Reducing Code Replication in Delegation-based Java Programs

Chapter 1

REDUCING CODE REPLICATION IN
DELEGATION -BASED JAVA PROGRAMS

Martin Kuhlemann*
School of Computer Science, University of Magdeburg,Gegman
Christian Kastner
School of Computer Science, University of Magdeburg,Gegman
Sven Apel
Department of Informatics and Mathematics, University aé$au,Germany

Keywords: Java language, generative programming

Abstract

Interfaces and delegation are fundamental concepts in @Quémes. Although
both concepts have been shown to be beneficial in softwardajenent, sometimes
their implementation is cumbersome. Both result in numbérfsrwarding methods
or numbers of empty methods for respective classes. Thiegd tnethods distract
the user from non-trivial methods the class comprises. iflsigases complexity and
decreases maintainability. In its current form, Java daggprovide sufficient mech-
anisms to avoid this boilerplate code. Instead, all the odgtihat are empty or only

*E-mail address: mkuhlema@ovgu.de
TE-mail address: ckaestne@ovgu.de
tE-mail address: apel@uni-passau.de

2 Martin Kuhlemann, Christian &tner, and Sven Apel

forward calls have to be coded manually. In this paper, wedhitce a new lightweight
mechanism, that improves the implementation of interfaased and delegation-based
programs. We show, though this mechanism is very simpl@ies these problems
that are well-known in object-oriented software developmen three open-source
Java programs of up to over 25.000 lines of source code, we Bba/ we use this
mechanism to generate up to 5.7 % of all methods per case statlwere empty or
only forwarding calls.

1. Introduction

Interfaces and delegation are fundamental concepbjett-oriented programming (OOP)
and Java [12, 11, 15]. An interface defines a protocol how to aecekss and hides the
class’ implementation [6, 2]. Delegation is a mechanism that forwards mesabg&om
adelegating clas$o an associatedelegatee clas®r the purpose of reuse [20]. Delegation
and interfaces are used frequently in design patterns [11] and btackameworks [15] to
improve flexibility and extensibility. However, there are several knowtlems related to
the implementation of methods that forward calls to a delegatee class and that imipleme
abstract methods of implemented interfaces — we name both types of md#iadk meth-
ods These methods are trivial and repetitious but tedious to write. Theseltdeiethods
also distract from the non-trivial methods of a class that we aadé methods Default
methods are replicated throughout the code [11, 15] and the resultiegsadticized as
bad design (a.k.a. ‘code smell’) [10]. They may reduce software mainiiipamd under-
standability [14] which is in contrast to the promised benefits of reuse througrfaces
and delegation.

We show that default methods constitute 2.2 % to 5.7 % of all methods in three ana-
lyzed medium-sized Java programs. In order to avoid the implementation ofntietiseds,
we propose a lightweight language mechanism for Java, chtigticit Defined Methods
(IDM), that takes care of generating default methods when required. Our &irimprove
code quality and to take the burden from the developer who otherwise liapheEment
and maintain a high number of default methods (e.g., up to 10A@iDraw). We illustrate
IDM using the delegation-based design patterns Decorator and Visitbevatuate it using
three open-source case studies of different size and purfidstDrawt [8, 26], Java Class
File Editor (Jcfe¥, and the Java packagmva.io [24].

Note, with only 2.2 % to 5.7 % of all methods in our analyzed programs, defatit-me
ods occur rather infrequently. In many programs that do not use dielegiamay not occur
at all. Nevertheless, it is a problem that — when it occurs — inflicts codityjaad is te-
dious for the developers. Our studies show how, even though defatlibdsedo not occur
frequently, we gain considerable benefit from IDM.

2. Problem Statement

Delegation is the process of forwarding a request to a delegatee claseéta with the
request instead of the delegating class that received the requesallyigiDelegation is

http://sourceforge.net/projects/jhotdraw/
2http://sourceforge.net/projects/classeditor/

O© O0O~NOODWNE

Reducing Code Replication in Delegation-based Java Programs

interface Conmand{
void execute();
bool ean i sExecut abl e();
Dr awi ngEdi t or get Drawi ngEdi tor () ;
String nane();
}
class Undoabl eConmand implements Commrand{
Commrand nmyW appedComrand;
void execute() {/x...x/}
bool ean i sExecut abl e() {
return nyW appedCommand. i sExecut abl e();
b
Dr awi ngEdi t or _get Drawi ngEdi tor () {
return nyW appedCommuand. get Dr awi ngEdi t or () ;
b
String nane() {
return nyWappedCommand. nane() ;
b
}
class ZoonCommand implements Conmand{

PR R
WNPFPOOWONOUDAWNEE

void execute() {/*...x/}
bool ean i sExecutable() {/x...x/}
Drawi ngEdi tor get Drawi ngEditor () {/x...=x/}
String nane() {/x...x/}
}

(a)
interface C assVisitor{
void visitCl ass(Cl assFile classFile);
void visitlnstructions(lnstructions instrs);
void visitlnstruction(lnstruction instr);
void visitVersion(Version ver);
}
abstract class Navi gatingC assVisitor implements Cl assVisitor {
void visitCO ass(C assFile classFile) {/x...x/}
void visitlnstructions(lnstructions instrs) {}
void visitlnstruction(lnstruction instr) {}
voi d visitVersion(Version ver) {}
}

(b)

Figure 1. Code repitition in delegating and delegatee classes (ecxerptsefstudy’s
classes).

4 Martin Kuhlemann, Christian &tner, and Sven Apel

a reuse mechanism beside inheritance in Java and other OOP langugges [3differ-
ent delegating classes may reuse the implementation of one delegatee clasganging
requests to it. Both, delegating and delegatee classes, may include repetitinae imple-
mentations.

In delegating classes, a high number of forwarding methods makes their immiéeme
tion tedious. This may hamper reasoning about that class because theetbmals, i.e.,
the reason for implementing it, may be hard to identify among all forwarding method
Consequently, the class design may be considered problematic becaus®yitforevards
messages (known as Middle Man code smell) [10] and contains numerousda¢tiat do
not communicate with each other [15].

In Figure la, the delegating classidoableCommandLines 8-20, taken frondHot-
Draw) includes numerous forwarding methods (we underlined default cod&hwnay
hamper finding the core methedecutend reasoning about it. In this clddadoableCom-
mandsix of nineteen methods simply forward calls.

In delegatee classes, a high number of empty methods has to be implementethtihe e
methods distract from the core methods of this class. Oftentimes the deletmdsesc
disable methods of their super-type with empty methods [14, 27, 9] becasserttethods
do not relate to the delegatee’s concern (A typical solution is to introduedstract class,
but as discussed below this cannot be used generally.). Conseqadstlyhe disabling
methods do not contribute to the delegatee’s concern. Classes that intaugeempty
methods are considered as bad code design (code smell Lazy Clgss) [10

In Figure 1b, the delegatddavigatingClassVisitofLines 8-13, taken frondcfg in-
cludes mostly empty methods because it needs to define all methods of its mterfac
ClassVisitor— we again underlined default code. (Note, using an abstract claselis pr
lematic as outlined later in this section but avoids harder problems of empty métindatss
subclasses.)

Relevance of the Problem

Design patterns define solutions for recurring design problems in OOP \eithotal of an
improved reusability and variability of code [11]. Numerous design pattelgson dele-
gation (in particular, Adapter, Bridge, Decorator, Chain Of Responsifitityxy, Strategy,
Visitor, or Iterator) and these patterns are known to occur frequenthypeaced to others
(McNatt et al. reported that 30 of 99 Gang-of-Four-pattern ocogee in their studies are
delegation-based [22].). Moreover, pattern code has to be repaatgdtiene a pattern is
used [23, 3, 11, 5], thus, worsening problems of repetitive delegatitimae The excerpts
of Figure 1, taken frondHotDraw andJcfe show implementations of the design patterns
Decorator and Visitor.

Black-box frameworks use interfaces to provide a common architectura family
of related applications [15, 19]. A framework pinpoints delegatee intesféeo-calledhot
spots[15]) that user classes have to implement to configure and obtain a compiiditaa
tion; thereby, every user class has to implement also the methods of its hahtepface
that do not contribute to the class’ concern — respective methods ofteirrempty. While
larger hot-spot interfaces may provide more variability for frameworKiegions than
small hot spot interfaces, they also may include more methods to learn byvblemkr

Reducing Code Replication in Delegation-based Java Programs 5

but not needed for single applications [7]. Thus, black-box framksvoray force a user to
implement numerous empty default methods.

Abstract Classes — Not Always a Solution

Abstract classes [15] are often used to cope with default methods. siraatclass provides
a protocol for subclasses and may implement that protocol in parts. Tlyisabatract
classes localize a method that had been repeated across multiple classesHetvever,
abstract classes cannot be used as a general solution for redatand; chethods, because
of several problems and limitations.

First, in languages like Java, inheritance from different superclassest possible.
Thus, a class that inherits from an abstract class to work around taeldefethod prob-
lem, can no longer inherit from any other class. For instance, we citséine problem
in several programs that use different abstract classes of Jawérsframework, abstract
AWT classes that define default implementations for AWT interfaces. Whilepibssible
to write abstract classes that implement combinations of interfaces, as déléTirfor
WindowAdapterthere is an exponential number of possible combinations.

Second, abstract classes may face problempsitihg methods to high in an inheritance
hierarchy[14, 27, 9]. That is, for the purpose of reuse, a method may be locatbis
in the inheritance hierarchy that some subclasses that inherit the methodisalse the
method by overriding. Therefore, the abstract class should covetlgxiae methods that
are repeated in every subclass, e.g., forwarding or empty methods. albstract class
does not provide all forwarding and empty methods for a set of subdlasse certain
subclasses still have to define those methods which results in code replitkdioabstract
class provides too many methods, some subclasses have to disable inhetitedsnigy
overriding them such that they have no effect [27]. A system of firrérgd abstract classes
may help for that limitation but complicates the inheritance structure [14].

Summary. Delegation is frequently used in OOP, especially, when the software is con-
sidered well-designed, i.e., using design patterns or frameworks. To impiehie well-
designed software, the developer is forced to implement numbers oftdetthods. Con-
temporary techniques to work around this problem, like abstract classdsnaed.

3. Implicit Defined Methods

We propose a new language mechanism for Java that instructs the compjlendmate
default methods implicitly to either forward their arguments or do nothing. Ofseguhe
mechanism does not generate core methods which have to be implementedéyetoper.
Delegating as well as delegatee objects follow one common interface whicileso
the signatures for the methods to implement. We augmenintheementdeclaration of
Java classes regarding an interface with an argument list. This arguniaigrializes the
body of default methods (delegating or delegatee methods) that aragghierthe class for
the given interface. In Figure 2, we show a refactored implementation afrideableCom-
mandexample using IDM that corresponds to Figure 1a. In Line 1, we instrectDV

A WOWNE

6 Martin Kuhlemann, Christian &tner, and Sven Apel

class Undoabl eConmand force inpl enents Commrand(myW appedConmand) {
Commrand nmyW appedComrand;
void execute(){/* .../}

}

Figure 2. Declaration to generate default methods.

O©oO~NOO U WNE
—~ —

public class ZoonDraw ngVi ew {

public final double getScale() {
return scal e;

}

public interface |Zoon{
public doubl e get Scal e();

public class Speci al ZoonVi ew ext ends ZoonDrawi ngVi ew force inplenents | Zoom) {}

Figure 3. Declaration to generate default methods.

compiler using the underlinddrce implementslause to generate default methods for class
UndoableCommanduch that this class fulfills the interfa@®mmand

The compiler compares the set of core methods in the class, implemented by the de
veloper, with the interface the class should follow; after that, the compilesrgtes those
methods in the class that are missing to provide the interface. Thusreethe compiler
to make the class in question implement the according interface by generatimistieg
default methods.In Figure 2, the forwarding methods are not defined by the developer bu
the core methods are, lilexecute After compiling, the clast/ndoableCommaninple-
ments the interfac€ommandexactly as shown in Figure 1a. If an augmeniteglements
declaration takes a parameter (likkgWrappedCommarid Figure 2) forwarding methods
are generated and empty methods otherwise; in the first caseyplamentsleclaration’s
argument is used as a reference to forward messages to. If the dong/igarget does not
accept the forwarded message, the forwarding method will not beageder

If different interfaces of one class overlap in declared methods, thmpiter will not
generate these overlapping methods. However, if a class implementsrdiffeerfaces,
the default methods regarding each interface may differ. Special risespply for ab-
stract methods and final methods (all generated methods are non-ahettawn-final).
Abstract methods may be defined in abstract classes instead of intedau=swe pro-
pose IDM only for interface methods, abstract methods of superclaasest be defined
implicitly. Final methods of superclasses will not be generated in subcléasgéshus not
overridden) to prohibit compiler errors. As an example, in Figure 3 the rdeghtScale
of the interfacdZoomwill not be generated for classpecialZoomViewecause this class
inherits a finalized method of this signature from clZesmDrawingView

3We discuss possible problems in Section 5.

Reducing Code Replication in Delegation-based Java Programs

Measurement JHotDraw Jcfe java.io
Methods 4868 780 1193
Generated methods 107 18 69
Generated methods in % 2.2 2.3 57
SLOC 29026 10672 10131
SLOC with IDM 28756 10640 9926
Generated SLOC 270 32 205
Classes and interfaces 589 66 119
Pruned classes using IDM 27 1 11
Pruned classes in % 4.5 1.5 9.2

Table 1. Measurements from three case studies.

4. Case Studies

We implemented IDM for Java5 as a pre-compiler but consider our solutiooppepand
lightweight mechanism to be integrated in a Java compilarorder to assess its relevance,
we measure the impact of the proposed mechanism in three open-sdim@Esrojects:
JHotDraw, a GUI framework;Jcfe an editor for Java binaries; anjava.io, a standard
Java package providing different streams, lk@ntStream The packagéava.iois based
on abstract classes instead of interfaces (with the side effects diddnsSec. 2.) which
forced us to prepare the classes with Extract Interface refactor@jg\\e show the study’s
results in Table 2.

We removed forwarding and empty methods that implement an interface dixiara
After removing these methods in the programs, we instructed the compiler émezage the
formerly removed methods — this way, we generated from 18 to 107 meth@d® (2.7 %
of all methods) and saved 32 to 270 lines of sourcecode. Using IDMyweed 27 classes
for JHotDraw (4.5 % of all classes), we pruned one class and 11 classes reslygdtigéo
and 9.2 % respectively) faicfeandjava.io. Notably, inJHotDrawusing IDM, we generate
24 methods for one class that overall comprises 52 mettiadiXrawingView. In Jcfe we
generate 18 methods for one cladayigationClassVisitgrthat comprises 30 methods at all
and injava.iowe generated 15 methods for one cla®bjéctinputStreamvhich contains
53 methods at all). Some classes even become empty with IDM which alloweeérfurth
simplifications with refactorings; idHotDrawtwo classes become completely empty, four
classes (one idHotDrawand three classes java.io) become empty of methods except of
one delegatee access method to forward to.

We observed that some methods could not be generated. Default methodsterface
cannot be generated if they are not homogeneous (i.e., they do nmrpéine same actions)
or are different from forwarding or empty methods. That is, in mosté&&% in our case
studies) a method is not a default method and cannot be generated. éfipiiddv saved
implementing code of up to 5.7 % of all methods.

“To download the pre-compiler visit: http://wwwiti.cs.uni-magdeburg.dekuhlema/idm/
®SLOC are the lines of source code without empty and comment lines.

8 Martin Kuhlemann, Christian &tner, and Sven Apel

5. Discussion

In our case studies, we observed that all default delegation methotts mgenerated.
The developers afHotDraw, Jcfe andjava.io could have saved writing up to 5.7 % of all
methods with IDM.

IDM only can generates homogeneous default methods that either simyirtbmes-
sages or are empty. Although the tackled problem of repetitive default aethaather
small, to solve it is beneficial because it is typical for systems that actuallgiaiegation.
Notably, our solution is lightweight, only makes minimal changes to the languadesa
backward compatible completely for legacy applications.

IDM does not impair type safety because only methods are generatedeludashk has
to provide according to its interfaces. However, when used withoutlBdviemay impair
semantical correctness — when the class developer does not prowde method for an
augmented class, this method may be accidentally generated as a default method

IDM allows programmers to implement delegation more easily because defauttaneth
are generated implicitely. Default methods can be generated using a paraiaetsubtype
declaration, i.e., only one method body definition needs to be defined toage niifferent
methods of a class. Default methods are no longer replicated across mutigges<and
methods within single classes are no longer repetitive. Furthermore, disai#iimods, that
for reuse were placed to high in an inheritance hierarchy, is avoideat.igjHDM exactly
generates the methods needed by every single class. Some classesyelenanze empty
and allow further simplifications using refactorings.

Default methods are generated at compile-time and are hidden during pleesit
thus, IDM allows a developer to concentrate on the core implementation otcéesshand
prevents controversial designs of classes (i.e., IDM prevents codks dviiédle Man and
Lazy Class) and complex class hierarchies (cf. Sec. 2.). The exisiegeaerated methods
after compilation eases debugging because every executed method isfeis@aeh single
debugging step. Type safety of implicit defined methods is guaranteeddeetze IDM
mechanism generates all methods that a class has to provide while IDMatdegatidate
core methods implemented by the developer.

Beside method generation, IDM encodes design information directly in theeou
code by exposing delegating and delegatee classes and, thus, immasening about
classes [4]; even if no method is generated, IDM annotates and explaimsetiining of
fields (e.g., references to delegatees), classes (e.g., delegates)clsdenterfaces. That
way, IDM eases the communication between software designers that useimilary of
now exposed design patterns.

IDM additionally supports software evolution. When software evolvesmaetthods are
added to a delegating class, the developer only has to adapt the deledgdsignterface
that is used for method generation; remaining methods of other delegatirsg<ldeat
follow that interface are generated automatically — this is equivalent to acdetgods
to delegatees. However, if a default method in one subclass of the imtésfaot sufficient,
the developer is needed to implement a new core method instead.

In summary, we achieved the following benefits with IDM: (a) a reduced rmurob
methods, (b) isolation of core methods, (c) isolation of delegating and deteglasses in
the code.

Reducing Code Replication in Delegation-based Java Programs 9

6. Related Work

Related approaches and research is concerned with multiple inheritanda- me
programming, code generation, prototype-based languages, traést-asignted program-
ming, and design documentation.

Multiple Inheritance. Multiple inheritance allows a class to inherit fields and methods,
e.g., default implementations, from different superclasses. Therebinhbriting classes
may cause the diamond probl&{30, 25].

Multiple inheritance may avoid replication of default methods different thamdading
or empty methods which are the only methods IDM provides reuse for, i.e.,ifDibre
specialized than multiple inheritance. In multiple inheritance, different clansgdefine
default methods inherited by another class. This approach causes g@idrgnogeneous
methods in the default method’s defining class which is a controversialhdd€ify Notably,
an independent class that does not inherit the default method’s defiasgmay not reuse
the default methods but replicates them. Subclasses of a default methmdding class
that do not need all inherited methods must disable respective methodsrbging. Again
a complex structure of fine-grained superclasses may help.

IDM is possible in Java with single inheritance and thus avoids the problemslilau
inheritance languages [30, 27]. In contrast to multiple inheritance, uBiky évery class
may completely define its own implementation (no superclass defines parts of iutvith
replicating methods across these classes — this increases modularity ofeessctFinally,
IDM reuses one declaration several times to implement all methods of an geeifa.,
IDM reduces method replication within classes too which is impossible using multiple in
heritance.

Meta-programming and code-generation. Meta-programming avoids arbitrary replica-
tion of code by code generation. For example, several approadhes, [31, 13] use meta-
programming for the implementation of the patterns Proxy, Adapter, and Visitor.

IDM is a pre-definedneta-program. IDM cannot generate arbitrary methods like gen-
eral meta-programming approaches but forwarding and empty method®eis limited
compared to a general term of meta-programming. But, IDM is very simple tant-
tegrated into the Java language.

Bosch introduced code generation concepts for structural desigmnsaf8d. The ap-
proach of Bosch does not generate methods based on an interfacedust an explicit
definition for every method to generate together with the type of the body traten In
IDM, code generation is associated to interfaces and improves implemenkaggtien by
guantifying implementations over methods that perform the same actions.

Budinsky et al. customize design pattern descriptions, by arranging rpaties, and
customizing names [5]. Based on these customized descriptions, inteafateksses are
generated. The authors admit that this approach is badly integrated inielamaent
process because generated interfaces and classes are difficudtvie -evchanging these

5Methods with the same signature that a subclass inherits from diffeneatcasses are ambiguous in that
subclass.

10 Martin Kuhlemann, Christian &stner, and Sven Apel

classes possibly needs to reincorporate the generation process apy tallcchanges to
the new generated classes. Development tools, like Eclipse generaik oheftnods, but —
as customized design patterns of Budinsky — changes to the generagedesmtreinvesti-
gation on code. IDM is integrated into the application code (i.e., its classa®)eheode
is generated and integrated in the application without actions by the devel@veiving
the classes hosting the generated code is possible without restartingratigenprocess
and copying of changes (as in Budinsky’s approach); changing&utt method at once
also does not need to reinvestigate their generation (as in IDES). |IDMrumgollute the
classes with default methods during development and maintenance.

The Jamie pre-compiler targets at the same problem of generating interftvedsie
automatically [34]. However, Jamie introduces a verbose and repetititexsgnd only
focuses on the delegating class. IDM allows to generate methods for led¢igating and
delegatee classes without language extensions for each of them, usingralnamguage
extension.

Prototype-based languages. Lieberman defined delegation as a programming concept
for OOP [20], in which every object can be used as delegatee (pertetype of delegating
objects. In contrast to Java, in prototype-based languages, deleghitngs do not need to
provide forwarding methods but delegation is done by the runtime-envinani@stermann
used this mechanism for implementing layered designs [25].

We propose IDM, which improves the use of delegation in Java but not guéayes
that rely on prototypes, like Self [33]. IDM does not tackle problems ¢éctiadentity in
delegating and delegatee objects as done in prototype-based lang2@ge]] However,
equivalently to prototype-based languages, IDM takes the burdendrdeveloper to im-
plement plenty of forwarding methods for wrapping delegatees. IDM megterdifferent
default implementations for classes while in Lieberman’s delegation condeptethods
of all objects normally only forward messages.

Traits, mixins, AOP, and vitual classes. Traits define methods and fields to be reused
in a class similar to superclasses that also provide reuse for methods asdZigld].
Mixin classes [29] and virtual classes [21] behave similar in this respdutrefore, we
will discuss their relation to IDM by means of traits. In contrast to inheritatiags cannot
instantiate objects [27] but can be assigned to classes (that can be instBritidepen-
dently of other classes. Traits provide reusable default implementationkéses even in
single-inheritance languages. Methods of traits can be multiplied throughmaEsanisms
where one method becomes available identically under different names [27]

Traits provide different benefits than IDM. Traits are not applicableyarerating dif-
ferent delegating or delegatee methods for single classes (Traits may muliigthad’s
body with aliases for the method name [27], but the method signature (despiteriey n
and the body remains unchanged — this is inappropriate for forwardingpdeett different
names that we focus on.). IDM is more specialized but simpler than traits in dlitatdan
introduce arbitrary methods into classes while IDM only generates fomgar empty
methods. In contrast to Traits, IDM does not divide the implementation of & ols
multiple parts just to define default implementations; but, IDM integrates defadftatie
definitions into every class that needs to provide them.

Reducing Code Replication in Delegation-based Java Programs 11

Aspect-oriented Programming (AOR)7] comprises different languages, like As-
pectJ [18, 16]. To apply standard implementations, AspectJ allows (1) ceemethod
calls and (2) to introduce methods into interfaces and classes. By rephaethgd calls (1)
standard implementations can be executed instead of the called method. Tlopeielas
to avoid that two aspects introduce different methods of the same signatuomanclass or
into different interfaces of one class — if he does he is warned by tleeaspmpiler but has
to change his aspects manually; for IDM the compiler automatically ensureséthdods
in classes are not ambiguous. With IDM, exclusion of core methods of sitagees is
done automatically and does not need the adaptation of possibly multiple d§2¢c@ne
AOP code fragment used for replacing different method calls is identialfaalls — IDM
generateslifferentmethod bodies out of one simple statement. Finally, the benefits of IDM
are gained from one single language mechanism, instead of a whole |leregiAgpectJ.

7. Conclusions

In this paper, we addressed the problem of default methods in delegatbimtarface-
based programming and discussed its impact in different styles of objeatext program-
ming — design patterns and frameworks. We proposed a lightweight mechasaied
Implicit Defined Methods (IDM), for Java, that avoids default methodsl, @discussed its
limitations and benefits. The language mechanism generates default mettwdatically.
Using IDM, we can reduce code replication and simplify the implementation o blias-
archies. We test the language extension using three open sourcarpsogind found that
we can simplify up to 9.2 % of all classes by generating up to 5.7 % of all metfdese
percentages show that even though the proposed generative metisnisly applicable
in some situations, the according lightweight syntax extension is justified.

References

[1] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Stateful sadsheir formal-
ization. Computer Languages, Systems and Struct3@&-3):83-108, 2008.

[2] G. Booch. Object-Oriented Analysis and Design with ApplicatioRsidison Wesley
Professional, 2nd edition, 1993.

[3] J. Bosch. Design patterns as language construlitsrnal of Object-Oriented Pro-
gramming 11(2):18-32, 1998.

[4] A.Bryant, A. Catton, K. De Volder, and G. C. Murphy. Explicit pragnming. InPro-
ceedings of the International Conference on Aspect-Oriented Softwarel@pment
(AOSD) pages 10-18, 2002.

[5] F.J.Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu. Automatide generation
from design patterndBM Systems JournaB5(2):151-171, 1996.

[6] L. Cardelli and P. Wegner. On Understanding Types, Data Aksbrgand Polymor-
phism.ACM Computing Survey47(4):471-523, 1985.

12 Martin Kuhlemann, Christian &stner, and Sven Apel

[7] R. Cardone and C. Lin. Comparing Frameworks and Layered Reéne InProceed-
ings of the International Conference on Software Engineering (IQ&ijes 285-294,
2001.

[8] H. B. Christensen. Frameworks: Putting design patterns into pergpecACM
SIGCSE Bulletin36(3):142-145, 2004.

[9] W. R. Cook. Interfaces and specifications for the smalltalk-80 colleatiasses. In
Proceedings of the International Conference on Object-Oriented Rrogring, Sys-
tems, Languages, and Applications (OOPSIpapes 1-15, 1992.

[10] M. Fowler. Refactoring: Improving the Design of Existing Codaddison-Wesley
Longman Publishing Co., Inc., 1999.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissid&esign Patterns: Elements of
Reusable Object-Oriented Softwarsddison-Wesley, 1995.

[12] J. Gosling, B. Joy, G. Steele, and G. Brach@he Java Language Specification
Addison-Wesley Longman Publishing Co., Inc., 3 edition, 2005.

[13] S. S. Huang and Y. Smaragdakis. Expressive and safe stagictiefl with morphj. In
Proceedings of the International Conference on Programming Lageesign and
Implementation (PLDI)page MISSING???, 2008.

[14] S.Jarzabek and L. Shubiao. Eliminating redundancies with a "catipowith adap-
tation” meta-programming technigue. Pmoceedings of the International Symposium
on Foundations of Software Engineering (FSEgges 237-246, 2003.

[15] R. E. Johnson and B. Foote. Designing reusable clageesnal of Object-Oriented
Programming 1(2):22—-35, 1988.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and WG@&wold. An
Overview of AspectJ. IProceedings of the European Conference on Object-Oriented
Programming (ECOOR)pages 327-353, 2001.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Loged/. Loingtier, and
J. Irwin. Aspect-Oriented Programming. Proceedings of the European Conference
on Object-Oriented Programming (ECOQRPRges 220-242, 1997.

[18] R. Laddad. Aspectd in Action: Practical Aspect-Oriented Programminganning
Publications Co., 2003.

[19] R. Lajoie and R. K. Keller. Design and reuse in object-oriented freonks: Pat-
terns, contracts, and motifs in concert.Rroceedings of the Congress of the Associa-
tion Canadienne Francaise pour I’Avancement des Sciences (AQFAG)s 295-312,
1994,

[20] H. Lieberman. Using Prototypical Objects to Implement Shared BehaviObject-
Oriented Systems. IRroceedings of the International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOR Siafjes 214-223,
1986.

Reducing Code Replication in Delegation-based Java Programs 13

[21] O. L. Madsen and B. Moller-Pedersen. Virtual Classes: A Pawdtechanism in
Object-Oriented Programming. Rroceedings of the International Conference on
Object-Oriented Programming, Systems, Languages, and Applicat®@@$ ELA)
pages 397-406, 1989.

[22] W. B. McNatt and J. M. Bieman. Coupling of design patterns: Commatmes
and their benefits. IRroceedings of the International Computer Software and Appli-
cations Conference on Invigorating Software Development (COMP,$%aQgs 574—
579, 2001.

[23] B. Meyer and K. Arnout. Componentization: The Visitor ExampEEE Computer
39(7):23-30, 2006.

[24] E. R. Murphy-Hill, P. J. Quitslund, and A. P. Black. Removing duglma from
java.io: A case study using traits. Proceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applisg@PSLA)
pages 282-291, 2005.

[25] K. OstermannModules for Hierarchical and Crosscutting ModeRhD thesis, Com-
puter Science Department, Darmstadt University of Technology, 2003.

[26] D. Riehle. Framework Design — A Role Modeling ApproadPhD thesis, Swiss Fed-
eral Institute of Technology Zurich, 2003.

[27] N. Sctlarli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable drits-o
havior. InProceedings of the European Conference on Object-Oriented Pragiiagn
(ECOOP) volume 2743 of_ecture Notes in Computer Scienpages 248-274, 2003.

[28] C. Sekaraiah and D. Janaki Ram. Object schizophrenia problerodeling is-role-of
inheritance. IrProceedings of ECOOP Inheritance Worksh2002.

[29] Y. Smaragdakis and D. S. Batory. Implementing Layered Designs wiinNLay-
ers. InProceedings of the European Conference on Object-Oriented Progiiagn
(ECOOP) pages 550-570, 1998.

[30] A. Snyder. Encapsulation and inheritance in object-oriented anogring languages.
In Proceedings of the International Conference on Object-Oriented Rrogring,
Systems, Languages, and Applications (OOPShages 38—45, 1986.

[31] M. Tatsubori and S. Chiba. Programming support of design patteithh compile-
time reflection. InProceedings of the Workshop on Reflective Programming in C++
and Javapages 56-60, 1998.

[32] T. Tourw, J. Brichau, and K. Gybels. On the Existence of the AcESDIution Para-
dox. InWorkshop on Software-Engineering Properties of Languages forcA3peh-
nologies 2003.

[33] D. Ungar and R. B. Smith. Self: The power of simplicithCM SIGPLAN Notices
22(12):227-242,1987.

14 Martin Kuhlemann, Christian &stner, and Sven Apel

[34] J. Viega, P. Reynolds, and R. Behrends. Automating delegation $s-blased lan-
guages. InProceedings of the International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS EURQOgdg)e 171, 2000.

[35] P. Wegner. Concepts and Paradigms of Object-Oriented Programridlyl SIG-
PLAN OOPS Messenget(1):7-87, 1990.

[36] E. V. Wyk, L. Krishnan, A. Schwerdfeger, and D. Bodin. Attribigrammar-based
language extensions for java. Rmoceedings of the European Conference on Object-
Oriented Programming (ECOOPpages 575-599, 2007.

