
Autom Softw Eng
DOI 10.1007/s10515-011-0080-5

Flexible feature binding in software product lines

Marko Rosenmüller · Norbert Siegmund ·
Sven Apel · Gunter Saake

Received: 9 July 2010 / Accepted: 18 January 2011
© Springer Science+Business Media, LLC 2011

Abstract A software product line (SPL) is a family of programs that share assets
from a common code base. The programs of an SPL can be distinguished in terms
of features, which represent units of program functionality that satisfy stakehold-
ers’ requirements. The features of an SPL can be bound either statically at program
compile time or dynamically at run time. Both binding times are used in SPL devel-
opment and have different advantages. For example, dynamic binding provides high
flexibility whereas static binding supports fine-grained customizability without any
impact on performance (e.g., for use on embedded systems). However, contempo-
rary techniques for implementing SPLs force a programmer to choose the binding
time already when designing an SPL and to mix different implementation techniques
when multiple binding times are needed. We present an approach that integrates sta-
tic and dynamic feature binding seamlessly. It allows a programmer to implement an
SPL once and to decide per feature at deployment time whether it should be bound
statically or dynamically. Dynamic binding usually introduces an overhead regard-
ing resource consumption and performance. We reduce this overhead by statically
merging features that are used together into dynamic binding units. A program can
be configured at run time by composing binding units on demand. We use feature
models to ensure that only valid feature combinations can be selected at compile and

M. Rosenmüller (�) · N. Siegmund · G. Saake
School of Computer Science, University of Magdeburg, Magdeburg, Germany
e-mail: rosenmue@ovgu.de

N. Siegmund
e-mail: nsiegmun@ovgu.de

G. Saake
e-mail: saake@ovgu.de

S. Apel
Department of Informatics and Mathematics, University of Passau, Passau, Germany
e-mail: apel@uni-passau.de

mailto:rosenmue@ovgu.de
mailto:nsiegmun@ovgu.de
mailto:saake@ovgu.de
mailto:apel@uni-passau.de

Autom Softw Eng

at run time. We provide a compiler and evaluate our approach on the basis of two
non-trivial SPLs.

Keywords Software product lines · Feature binding time · Feature-oriented
programming · Feature composition · Static binding · Dynamic binding

1 Introduction

Software product line (SPL) engineering has been successfully applied to many do-
mains.1 An SPL is a family of similar programs that are distinguished in terms of
features. A feature is a unit of program functionality that satisfies a requirement, im-
plements a design decision, and provides a potential configuration option (Apel and
Kästner 2009). In feature-oriented software development (FOSD) (Apel and Kästner
2009), the programs of an SPL are generated by composing modules that implement
features. Depending on the underlying modularization and composition mechanism,
features are either bound statically (e.g., at compile time or in a preprocessing step)
or dynamically (e.g., when loading a program or at run time).

Both binding times have benefits: static binding facilitates customizability without
any overhead at run time, whereas dynamic binding allows a programmer to flexibly
select and bind features even at run time, however, at the cost of performance and
memory consumption (Anastasopoules and Gacek 2001). Beside resource consump-
tion and flexibility, there are other reasons that force programmers to use either static
or dynamic binding. For example, when it is not known before run time whether a fea-
ture is needed or not, programmers can use dynamic binding to avoid deployment of
all possible features. On the other hand, not every feature can be bound dynamically.
For instance, some features related to the build and execution environment must be
chosen before compilation. Examples are the supported CPU architecture and com-
piler, whether debugging support is needed, or which operating system libraries are
used. These decisions have to be made already at build time. We conclude that both
binding times are required in SPL development.

With commonly used SPL implementation techniques (e.g., preprocessors-based
or component approaches), a programmer is forced to choose between static and dy-
namic binding already at design time of an SPL (Lee and Kang 2006). The program-
mer must select an implementation technique that corresponds to the chosen binding
time. Changing the binding time after development is not possible. However, relying
only on a single binding time restricts the applicability of an SPL. We present an ap-
proach that seamlessly integrates static and dynamic binding. We demonstrate how to
bind features of an SPL dynamically or statically using the same code base. In con-
trast to our previous work (Rosenmüller et al. 2008), we can choose a distinct binding
time per feature after development. We achieve this by statically composing the fea-
tures that are used in combination into a dynamic binding unit, which is bound at run
time as a whole. Dynamic binding units are similar to components but are generated
at compile time from a user-defined set of features. By statically generating binding

1http://www.sei.cmu.edu/productlines/plp_hof.html.

http://www.sei.cmu.edu/productlines/plp_hof.html

Autom Softw Eng

units, we achieve fine-grained customizability while maximizing performance; by dy-
namically applying the binding units, we achieve a high flexibility at run time. Using
code transformations, all features can be implemented with the same technique inde-
pendent of their binding time, which simplifies SPL development and maintenance.
The contributions of this article are:

1. We present code transformations for integrating static and dynamic feature
binding in SPLs at modeling and implementation level. Our approach al-
lows developers to flexibly switch the binding time per feature using the
same code base. In contrast to existing approaches (Chakravarthy et al. 2008;
Czarnecki and Eisenecker 2000; Gilani and Spinczyk 2005; Zdun et al. 2007),
we statically generate dynamic binding units to reduce the overhead of dynamic
binding.

2. We provide composition safety of dynamic binding using a transformed feature
model. To generate such a model, we present transformation rules that corre-
spond to the code transformations that we use for creating dynamic binding
units.

3. We demonstrate practicality of our approach with an implementation of the
transformation system based on feature-oriented programming.

4. Finally, we evaluate our approach regarding customizability and resource con-
sumption.

2 Feature binding in software product lines

Feature binding is the process of including features in a concrete program at a specific
point in time, called the binding time (Czarnecki and Eisenecker 2000). There are
different possibilities to categorize the binding time of features in SPLs. We refer to
static binding if a feature is bound in a program before load time (e.g., at compile
time) and to dynamic binding if it is applied at load time or after loading a program.
For example, the C/C++ preprocessor is frequently used to support static binding
in SPLs for embedded systems. The preprocessor removes unneeded code from a
program before compilation. In contrast, components and plugins support dynamic
binding at load time or run time of a program. In the following, we analyze static and
dynamic binding to motivate that a combination of both binding times is needed.

Static and dynamic feature binding Most SPL implementation techniques support
either static or dynamic binding of features. However, different features may require
different binding times (van Gurp et al. 2001) and different application scenarios may
require the same feature to be bound at different times. Using static or dynamic bind-
ing exclusively is often not feasible for several reasons. For example, static binding
cannot be used if required features are not available or not known at deployment
time, as it is the case for third-party extensions. Dynamic binding enables indepen-
dent deployment of features or extensions of a program without rebuilding the whole
program. It even provides means for loading extensions on demand (e.g., from a net-
work) or when the configuration of an SPL has to be changed at run time such as in
dynamic SPLs (Hallsteinsen et al. 2008).

Autom Softw Eng

However, it is also not feasible to rely exclusively on dynamic binding, e.g., for
platform- or compiler-specific features. This would limit possible target platforms
of an SPL. Furthermore, some devices (e.g., deeply embedded systems) cannot load
executable code at run time. Hence, they only support dynamic binding of already
loaded code (e.g., using conditional statements), which reduces the benefits of dy-
namic binding. Finally, dynamic binding usually means a higher development and
maintenance effort, which makes it the more expensive alternative.

Resource consumption Both, static and dynamic binding, have benefits and draw-
backs with respect to resource consumption (e.g., CPU utilization, memory consump-
tion) of a program. Often only a subset of the features of a program is used at the same
time and some features may not be used at all. For example, the required functionality
of a database management system (DBMS), deployed on a smartphone, depends on
the requirements of the applications that use the DBMS. A Web browser that stores
encrypted passwords in a database requires a DBMS with data encryption. If the Web
browser is never used, the encryption feature of the DBMS is not required at all. The
presence of unused functionality can be avoided by loading features on demand and
bind them dynamically. Unfortunately, dynamic binding introduces an overhead to
support dynamic composition (Czarnecki and Eisenecker 2000). Hence, depending
on the binding time, we observe either a functional or a compositional overhead:

– Static binding causes a functional overhead due to features that are not used but
present in a program. This results in increased binary size, working memory con-
sumption, and execution time (e.g., due to execution of initialization code).

– Dynamic binding introduces a compositional overhead, which is caused by glue
code, indirections for binding features at run time, and code of the composition
infrastructure. This additional code increases binary size and execution time of a
program. It may also cause a higher memory consumption at run time (e.g., for
storing virtual function pointers in C++).

Mixing static and dynamic binding To cope with the limitations of current imple-
mentation techniques, different approaches for static and dynamic binding are com-
bined in practice, e.g., in the Apache Web server,2 Mozilla (van Gurp et al. 2001), and
Oracle’s embedded database management system (DBMS) Berkeley DB.3 In these
systems, the programmers use the C/C++ preprocessor for static binding (e.g., for
platform specific features) and proprietary mechanisms for dynamic binding. For ex-
ample, the Apache Web server comes with a special module system to load extensions
dynamically.

In general, mixing dynamic and static binding provides several benefits. Dynamic
binding can be used to achieve extensibility (e.g., for plugins), while other features,
such as platform-specific features, are bound statically. Applying static binding to dy-
namically bound components allows a user to customize the components, e.g., when
many components are affected by a crosscutting feature. This is problematic when
using only dynamic binding (Griss 2000). However, mixing different implementation

2http://httpd.apache.org/.
3http://www.oracle.com/technology/products/berkeley-db/.

http://httpd.apache.org/.
http://www.oracle.com/technology/products/berkeley-db/.

Autom Softw Eng

mechanisms increases complexity of SPL development:

– it forces developers to use different implementation mechanisms for different fea-
tures within an SPL (e.g., preprocessors, design patterns, components, aspect-
oriented programming (Kiczales et al. 1997), etc.),

– a developer has to choose the binding time per feature at design time before devel-
opment (Lee and Kang 2006),

– it hinders reuse because a feature developed for a particular binding time cannot
be easily reused in an application scenario or in a different SPL that requires a
different binding time.

To summarize, an integration of static and dynamic binding is already used in prac-
tice, but without proper support at the implementation level. Relying on a single
binding time may increase execution time and memory consumption, which is un-
acceptable when resources are limited. A combination of both binding times can
reduce resource consumption and improve customizability. Additionally, support-
ing different binding times based on the same implementation mechanism sim-
plifies SPL development and maintenance. Changing the binding time of an im-
plementation unit is supported by a few approaches (Chakravarthy et al. 2008;
Czarnecki and Eisenecker 2000; Gilani and Spinczyk 2005; Zdun et al. 2007). How-
ever, these approaches do not consider the specifics of SPLs. For example, they do not
address static and dynamic binding of entire features. Furthermore, the approaches
only support either static or dynamic binding of a code unit, but do not support sta-
tic composition between multiple dynamically bound units. Moreover, there is no
approach that integrates static and dynamic binding with respect to the SPL configu-
ration process. For example, existing approaches do not offer a mechanism to validate
a configuration with respect to the feature model statically and dynamically.

3 Integration of static and dynamic binding

We address the trade-off between static and dynamic binding with an approach
that seamlessly integrates both binding times. Our approach allows a programmer
to choose the binding time per feature and to optimize resource consumption and
customizability. It is based on feature-oriented programming (FOP) (Prehofer 1997;
Batory et al. 2004), which allows programmers to modularize the features of an SPL.
We implemented our approach on top of FeatureC++,4 an FOP extension of the C++
programming language. We first introduce FOP and describe how we achieve static
and dynamic binding of features based on the same feature-oriented implementation
of an SPL. We continue with an approach that integrates both binding times at mod-
eling and implementation level.

3.1 Feature-oriented programming

A feature model describes the variability of an SPL, as shown in Fig. 1 for a DBMS.
It is a hierarchical representation of mandatory (shown with a filled bullet) and op-
tional (shown with an empty bullet) features and relations between them (Czarnecki

4http://fosd.de/fcc/.

http://fosd.de/fcc/

Autom Softw Eng

Fig. 1 Feature model of a
simple DBMS

Fig. 2 Decomposition of
classes (dashed rectangles)
along features (horizontal
layers)

and Eisenecker 2000). A feature model thus defines the valid configurations of an
SPL. For example, the XOR relation between features BTREE and HASH means that
exactly one of the features has to be selected when their parent feature INDEX is
selected.

In FOP, features are implemented as increments in functionality (Batory et al.
2004). A user specifies a program by selecting a set of features that satisfy her re-
quirements. Based on the feature selection, a generator composes the corresponding
feature modules (i.e., the modularized implementation of a feature) to yield a con-
crete program. In Fig. 2, we depict a decomposition of a DBMS along multiple fea-
tures (displayed as layers). The DBMS consists of a CORE implementation and two
features QUERYENGINE and TRANSACTION. The two features cut across the im-
plementation of the classes DB, Txn, QueryProcessor (shown as dashed boxes).
A programmer thus decomposes a class into a base class and class refinements, shown
as white boxes in Fig. 2. Refinements implement extensions of a base class necessary
for a particular feature. For example, the base implementation of class DB is defined in
CORE and extended in QUERYENGINE and TRANSACTION (depicted with arrows).

In Fig. 3, we depict the FeatureC++ code of class DB (cf. Fig. 2). Method
Put is used to store data provided as key-value pairs. The refinement in feature
QUERYENGINE (Lines 5–10) adds a new field queryProc and a new method
ProcessQuery for processing SQL queries. Feature TRANSACTION defines a re-
finement of method Put (Line 14) and invokes the refined method using the keyword
super (Line 16). Based on the implementation shown in Fig. 2, we can generate
different DBMS variants by composing a varying set of feature modules. For exam-
ple, we can generate a basic DBMS consisting only of the CORE implementation
but we can also derive variants that include QUERYENGINE or TRANSACTION by
composing the corresponding feature modules.

With FeatureC++, the feature modules of an SPL can be bound either statically at
compile time or dynamically at load time or run time. To support static binding, the
FeatureC++ compiler composes the code of a base classes and selected refinements
into a single class. Dynamic binding is implemented by a code transformation that
uses the decorator pattern (Gamma et al. 1995) to generate a dynamically compos-
able class fragment for each refinement (Rosenmüller et al. 2008). We describe both

Autom Softw Eng

Feature CORE

1 c l a s s DB {
2 bool Put(Key& key, Value& val) { ... }
3 };

Feature QUERYENGINE

5 r e f i n e s c l a s s DB {
6 QueryProcessor queryProc;
7 bool ProcessQuery(String& query) {
8 re turn queryProc.Execute(String& query);
9 }

10 };

Feature TRANSACTION

12 r e f i n e s c l a s s DB {
13 Txn* BeginTransaction() { ... }
14 bool Put(Key& key, Value& val) {
15 ... / / t r a n s a c t i o n −s p e c i f i c code
16 re turn super::Put(key,val);
17 }
18 };

Fig. 3 FeatureC++ code of class DB decomposed along the three features CORE, QUERYENGINE, and
TRANSACTION

transformations in the following and combine them to integrate static and dynamic
binding, as described afterwards.

3.2 Support for static feature binding

To support static feature binding, the classes of an SPL have to be composed at com-
pile time according to the features selected in the configuration process. The Fea-
tureC++ compiler uses a source-to-source transformation from FeatureC++ to plain
C++ code. It composes the entire code of the base implementation of a class and its
refinements of all selected features into one compound C++ class. This compound
class consists of:

– the union of all member variables,
– one method for each method refinement,
– one constructor and destructor for each different constructor/destructor definition,

and
– one method for each constructor/destructor refinement.

In Fig. 4, we depict the generated C++ code of a DBMS variant that corresponds
to the FeatureC++ code of class DB in Fig. 3. We show the generated code only for
illustration and it does not have to be read by a programmer that uses FeatureC++.
The code corresponds to a composition of the CORE implementation with feature
TRANSACTION. All methods and fields of the corresponding refinements of class
DB (i.e., except the code of feature QUERYENGINE) are composed into a single
C++ class. The base implementation of method Put (feature CORE) was renamed
to Put_Core (Line 2) to provide a unique name for every C++ method. It is called

Autom Softw Eng

1 c l a s s DB {
2 bool Put_Core(Key& key, Value& val) { ... }
3
4 Txn* BeginTransaction() { ... }
5
6 bool Put(Key& key, Value& val) {
7 ... / / T r a n s a c t i o n −s p e c i f i c code
8 re turn Put_Core(key,val);
9 };

10 };

Fig. 4 Generated C++ source code of class DB using static binding of CORE and TRANSACTION

Fig. 5 Generated decorator
hierarchy for class DB to support
dynamic binding of the features
QUERYENGINE and
TRANSACTION

from its refinement in Line 8. Using this transformation and by avoiding virtual meth-
ods (which are needed in a component-based approach), a C++ compiler can easily
inline method refinements. For example, method Put_Core is inlined in method
Put and does not introduce any overhead for method calls. Based on such optimiza-
tions, we have shown that FeatureC++ generates code that achieves the same perfor-
mance as C++ code that does not provide such fine-grained customizability (Rosen-
müller et al. 2009).

3.3 Support for dynamic feature binding

For dynamic binding of features, we have to compose the classes of a program at run
time according to the dynamic feature selection. We achieve this dynamic composi-
tion of a class by transforming each class refinement into a dynamically composable
class fragment. For example, when creating a DBMS with transaction management
at run time, we have to dynamically compose the base implementation of class DB
(cf. Fig. 3) with its refinement in feature TRANSACTION. Similar to the Delegation
Layers approach (Ostermann 2002), we transform the refinement chain of a class
into a delegation hierarchy (Rosenmüller et al. 2008). By using the decorator pat-
tern (Gamma et al. 1995) for implementing refinements, we are able compose classes
dynamically by composing the generated decorators. Composing two features thus
means to compose all classes and class refinements of the features.

For illustration, we depict the class diagram of the transformed class DB in Fig. 5.
The base code of class DB and all of its refinements have been transformed into

Autom Softw Eng

Fig. 6 Generated feature
decorators. DbFeature is an
abstract decorator for the
features of the DBMS SPL. The
concrete decorators Core,
QueryEngine, and
Transaction implement
feature specific code (e.g., for
class instantiation)

decorators (DB_Core, DB_QueryEngine, DB_Transaction). Each decorator
belongs to a separate feature. The concrete decorators provide the implementation of
methods and method refinements. For example, method Put (Line 2 in Fig. 3) and
its refinement in feature TRANSACTION (Line 14) are transformed into methods of
the concrete decorators DB_Core and DB_Transaction (cf. Fig. 5). The abstract
decorator class DB_Decoratormaintains a reference to the predecessor refinement
(super reference) and forwards operations to the next decorator that are not imple-
mented by its concrete decorator. Similarly, a method refinement invokes its refined
method also by using the super reference of the decorator class. To overcome the
self problem when calling a method of the compound class (Liebermann 1986) (open
recursion), each decorator additionally maintains a self pointer that refers to the com-
pound object and not the current concrete decorator. We use the generated decorator
interface DB to reference dynamically composed classes within the transformed code
and also from external source code. All created objects contain an additional proxy to
support modifications of the object at run time. The proxy is an empty decorator that
only forwards method calls to the decorator that implements the first class refinement.

Feature classes When dynamically creating a product from an SPL (a.k.a. SPL in-
stance), we compose multiple features according to a given configuration. Each fea-
ture usually contains multiple classes and class refinements that have to be composed
consistently at the same time. We support this dynamic composition process by rep-
resenting features as classes, called feature classes. Feature classes are generated in
the FeatureC++ code transformation process. Much like ordinary classes and refine-
ments, feature classes are also combined using the decorator pattern to enable class
instantiation via delegation, as we describe below. In Fig. 6, we shown an example
for the DBMS SPL. For each feature module (CORE, QUERYENGINE, and TRANS-
ACTION), we generate a feature decorator that inherits from an abstract decorator
DbFeature. The abstract decorator is the base class of all feature classes of the
product line. It maintains a super reference to the predecessor feature in a composed
variant. Instantiation of a feature thus means to create an object of the corresponding
feature class. Generating an SPL instance means to combine feature instances using
super references. Hence, an SPL instance is represented by a stack of feature in-
stances. The features are ordered according to the desired feature composition order.

The dynamic composition process occurs at program startup or at runtime. At
program startup, an initial SPL instance is created automatically or manually and
then executed (Rosenmüller et al. 2008). For example, a user can provide a list of

Autom Softw Eng

Fig. 7 Object diagrams of the instances obj1 and obj2 of two different variants of class DB using three
and two features respectively

features as program arguments and the corresponding SPL instance is then derived
at load time. Manual creation of an SPL instance in user-defined code is done by
composing feature instances (i.e., objects of feature classes), as described above.

Class instantiation We use a dynamically composed SPL instance to create objects
of the classes of an SPL at run time. Creating an object means to create and com-
bine instances of its class refinements (implemented as decorators; cf. Fig. 5). The
required base classes and class refinements are automatically instantiated according
to a dynamic feature selection. This instantiation process is realized by generated
factory methods of the corresponding feature classes (e.g., NewDb() in Fig. 6).

In Fig. 7, we show two examples of objects of class DB that have different sets
of refinements. Object obj1 uses the CORE implementation and refinements defined
in features QUERYENGINE and TRANSACTION. Object obj2 uses only the CORE

implementation and the refinement from feature TRANSACTION. Each instantiated
refinement contains a super reference (cf. Fig. 5) pointing to the next refinement in
the chain. For example, the super pointer of the instance of DB_QueryEngine
refers to an instance of DB_Core. The dynamically composed objects can be used
in the same way as an instance of a regular class. Furthermore, they can be modified
at run time by adding or removing decorator instances. Such modifications at run-
time are possible because existing object references point to the first decorator in the
chain, which is an empty proxy that forwards method calls (omitted in Fig. 7). The
refinement chain thus corresponds to a linked list of class fragments. Changing the
configuration of the SPL corresponds to insertion, exchange, and deletion of elements
of the refinement list of the SPL classes.

3.4 Integrating static and dynamic binding

So far, our approach allows programmers only to choose between static and dynamic
binding for the entire SPL and not for single features. As discussed in Sect. 2, this
approach is still not flexible enough for certain application scenarios. It results in
a functional or compositional overhead depending on the binding time. In previous
work, we observed that especially the compositional overhead limits applicability of
a pure dynamic approach (Rosenmüller et al. 2008). Next, we extend our approach to
integrate both binding times.

3.4.1 Dynamic binding units

We integrate static and dynamic binding by combining multiple dynamically bound
features into a single dynamic binding unit: Features that are always bound together,

Autom Softw Eng

Fig. 8 Examples for static transformations () of a DBMS product line resulting in the prebound SPLs
DB′ and DB′′, and subsequent dynamic composition () resulting in the running programs DB1–DB4.
Feature HASH was not selected and is not included in any binding unit

are merged at compile time into a binding unit. This means a two step composition
process: First, we use static composition for the features of a binding unit and, sec-
ond, we compose dynamic binding units in the running program. Static composition
results in a prebound SPL consisting of a set of dynamically composable binding
units, each of which consists of possibly multiple statically composed features. As a
binding unit may also contain only a single feature, our approach still supports pure
dynamic binding. Rather than manually developing binding units as components (Lee
and Kang 2006), we automate this process and generate them on demand at deploy-
ment time. That is, a programmer implements an SPL once and chooses the binding
time per feature later. With binding units, we reduce the overhead for dynamic bind-
ing since the features of a binding unit are statically composed. A binding unit can be
bound at any time after program startup.

In Fig. 8, we show an example for generating dynamic binding units. DB′ and DB′′
denote two prebound SPLs (i.e., not concrete products) after static composition. Fea-
ture HASH is not required and is thus not included in any of the prebound SPLs. In
DB′, feature B-TREE (an index structure for efficient data access) is always required
and we thus combine it with feature CORE into a single binding unit BASE. Sim-
ilarly, TRANSACTION and LOGGING are composed into binding unit TXN. Feature
QUERYENGINE is assigned to a distinct binding unit QE. This is different in DB′′,
which contains the same features bound differently. In DB′′, feature QUERYENGINE

is not assigned to a distinct binding unit but added to binding unit BASE. From each
prebound DBMS, we can create a number of different DBMS (examples DB1–DB4)
by dynamically composing the binding units according to a given configuration (i.e.,
a list of desired binding units). Comparing DB2 and DB3, we see that both provide

Autom Softw Eng

the same functionality but feature QUERYENGINE is contained in a distinct binding
unit in DB2 and is bound statically in DB3, which leads to differences in flexibility
and resource consumption.

Product derivation In summary, the product derivation process of our integrated
approach can be divided into three steps: (1) configuration, (2) static transformation,
and (3) dynamic composition. In the first step (filled arrow in Fig. 8), a user selects the
potentially required features and assigns each feature to a binding unit. In the subse-
quent static transformation process, the compiler selects the required feature modules
and generates dynamic binding units.5 The FeatureC++ compiler also generates code
for composing the binding units at run time. There are two extremes: first, a single
binding unit may contain all selected features, which results in a pure statically com-
posed program without any code for dynamic binding. Hence, the product derivation
process is finished after static transformation. Second, each binding unit may contain
only a single feature resulting in a purely dynamically composable SPL. Between
these extremes (which mark the current state of the art), our extended approach sup-
ports any combination of static and dynamic binding.

3.4.2 Compound features and feature modeling

When generating dynamic binding units, we generate a prebound SPL with reduced
dynamic variability. To ensure consistency of the dynamic composition process, we
verify a configuration at run time before composing the binding units. This is done in
a similar way as we have shown for pure dynamic composition (Rosenmüller et al.
2008). We use a feature model to avoid invalid configurations. However, because
merged features have to be bound as a whole, the final dynamic composition process
cannot be based on the SPL’s initial feature model. Hence, we have to transform the
feature model such that it contains only dynamic variability.

To this end, we represent the static composition process on the modeling level
as a transformation of the SPL’s feature model. In the following, we first introduce
compound features to represent binding units at the model level and then describe the
required model transformations.

Compound features We represent feature composition by treating features as func-
tions that modify other features or a base program (Lopez-Herrejon et al. 2006;
Apel et al. 2010). The composition of one feature with another feature results in a
compound feature, which is the input for the subsequent composition step. In our
case, a dynamic binding unit is a compound feature that is bound at run time. We
denote static feature composition with operator • and dynamic feature composition
with operator ◦. This way, we can describe composition of programs DB1 and DB2
(cf. Fig. 8) as follows:

Base = BTree • Core (1)

5Dynamic binding units are stored in the binary of an application or in extension libraries. Currently, we
support Windows DLLs.

Autom Softw Eng

QE = QueryEngine (2)

TXN = Logging • Transaction (3)

DB1 = TXN ◦ Base (4)

= (Logging • Transaction) ◦ (BTree • Core) (5)

DB2 = QE ◦ Base (6)

= (QueryEngine) ◦ (BTree • Core) (7)

In this example, (1)–(3) describe static compositions resulting in the compound fea-
tures (i.e., dynamic binding units) Base, QE, and TXN. Equations (4) and (6) repre-
sent dynamic compositions of compound features. Hence, a feature such as TRANS-
ACTION is statically bound with respect to its binding unit TXN (3) but is dynamically
bound with respect to the base program (4).

Note, when combining static and dynamic binding, we have to consider the order
in which features are composed. The reason is that composition of feature modules is
not necessarily commutative (Apel et al. 2010). For example, when features TRANS-
ACTION and BTREE extend the same method, their composition order may affect
program behavior. Hence, when changing the two binding units from (1) and (3) to
Base = Transaction • Core and Log = Logging• Btree, dynamic composition results
in a different program:

DB1′ = (Logging • Btree) ◦ (Transaction • Core). (8)

DB1′ differs in its behavior from DB1 if the composition of Btree and Transaction
is not commutative. However, we achieve commutativity when combining static and
dynamic binding using special code transformations, as we describe in Sect. 3.4.3.

Feature models for compound features After static composition, it may be neces-
sary to reason about the remaining dynamic variability, which is ideally done with
feature model. For example, it is easier to analyze dynamic variability (e.g., to check
which configurations are valid) when we have a feature model that includes com-
pound features and that corresponds to the variability of the prebound SPL. This
feature model is also reified at run time for validating a configuration before dynamic
composition (e.g., to safely reconfigure a running system).

The combination of static binding and dynamic binding can be seen as a staged
configuration process, as described by Czarnecki et al. (2004). In our case, we
have a two step configuration process, in which we first bind features statically and
then compose binding units dynamically. We represent this configuration process
by transforming the feature model accordingly. In contrast to the model transfor-
mations for staged configuration described by Czarnecki et al. (2004), we allow ar-
bitrary configuration steps that are represented by constraints (Classen et al. 2009;
Rosenmüller and Siegmund 2010). Composition of multiple features into a com-
pound feature is thus represented by an equivalence constraint between the merged
features. That is, when a user selects one of the features of a compound feature, she
has to select the other features as well. In Fig. 9b, we depict an example for the

Autom Softw Eng

Fig. 9 Transformation of the feature model of a DBMS (a) when generating compound features CORE,
TXN, and QE. In (b), constraints have been added to represent the merge operation. The compound features
are added to the feature model in (c) and a refactoring is used to include the equivalence constraints.
Mandatory subfeatures of the compound features that do not provide variability have been removed in (d)

static transformation of DB into DB′ (cf. Fig. 8). We represent compound feature
TXN by constraint TRANSACTION ⇔ LOG. Furthermore, we remove feature HASH,
which was not selected for composition. The resulting feature model represents the
dynamic variability. It forces a user to either select all merged features of a bind-
ing unit or to select none of them. For example, features TRANSACTION and LOG

can only be selected in combination. However, this feature model is rather complex
compared to the actual variability. Furthermore, it does not explicitly show the new
compound features which may be needed for dynamic configuration.

We reduced the complexity of the feature model by adding the compound features
and by refactoring the model. The resulting feature model is depicted in Fig. 9c. In
the following, we describe the required refactorings. Details of the refactoring steps
can be derived from Alves et al. (2006).

1. In a first step, we remove dead features that cannot be selected. In our exam-
ple, this means that feature HASH is removed as it is an alternative to BTREE

and cannot be selected. When removing a dead feature, we also remove it from
existing constraints to other features (e.g., replacing it with false in boolean con-
straints).

2. We remove a feature from the equivalence constraint of a compound feature if it
is the ancestor of one of the other features of the constraint. In turn, we have to
mark the features on the path between both in the feature model as mandatory.
For example, we mark features INDEX and BTREE as mandatory and remove
the equivalence constraint for compound feature CORE. Mandatory features that
have been part of an alternative group must always be selected. Hence, the re-
maining features of the group are dead and have already been removed in step 1.

3. In steps 3–5, we add the compound features and restructure the feature diagram.
First, we create a new feature for each generated compound feature (e.g., feature
QE in Fig. 9c). Each compound feature replaces one of the merged features.
Usually, the compound feature should replace the feature that is nearest to the
root. The replaced feature is added as a mandatory child since both have to be

Autom Softw Eng

selected at the same time. For example, we insert compound feature QE above
QUERY. If one of the merged features is the root of the tree, the compound
feature may also be added as a child of the root to avoid a different name for the
root (cf. feature CORE in Fig. 9c).

4. Other merged features including their entire subtrees are moved to the corre-
sponding compound feature as mandatory child features (e.g., feature LOG in
Fig. 9c). Additional constraints are added to maintain the relationships between
the moved features and their former parent features and siblings. In our exam-
ple, we create the constraint LOG ⇒ DB′ because feature TXN was added as a
parent of TRANSACTION.

5. Finally, we remove constraints that are not needed. Since the merged features
are mandatory children of their compound feature, we remove the remaining
equivalence constraints that have been used to represent merged features, as
described in step 2. Furthermore, we can remove some constraints that have
been added in step 4. For example, we remove constraint LOG ⇒ DB′ because
DB′ is an ancestor of LOG.

After refactoring the feature model, the remaining variability is easier to recognize
because it is not hidden in constraints. The merged features can be removed from
the feature model or tool support can be used to suppress visualization of mandatory
features. When removing features, their constraints have to be maintained: we have to
update all constraints by replacing the removed features with their compound feature.
However, the original merged features are still needed for further operations on the
feature model. For example, defined independently constraints (e.g., by a third party)
may reference the original features.

3.4.3 Implementation: generating binding units

As proof of concept, we implemented our approach on top of the FeatureC++ com-
piler. In the following, we give a short overview of the code transformations used to
combine both types of composition at the class level.

When generating dynamic binding units, the FeatureC++ compiler transforms a
class (defined as several class refinements) of an SPL into dynamically composable
class fragments. The generated fragments correspond to the binding units that cut
accross the class. They are generated from the base class and its refinements in two
steps: First, we merge refinements belonging to features of the same binding unit
into a single class (static composition) and, second, we generate code for dynamic
binding of composed classes using the decorator pattern, as described for dynamic
composition (cf. Sect. 3.3). Hence, we do not generate a decorator per refinement,
but we group the refinements of a binding unit for each class in a single decorator.
In Fig. 10, we show an example for the generated classes of the binding units of DB′
for class DB (cf. Fig. 8). The dynamically composable class DB consists of an inter-
face (DB), an abstract decorator (DB_Decorator), and three concrete decorators
(DB_Base, DB_QE, and DB_TXN). Code of multiple refinements is statically com-
posed into concrete decorators DB_Base, DB_QE, and DB_TXN. For example, we
merge refinements defined in modules CORE and B-TREE of class DB into decorator

Autom Softw Eng

Fig. 10 Compound class DB (dashed box) after static composition and transformations to enable dynamic
binding. Generated decorators are shown as white boxes within light-gray binding units. Code of refine-
ments is shown as gray boxes

Feature CORE

1 c l a s s DB {
2 bool Put(Key& key, Value& val) { ... }
3 };

Feature LOGGING

4 r e f i n e s c l a s s DB {
5 bool Put(Key& key, Value& val) {
6 ... / / l o g g i n g − s p e c i f i c code
7 re turn super::Put(key,val);
8 };
9 };

Feature TRANSACTION

10 r e f i n e s c l a s s DB {
11 bool Put(Key& key, Value& val) {
12 ... / / t r a n s a c t i o n −s p e c i f i c code
13 re turn super::Put(key,val);
14 };
15 };

Fig. 11 FeatureC++ source code of class DB with method Put refined by two features

DB_Base. The decorators are combined at run time according to the selected dy-
namic binding units. For example, we have to compose DB_Base and DB_TXN to
yield DB1 of Fig. 8.

The code transformations are basically a combination of the transformations de-
scribed for pure static and dynamic binding. However, they differ in several ways and
we present the two most important differences next. In the first example, we demon-
strate how to attain commutativity of class refinements. In the second example, we
describe how the SPL context is stored in generated classes.

Commutativity of method refinements Since the application of method refinements
is usually not commutative, we have to ensure that the application order of method
refinements does not change when combining static and dynamic extensions of the
same class. An example is shown in Fig. 11: Method Put of class DB is extended in
features LOGGING and TRANSACTION. Both method extensions have to be executed
bottom-up: first, the transaction code has to be executed (Line 12) and afterward the
logging code (Line 6). If we statically compose the CORE implementation and feature

Autom Softw Eng

Binding Unit BASE

1 c l a s s DB_Base {
2 bool Put_Core(Key& key, Value& val) { ... }
3
4 bool Put_hook(Key& key, Value& val) {
5 re turn Put_Core(key,val);
6 }
7
8 bool Put(Key& key, Value& val) {
9 ... / / t r a n s a c t i o n −s p e c i f i c code

10 re turn Put_hook(key,val);
11 };
12 };

Binding Unit TXN

13 c l a s s DB_Logging {
14 bool Put_hook(Key& key, Value& val) {
15 ... / / l o g g i n g − s p e c i f i c code
16 re turn super->Put_hook(key,val);
17 };
18 };

Fig. 12 Generated C++ code of class DB with a hook for method refinement

TRANSACTION into a single binding unit and feature LOGGING into a different bind-
ing unit, then dynamic composition of the binding units changes the execution order
of the method refinements. This results in an invalid program because the transaction
code is executed after the logging code.

To avoid this, we generate hook methods (Apel et al. 2008a), as shown in the
generated code in Fig. 12. For example, we generate method Put_hook (Lines 4–6),
which is called instead of method Put_Core (Line 10). The hook is overridden by
feature LOGGING to execute the logging specific code before executing the extended
method (Line 16).

Storing SPL context Class instantiation in a dynamically composed program re-
quires to create an object that corresponds to the configuration of a concrete SPL
instance. The instance defines which decorators to use when creating the new ob-
ject. Because there may be more than one active SPL instance within a program,
we need to know which instance to use when creating an object. For that reason,
we store a reference to the corresponding SPL instance within each object. For ex-
ample, when creating an instance of class DB (cf. Fig. 10), the SPL instance DB1
defines the required binding units (BASE and TXN) and thus the configuration of
class DB.

For statically composed classes, this information is not needed because the type
of a class is determined statically and does not change according to a dynamically
changing SPL instance. For example, the type of class QueryProcessor in Fig. 2
does not change if features QUERYENGINE and TRANSACTION are part of the same
binding unit. Hence, there is no runtime variability for such a class and we do not
need an SPL instance for creating objects of the class. We thus evaluate whether a
class (directly or indirectly) creates instances of dynamically composed classes or

Autom Softw Eng

not; if it does, it has to store a reference to the corresponding SPL. For example, if
class QueryProcessor is statically composed (because it is only part of a single
binding unit), it has to store a reference to its SPL instance only if it creates objects
of other dynamically composed classes.

Since the SPL reference is only needed when there are multiple instances of the
same SPL, we further optimize the generated objects when only a single instance is
used. In this case, we use a single global reference to the SPL instance to avoid the ad-
ditional SPL instance pointer per object. A user can make this decision at deployment
time by choosing between alternative code transformations.

3.4.4 Summary

When combining static and dynamic composition, the compiler merges multiple fea-
tures into a binding unit and generates code to support composition of binding units
at run time. Hence, a dynamically bound feature is statically composed with features
of the same binding unit; it may even use only static binding of its classes and class
refinements with classes of other features of the binding unit. To reason about the re-
sulting dynamic variability, we apply the static composition process also to an SPL’s
feature model. We transform the feature model according to the generated binding
units. The result is a feature model that provides only dynamic variability. It can be
used to analyze dynamic binding before generating binding units, to configure an SPL
at run time (e.g., for a run time adaptation approach), and to verify a dynamic compo-
sition before using it. Overall, our approach integrates static and dynamic binding at
the modeling level as well as at the implementation level. Hence, it provides a foun-
dation for an SPL development process that is independent of the supported binding
time.

4 Case studies and evaluation

By means of two case studies, we demonstrate the applicability of our approach. We
measure the influence of different sizes and different numbers of dynamic binding
units on resource consumption. For our evaluation, we use two product lines that
have been developed at the University of Magdeburg. The first SPL is FAME-DBMS, a
DBMS product line for resource-constrained environments (Rosenmüller et al. 2009).
The second SPL is NanoMail, a customizable e-mail client. The source code of both
product lines is available on the web.6 We present the results for both SPLs and
discuss the reasons for the characteristics we observed.

4.1 Defining binding units

FAME-DBMS FAME-DBMS is an embedded DBMS (i.e., it is embedded into an ap-
plication as a library). It was developed for devices with limited resources using static
feature binding. For compositional flexibility and to reduce the functional overhead,

6http://wwwiti.cs.uni-magdeburg.de/~rosenmue/dynamic/.

http://wwwiti.cs.uni-magdeburg.de/~rosenmue/dynamic/

Autom Softw Eng

Fig. 13 Feature diagram of FAME-DBMS with binding units Base, TXN, Btree, QE, and Crypto. Binding
unit Crypto consists either of feature AES or DES. In our evaluation, we use feature AES

we use dynamic binding. In Fig. 13, we depict an excerpt of the feature model of
FAME-DBMS and the binding units used in our evaluation. We show only features
that are relevant for our case study and omit features that are always bound stati-
cally such as operating-system-related features. In its current version, FAME-DBMS

consists of 56 features with 12 400 lines of code (LOC).
For analyzing the influence of dynamic binding on resource consumption, we com-

pare different variants of FAME-DBMS that use the same 44 features, but we orga-
nized the features in different binding units. The selection of features per binding
unit is shown in Fig. 13. It corresponds to configuration 5 in the following analysis.
We describe the rationale behind the definition of the sample binding units in the
following overview:

– Binding unit BASE represents a basic DBMS that consists of an API for storing
and retrieving data. It can be used without additional binding units and provides
high performance due to pure static binding.

– Binding unit TXN provides transactional access to the database. Since features
TRANSACTION and RECOVERY require feature LOGGING, we merge all three fea-
tures into a single binding unit.

– QE is a customizable query engine that supports a subset of SQL by statically com-
posing only the required SQL features. In our implementation, dynamic composi-
tion of SQL features is hard to achieve. The reason is that we statically compose the
SQL grammar from multiple features. We then generate the SQL parser from this
composed grammar at compile time. This demonstrates that pure dynamic binding
is not always possible without increasing the development effort significantly.

– CRYPTO is a binding unit for data encryption and decryption. Customization of ci-
phers is done statically by choosing the encryption algorithms (e.g., AES or DES).
This means that we can exchange the encryption algorithm within the binding
unit without modifying the remaining DBMS. We may also provide two differ-
ent CRYPTO binding units, one with feature AES and one with DES. Moreover, a

Autom Softw Eng

customer may provide an own encryption algorithm. Defining one binding unit for
the DES and AES features would also be possible, but in our case the ENCRYP-
TION feature abstracts from implementation details of the algorithm resulting in a
small and uniform interface.

– Finally, binding unit BTREE provides efficient data access via a B+tree index struc-
ture. In a large DBMS, there may be a number of different alternative index struc-
tures. Using a single binding unit per index structure allows us to activate only
those index structures that are needed for efficiently accessing the data (i.e., de-
pending on the work load).

NanoMail NanoMail is an e-mail client SPL with 25 features and 6 200 LOC. It
comprises different e-mail applications, from a simple MailNotify application that
only notifies a user if there is unread mail, up to a full mail client with mail storage
in a database. Similarly to FAME-DBMS, we compare variants with equal function-
ality (using 23 features) and varying binding units. For dynamic binding, we defined
the binding units DB and CLAMAV, which provide database storage and virus fil-
tering. Furthermore, for analyzing the impact of fine-grained dynamic customization,
we provide e-mail filters that are used like plugins. Each filter is loaded as a single
binding unit and users can add as many filters as needed. To analyze the influence
of a large number of binding units, we generate several mail filters and measure the
effect on startup time.

4.2 Resource consumption

In the following, we analyze the resource consumption of different FAME-DBMS and
NanoMail variants depending on the binding units used. We compare binary size,
working memory usage, and performance of a varying number of binding units but
we use always the same features.7 Our aim is to identify how to combine static and
dynamic binding to optimize a program with respect to functional and compositional
overhead.

In Figs. 14–19, we depict the results of our analysis for five configurations of
FAME-DBMS and three configurations of NanoMail. In configuration 1, all features
are statically bound and compiled as a single binary. In each of the configurations
2–5 an additional binding unit (e.g., QE, TXN, CRYPTO, BTREE for FAME-DBMS)
is extracted from the base binding unit and compiled as a distinct dynamically linked
library (DLL). In the following, we analyze binary size, memory consumption, and
performance of both SPLs. We distinguish between compositional and functional
overhead (cf. Sect. 2) for each analyzed property.

7For our evaluation, we used an Intel Core 2 system with 2.4 GHz and Windows XP. For compilation,
we used the Microsoft C/C++ compiler v13.10.3077 and Incremental Linker v7.10.3077 (Visual C++
2003). We used compiler optimization flag /O2 (i.e., /Og/Oi/Ot/Oy/Ob2/GS/GF/Gy). We linked dynami-
cally against Microsoft’s C++ run time library and removed unreferenced functions and data with linker
flag /OPT:REF.

Autom Softw Eng

Fig. 14 Binary size (base program and dynamic binding units) of five FAME-DBMS variants with an equal
feature selection and an increasing number of binding units

Fig. 15 Binary size of three variants of NanoMail with varying sets of binding units

4.2.1 Binary size

By means of the binary size of FAME-DBMS, we first describe how we calculate the
functional and compositional overhead. Since the functional overhead depends on
the features actually used, we provide numbers for the maximal possible functional
overhead. That is, we compare a static variant including all features with the minimal
dynamic variant without additional binding units. The binary sizes of the configura-
tions 1–5 of FAME-DBMS are shown in Fig. 14. The values represent executable code
and static data stored in the binary files. They do not include other libraries. For con-
figuration 1, we generated a single binding unit including all features and five binding
units for configuration 5. From configuration 1, we can only derive a single variant

Autom Softw Eng

with a binary size of about 50 KB. Comparing configurations 1 and 5, we observe the
following compositional and functional overhead:

– Comparing a complete variant of configuration 5 (83 KB) with configuration 1
(49 KB), we observe a compositional overhead of about 40% (83 KB − 49 KB
= 34 KB). That is, 40% of the code from configuration 5 is required for dynamic
binding.

– Comparing configuration 1 (49 KB) and the smallest variant of configuration 5
(18 KB), we observe a maximal possible functional overhead of about 64% for
configuration 1 (49 KB − 18 KB = 31 KB). That is, up to 64% of the code of
configuration 1 may not be used for a particular task (e.g., basic data storage and
retrieval without using SQL queries and other features). The overhead depends on
the number of features that are actually used at a particular point in time. It is
zero when all features are really in use. This underlines that a configuration highly
depends on the application scenario. To reduce the binary size, we have to avoid
any features that are not used and reduce dynamic binding to a minimum.

In our case studies, we observe an increasing compositional overhead for an increas-
ing number of binding units. Especially when a binding unit extends many classes
the effect is very strong. It is quite strong for FAME-DBMS (up to 40%, cf. Fig. 14)
and very weak for NanoMail (<4%).

The high relative overhead of 40% for FAME-DBMS is mainly caused by its small
binary size; the absolute overhead is 33.2 KB. The composition code makes up 21 KB
(25% of the program size): About 5 KB generic code for dynamic binding (i.e., for
loading and composing binding units; base program—composition code in Fig. 14)
and additionally between 3 KB and 5 KB overhead per binding unit (i.e., binding
unit specific composition code). The remaining overhead of 12 KB (15% of the pro-
gram size) is caused by the binding units CRYPTO (9 KB) and BTREE (3 KB). Rea-
sons are missing compiler and linker optimizations when dynamic binding is used.
In Fig. 14, we depict this unused code as binding units—unreferenced code. For ex-
ample, a method for calculating a hash sum with a binary size of 7.5 KB is not used
in our FAME-DBMS benchmark application. The linker removes the method from the
statically composed variant because it is never called. The same method cannot be
removed from binding unit CRYPTO because the compiler does not know whether
it is required by another binding unit or not. Hence, dynamic binding may cause a
functional overhead as well. This overhead is not caused by entire unused features
but by unreferenced methods.

The possible functional overhead in static variants of both SPLs is very high
(64%–94%). The reason is that a large fraction of the binary code belongs to op-
tional features. Increasing the use of dynamic binding usually reduces this overhead.
However, also insufficient customizability due to large binding units can cause a func-
tional overhead when not all features of a binding unit are used.

Both kinds of overhead can be reduced by adjusting the binding units. That is, a
stakeholder has to analyze the functional and compositional overhead per application
scenario to find the optimal tradeoff. When always using many of the binding units,
the benefit of dynamic binding with respect to resource consumption decreases. For
example, the binding units TXN and BTREE in FAME-DBMS cannot significantly

Autom Softw Eng

Fig. 16 Comparison of working memory usage of five FAME-DBMS variants with an equal feature selec-
tion and an increasing number of binding units. Full program variants include all dynamic binding units.
Base program variants use only the base program without loading additional binding units

reduce the functional overhead but they increase the compositional overhead signifi-
cantly. The size of the base program is nearly the same in the configurations 4 and 5,
but the additional binding unit BTREE increases the overall size by 12%. That is, if
we bind the features of the binding units TXN and BTREE statically (i.e., removing
configurations 3 and 5), we do not cause a major functional overhead but can reduce
the compositional overhead significantly. Hence, a stakeholder has to decide whether
this flexibility is really needed by taking the resulting compositional overhead into
account.

4.2.2 Memory usage

The memory usage of a program depends on allocated memory but also on the size
of the binary program code that is loaded into memory. For FAME-DBMS, we could
not measure any functional overhead of allocated memory because the memory is
needed mainly for the data buffer of the DBMS, which is independent of the feature
selection. Further features do not allocate a significant amount of additional memory.
The functional overhead thus only depends on the binary program size and dynamic
binding cannot reduce the memory consumption (cf. Fig. 16). In NanoMail, memory
allocation causes an additional memory consumption between 1.3 MB and 9.8 MB
depending on the binding units used. That is, unused features allocate memory and
cause a large functional overhead. On the contrary, the varying binary size only has a
small effect on memory consumption in NanoMail (about 28%, cf. Fig. 17).

The compositional overhead of allocated memory especially increases if a pro-
gram creates a large number of small objects that are dynamically composed. The
reason is that the size of a class instance increases for each binding unit that crosscuts
the class. This overhead is very high for small objects. The size Sdyn and the overhead

Autom Softw Eng

Fig. 17 Consumed working memory in NanoMail for variants with different binding units

Odyn of a dynamically bound object can be calculated with the following formula:

Sdyn = Sdata + Odyn (9)

Odyn = 12(nBU + 1) (10)

Sdata is the data size (i.e., the size of the object with static binding). nBU is the num-
ber of loaded binding units that crosscut the class. The constant 12 represents the
number of bytes a binding unit requires to store a self pointer, a super pointer, and a
pointer to its virtual function table (each pointer has a size of 4 byte). The constant
1 represents the additional proxy that we use to enable reconfiguration at run time.
The proxy could be removed for SPLs that are not reconfigured once they are instan-
tiated. Overall, the size of an object increases by 12 byte to enable dynamic binding
and linearly increases by 12 byte for each additional binding unit.

Large binding units increase the functional overhead only if a small number of
their features is actually used. The compositional overhead in FAME-DBMS is more
important than the functional overhead; the opposite is true for NanoMail. The dif-
ferences between the SPLs show that there is no general solution and there is space
for domain-specific optimizations.

A binding unit also increases memory consumption due to the compositional over-
head of its binary size (cf. Sect. 4.2.1) because the executable code is loaded into
memory. We analyzed the overhead for loading a large number of binding units by
adding several e-mail filters to NanoMail (up to 60 mail filters).8 The results are
shown in Fig. 18. Besides a general overhead for dynamic binding (transition from 0
to 1 filters), we observe a linear increase of 21 KB per filter (i.e., per binding unit).
For binding units that consume a small amount of memory, this is a large overhead.
By generating one binding unit for multiple filters (i.e., merging the filters), this over-
head can be avoided. For binding units that consume a large amount of memory, such

8We generated empty filter stubs to measure only the overhead for dynamic composition.

Autom Softw Eng

Fig. 18 Consumed working memory of NanoMail with an increasing number of mail filters with static
composition, dynamic composition with a single binding unit for all filters, and pure dynamic composition
(i.e., one binding unit for each filter)

as the virus filter in NanoMail, dynamic binding causes an acceptable overhead of
only about 4% compared to the memory consumption of the binding unit.

4.2.3 Performance

We measured the performance of FAME-DBMS using a benchmark for reading and
writing data.9 As shown in Fig. 19, the performance decreases with an increasing
number of binding units. Comparing dynamic variants with pure static binding, we
observe a performance reduction between 5% (2 binding units) and 28% (5 binding
units). The reason for this increasing compositional overhead are method inlinings
that could not be applied and more indirections for method calls compared to static
variants. Both are caused by generated code for dynamic binding: composition of
classes at run time is achieved with virtual methods in decorators, which add an
indirection and hinder inlining of method extensions.

In FAME-DBMS, 100% of method refinements are inlined when using static bind-
ing. This decreases to about 95% for configuration 2 and further to 86% for configura-
tion 5. Each method refinement that is not inlined is replaced by a virtual method and
thus decreases performance. Binding unit BTREE substantially increases the over-
head (cf. configuration 5 in Fig. 19). The reason is that it refines methods that are
invoked multiple times for a single read or write operation. Hence, we should create
only a distinct binding unit for the Btree if this flexibility is really needed (e.g., when
we have to decide at run time which kind of index to use).

Static and dynamic binding may also affect the startup time of a program for load-
ing binary code from DLLs and for initialization of unused code. Due to the fairly

9We used random key-value-pairs for reading and writing 10.000 records of type string via the B-Tree
index.

Autom Softw Eng

Fig. 19 Comparison of benchmarks for reading and writing of different variants of FAME-DBMS. The
performance relative to static binding is shown. 100% means about 3.0 Mio queries/s for reading and
0.8 Mio queries/s for writing

small binary size of binding units, we observed only an slightly increased startup
time. The compositional overhead for loading binding units is about 30 ms per ad-
ditional binding unit. We observed a functional overhead (intitialization code of fea-
tures) of about 2 s for the largest binding unit in NanoMail (the CLAMAV virus filter).
Hence, the compositional overhead with respect to program startup is very small and
can be ignored in many application scenarios. In contrast, the functional overhead for
initialization of a binding unit may be important for application scenarios that require
to restart a program frequently.

To summarize, the influence of dynamic binding is quite high when a feature re-
fines frequently called methods. This is may be caused by a high number of method
extensions (e.g., in many binding units), but it may also be caused by a few re-
finements of performance critical methods as shown for the Btree in FAME-DBMS.
Again, the best size for a binding unit has to be determined per SPL and application
scenario. Merging binding units can remove dynamic method refinements. The load
time of a program can only be reduced significantly if the execution of complex ini-
tialization code can be avoided or if large parts of a program do not have to be loaded
at startup. The number of binding units is usually not important. For example, 30
binding units result in an overhead of about one second for starting the programs of
our case study.

5 Discussion

In this section, we discuss the results of our evaluation and analyze how customizabil-
ity and SPL development is influenced by our approach. Finally, we derive a guideline
for building SPLs that support static and dynamic binding.

Autom Softw Eng

Fig. 20 Relative size of three objects with a data size of 4, 16, and 64 bytes for an increasing number of
dynamic extensions (i.e., crosscutting binding units)

5.1 Resource consumption

Our evaluation has shown that, depending on the binding time, a compositional and
functional overhead occurs in a running program with regard to binary size, memory
consumption, and performance. The compositional overhead caused by a binding unit
depends on its entanglement with other binding units. That is, method calls across the
boundary of a binding unit (i.e., via its interface) introduce an execution time over-
head. The interface of a binding unit consists of virtual methods to enable dynamic
binding. This hinders method inlining, introduces indirections, and increases the size
of generated code as well as the size of objects in a running program. Hence, a bind-
ing unit should contain feature sets that are used in combination. For example, the
effect on memory consumption is very high when allocating a large number of small
objects. In Fig. 20, we depict the computed relative size (cf. (9)) of three different
objects with 4, 16, and 64 bytes user data with an increasing number of dynamic
extensions (i.e., dynamic binding units that crosscut the object). For an object with
4 byte user data, two dynamic extensions increase the object size by a factor of 10.
If such objects are the main cause of memory consumption of a program then the
memory consumption also increases by a factor of 10. For larger objects, this ef-
fect is much smaller. Combining static and dynamic binding reduces the number of
dynamic binding units and can thus highly decrease the memory consumption.

However, large binding units introduce a potential functional overhead due to fea-
tures that are not used. Splitting binding units can reduce the functional overhead,
but we have shown that this effect can be smaller than the introduced compositional
overhead. Furthermore, we have shown that dynamic binding may also introduce an
overhead due to unused methods that can be removed by the linker when using static
binding. An advantage of our approach is that it allows a programmer to find a bal-
ance between compositional and functional overhead that is suitable for her needs.

As shown in Fig. 21, our approach provides pure static and pure dynamic compo-
sition (lower left and upper right points) as well as all combinations with varying sets

Autom Softw Eng

Fig. 21 Combining static and dynamic binding to support a varying number and size of binding units

of binding units (shown as triangle). When creating binding units, the compositional
overhead can be reduced for a constant number of dynamically bound features by
increasing the number of features per binding unit (arrow in upper part of Fig. 21).
The functional overhead can be reduced in two ways (lower left arrows): On the one
hand, increasing the number of dynamically bound features (i.e., moving features
from the base program into a binding unit) reduces the size of the base program. On
the other hand, increasing the number of dynamic binding units (i.e., splitting the
binding units) reduces the size of each binding unit.

Optimizing resource consumption Our approach and its current implementation
does not provide an optimized solution for every application scenario. To optimize
memory consumption and execution time, we already provide different code trans-
formations to generate applications that use a single SPL instance only or programs
that use multiple instances of an SPL (cf. Sect. 3.4.3). However, we can further op-
timize the code transformation process to reduce the compositional overhead caused
by dynamic binding. For example, we can reduce memory consumption by allocat-
ing a dynamically composed object in a single block of memory instead of multiple
blocks—one for each decorator. This allows us to reduce the object size by removing
the super and self pointers. Instead, we can compute the memory addresses of
the super object and the compound object for each compound class at instantiation
time, as it is also done for inheritance by C++ compilers (Lippman 1996). Hence,
the memory consumption of small dynamically composed objects (e.g., as shown in
Fig. 20) could be reduced to about one third. However, this solution is only better
suited for SPL configuration at load time. Using this approach for reconfiguration at
run time (e.g., adding a new refinement to an already existing object) means that we
have to reallocate the whole object when its size increases (i.e., when a new feature
is loaded). This may highly increase the time required for adaptation. Hence, such
optimizations are usually well suited for a particular application scenarios only.

Autom Softw Eng

5.2 Customizability and SPL development

Granularity and flexibility Due to the dynamic binding capabilities of FeatureC++,
a developer can achieve extensibility of a program after deployment. Additionally,
features can be bound statically, which supports fine-grained extensions without in-
creasing the execution time. For example, the B-Tree in FAME-DBMS is built from
many small features (e.g., features for write support) that can be statically configured.
This allows us to achieve a performance and memory consumption comparable to sta-
tic binding with the C preprocessor, as we have shown in previous work (Rosenmüller
et al. 2009). Fine-grained extensions and dynamic binding are opposite optimization
goals with respect to performance and memory consumption. The more fine-grained
the extensions are, the more memory and computing power is required for dynamic
binding (cf. Fig. 20). Our approach allows a programmer to combine both binding
times as needed per application scenario.

Reuse The combination of both binding times increases reuse possibilities in differ-
ent application scenarios. For example, we can statically bind all features of FAME-
DBMS for deeply embedded devices and support dynamic binding for other plat-
forms. Furthermore, binding time flexibility enables reuse of features across different
SPLs that use different binding times. For example, we can reuse a feature that imple-
ments a communication protocol in an e-mail client SPL that uses dynamic binding
and also in an e-mail server that uses static binding.

Crosscutting features With our approach, static binding can also be used for cross-
cutting features that are spread across multiple dynamic binding units. These features
are usually implemented with preprocessors (Griss 2000) or design patterns (Mezini
et al. 2000; Zdun 2004). Adding or removing such features is possible by rebuild-
ing the affected binding units. For example, in FAME-DBMS, WRITESUPPORT is a
crosscutting feature that affects several binding units such as the query engine, in-
dexes, etc. Using FeatureC++, we can add or remove this feature and have to rebuild
only the affected binding units.

Development and maintenance Using a single mechanism for implementing fea-
tures (i.e., feature modules) also simplifies SPL development. A programmer may
combine FeatureC++ with other variability mechanisms (design patterns, macros,
#ifdefs, etc.) or may replace other mechanisms by feature modules. Especially the
use of #ifdefs can be reduced to improve the comprehensibility of source code. Bind-
ing time flexibility can also simplify maintenance of an SPL. For example, dynamic
binding can be replaced temporarily by static binding for debugging purposes to avoid
the complexity of dynamic binding. Finally, the presented approach can also be ap-
plied if initially only static binding is required. In this case, it simplifies adoption of
dynamic binding (e.g., in later versions of an SPL, as shown for FAME-DBMS).

5.3 A guideline for defining binding units

When configuring an SPL for static and dynamic binding, we have to answer two
questions: Which features have to be bound dynamically? Which dynamically bound

Autom Softw Eng

features should be composed into the same binding unit? With our approach, a do-
main expert can decide this per application scenario. Static binding does not exhibit
any compositional overhead. It is usually the best choice if extensibility after deploy-
ment or at run time is not required. The remaining challenge for a domain expert is
to find proper binding units for dynamically bound features to provide the required
flexibility while minimizing the overhead. Therefore, resource consumption of dif-
ferent feature combinations has to be analyzed, which means a high effort and may
be impractical. The following rules can be used to find good feature combinations for
binding units more easily:

1. As a simple rule, a large number as well as a large size of binding units should
be avoided because the first increases the compositional overhead and the latter
increases the functional overhead. However, as depicted in Fig. 21, this cannot
be a fixed rule because reducing one overhead may increase the other.

2. Analyzing the feature model helps to find features that should be combined in a
binding unit. For example, a feature and all its children should usually be part
of the same binding unit. Similarly, a requires constraint between two features
indicates that the features are used in combination and may also be combined
into the same binding unit.

3. Furthermore, we can analyze the source code of features. A high degree of
coupling between features indicates which features are commonly used to-
gether (Apel and Beyer 2011). Hence, it can be beneficial to merge them into
a single binding unit. Crosscutting features should be bound statically if possi-
ble. An automated analysis of coupling and cohesion could be used to provide
an initial assignment of dynamically bound features to binding units.

4. Implementation knowledge can be used to find features and methods that are
important with respect to performance and memory consumption. For example,
frequently called hot spot methods should ideally be bound statically. If this is
not possible, they should be defined in a single binding unit only. This causes the
method to be bound dynamically but avoids a decomposition of the method into
multiple fragments. Similarly, when allocating a large number of small objects
(such as list elements), the corresponding class should be defined in a single
binding unit.

To further reduce the overhead of a program, different optimizations of binding units
are possible. For example, overlapping binding units (i.e., binding units that use an
overlapping set of features) can be created to provide binding units with a small in-
terface or to reduce the number of binding units. Another optimization is to split
or merge binding units when the requirements have changed over time or when an
analysis at runtime has identified how the binding units are actually used. For exam-
ple, binding units that are often or always used in combination can be merged into a
single binding unit without changing the source code.

6 Related work

There are approaches for software composition that employ different techniques or
paradigms to support different binding times. For example, CaesarJ (Aracic et al.

Autom Softw Eng

2006) supports static composition based on virtual classes and dynamic deployment
of aspects. Object Teams support dynamic binding of teams, which can be used to
represent features of an SPL (Hundt et al. 2007). Furthermore, activation teams are
statically instantiated. These in turn activate other teams at run time. Both approaches
require to know the binding time of an implementation unit at design time. In contrast,
we can choose the binding time at deployment time to enable reuse of source code
even when using different binding times.

Zdun et al. introduce transitive mixins to generalize composition of classes and
objects (Zdun et al. 2007). The implementation provided in Zdun et al. (2007) is built
on top of a dynamic approach that does not support static composition. Chakravarthy
et al. provide with Edicts an approach that supports different binding times using de-
sign patterns that are applied to a program by means of aspects (Chakravarthy et al.
2008). Configuration is done by switching between Edicts. Czarnecki et al. describe
how to parameterize the binding time using C++ templates (Czarnecki and Eisenecker
2000). They provide a configurable binding time (e.g., for class extensions) with a
template-based program generator. The OSGi10 standard also allows static and dy-
namic composition of components, called bundles. However, it is a component-based
approach that does not allow a system to be decomposed into fine-grained (cross-
cutting) features. Other approaches support static and dynamic binding of aspects.
AspectC++ supports weaving at run time and compile time for the same aspect (Gi-
lani and Spinczyk 2005). AspectJ supports weaving advice at compile-time, after
compile-time, and at load time.11 PROSE (Nicoara et al. 2008), Steamloom (Bock-
isch et al. 2004), Hotwave (Villazón et al. 2009), and other AspectJ-based approaches
support weaving at run time and may be combined with AspectJ’s static weaving.
These AOP approaches can be used to support multiple class extensions at the same
time as in FOP.

In contrast to FeatureC++, the approaches above do not provide a mechanism
for feature composition according to a feature model, which is necessary for valida-
tion. Nevertheless, they can be combined with tools that support configuration and
static composition of SPLs such as pure::variants (pure-systems GmbH 2004). How-
ever, the approaches do not provide a mechanism for configuration at run time that
is based on a feature model. Similar to our approach, the mechanisms combine sta-
tic and dynamic binding. Approaches such as Edicts and AspectC++ can be used to
bind a feature statically or dynamically with the base program without changing the
implementation. However, they do not provide means to statically merge an arbitrary
set of dynamically bound features into a single binding unit and compose the binding
units dynamically. One reason is that these approaches do not preserve the execution
order of method extensions when mixing both binding times in this way. Applying
static binding first and dynamic binding afterwards changes the feature composition
order (all static features are bound before dynamic features). This in turn may change
the behavior of methods that are refined by statically and dynamically bound features
(e.g., statically and dynamically weaved aspects that have the same join point). We
solve this by generating hook methods, as described in Sect. 3.4.3.

10http://www.osgi.org.
11http://eclipse.org/aspectj.

http://www.osgi.org
http://eclipse.org/aspectj

Autom Softw Eng

Lee et al. suggest to decide before SPL development which features to implement
in one component and to combine the resulting components at run time (Lee and
Kang 2006). Griss argues that components and novel approaches to software com-
position should be combined to develop SPLs (Griss 2000). He discusses different
approaches that may be used to customize components when the feature selection
changes. Our approach goes into the same direction. It uses only a single implemen-
tation technique that supports static and dynamic binding. We also think that com-
ponents have to be planned before SPL development, but the selection of concrete
features and component customization has to happen at deployment time.

Our approach is partially based on the Delegation Layers approach (Ostermann
2002), which supports dynamic binding of features. Several other collaboration-based
approaches and layered designs such as Jak (Batory et al. 1998), Java Layers (Car-
done and Lin 2001), Jiazzi (McDirmid et al. 2001), Mixin Layers (Smaragdakis
and Batory 2002), Aspectual Feature Modules (Apel et al. 2008b), Aspectual Col-
laborations (Lieberherr et al. 2003), and Context-oriented Programming (Hirschfeld
et al. 2008) also support either static or dynamic composition. In contrast to these
approaches, our approach integrates static and dynamic binding.

FeatureC++ supports composition at run time but is not a full-fledged solution
for run time adaptation of SPLs. For example, we do not provide an infrastructure
for context dependent activation and deactivation of features. It is not without reason
that there is a whole branch of research on run time adaptable SPLs (Hallsteinsen
et al. 2008). Nevertheless, solutions for run time adaptation can be built on top of
FeatureC++ to combine traditional SPLs with run time adaptable SPLs and to addi-
tionally support static customization of components.

7 Conclusion and perspective

We have presented an approach that seamlessly integrates static and dynamic feature
binding at implementation and modeling level. Our approach allows developers to
statically generate dynamic binding units that can be composed at load time or at
run time of a program. The approach overcomes limitations of pure static and pure
dynamic binding and can be used to replace existing approaches by using only a
single implementation mechanism. We provide means to:

– develop the features of an SPL using a single implementation mechanism that is
independent of the binding time,

– choose the binding time per feature after development,
– generate dynamic binding units by composing multiple features to optimize re-

source consumption.

Compared to alternative solutions for implementing static and dynamic feature bind-
ing, our approach simplifies several aspects of SPL development. With respect to
resource consumption, we found a tradeoff between functional overhead caused by
static binding and compositional overhead caused by dynamic binding. Finding the
optimal binding time for the features of an SPL is a difficult task. Varying require-
ments on flexibility between different application scenarios further complicate the

Autom Softw Eng

decision. Our proposal of generating dynamic binding units, allows an SPL devel-
oper to choose the binding time per feature even after development and for each
application scenario individually.

In future work, we plan to integrate our approach with component-based software
development (e.g., to simplify component integration and to avoid dynamic binding
of components if it is not required). This means that a binding unit has to clearly
define an interface that can be used by other binding units.

Acknowledgements We thank Christian Kästner for comments on earlier drafts of this paper. The work
of Marko Rosenmüller is funded by the German Research Foundation (DFG), project number SA 465/34-1.
Norbert Siegmund is funded by the German Ministry of Education and Research (BMBF), project number
01IM08003C. Sven Apel’s work is supported by the German Research Foundation (DFG), projects AP
206/2-1 and AP 206/4-1.

References

Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.: Refactoring product lines. In: Pro-
ceedings of the International Conference on Generative Programming and Component Engineering
(GPCE), pp. 201–210. ACM Press, New York (2006)

Anastasopoules, M., Gacek, C.: Implementing product line variabilities. In: Proceedings of the Symposium
on Software Reusability (SSR), pp. 109–117. ACM Press, New York (2001)

Apel, S., Beyer, D.: Feature cohesion in software product lines. In: Proceedings of the International Con-
ference on Software Engineering (ICSE) (2011, to appear)

Apel, S., Kästner, C.: An overview of feature-oriented software development. J. Object Technol. 8(5),
49–84 (2009)

Apel, S., Kästner, C., Batory, D.: Program refactoring using functional aspects. In: Proceedings of the Inter-
national Conference on Generative Programming and Component Engineering (GPCE), pp. 161–170.
ACM Press, New York (2008a)

Apel, S., Leich, T., Saake, G.: Aspectual feature modules. IEEE Trans. Softw. Eng. 34(2), 162–180
(2008b)

Apel, S., Lengauer, C., Möller, B., Kästner, C.: An algebraic foundation for automatic feature-based pro-
gram synthesis. Sci. Comput. Program. 75(11), 1022–1047 (2010)

Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: An overview of CaesarJ. In: Transactions on Aspect-
Oriented Software Development I. Lecture Notes in Computer Science, vol. 3880, pp. 135–173.
Springer, Berlin (2006)

Batory, D., Lofaso, B., Smaragdakis, Y.: JTS: Tools for implementing domain-specific languages. In: Pro-
ceedings of the International Conference on Software Reuse (ICSR), pp. 143–153. IEEE Computer
Society, Washington (1998)

Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise refinement. IEEE Trans. Softw. Eng. 30(6),
355–371 (2004)

Bockisch, C., Haupt, M., Mezini, M., Ostermann, K.: Virtual machine support for dynamic join points.
In: Proceedings of the International Conference on Aspect-Oriented Software Development (AOSD),
pp. 83–92. ACM, New York (2004)

Cardone, R., Lin, C.: Comparing frameworks and layered refinement. In: Proceedings of the International
Conference on Software Engineering (ICSE), pp. 285–294. IEEE Computer Society, Washington
(2001)

Chakravarthy, V., Regehr, J., Eide, E.: Edicts: Implementing features with flexible binding times. In: Pro-
ceedings of the International Conference on Aspect-Oriented Software Development (AOSD), pp.
108–119. ACM, New York (2008)

Classen, A., Hubaux, A., Heymans, P.: A formal semantics for multi-level staged configuration. In: Pro-
ceedings of the Workshop on Variability Modelling of Software-intensive Systems (VaMoS), pp.
51–60 (2009)

Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications. Addison-
Wesley, Reading (2000)

Autom Softw Eng

Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration using feature models. In: Proceedings
of the International Software Product Line Conference (SPLC). Lecture Notes in Computer Science,
vol. 3154, pp. 266–283. Springer, Berlin (2004)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading (1995)

Gilani, W., Spinczyk, O.: Dynamic aspect weaver family for family-based adaptable systems. In: Proceed-
ings of Net.ObjectDays, pp. 94–109. Gesellschaft für Informatik, Munich (2005)

Griss, M.L.: Implementing product-line features with component reuse. In: Proceedings of the Interna-
tional Conference on Software Reuse (ICSR). Lecture Notes in Computer Science, vol. 1844, pp.
137–152. Springer, Berlin (2000)

Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product lines. Computer 41(4),
93–95 (2008)

Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented programming. J. Object Technol. 7(3), 125–
151 (2008)

Hundt, C., Mehner, K., Pfeiffer, C., Sokenou, D.: Improving alignment of crosscutting features with code
in product line engineering. J. Object Technol. 6(9), 417–436 (2007)

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-M., Irwin, J.: Aspect-
oriented programming. In: Proceedings of the European Conference on Object-Oriented Program-
ming (ECOOP). Lecture Notes in Computer Science, vol. 1241, pp. 220–242. Springer, Berlin (1997)

Lee, J., Kang, K.C.: A feature-oriented approach to developing dynamically reconfigurable products in
product line engineering. In: Proceedings of the International Software Product Line Conference
(SPLC), pp. 131–140. IEEE Computer Society, Washington (2006)

Lieberherr, K.J., Lorenz, D., Ovlinger, J.: Aspectual collaborations—combining modules and aspects.
Comput. J. 46(5), 542–565 (2003)

Liebermann, H.: Using prototypical objects to implement shared behavior in object-oriented systems. In:
Proceedings of the International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pp. 214–223. ACM Press, New York (1986)

Lippman, S.B.: Inside the C++ Object Model. Addison-Wesley, Reading (1996)
Lopez-Herrejon, R., Batory, D., Lengauer, C.: A disciplined approach to aspect composition. In: Proceed-

ings of the International Symposium on Partial Evaluation and Semantics-Based Program Manipula-
tion (PEPM), pp. 68–77. ACM Press, New York (2006)

McDirmid, S., Flatt, M., Hsieh, W.C.: Jiazzi: New-age components for old-fashioned Java. In: Proceedings
of the International Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), pp. 211–222. ACM Press, New York (2001)

Mezini, M., Seiter, L., Lieberherr, K.: Component Integration with Pluggable Composite Adapters.
Kluwer, Dordrecht (2000)

Nicoara, A., Alonso, G., Roscoe, T.: Controlled, systematic, and efficient code replacement for running
java programs. SIGOPS Oper. Syst. Rev. 42(4), 233–246 (2008)

Ostermann, K.: Dynamically composable collaborations with delegation layers. In: Proceedings of the Eu-
ropean Conference on Object-Oriented Programming (ECOOP). Lecture Notes in Computer Science,
vol. 2374, pp. 89–110. Springer, Berlin (2002)

Prehofer, C.: Feature-oriented programming: a fresh look at objects. In: Proceedings of the European
Conference on Object-Oriented Programming (ECOOP). Lecture Notes in Computer Science, vol.
1241, pp. 419–443. Springer, Berlin (1997)

pure-systems GmbH: Technical White Paper: Variant Management with pure::variants (2004).
http://www.pure-systems.com

Rosenmüller, M., Siegmund, N.: Automating the configuration of multi software product lines. In: Pro-
ceedings of the Workshop on Variability Modelling of Software-intensive Systems (VaMoS), pp.
123–130 (2010)

Rosenmüller, M., Apel, S., Leich, T., Saake, G.: Tailor-made data management for embedded systems: a
case study on Berkeley DB. Data Knowl. Eng. 68(12), 1493–1512 (2009)

Rosenmüller, M., Siegmund, N., Apel, S., Saake, G.: Code generation to support static and dynamic com-
position of software product lines. In: Proceedings of the International Conference on Generative
Programming and Component Engineering (GPCE), pp. 3–12. ACM Press, New York (2008)

Smaragdakis, Y., Batory, D.: Mixin layers: an object-oriented implementation technique for refinements
and collaboration-based designs. ACM Trans. Softw. Eng. Methodol. 11(2), 215–255 (2002)

van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in software product lines. In: Proceed-
ings of the Working Conference on Software Architecture (WICSA), pp. 45–55. IEEE Computer
Society, Washington (2001)

http://www.pure-systems.com

Autom Softw Eng

Villazón, A., Binder, W., Ansaloni, D., Moret, P.: HotWave: creating adaptive tools with dynamic aspect-
oriented programming in Java. In: Proceedings of the International Conference on Generative Pro-
gramming and Component Engineering (GPCE), pp. 95–98. ACM Press, New York (2009)

Zdun, U.: Some patterns of component and language integration. In: Proceedings of the European Con-
ference on Pattern Languages of Programs (EuroPlop), pp. 1–26. UVK Verlagsgesellschaft mbH,
Konstanz (2004)

Zdun, U., Strembeck, M., Neumann, G.: Object-based and class-based composition of transitive mixins.
Inf. Softw. Technol. 49(8), 871–891 (2007)

	Flexible feature binding in software product lines
	Abstract
	Introduction
	Feature binding in software product lines
	Static and dynamic feature binding
	Resource consumption
	Mixing static and dynamic binding

	Integration of static and dynamic binding
	Feature-oriented programming
	Support for static feature binding
	Support for dynamic feature binding
	Feature classes
	Class instantiation

	Integrating static and dynamic binding
	Dynamic binding units
	Product derivation

	Compound features and feature modeling
	Compound features
	Feature models for compound features

	Implementation: generating binding units
	Commutativity of method refinements
	Storing SPL context

	Summary

	Case studies and evaluation
	Defining binding units
	Fame-Dbms
	NanoMail

	Resource consumption
	Binary size
	Memory usage
	Performance

	Discussion
	Resource consumption
	Optimizing resource consumption

	Customizability and SPL development
	Granularity and flexibility
	Reuse
	Crosscutting features
	Development and maintenance

	A guideline for defining binding units

	Related work
	Conclusion and perspective
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

