
Reducing Code Replication in Delegation-based Java Programs 1

Chapter 1

REDUCING CODE REPLICATION IN

DELEGATION -BASED JAVA PROGRAMS

Martin Kuhlemann∗

School of Computer Science, University of Magdeburg,Germany
Christian K̈astner†

School of Computer Science, University of Magdeburg,Germany
Sven Apel‡

Department of Informatics and Mathematics, University of Passau,Germany

Keywords: Java language, generative programming

Abstract

Interfaces and delegation are fundamental concepts in OO languages. Although
both concepts have been shown to be beneficial in software development, sometimes
their implementation is cumbersome. Both result in numbersof forwarding methods
or numbers of empty methods for respective classes. These trivial methods distract
the user from non-trivial methods the class comprises. Thisincreases complexity and
decreases maintainability. In its current form, Java does not provide sufficient mech-
anisms to avoid this boilerplate code. Instead, all the methods that are empty or only

∗E-mail address: mkuhlema@ovgu.de
†E-mail address: ckaestne@ovgu.de
‡E-mail address: apel@uni-passau.de



2 Martin Kuhlemann, Christian K̈astner, and Sven Apel

forward calls have to be coded manually. In this paper, we introduce a new lightweight
mechanism, that improves the implementation of interface-based and delegation-based
programs. We show, though this mechanism is very simple, it solves these problems
that are well-known in object-oriented software development. In three open-source
Java programs of up to over 25.000 lines of source code, we show how we use this
mechanism to generate up to 5.7 % of all methods per case studythat were empty or
only forwarding calls.

1. Introduction

Interfaces and delegation are fundamental concepts ofobject-oriented programming (OOP)
and Java [12, 11, 15]. An interface defines a protocol how to accessa class and hides the
class’ implementation [6, 2]. Delegation is a mechanism that forwards messagecalls from
adelegating classto an associateddelegatee classfor the purpose of reuse [20]. Delegation
and interfaces are used frequently in design patterns [11] and black-box frameworks [15] to
improve flexibility and extensibility. However, there are several known problems related to
the implementation of methods that forward calls to a delegatee class and that implement
abstract methods of implemented interfaces – we name both types of methodsdefault meth-
ods. These methods are trivial and repetitious but tedious to write. These default methods
also distract from the non-trivial methods of a class that we callcore methods. Default
methods are replicated throughout the code [11, 15] and the resulting code is criticized as
bad design (a.k.a. ‘code smell’) [10]. They may reduce software maintainability and under-
standability [14] which is in contrast to the promised benefits of reuse through interfaces
and delegation.

We show that default methods constitute 2.2 % to 5.7 % of all methods in three ana-
lyzed medium-sized Java programs. In order to avoid the implementation of thesemethods,
we propose a lightweight language mechanism for Java, calledImplicit Defined Methods
(IDM), that takes care of generating default methods when required. Our aim isto improve
code quality and to take the burden from the developer who otherwise has toimplement
and maintain a high number of default methods (e.g., up to 107 inJHotDraw). We illustrate
IDM using the delegation-based design patterns Decorator and Visitor, and evaluate it using
three open-source case studies of different size and purpose,JHotDraw1 [8, 26],Java Class
File Editor (Jcfe)2, and the Java packagejava.io [24].

Note, with only 2.2 % to 5.7 % of all methods in our analyzed programs, default meth-
ods occur rather infrequently. In many programs that do not use delegation it may not occur
at all. Nevertheless, it is a problem that – when it occurs – inflicts code quality and is te-
dious for the developers. Our studies show how, even though default methods do not occur
frequently, we gain considerable benefit from IDM.

2. Problem Statement

Delegation is the process of forwarding a request to a delegatee class that deals with the
request instead of the delegating class that received the request originally. Delegation is

1http://sourceforge.net/projects/jhotdraw/
2http://sourceforge.net/projects/classeditor/



Reducing Code Replication in Delegation-based Java Programs 3

1 i n t e r f a c e Command{
2 vo id execute();
3 boolean isExecutable();
4 DrawingEditor getDrawingEditor();
5 String name();
6 }
7
8 c l a s s UndoableCommand implements Command{
9 Command myWrappedCommand;

10 vo id execute() { /∗ . . . ∗ /}
11 aboolean isExecutable() {
12 areturn myWrappedCommand.isExecutable();
13 a}
14 aDrawingEditor getDrawingEditor() {
15 areturn myWrappedCommand.getDrawingEditor();
16 a}
17 aString name() {
18 areturn myWrappedCommand.name();
19 a}
20 }
21
22 c l a s s ZoomCommand implements Command{
23 vo id execute() { /∗ . . . ∗ /}
24 boolean isExecutable() { /∗ . . . ∗ /}
25 DrawingEditor getDrawingEditor() { /∗ . . . ∗ /}
26 String name() { /∗ . . . ∗ /}
27 }

(a)

1 i n t e r f a c e ClassVisitor{
2 vo id visitClass(ClassFile classFile);
3 vo id visitInstructions(Instructions instrs);
4 vo id visitInstruction(Instruction instr);
5 vo id visitVersion(Version ver);
6 }
7
8 a b s t r a c t c l a s s NavigatingClassVisitor implements ClassVisitor {
9 vo id visitClass(ClassFile classFile) { /∗ . . . ∗ /}

10 avoid visitInstructions(Instructions instrs) {}
11 avoid visitInstruction(Instruction instr) {}
12 avoid visitVersion(Version ver) {}
13 }

(b)

Figure 1. Code repitition in delegating and delegatee classes (ecxerpts of case study’s
classes).



4 Martin Kuhlemann, Christian K̈astner, and Sven Apel

a reuse mechanism beside inheritance in Java and other OOP languages [35], i.e., differ-
ent delegating classes may reuse the implementation of one delegatee class by forwarding
requests to it. Both, delegating and delegatee classes, may include repetitivemethod imple-
mentations.

In delegating classes, a high number of forwarding methods makes their implementa-
tion tedious. This may hamper reasoning about that class because the coremethods, i.e.,
the reason for implementing it, may be hard to identify among all forwarding methods.
Consequently, the class design may be considered problematic because it mainly forwards
messages (known as Middle Man code smell) [10] and contains numerous methods that do
not communicate with each other [15].

In Figure 1a, the delegating classUndoableCommand(Lines 8-20, taken fromJHot-
Draw) includes numerous forwarding methods (we underlined default code) which may
hamper finding the core methodexecuteand reasoning about it. In this classUndoableCom-
mandsix of nineteen methods simply forward calls.

In delegatee classes, a high number of empty methods has to be implemented; the empty
methods distract from the core methods of this class. Oftentimes the delegatee classes
disable methods of their super-type with empty methods [14, 27, 9] because these methods
do not relate to the delegatee’s concern (A typical solution is to introduce anabstract class,
but as discussed below this cannot be used generally.). Consequently,also the disabling
methods do not contribute to the delegatee’s concern. Classes that includemany empty
methods are considered as bad code design (code smell Lazy Class) [10].

In Figure 1b, the delegateeNavigatingClassVisitor(Lines 8-13, taken fromJcfe) in-
cludes mostly empty methods because it needs to define all methods of its interface
ClassVisitor– we again underlined default code. (Note, using an abstract class is prob-
lematic as outlined later in this section but avoids harder problems of empty methodsfor its
subclasses.)

Relevance of the Problem

Design patterns define solutions for recurring design problems in OOP with the goal of an
improved reusability and variability of code [11]. Numerous design patternsrely on dele-
gation (in particular, Adapter, Bridge, Decorator, Chain Of Responsibility, Proxy, Strategy,
Visitor, or Iterator) and these patterns are known to occur frequently compared to others
(McNatt et al. reported that 30 of 99 Gang-of-Four-pattern occurrences in their studies are
delegation-based [22].). Moreover, pattern code has to be repeated every time a pattern is
used [23, 3, 11, 5], thus, worsening problems of repetitive delegation methods. The excerpts
of Figure 1, taken fromJHotDrawandJcfe, show implementations of the design patterns
Decorator and Visitor.

Black-box frameworks use interfaces to provide a common architecture fora family
of related applications [15, 19]. A framework pinpoints delegatee interfaces (so-calledhot
spots[15]) that user classes have to implement to configure and obtain a complete applica-
tion; thereby, every user class has to implement also the methods of its hot spot interface
that do not contribute to the class’ concern – respective methods often remain empty. While
larger hot-spot interfaces may provide more variability for framework applications than
small hot spot interfaces, they also may include more methods to learn by the developer



Reducing Code Replication in Delegation-based Java Programs 5

but not needed for single applications [7]. Thus, black-box frameworks may force a user to
implement numerous empty default methods.

Abstract Classes – Not Always a Solution

Abstract classes [15] are often used to cope with default methods. An abstract class provides
a protocol for subclasses and may implement that protocol in parts. This way, abstract
classes localize a method that had been repeated across multiple classes before. However,
abstract classes cannot be used as a general solution for reducing default methods, because
of several problems and limitations.

First, in languages like Java, inheritance from different superclassesis not possible.
Thus, a class that inherits from an abstract class to work around the default method prob-
lem, can no longer inherit from any other class. For instance, we observed the problem
in several programs that use different abstract classes of Java’s AWT framework, abstract
AWT classes that define default implementations for AWT interfaces. While it ispossible
to write abstract classes that implement combinations of interfaces, as done inAWT for
WindowAdapter, there is an exponential number of possible combinations.

Second, abstract classes may face problems ofputting methods to high in an inheritance
hierarchy[14, 27, 9]. That is, for the purpose of reuse, a method may be located so high
in the inheritance hierarchy that some subclasses that inherit the method mustdisable the
method by overriding. Therefore, the abstract class should cover exactly the methods that
are repeated in every subclass, e.g., forwarding or empty methods. If anabstract class
does not provide all forwarding and empty methods for a set of subclass, these certain
subclasses still have to define those methods which results in code replication. If an abstract
class provides too many methods, some subclasses have to disable inherited methods by
overriding them such that they have no effect [27]. A system of fine-grained abstract classes
may help for that limitation but complicates the inheritance structure [14].

Summary. Delegation is frequently used in OOP, especially, when the software is con-
sidered well-designed, i.e., using design patterns or frameworks. To implement this well-
designed software, the developer is forced to implement numbers of default methods. Con-
temporary techniques to work around this problem, like abstract classes, are limited.

3. Implicit Defined Methods

We propose a new language mechanism for Java that instructs the compiler togenerate
default methods implicitly to either forward their arguments or do nothing. Of course, the
mechanism does not generate core methods which have to be implemented by thedeveloper.

Delegating as well as delegatee objects follow one common interface which provides
the signatures for the methods to implement. We augment theimplementsdeclaration of
Java classes regarding an interface with an argument list. This argument list signalizes the
body of default methods (delegating or delegatee methods) that are generated in the class for
the given interface. In Figure 2, we show a refactored implementation of theUndoableCom-
mandexample using IDM that corresponds to Figure 1a. In Line 1, we instruct the IDM



6 Martin Kuhlemann, Christian K̈astner, and Sven Apel

1 c l a s s UndoableCommand force implements Command(myWrappedCommand){
2 Command myWrappedCommand;
3 vo id execute(){ /∗ . . . ∗ /}
4 }

Figure 2. Declaration to generate default methods.

1 pub l i c c l a s s ZoomDrawingView {
2 pub l i c final double getScale() {
3 re turn scale;
4 }
5 }
6 pub l i c i n t e r f a c e IZoom{
7 pub l i c double getScale();
8 }
9 pub l i c c l a s s SpecialZoomView extends ZoomDrawingView force implements IZoom() {}

Figure 3. Declaration to generate default methods.

compiler using the underlinedforce implementsclause to generate default methods for class
UndoableCommandsuch that this class fulfills the interfaceCommand.

The compiler compares the set of core methods in the class, implemented by the de-
veloper, with the interface the class should follow; after that, the compiler generates those
methods in the class that are missing to provide the interface. Thus, weforce the compiler
to make the class in question implement the according interface by generating themissing
default methods.3 In Figure 2, the forwarding methods are not defined by the developer but
the core methods are, likeexecute. After compiling, the classUndoableCommandimple-
ments the interfaceCommandexactly as shown in Figure 1a. If an augmentedimplements
declaration takes a parameter (likemyWrappedCommandin Figure 2) forwarding methods
are generated and empty methods otherwise; in the first case, theimplementsdeclaration’s
argument is used as a reference to forward messages to. If the forwarding target does not
accept the forwarded message, the forwarding method will not be generated.

If different interfaces of one class overlap in declared methods, the compiler will not
generate these overlapping methods. However, if a class implements different interfaces,
the default methods regarding each interface may differ. Special rules also apply for ab-
stract methods and final methods (all generated methods are non-abstract and non-final).
Abstract methods may be defined in abstract classes instead of interfaces; since we pro-
pose IDM only for interface methods, abstract methods of superclassescannot be defined
implicitly. Final methods of superclasses will not be generated in subclasses(and thus not
overridden) to prohibit compiler errors. As an example, in Figure 3 the method getScale
of the interfaceIZoomwill not be generated for classSpecialZoomViewbecause this class
inherits a finalized method of this signature from classZoomDrawingView.

3We discuss possible problems in Section 5.



Reducing Code Replication in Delegation-based Java Programs 7

Measurement JHotDraw Jcfe java.io

Methods 4 868 780 1 193
Generated methods 107 18 69
Generated methods in % 2.2 2.3 5.7

SLOC 29 026 10 672 10 131
SLOC with IDM 28 756 10 640 9 926
Generated SLOC 270 32 205

Classes and interfaces 589 66 119
Pruned classes using IDM 27 1 11
Pruned classes in % 4.5 1.5 9.2

Table 1. Measurements from three case studies.

4. Case Studies

We implemented IDM for Java5 as a pre-compiler but consider our solution a proper and
lightweight mechanism to be integrated in a Java compiler.4 In order to assess its relevance,
we measure the impact of the proposed mechanism in three open-source software projects:
JHotDraw, a GUI framework;Jcfe, an editor for Java binaries; andjava.io, a standard
Java package providing different streams, likePrintStream. The packagejava.io is based
on abstract classes instead of interfaces (with the side effects discussed in Sec. 2.) which
forced us to prepare the classes with Extract Interface refactoring [10]. We show the study’s
results in Table 1.5

We removed forwarding and empty methods that implement an interface declaration.
After removing these methods in the programs, we instructed the compiler to re-generate the
formerly removed methods – this way, we generated from 18 to 107 methods (2.2 to 5.7 %
of all methods) and saved 32 to 270 lines of sourcecode. Using IDM, we pruned 27 classes
for JHotDraw(4.5 % of all classes), we pruned one class and 11 classes respectively (1.5 %
and 9.2 % respectively) forJcfeandjava.io. Notably, inJHotDrawusing IDM, we generate
24 methods for one class that overall comprises 52 methods (NullDrawingView). In Jcfe, we
generate 18 methods for one class (NavigationClassVisitor) that comprises 30 methods at all
and in java.io we generated 15 methods for one class (ObjectInputStreamwhich contains
53 methods at all). Some classes even become empty with IDM which allowed further
simplifications with refactorings; inJHotDrawtwo classes become completely empty, four
classes (one inJHotDrawand three classes injava.io) become empty of methods except of
one delegatee access method to forward to.

We observed that some methods could not be generated. Default methods of an interface
cannot be generated if they are not homogeneous (i.e., they do not perform the same actions)
or are different from forwarding or empty methods. That is, in most cases (95 % in our case
studies) a method is not a default method and cannot be generated. However, IDM saved
implementing code of up to 5.7 % of all methods.

4To download the pre-compiler visit: http://wwwiti.cs.uni-magdeburg.de/∼mkuhlema/idm/
5SLOC are the lines of source code without empty and comment lines.



8 Martin Kuhlemann, Christian K̈astner, and Sven Apel

5. Discussion

In our case studies, we observed that all default delegation methods could be generated.
The developers ofJHotDraw, Jcfe, andjava.iocould have saved writing up to 5.7 % of all
methods with IDM.

IDM only can generates homogeneous default methods that either simply forward mes-
sages or are empty. Although the tackled problem of repetitive default methods is rather
small, to solve it is beneficial because it is typical for systems that actually usedelegation.
Notably, our solution is lightweight, only makes minimal changes to the language, and is
backward compatible completely for legacy applications.

IDM does not impair type safety because only methods are generated that the class has
to provide according to its interfaces. However, when used without careIDM may impair
semantical correctness – when the class developer does not provide a core method for an
augmented class, this method may be accidentally generated as a default method.

IDM allows programmers to implement delegation more easily because default methods
are generated implicitely. Default methods can be generated using a parameter of an subtype
declaration, i.e., only one method body definition needs to be defined to generate different
methods of a class. Default methods are no longer replicated across multiple classes and
methods within single classes are no longer repetitive. Furthermore, disabling methods, that
for reuse were placed to high in an inheritance hierarchy, is avoided. That is, IDM exactly
generates the methods needed by every single class. Some classes even may become empty
and allow further simplifications using refactorings.

Default methods are generated at compile-time and are hidden during development;
thus, IDM allows a developer to concentrate on the core implementation of eachclass and
prevents controversial designs of classes (i.e., IDM prevents code smells Middle Man and
Lazy Class) and complex class hierarchies (cf. Sec. 2.). The existenceof generated methods
after compilation eases debugging because every executed method is visiblefor each single
debugging step. Type safety of implicit defined methods is guaranteed because the IDM
mechanism generates all methods that a class has to provide while IDM does not invalidate
core methods implemented by the developer.

Beside method generation, IDM encodes design information directly in the source
code by exposing delegating and delegatee classes and, thus, improves reasoning about
classes [4]; even if no method is generated, IDM annotates and explains the meaning of
fields (e.g., references to delegatees), classes (e.g., delegatee classes), and interfaces. That
way, IDM eases the communication between software designers that use thevocabulary of
now exposed design patterns.

IDM additionally supports software evolution. When software evolves andmethods are
added to a delegating class, the developer only has to adapt the delegating class’ interface
that is used for method generation; remaining methods of other delegating classes that
follow that interface are generated automatically – this is equivalent to addingmethods
to delegatees. However, if a default method in one subclass of the interface is not sufficient,
the developer is needed to implement a new core method instead.

In summary, we achieved the following benefits with IDM: (a) a reduced number of
methods, (b) isolation of core methods, (c) isolation of delegating and delegatee classes in
the code.



Reducing Code Replication in Delegation-based Java Programs 9

6. Related Work

Related approaches and research is concerned with multiple inheritance, meta-
programming, code generation, prototype-based languages, traits, aspect-oriented program-
ming, and design documentation.

Multiple Inheritance. Multiple inheritance allows a class to inherit fields and methods,
e.g., default implementations, from different superclasses. Thereby, the inheriting classes
may cause the diamond problem6 [30, 25].

Multiple inheritance may avoid replication of default methods different than forwarding
or empty methods which are the only methods IDM provides reuse for, i.e., IDMis more
specialized than multiple inheritance. In multiple inheritance, different classesmay define
default methods inherited by another class. This approach causes plentyof homogeneous
methods in the default method’s defining class which is a controversial design [10]. Notably,
an independent class that does not inherit the default method’s definingclass may not reuse
the default methods but replicates them. Subclasses of a default method’s providing class
that do not need all inherited methods must disable respective methods by overriding. Again
a complex structure of fine-grained superclasses may help.

IDM is possible in Java with single inheritance and thus avoids the problems of multiple
inheritance languages [30, 27]. In contrast to multiple inheritance, using IDM, every class
may completely define its own implementation (no superclass defines parts of it) without
replicating methods across these classes – this increases modularity of eachclass. Finally,
IDM reuses one declaration several times to implement all methods of an interface, i.e.,
IDM reduces method replication within classes too which is impossible using multiple in-
heritance.

Meta-programming and code-generation. Meta-programming avoids arbitrary replica-
tion of code by code generation. For example, several approaches [36, 4, 31, 13] use meta-
programming for the implementation of the patterns Proxy, Adapter, and Visitor.

IDM is a pre-definedmeta-program. IDM cannot generate arbitrary methods like gen-
eral meta-programming approaches but forwarding and empty methods, i.e., IDM is limited
compared to a general term of meta-programming. But, IDM is very simple to useand in-
tegrated into the Java language.

Bosch introduced code generation concepts for structural design patterns [3]. The ap-
proach of Bosch does not generate methods based on an interface butneeds an explicit
definition for every method to generate together with the type of the body to generate. In
IDM, code generation is associated to interfaces and improves implementing delegation by
quantifying implementations over methods that perform the same actions.

Budinsky et al. customize design pattern descriptions, by arranging pattern roles, and
customizing names [5]. Based on these customized descriptions, interfacesand classes are
generated. The authors admit that this approach is badly integrated into a development
process because generated interfaces and classes are difficult to evolve – changing these

6Methods with the same signature that a subclass inherits from different superclasses are ambiguous in that
subclass.



10 Martin Kuhlemann, Christian K̈astner, and Sven Apel

classes possibly needs to reincorporate the generation process and to copy all changes to
the new generated classes. Development tools, like Eclipse generate default methods, but –
as customized design patterns of Budinsky – changes to the generated code need reinvesti-
gation on code. IDM is integrated into the application code (i.e., its classes); hence, code
is generated and integrated in the application without actions by the developer– evolving
the classes hosting the generated code is possible without restarting a generation process
and copying of changes (as in Budinsky’s approach); changing all default method at once
also does not need to reinvestigate their generation (as in IDEs). IDM does not pollute the
classes with default methods during development and maintenance.

The Jamie pre-compiler targets at the same problem of generating interface methods
automatically [34]. However, Jamie introduces a verbose and repetitive syntax and only
focuses on the delegating class. IDM allows to generate methods for both, delegating and
delegatee classes without language extensions for each of them, using a minimal language
extension.

Prototype-based languages. Lieberman defined delegation as a programming concept
for OOP [20], in which every object can be used as delegatee (here:prototype) of delegating
objects. In contrast to Java, in prototype-based languages, delegatingobjects do not need to
provide forwarding methods but delegation is done by the runtime-environment. Ostermann
used this mechanism for implementing layered designs [25].

We propose IDM, which improves the use of delegation in Java but not in languages
that rely on prototypes, like Self [33]. IDM does not tackle problems of object identity in
delegating and delegatee objects as done in prototype-based languages [20, 28]. However,
equivalently to prototype-based languages, IDM takes the burden froma developer to im-
plement plenty of forwarding methods for wrapping delegatees. IDM may create different
default implementations for classes while in Lieberman’s delegation concept, all methods
of all objects normally only forward messages.

Traits, mixins, AOP, and vitual classes. Traits define methods and fields to be reused
in a class similar to superclasses that also provide reuse for methods and fields [27, 1].
Mixin classes [29] and virtual classes [21] behave similar in this respect –therefore, we
will discuss their relation to IDM by means of traits. In contrast to inheritance,traits cannot
instantiate objects [27] but can be assigned to classes (that can be instantiated) indepen-
dently of other classes. Traits provide reusable default implementations forclasses even in
single-inheritance languages. Methods of traits can be multiplied through aliasmechanisms
where one method becomes available identically under different names [27].

Traits provide different benefits than IDM. Traits are not applicable forgenerating dif-
ferent delegating or delegatee methods for single classes (Traits may multiply amethod’s
body with aliases for the method name [27], but the method signature (despite its name)
and the body remains unchanged – this is inappropriate for forwarding methods of different
names that we focus on.). IDM is more specialized but simpler than traits in that traits can
introduce arbitrary methods into classes while IDM only generates forwarding or empty
methods. In contrast to Traits, IDM does not divide the implementation of a class into
multiple parts just to define default implementations; but, IDM integrates default method
definitions into every class that needs to provide them.



Reducing Code Replication in Delegation-based Java Programs 11

Aspect-oriented Programming (AOP)[17] comprises different languages, like As-
pectJ [18, 16]. To apply standard implementations, AspectJ allows (1) to replace method
calls and (2) to introduce methods into interfaces and classes. By replacingmethod calls (1)
standard implementations can be executed instead of the called method. The developer has
to avoid that two aspects introduce different methods of the same signature into one class or
into different interfaces of one class – if he does he is warned by the aspect compiler but has
to change his aspects manually; for IDM the compiler automatically ensures thatmethods
in classes are not ambiguous. With IDM, exclusion of core methods of single classes is
done automatically and does not need the adaptation of possibly multiple aspects[32]. One
AOP code fragment used for replacing different method calls is identic forall calls – IDM
generatesdifferentmethod bodies out of one simple statement. Finally, the benefits of IDM
are gained from one single language mechanism, instead of a whole language as AspectJ.

7. Conclusions

In this paper, we addressed the problem of default methods in delegation and interface-
based programming and discussed its impact in different styles of object-oriented program-
ming – design patterns and frameworks. We proposed a lightweight mechanism, called
Implicit Defined Methods (IDM), for Java, that avoids default methods, and discussed its
limitations and benefits. The language mechanism generates default methods automatically.
Using IDM, we can reduce code replication and simplify the implementation of class hier-
archies. We test the language extension using three open source programs and found that
we can simplify up to 9.2 % of all classes by generating up to 5.7 % of all methods.These
percentages show that even though the proposed generative mechanism is only applicable
in some situations, the according lightweight syntax extension is justified.

References

[1] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Stateful traitsand their formal-
ization. Computer Languages, Systems and Structures, 34(2-3):83–108, 2008.

[2] G. Booch.Object-Oriented Analysis and Design with Applications. Addison Wesley
Professional, 2nd edition, 1993.

[3] J. Bosch. Design patterns as language constructs.Journal of Object-Oriented Pro-
gramming, 11(2):18–32, 1998.

[4] A. Bryant, A. Catton, K. De Volder, and G. C. Murphy. Explicit programming. InPro-
ceedings of the International Conference on Aspect-Oriented Software Development
(AOSD), pages 10–18, 2002.

[5] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu. Automatic code generation
from design patterns.IBM Systems Journal, 35(2):151–171, 1996.

[6] L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction, and Polymor-
phism.ACM Computing Surveys, 17(4):471–523, 1985.



12 Martin Kuhlemann, Christian K̈astner, and Sven Apel

[7] R. Cardone and C. Lin. Comparing Frameworks and Layered Refinement. InProceed-
ings of the International Conference on Software Engineering (ICSE), pages 285–294,
2001.

[8] H. B. Christensen. Frameworks: Putting design patterns into perspective. ACM
SIGCSE Bulletin, 36(3):142–145, 2004.

[9] W. R. Cook. Interfaces and specifications for the smalltalk-80 collection classes. In
Proceedings of the International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA), pages 1–15, 1992.

[10] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co., Inc., 1999.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java Language Specification.
Addison-Wesley Longman Publishing Co., Inc., 3 edition, 2005.

[13] S. S. Huang and Y. Smaragdakis. Expressive and safe static reflection with morphj. In
Proceedings of the International Conference on Programming Language Design and
Implementation (PLDI), page MISSING???, 2008.

[14] S. Jarzabek and L. Shubiao. Eliminating redundancies with a ”composition with adap-
tation” meta-programming technique. InProceedings of the International Symposium
on Foundations of Software Engineering (FSE), pages 237–246, 2003.

[15] R. E. Johnson and B. Foote. Designing reusable classes.Journal of Object-Oriented
Programming, 1(2):22–35, 1988.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.Griswold. An
Overview of AspectJ. InProceedings of the European Conference on Object-Oriented
Programming (ECOOP), pages 327–353, 2001.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,J.-M. Loingtier, and
J. Irwin. Aspect-Oriented Programming. InProceedings of the European Conference
on Object-Oriented Programming (ECOOP), pages 220–242, 1997.

[18] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publications Co., 2003.

[19] R. Lajoie and R. K. Keller. Design and reuse in object-oriented frameworks: Pat-
terns, contracts, and motifs in concert. InProceedings of the Congress of the Associa-
tion Canadienne Francaise pour l’Avancement des Sciences (ACFAS), pages 295–312,
1994.

[20] H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object-
Oriented Systems. InProceedings of the International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 214–223,
1986.



Reducing Code Replication in Delegation-based Java Programs 13

[21] O. L. Madsen and B. Moller-Pedersen. Virtual Classes: A Powerful Mechanism in
Object-Oriented Programming. InProceedings of the International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 397–406, 1989.

[22] W. B. McNatt and J. M. Bieman. Coupling of design patterns: Common practices
and their benefits. InProceedings of the International Computer Software and Appli-
cations Conference on Invigorating Software Development (COMPSAC), pages 574–
579, 2001.

[23] B. Meyer and K. Arnout. Componentization: The Visitor Example.IEEE Computer,
39(7):23–30, 2006.

[24] E. R. Murphy-Hill, P. J. Quitslund, and A. P. Black. Removing duplication from
java.io: A case study using traits. InProceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 282–291, 2005.

[25] K. Ostermann.Modules for Hierarchical and Crosscutting Models. PhD thesis, Com-
puter Science Department, Darmstadt University of Technology, 2003.

[26] D. Riehle.Framework Design – A Role Modeling Approach. PhD thesis, Swiss Fed-
eral Institute of Technology Zurich, 2003.

[27] N. Scḧarli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of be-
havior. InProceedings of the European Conference on Object-Oriented Programming
(ECOOP), volume 2743 ofLecture Notes in Computer Science, pages 248–274, 2003.

[28] C. Sekaraiah and D. Janaki Ram. Object schizophrenia problem inmodeling is-role-of
inheritance. InProceedings of ECOOP Inheritance Workshop, 2002.

[29] Y. Smaragdakis and D. S. Batory. Implementing Layered Designs with Mixin Lay-
ers. InProceedings of the European Conference on Object-Oriented Programming
(ECOOP), pages 550–570, 1998.

[30] A. Snyder. Encapsulation and inheritance in object-oriented programming languages.
In Proceedings of the International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 38–45, 1986.

[31] M. Tatsubori and S. Chiba. Programming support of design patterns with compile-
time reflection. InProceedings of the Workshop on Reflective Programming in C++
and Java, pages 56–60, 1998.

[32] T. Tourw, J. Brichau, and K. Gybels. On the Existence of the AOSD-Evolution Para-
dox. InWorkshop on Software-Engineering Properties of Languages for Aspect Tech-
nologies, 2003.

[33] D. Ungar and R. B. Smith. Self: The power of simplicity.ACM SIGPLAN Notices,
22(12):227–242, 1987.



14 Martin Kuhlemann, Christian K̈astner, and Sven Apel

[34] J. Viega, P. Reynolds, and R. Behrends. Automating delegation in class-based lan-
guages. InProceedings of the International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS EUROPE), page 171, 2000.

[35] P. Wegner. Concepts and Paradigms of Object-Oriented Programming. ACM SIG-
PLAN OOPS Messenger, 1(1):7–87, 1990.

[36] E. V. Wyk, L. Krishnan, A. Schwerdfeger, and D. Bodin. Attribute grammar-based
language extensions for java. InProceedings of the European Conference on Object-
Oriented Programming (ECOOP), pages 575–599, 2007.


