View Infinity: A Zoomable Interface
for Feature-Oriented Software Development

Michael Stengel*
Janet Feigenspan'

Mathias Frisch!
Christian Kastnerz

Sven Apel®
Raimund Dachselt!

LUniversity of Magdeburg, 2University of Marburg, 3University of Passau, Germany

L{mstengel, feigensp, mfrisch, dachselt}@ovgu.de, 2kaestner@informatik.uni-marburg.de, 3apel@uni-passau.de

ABSTRACT

Software product line engineering provides efficient means
to develop variable software. To support program compre-
hension of software product lines (SPLs), we developed View
Infinity, a tool that provides seamless and semantic zoom-
ing of different abstraction layers of an SPL. First results
of a qualitative study with experienced SPL developers are
promising and indicate that View Infinity is useful and in-
tuitive to use.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques— User Interfaces; D.2.6 [Programming Environ-
ments|; D.2.13 [Reusable Software]

General Terms

Human Factors, Languages

Keywords

Program Comprehension, Semantic Zooming, Software Prod-
uct Lines, Variability

1. INTRODUCTION AND BACKGROUND

To serve an increasing demand for providing variability
and customizability in software systems, software product
lines (SPLs) are often used in practice [7]. In SPL engi-
neering software is modeled in terms of features, which are
user-visible characteristics of a software system and are typ-
ically implemented by variable and reusable code fragments.
Relationships and dependencies of features are described in
a feature model [4].

Since the source code of SPLs is more complex because of
its variability, it is inherently difficult to understand. Conse-
quently, to better exploit the cost and time benefit of SPLs,
we provide tool support for program comprehension.

Copyright is held by the author/owner(s).
ICSE 11, May 21-28, 2011, Waikiki, Honolulu, HI, USA
ACM 978-1-4503-0445-0/11/05.

Fle View Window Fielp

SEVU[L . ||| Alocomme
LS e=new Neg(new Plus(new Num(1),new Num(2)))7 + Featre Hnitap
i = T D .

=

® public Sering toString() {

E return " + values

- 3
=)y

“ | class Neg implementa Exp (
E Exp x;

et 0

Figure 1: Screenshot of View Infinity. The user in-
terface consists of two parts, left: zoomable main
view (currently zoomed to code view), right: mini
maps for giving contextual information and showing
the visited model layers, feature mini map (a), file
mini map (b), code mini map (c). Red rectangles
indicate currently focused items.

One way to support program comprehension is to provide
different views on a code base. This can help users to form a
mental image of the project, which is one of the goals when
exploring source code [1]. A view can be defined as a graph-
ical representation of a data set. Different views on data
introduce a discontinuity, when changing from one view to
another, because they have to be separated spatially or tem-
porally. Through that, the user has no context information
to put the views into relation. To close this gap, we create
a linkage between views, while keeping limits of perception
and cognitive constraints of the user in mind. This is the
point, where zooming is beneficial.

We contribute View Infinity", allowing users to zoom seam-
lessly between three layers of abstraction of an SPL: feature
model, file structure, and source code. For representing the
abstraction layers, we introduce three different views: fea-
ture model view, file view and code view (Fig. 1). In our
zooming metaphor, an item of the SPL shows more or less
details, depending on its magnification level. By zooming
into items, we offer developers an information filter mech-
anism (semantic zooming). To provide a comprehensive

Wiew Infinity and an extended excerpt of the study are
available at http://fosd.de/vi .

(i.e., seamless) transition between all layers, we avoid abrupt
transitions and use animation. Furthermore, the zoomable
interface is combined with an ‘Overview + Detail’ inter-
face by the use of mini maps [1]. This means that the
project data are additionally visualized in miniature to get
an overview of the presented data and to provide contextual
information. Although there are other tools that also use
continuous zooming and different levels of abstraction [6, 8],
our approach is explicitly tailored to the special needs of
SPL engineering to support programmers and maintainers.
The tool aims at intuitive and motivating interaction with
feature code and avoids semantic discontinuities between dif-
ferent views.

2. VIEW INFINITY

With View Infinity developers can explore an SPL from
its feature model down to its implementation. It reads an-
notations of the source code and the feature model from
description files, which can be edited easily in other tools
such as FeatureIDE [5]. View Infinity offers visualization
facilities on three layers of abstraction: feature model, file
structure, and source code. The central component of the
user interface is a zoomable view for immersing important
parts of the SPL content. This main view is shown in the
screenshot of the View Infinity GUI (Fig. 1).

The idea of semantic zooming into project data is to filter
the visualized data step by step, while increasing the pre-
sented detail of information. We illustrate the zooming and
altering process in Figure 4. A developer starts exploring an
SPL at the most abstract level of the feature model in the
feature model view. In this view, the feature model is visual-
ized as a graph containing connected feature nodes. Further-
more, the user can activate and deactivate features in order
to create a specific SPL variant. The user can subsequently
zoom into active features and explore the implementation of
these features; first, at the level of a file structure model (file
view) and, subsequently, after more zooming, at the level of
individual code fragments implementing that feature (code
view). As in the feature view, the file structure is visualized
as a graph containing file nodes and folders (Fig. 3).

View Infinity realizes transitions between abstraction lay-
ers with portals, which can be feature nodes or file nodes in
the respective graphs. When the highest level of detail of
one abstraction layer is reached, the next layer is blended
smoothly into the node. When the user zooms further, the
transition from one view into another is animated.? To
provide fast navigation between abstraction layers, we of-
fer functions for quick zooming by double clicking nodes.
Additionally, there are links to directly change the views.

To scale visualization for larger software projects, we pro-
vide different layouts for the graphs of feature model and
file structure. Additionally several levels of detail support
scalability for larger software projects.

Levels of Detail. To get a better overview of a file without
opening it, we provide different levels of detail for the file
structure level. When zooming closer to a file node, more
information about its source code is visualized (Fig. 2). Af-
ter a single-color representation at the first level (level 0),

2To get a better impression of the zooming in View Infinity,
we advise the reader to watch the accompanying video on
http://www.youtube.com/watch?v=FGAN99-JJ3g .

electMediaControllerjavad ESelectMediaController.java

]
- iSelectMediaController.java
‘ |

Level 0 Level 1 Level 2 Level 3

Figure 2: Levels of detail for zooming into a file
in the file view: simple (0), feature histogram (1),
fragments (2), code preview (3)

»>

screens

AburrListScreen.javad PhotoViewScreen.java

.dircolors

SelectTypeOfMedia.javal

Play VideoScreen. javal -Cveignore

PasswordScreen. javal

ICaptureVideoScreen.java

LAddMediaToAbum javal

T — NewLabelScreen.java

PlayMediaScreen. javal

Figure 3: File view with file graph of MobileMedia:
feature histograms are visualized for files containing
active features.

indicating that a file contains source code of a feature, we
show a feature histogram at the second level (level 1). The
feature histogram visualizes a measurement of the amount
of code of all features in a file with unique colors for each
feature. At the next level (level 2), the approximate posi-
tions of source code of an implemented feature in a file are
shown. At the highest level of detail (level 3), a thumbnail
of the source code is displayed, which shows the source code
lines and according features of a file. Additionally, tooltips
offer detailed information about features in a file. Further
zooming into a file smoothly blends into the source code
view (see Fig. 1).

Mini Maps. To support the user in getting and keeping an
overview of an SPL, every abstraction layer is linked with a
mini map, which is a small representation of the correspond-
ing abstraction layer (right in Fig. 1). Users can browse
the mini map without influencing the main view. However,
changes in the main view are immediately propagated to
the mini map, as motivated in usability tests by Cockburn
et al. [1]. In the mini maps of our tool, the visible area of the
main view is represented and controlled by a movable rec-
tangle. When zooming, the mini maps appear step by step,
showing the visited model layers on top of one another. This
has the benefit that developers know at any time, where they
are in the project and what data they currently see.

Feature Colors. Color is one of the most influencing fea-
tures of perception and allows setting the users visual fo-
cus preattentively on relevant information. To improve the
mapping of features over multiple layers, the user can as-
sign colors to features of interest. The same colors are used
on all layers, to highlight features in the feature model, to

highlight the amount of feature implementations per file at
file-system level, and to highlight feature implementations at
source-code level. As shown before [2], background colors in
source code can speed up the comprehension process. When
the source code of a file is displayed, code fragments belong-
ing to a certain feature are displayed with the assigned or
default background color. Inactive features are grayed out.
Annotated code fragment are represented by vertical bars
that can be clicked to enable or disable background colors.
Furthermore, users can adjust the transparency of a color
with a slider.

3. USER EXPERIENCE

We conducted a qualitative study to evaluate how expe-
rienced developers used View Infinity. The intent of our
study was not to compare the efficiency of View Infinity
with other tools, but just to evaluate whether our semantic
zooming concept is comprehensive and considered useful by
experienced SPL developers. For the study, we used Mobile-
Media, an SPL for the manipulation of multimedia data on
mobile devices [3]. The project contains 5,703 lines of code,
51 classes and 11 features.

Participants: We recruited seven participants, who were
employed at the University of Magdeburg and who were ex-
perienced with SPLs. The programming experience was 10.6
years in average and 3.4 years especially with SPLs. The
participants were male with an average age of 28.9 years.

Tasks and Procedure: The study was conducted in two
steps: First, participants worked with the IDE they usually
use for programming (Eclipse, Visual Studio). Second, par-
ticipants worked with View Infinity. For each step, we gave
participants two typical tasks (resulting in four tasks for the
overall evaluation). In the first task of each step, partici-
pants should locate files that belong to a certain feature. In
the second task, participants should fix a bug that was lo-
cated in the code of a certain feature. After completing the
second step, we gave participants a questionnaire, in which
we asked several questions regarding View Infinity.

Results: We found that the participants could intuitively
work with View Infinity and that they liked the idea of seam-
less zooming. Additionally, most participants said that they
would use our tool as part of their preferred IDE. These re-
sults indicate that the concepts implemented in View Infin-
ity have high potential and that developers consider them as
a useful extension to their IDE. User opinions (‘Wow, that’s
so cool!” or ‘That scrolling is annoying.”) help us to come
to decisions for further design improvements.

4. CONCLUSION

To manage the complexity of SPLs, we implemented View
Infinity, which provides seamless zooming from the feature
model level to the source code level. Mini maps, different
levels of detail, and background colors for feature code sup-
port a user in navigation and help her to keep an overview
of an SPL implementation.

In a first evaluation, we found that experienced develop-
ers consider the zoomable interface concept of View Infinity
as useful and pleasant when working with SPLs. In future
work, we plan to improve View Infinity based on the re-
sults of our study and to integrate it into a modern IDE.
This would enable the developer to be supported by View
Infinity the whole software process.

Code view

Filter = file

File view

Filter = feature

Feature model view

Figure 4: Snapshot of zooming process from feature
model layer (bottom) to source code layer (top)

Acknowledgments

We thank Dr. Miriam Goebel-Stengel for support in cre-
ating the demo video. Feigenspan’s work is supported by
BMBF project 01IM08003. Kiéstner’s work is supported
partly by ERC (#203099). Apel’s work is supported partly
by DFG project #AP 206/2-1 and #AP 206/4-1.

5. REFERENCES

[1] A. Cockburn, A. Karlson, and B. Bederson. A Review
of Overview+Detail, Zooming and Focus+Context
Interfaces. ACM Computing Surveys, 41(1):1-31, 2008.

[2] J. Feigenspan, C. Kistner, S. Apel, and T. Leich. How
to Compare Program Comprehension in FOSD
Empirically - An Experience Report. In Proc. Int’l
Workshop on Feature-Oriented Software Development,
pages 55-62. ACM Press, 2009.

[3] E. Figueiredo et al. Evolving Software Product Lines
with Aspects: An Empirical Study on Design Stability.
In Proc. Int’l Conf. Software Engineering (ICSE),
pages 261-270. ACM Press, 2008.

[4] C. Kistner, S. Apel, and M. Kuhlemann. Granularity in
Software Product Lines. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 311-320. ACM Press, 2008.

[5] C. Késtner, T. Thiim, G. Saake, J. Feigenspan,

T. Leich, F. Wielgorz, and S. Apel. FeatureIDE: Tool
Framework for Feature-Oriented Software
Development. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 611-614. IEEE CS, 20009.

[6] S. Meier, T. Reinhard, R. Stoiber, and M. Glinz.
Modeling and Evolving Crosscutting Concerns in
ADORA. In ICSE Workshop in Aspect-Oriented
Requirements Engineering and Architecture Design,
pages 3-9. IEEE, 2007.

[7] K. Pohl, G. Béckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer, 2005.

[8] M. Storey, C. Best, and J. Michand. SHriMP Views:
An Interactive Environment for Information
Visualization and Navigation. In Proc. 9th Int’l
Workshop on Program Comprehension (IWPC), pages
111-112. IEEE CS, 2002.

