluation at compile time results in a simple expression; otherwise it may incur a high
administrative overhead.

2. No send operations are performed but the receivers access their input by one-sided
calls. Result values must either be recorded over all stages or protected by a barrier
synchronization until they are read.

3. All master processors constitute an MPI group and perform an all-to-all communication
in this group.

Case 1 is our favourite, since the coordination language is meant to define skeletons, for
which compile-time knowledge of the (parameterized) communication pattern is crucial.

One should also consider the case that compile-time analysis might identify collective
communications which are more efficient than all-to-all, e.g., broadcast, gather and scatter.
Generally, collective communications are known to achieve higher efficiency than point-to-
point communications [9].

8 Summary

In our previous work, the focus was on the compilation of a fized source language (HDC
in our case), allowing for external implementations of specific program parts, the skeletons,
which have to be implemented directly in the target language (C+MPI in our case). This
handled to several inconveniences:

— Since the connection between skeleton implementations and the compiler for the rest
of the program is comparatively tight, we were forced to implement both sides, the
domain-independent compiler and the framework for the domain-specific skeleton im-
plementations.

— We implemented only a small subset of our base language Haskell. Also, we did not spend
time reimplementing all the methods in code optimization which a Haskell compiler
applies.

Here, we have presented a more comfortable and flexible option based on the paradigm of
metaprogramming: the expert programmer can design skeleton implementations in a small,
customized coordination language for which a special-purpose compiler has been crafted.
Domain-independent portions of source code are encapsulated in atomic operations; we can
reuse existing technology (compilers, programming tools, etc.) for their development.



Much of our technical exposition has been concerning structures which neither applica-
tion programmer nor skeleton programmer will need to handle, e.g., the structure language
S and the de Bruin indexing schema. These are used only for the internal representation.
The coordination language will be more comfortable, e.g., allow meaningful variable names,
but programs written in it will still be transformable to S.

In contrast to the work of many others in the parallelization community, we do not
impose specific restrictions on our indexing expressions, e.g., affine linearity. This incurs
the risk that index expressions might not be computable before run time. Simplification
plays an important role in our parallelization. Symbolic expressions for which no solution
algorithm is known are treated by heuristics, possibly collected in a library of patterns which
is successively extended.
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