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Abstract 

This is an attempt to combine the two research areas of programming methodology and 

automated theorem proving. We investigate the potential for automation of a programming 

methodology that supports the compile-time derivation of concurrency in imperative 

programs. In this methodology, concurrency is identified by the declaration of certain seman- 

tic properties (so-called "semantic relations') of appropriate program parts. Semantic declara- 

tions can be exploited to transform the sequential execution of the program into a parallel ex- 

ecution. We make observations about the automation of correctness proofs of such transfor- 

mations for a limited domain of programs: sorting networks. 

1. Introduction 

This paper is about the feasibility of a research area: programming methodology, or the 

formal derivation of programs. Like the formal proof of programs, the formal derivation of 

programs will be feasible in a software production environment only if it is mechanically sup- 

ported. Program logics in their present form are technically too intricate to be efficiently and 

reliably applied by hand on a large scale, and it is doubtful that they will become simpler in 

the future. (This is not to say that the formal derivation and proof of programs by hand is 

not of considerable academic interest.) The research area that deals with the automation 

of formal logics is automated theorem proving. We would like to contribute to the cur= 

rently emerging and very important link between programming methodology and automated 

theorem proving. 

Automating or, more exactly, mechanically certifying the derivation of programs helps 

both the programmer and ~he customer who uses the program. The programmer will find an 

automated derivation more difficult and tedious than a derivation by hand. This is to be ex- 

pected: an automated derivation does not permit any informal steps; each ever so little detail 

has to be formalized. However, what is gained, is the near-to-complete confidence that the 
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derivation rules ~ave been applied correctly. The customer reaps mos~ of the reward of an 

automated derivation. All he has to believe in order to be convinced of the correctness of the 

programmer's product is: 

[a) that  the program's specification meets his needs, and 

(b) that  the theorem which states that the program satisfies the specification is cor- 
rectly represented in the mechanized programming calculus. 

He does not have to be concerned with any aspects of the proof at all. However, both the 

programmer and the customer must believe one more thing: that  the programming calculus 

has been implemented correctly, i.e., that  no faulty programs can be certified. 

The methodology in whose automation we are interested focusses on the static deriva- 

tion of concurrency in imperative programs [9]. In this methodology, the derivation of concur- 

rency proceeds by a successive compression of the program's executions based on the declara- 

tion of certain useful program properties. Most interesting programs contain recursions or 

loops. The most effective and practical transformations of such programs will also be recur- 

sive, and their proofs of correctness will require induction. We are therefore interested in the 

mechanical t reatment  of recursion and induction. 

The following section reviews our methodology. Sect. 3 introduces the class of programs 

that  we explore: sorting networks. After some general observations about the mechanical sup- 

port of trace transformations and a justification why we view them as theorems (Sect. 4), we 

describe a mechanically supported "proof methodology" of trace transformations and il- 

lustrate it on several sorting networks (Sect. 5). We conclude the paper with a discussion of 

the challenges in the automation of this proof methodology (Sect. 6). 

A more detailed account of our mechanized semantic theory and the full description of a 

mechanical proof can be found in [12~. 

2. A M e t h o d o l o g y  f o r  t h e  S t a t i c  D e r i v a t i o n  o f  C o n c u r r e n c y  

Our goal is to mechanize parts of a particular methodology for the derivation of concur- 

rency in programs [9]. This section describes that methodology. 

Two different motives may lead to the application of concurrency: 

(1) The desire for a specific program behavior. 

For instance, one might wish to run an experiment which involves certain 

processes executed by designated processors that  communicate and synchronize with 

each other in some fashion. Such applications are to ensure the correct functioning of 

some machine configuration with a specific concurrency structure. Examples are dis- 
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tributed or operating systems. 

(2) The desire for fast program results. 

For instance, one might wish to execute a numerical or data processing algorithm 

with concurrency in order to obtain a result faster. Such applications do not refer to a 

specific machine configuration or concurrency structure, but only to some relation of in- 

put and output values. Examples are numerical and sorting algorithms. 

The programming methodology described here takes the second approach: concurrency 

is viewed as a tool for accelerating the acquisition of results, not as a basic characteristic of a 

program. Consequently, concurrency will not be part of the problem specification, but will be 

derived after the development of the program. We would like to certify this derivation 

mechanically. 

This methodology can be applied to every programming problem that is completely 

specified by an input/output assertion pair. A terminating solution must exist, i.e., the output 

assertion must not be false. An execution time limit in form of a function of the input vari- 

ables may or may not be added. One could conceive also the addition a storage space limit 

but, in its present from, the methodology does not provide for that. 

The methodology cannot be applied to a programming problem with additional con- 

straints like a specific concurrent behavior. Programs with a specific behavior can be derived 

{see, for instance, the Producer/Consumer and the Dining Philosophers in [9]}, but the correct- 

ness of such behavior has to be argued informally. 

Thus, we permit the specification of a programming problem in three parts: 

(a) the input constraints under which the program shall operate, 

(b) the results which the program is supposed to achieve, and 

(c) an optional time limit imposed on the program's execution. 

The program development then proceeds along the following lines: 

(1) Perform a formal stepwise refinement of a program that achieves the desired result 
under the given input constraints. The program does not address the question of 
execution order. It may not require a total order of its operations, but an easy, se- 
quential execution can, at this point, serve as a first execution time estimate. 

(2) Declare simple relations between program components, so-called "semantic 
relations', that allow relaxations in sequencing, e.g., concurrency. Do so until the 
execution time of the program satisfies the specified time limit. 

A refinement of program S is, for instance, S: S1;$2. The semicolon denotes 

"application". It may be implemented by executing S1 and then S2, but need not be in all 
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c a s e s .  

Semantic relations are, for instance, the commutativity of the components S l  and $2 

(written $1~S2), and the independence of $1 and $2 (written S l j  IS2). S1 and $2 are com- 

mutative, i.e., 8:t~S2 may be declared if the execution of 81 and then $2 has the same effect 

as the execution of $2 and then $1. If 8 1 ~ 2  is declared, 81;82 may also be implemented by 

executing 82 and then 3t .  S1 and $2 are independent, i.e., S l l  IS2 may be declared if the ex- 

ecution of S l  and 82 in parallel has the same effect as their execution in order. If Sl1182 is 

declared, 31;S2 may also be implemented by executing $1 and 82 in parallel. A third seman- 

tic relation is the idempotenee of some component S (written !S). 8 is idempotent, i.e., !S may 

be declared if S has the same effect as SiS. If iS is declared, we may add to or delete from a 

sequence of consecutive calls of S. 

Idempotence helps eliminate superfluous parts of an execution, or duplicate parts of an 

execution for commutation to appropriate places. Commutativity helps distribute program 

components to places in the execution where they can be executed in concurrence with others. 

Independence helps add concurrency. Independence implies commutativity. 

To declare semantic relations for some program, one does not need to understand the 

program as a whole. A local understanding of the components appearing in the declared rela- 

tion is sufficient. The concurrency that is induced by semantic declarations is of a very simple 

nature: there is no need for synchronization (other than at the point of termination) or 

mutual exclusion, as is required for conventional concurrent processes. Most semantic declara- 

tions come easily to mind and have a simple proof. 

But the foremost benefit of this approach to the derivation of fast programs is that the 

more important  and better understood question of program refinement is resolved before the 

less important  and more complex question of concurrency arises. Concurrency is later added in 

isolated steps (by invoking semantic relations) without changing the approved meaning of the 

program. 

For concurrency so be correct, a program has to fulfill intricate requirements. That  is 

what makes concurrency so hard to understand. It is easier to derive concurrency on an in- 

formed basis (as the last step of the program derivation) than on an uninformed basis (as the 

first step of the program derivation). The correctness proof of concurrency is easier at a 

refinement level where concurrency is simple, e.g., between two independent program parts 

than at a refinement level where concurrency is complicated, e.g., between two processes that  

require synchronization and mutual exclusion. 

Thus, in our methodology, the development of programs with concurrency is divided 

into two stages: 
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Stage 1: 

Stage 2: 

The development and formal semantic description of a program that achieves the 
desired result. This requires a formal refinement and the declaration of semantic 
relations. Programs are composed by the usual program combinators, e.g., com- 
position: S l ;32  (read: "32 is applied to the results of Sl"). 

The derivation of a fast execution of the program produced at Stage 1. (An execu- 
tion of a program is also called a trace.) This is conceptually simple but computa- 
tionally complex. It involves the computation of execution times and the invoca- 
tion of semantic relations to transform traces and improve execution time. There 
are two trace combinators: S1-~$2 (read: "execute S1 and then 32"), and <S1 $2> 
(read: "execute SI and $2 in parallel'}. 

We call Stage 1 the refinement calculus and Stage 2 the trace calculus. Either of the 

two stages has the potential for automation. Automation of Stage 1 would yield a mechanical 

system for program refinement. Research along these lines is under way elsewhere [2, 13]. 

Automation of Stage 2 would yield a very powerful optimizing compiler (since we view con- 

currency as optimization). Early work in this area [8] has been without a formal semantic 

basis. At that time, formal semantics was in its infancy. Our interest is the mechanical support 

of Stage 2 on a formal semantic basis. 

The most common approach to programming in which the derivation of concurrency is 

divorced from the derivation of the program is data flow programming [1]. A data flow 

program makes no explicit reference to the order of execution. It is executed on a special 

machine architecture that follows the sequencing imposed by the data dependencies of the 

program's variables. Data flow languages are "referentially transparent ' :  they ~]o not permit 

the re-assignment of variables. This simplifies the identification of data independencies so 

much that, commonly, no programmer assistance is needed to identify concurrency. Our ap- 

proach is "referentially opaque' ,  i.e., permits the re-assignment of variables and, con- 

sequently, requires a more complicated data flow analysis. We have to explicitly declare and 

subsequently exploit data independencies (in our formalism, semantic relations). 

The vast majority of software that exists today and is currently being produced is 

referentially opaque. The vast majority of today's machine architectures support the referen- 

tially opaque programming style. While we must strive for new programming styles and 

machine architectures, we must also continue to increase our understanding of the present 

technology. 

3. Expository Domain: Sorting Networks 

Semantic relations can be declared for programs in any imperative programming lan- 

guage that has a weakest precondition semantics. For the purpose of our investigation we 

choose a very simple language. We do not want to complicate our mechanical proofs of trace 
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transformations by unduly complicated semantics oI " programs and traces. We define the inn= 

guage of sorting networks [7]. The general problem that  we pursue is to sort an array a0..n 

of numbers into ascending order in no more time than O(n). The linear time requirement 

~orces us to consider a concurrent execution. In the language of sorting networks, refinements 

can have the following structure: 

(1) The null statement ~ does nothing. 

(2) The comparator module c s ( i , j )  accesses an array a of numbers. It compares 
elements a 1 and aj and, if necessary, swaps them into order. A simpler version of 
comparator module with only one argument, c s ( i ) ,  deals with adjacent elements 
al_ 1 and a I. We call sorting networks that  are composed of simple comparator 
modules simple sorting networks. The eomparator module is of imperative na- 
t.ure, i.e., its implementation requires assignment. 

(3) The composition $1;$2 of refinements S1 and 82 applies $2 to the results of S1. 

Sorting networks are well-suited for our methodology because they terminate and only 

their results, not their behaviors matter. They also have a wide range of applications and are 

extensively researched. It is important to realize that we are not trying to do research in sort- 

ing networks. We chose them as a well-understood first domain in which to test our ideas of 

automation. 

Since we are concerned with the trace calculus of the methodology, we do not dwell on 

the refinement of programs but accept the particular sorting network whose trace transfor- 

mations we want to study as given. So far, we have studied three sorting networks: the inser- 

tion sort, the odd-even transposition sort, and the bitonic sort [7]. The insertion sort and the 

odd-even transposition sort can be expressed as simple sorting networks. The bitonic sort ex- 

pects array a already presorted in bitonic order. Let us describe each of the three sorting net- 

works in turn. 

8.1. I n s e r t i o n  S o r t  

The following refinement describes the insertion sort: 

insertion-sort (n) : sort (n) 

sort (0) : skip 
(i>O) sort(i) : sort(i-l) ; S(i) 

S (o) : 
(i>O) S(i) : cs(i) ; S(i-l) 

Comparator modules may be declared idempotent. Consecutive applications of the same 

comparator module do not yield any new results. For l± - j  I>l, i.e., if i and j are not 

"neighbors", cs ( l )  and cs  ( j )  are disjoint: they do not share any variables. Components that  
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do not share variables may be declared independent. 

! c s  ( 1 )  

i l - j l > l  ~ cs(1)  l l c s ( j )  

Note that the prerequisite [ l - j  I>1 makes cs(1)  l i e s ( j )  a semantic rather than syn- 

tactic condition. (Semantic declarations can also be qualified with respect to a postcondition. 

For the underlying theory see [11].) 

For, say, a six-element array (n=5), the refinement has the following sequential execu- 

tion, if we interpret composition ' ; '  as execution in order '~,' and expand components s o r t ( i )  

and S( l )  (1_<5) of s o r t ( 5 ) :  

t au(5)  = cs  (1)-*cs (2)-~cs (1) 
-*cs (3)-*cs (2) -*cs ( 1 ) 

-~cs (4)-~cs (3) -*cs (2) ~cs (1) 
-*cs (5)-*cs (4)*cs (3)-*cs (2)-*cs (1) 

If we count the number of comparator modules cs, tau(5)  has length 15. In general, tau(n)  

has length n(n+l ) /2 ,  i.e., is quadratic in n. To derive a linear execution, we have to exploit 

the independence declaration for s o r t ( n )  and compress tau  (n) into a trace with concurrency. 

We have already laid out the sequential trace tau(5)  in a form which suggests how this can 

be done. We commute comparator modules in tau(5)  left, and then merge adjacent modules 

whose indices differ by 2 into a parallel command: 

t a u -  (5) = 
/ c s ( i ) \  / c s ( 2 ) \  / c s C i ) \  / c s ( 2 ) \  /csCi) ' \  

cs(1)-~cs (2)-~ ) - ~  ) * ( c s ( 3 ) ) - ~ (  ) - ~ (  )-~cs (2)-~cs (1) 
\ c s ( 3 ) /  \ c s ( 4 ) /  \ c s ( 5 ) /  \ c s ( 4 ) /  \ c s ( 3 ) ]  

If we assume instantaneous initiation and termination of parallel commands (instantaneous 

forks and joins), this execution is of length 9. In general, t au - (n )  is of length 211-1, i.e., linear 

in n. The degree of concurrency increases as we add inputs. This is a property of all three 

sorting networks. They are not limited to a fixed number of concurrent actions. However, if 

only a fixed number k of processors is available, the independence declaration may be ex- 

ploited only to generate a concurrency degree of k or less. 

Note that the idempotence declaration of comparator modules does not help in the 

derivation of concurrency for the insertion sort. As we shall see in the next section, array 

a0..~ can be sorted faster than by t au - (n ) ,  but not when we start with the refinement of the 

insertion sort. 
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3.2. O d d - E v e n  T r a n s p o s i t i o n  So r t  

The odd-even transposition sort is the simplest possible .example of the transformation of 

a sorting network. Here is the refinement: 

odd-even-sort(n): s o r t  (n+l,  n) 

s o r t  (0, j) : s ki~ 
s o r t ( i , j ) :  S ( j - 1 )  

( i> i )  s o r t ( i , j )  : S ( j - 1 )  ; S ( j )  ; s o r t ( i - 2 , j )  

S (0) : 
S(1) : cs (1)  

(I>1) S(±) : c s ( i ) ;  S ( i - 2 )  

As a simple sorting network like the insertion sort, the odd-even transposition sort 

adopts the semantic declarations of the previous section: 

! cs (i) 

! i - j l > l  =¢~ c s ( i ) [ I c s ( j )  

The sequential trace of this refinement for a five-element array (n=4) is: 

t a u  (4) = cs  (3)-~cs ( i ) -~cs  (4)-~cs (2)-~cs ( 3 ) ~ c s  (1 )~cs  (4)-~cs (2 )*cs  (3)-~cs (1) 

The number of comparator modules in t au(4)  is 10. In general, t au (n )  has length n (n+l ) /2 .  

In every S ( i ) ,  the indices of all comparator modules differ at least by 2. Thus we can convert 

each S ( i )  into one parallel command. The resulting parallel trace is: 

t a u - ( 4 )  = ~/cs (1) ~_ ,  ( c s  (2) ~ _ ~ ( c s  ( 1 ) ~ . ~ ( c s  (2) ~ .~ ( c s  ( I )  ~ 

\ c s ( 3 ) /  \ c s ( 4 ) /  \ c s ( 3 ) /  \ c s ( 4 ) /  \ c s ( 3 ) /  

t a u -  (4) is of length 5. In general, t a u -  (n) is of length n+l. 

3.3. Bitonie Sor~ 

An array no..~ is in bitonic order if ao_>..._>ai_<....<.an for some 0<_i_<n. Let us write ar- 

ray no..~ as a sequence (a0, a I . . . . .  an). The bitonic sorting algorithm sorts an array a that is 

already in bitonic order into ascending order by sorting the subsequences (a 0,a  2 . . . .  ) and 
(a l ,a ,  3 . . . .  ) independently, and then comparing and interchanging (a 0 , a t ) ,  (a  2 ,a  3),... . 

Since the subsequences of a bitonic sequence are also bitonic, {a 0, a~ . . . .  ) and {a 1, a, 3 . . . .  ) can 

be sorted by the same algorithm, until all subsequences have length i. The bitonic sort is not 

a simple sorting network. It requires the general comparator module cs (±, j ) .  

The refinement of the bitonic sort is: 
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(leng>l) 

b l t o n l c - s o r t ( n ) :  so r t  (0,1, n+l) 

sor t (base ,  s tep,  0): 
sor t (base ,  s tep,  1): skip 
sor t (base ,  s tep,  leng):  sor t (base ,  step*2, [leng/2]);  

sort(base+step,  step*2, [leng/2J); 
S(base, s tep,  step*2, [leng/2]) 

S(base, d l s t ,  s tep,  0): skip 
(leng>0) S(base, d i s t ,  s tep,  leng):  cs(base,  base+dlst) ;  

S(base+step. dlst, step, leng-l) 

Refinement so r t  performs the bitonic sort as described. It is qualified by three 

parameters, base, step, and leng, that identify a subsequence of a: base is the index of the 

first element, s tep is the difference of the indices of any two adjacent elements, and leng is 

the number of elements in the subsequence. Refinement S performs the step of comparisons 

and interchanges. It is qualified by four parameters, base, d ls t ,  step, and leng, that iden- 

tify a sequence of comparator modules that access array a: base is the index of the left array 

element accessed by the first comparator module, d i s t  is the distance of the left and right ele- 

ments accessed by any comparator module, s tep is the distance of the left elements (or right 

elements) of any two adjacent compara~or modules, and leng is the number of eomparator 

modules in sequence. 

Like simple comparator modules, general comparator modules may be declared idem- 

potent. Also, disjoint comparator modules may be declared independent. General comparator 

modules cs( i l ,12)  and cs ( j i , J2 )  are disjoint if they do not overlap, i.e., if l l # j i  , it#J2 , 

12~Jl, and 12~ j2. 

! c s  ( 1 1  , 12) 

i l#Jl  ^ l l#j2 ^ 12fJl ^ 12#j2 ~ cs( i l ,12)  l ics (J l , J2)  

Let us construct a binary tree of bitonic sequences whose root is the entire array a, and 

whose left and right subtrees are recursively constructed by splitting the root into sub- 

sequences as prescribed by the bitonic sorting algorithm. We call this tree the sequence tree of 

a. The sequence tree of an eight-element array (n=7) is: 

(a0, al, a~. a3, a4, as, aB, at) 
/ \ 

/ \ I \ 
(~ ,  a4) (~ ,  ~ )  (%, as) (~ ,  ~ )  

I k I \ I \ I \ 
(a o) (a 4) (~) (as) (a~) (as) (a3) (~) 

At each node (all, ai2, ais,ai4 . . . .  ), the bitonic sorting algorithm requires an application of 



140 

comparator moduies cs (±i, 12);cs (230 ±4 ) ; ' '  ', which we shall call a segment. The following 

segment tree corresponds to the previous sequence tree: 

ca (0 ,1)  ;cs  (2,3) ; cs (4,5) ;ca (6,7) 
/ \ 

cs (0,2) ; c s ( 4 , 6 )  c a ( l , 3 )  ; c s ( 5 , 7 )  
/ \ 1 \ 

cs (0,4) CS(2.6) c s ( l . 5 )  CS(3.7) 

Segments of leaves in the sequence tree are null and are not represented in the segment tree. 

Note that, in the refinement of the bitonie sort, segments are represented by calls of S. 

We can now view the sequential trace gnu of the bitonie sort as the post-order traversal of 

segments in the segment tree: 

t~.u(7) = cs(O,4)'~cs(2,~)~cs(O,2)-~cs(4,6) 
-~cs (1,5)-~cs (3,7)-~cs (1,3)-~cs (5,7) 

*cs (0. l ) *c s  (2.3)-~cs (4.5)÷cs (6.7) 

t au(7)  has length 12. In general, t a u ( 2 k - l )  has {ength 2k-ik. (The refinement works for all 

bitonie arrays, but we choose to consider only arrays whose length is a power k of 2. Such ar- 

rays yield complete sequence and segment trees.) Observe that any two distinct segments x 

and y in the segment tree which are not in an ascendant/descendant relationship have no 

common elements. Such x and y are independent, and we can commute them or make them 

parallel. For instance, we can commute all segments that are on the same level in the tree 

{i.e, that have the same distance from the root) into adjacency: 

tau" (7) = cs (0.4) -~cs (2.6) -~cs (1.5)- ,cs (3.7) 
->cs (0~ 2) -~cs (4.6) -~cs (I .  3)-~cs (5.7) 

~cs (0 ,1)*cs  (2,3)-~cs (4,5)-*ca (6,7) 

Then we can merge each level into one parallel command: 

tau" (7) = <cs(O.4) es (2 .5 )  c s ( l . 5 )  c s (3 .7 )>  
-~<cs (0.2) cs (4.6) cs ( I .  3) cs (5.7) > 

-~<cs(O.l) cs (2 .3)  c s (4 .5 )  cs (6 .7 )>  

t, au" (7) is of length 3, with a concurrency degree of 4. In general, t a u - ( 2 k - t )  is of length k, 

with a concurrency degree of 2 k-1. 

4. On the ~leehanlcM Support of Trace Transformations 

Given a sequential trace that we know to be correct, we would like to derive an equiv- 

alent but faster parallel trace. Let us assume a recursive sequential trace. We can prove its 

equivalence with the parallel trace by a recursive appliea£ion of a sequence of trace transfor- 

mations. Although such trace transformations are in many cases quite simply described in in- 
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formal English, their formal application is extremely tedious (as is effectively demonstrated by 

our manually derived proof of the insertion sort transformation in Sect. 5.4 of [11]). We do 

not want to rely on an informal description but would like some mechanical aid in the formal 

application. 

We might be tempted to view the trace transformation as a recursive algorithm. Say, 

algorithm t r a ~ s ( n )  transforms sequential trace t au (n )  into parallel trace t a u - ( n )  by ap- 

propriately commuting and ravelling tau ' s  comparator modules. The computational com- 

plexity of t r a n s  (n) will depend on the particular transformation it performs. For instance, 

[12] contains a cubic algorithm for the transformation of the insertion sort. If we intend to 

sort frequently it is very reasonable to ' buy"  a linear execution with cubic compilation. 

However, the algorithmic approach to transformation has one fundamental problem: an un- 

bounded trace can never be completely transformed in finite time - and recursive or looping 

programs yield unbounded traces. 

A better approach is to treat  trace transformations as theorems, not algorithms. A trace 

transformation theorem states the semantic equivalence of a sequential trace and its parallel 

transformation: 

semantics of parallel trace = semantlcs of sequential trace 

In particular, recursive transformations are inductive theorems. Transformation theorems of 

sorting networks are of the form: 

TAU.MAIN: For  a l l  n>O, 
seman t i c s  of  t a u - ( n )  = semant ics  of  t au (n )  

The proof essentially rewrites one side of the equation into the other. Because it uses induc- 

tion (on n), it can deal with unbounded traces in finite time. In other words, the length of the 

proof does not depend on the length of the trace. 

Our current focus is the automation of such proofs. For this purpose, we use a powerful 

induction prover [4] that  is based on a mechanized functional logic particularly suitable for 

program verification [3]. The prover is designed to prove theorems about recursive functions 

but is not an expert on sorting networks and their trace transformations. Our attempts to 

turn it into such an expert are described in the following section. 

Ultimately we would like the mechanical support not only in the proof but also in the 

discovery of transformation theorems. We imagine a set of mechanized heuristics that trans- 

form sequential traces correctly into equivalent parallel traces, using induction. A formal cor- 

rectness proof of these heuristics would save us from proving the transformation of every 

single trace separately. However, for the time being, we prefer to deal with the simple seman- 
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tics of traces, not with the ~aore complicated semantics of heuristics for the transformation of 

traces. 

5. T h e  M e c h a n i c a l  C o r r e c t n e s s  P r o o f  o f  T r a c e  T r a n s f o r m a t i o n s  

We are applying Boyer & Moore's mechanical treatment of recursion and induction i3]. 

All the reader has to know about Boyer & Moore's mechanized logic to understand this paper 

is that  terms in first-order predicate logic are expressed in a LISP-like functional form. (We 

will here actually keep basic logic and arithmetic operations in infix notation.) Predicates are 

functions with a boolean range. There are no quantifiers. A variable that  appears free in a 

term is taken as universally quantified. For example, the term 

(hXJMBEP2 X) ~ X < X+I 

expresses the fact that any number is smaller than the same number incremented by 1. Func- 

tions can be declared (without, a function body) or defined (with a function body), and facts 

can be asserted (introduced as an maxiom') or proved (introduced as a "lemma*). 

This section sketches the implementation of the semantic theory that  is necessary to 

prove trace transformation theorems for sorting networks in Boyer & Moore's logic. We shail 

gloss over a lot of details. For instance, we shall not display the bodies of the defined func- 

tions that  we introduce. 

5.1. T r a c e  R e p r e s e n t a t i o n  

We represent a trace by a LISP list. The elements of the list are executed in sequence. If 

a list element is itself a list, it is called a parallel command and its elements are executed in 

parallel. If an element of a parallel command is again a list, its elements are executed in se- 

quence, etc. Thus, a trace is a multi-level list whose odd levels reflect sequential execution, 

and whose even levels reflect parallel execution. In the realm of simple sorting networks, we 

can represent traces by multi-level lists of integers. For example, traces t a u ( 5 )  and t a u - ( 5 )  

of the insertion sort, 

t a u ( 5 )  = cs  (1)+cs (2)+cs ( I )  
+cs (3)+cs (2)+cs ( I )  

+ c s  (4) +cs (3) +cs (2) +cs ( I )  
+cs (5) +ca (4)+cs (3)+cs (2)+cs ( I )  

tau" (5) = 
/ c s ( 1 ) \ ,  l o s ( 2 ) \  /CS(1)%\  / C S ( 2 ) \  / C S ( 1 ) \  

( 4 ) 1  \ c s ( 5 ) /  \ c s ( 4 ) /  \ c s C S ) /  



143 

are represented by 

(TAU5) = "(1 2 1  3 2  i 4 3 2 1  5 4 3 2 1 )  

(TAU- 5) : "(1 2 (3 1) (4 2) (5 3 1) (4 2) (3 1) 2 1) 

In our formalism [10], parallel commands are binary, i.e., can have at most two parallel 

components. An n-ary parallel command is expressed as nested binary parallel commands. 

This coincides with LISP's (and Boyer & Moore's) representation of a list as a nesting of pairs. 

E.g., the parallel command " ( 5 3 1 )  of trace (TAU- 5) is really "(5 . (3 . (I  . NIL))).  

In the realm of general sorting networks, traces are represented as multi-level lists of 

pairs of integers. 

5.2.  Trace  S e m a n t i c s  

Traces have weakest precondition semantics [10]. Since a weakest precondition is a 

function from programs and predicates to predicates [5], the weakest precondition calculus can 

be directly implemented in Boyer & Moore's logic. 

Our methodology divides the development of programs into two stages. Stage 1, the 

refinement calculus, is concerned with the derivation of program semantics~ i.e., the derivation 

of a refinement. Stage 2, the trace calculus, is concerned with the preservation of program 

semantics, i.e., the transformation of sequential executions into concurrent executions. Con- 

sequently, we need not implement a complete weakest precondition generator in order to 

implement Stage 2. We are only interested in the equality of weakest preconditions, not in 

their actual values. A weakest precondition that is not affected by the trace transformations 

need not be spelt out but may be provided as a Wblack box m. In Boyer & Moore's logic, a 

black box is represented by a function that has been declared (without a function body) rather 

than defined (with a function body). The primitive components of sorting networks are com- 

parator modules. For the purpose of trace transformations, we are not interested in the inside 

of a comparator module. Therefore we declare the weakest precondition of a comparator 

module cs  as a function 

Declared Function: (CS I S) 

where I represents an integer if cs  is simple and a pair of integers if cs  is general, and S 

denotes the postcondition (or Wpoststate"). Since function CS is declared, not defined, we 

must provide by axiom some essential information about CS that is not evident from the 

declaration. We add two axioms. One restricts the domain of simple comparator modules to 

numbers: 
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Axiom CS.T.~/fES.NLr~ERS: (NOT (hX/MBEP2 I)) ~ ((CS I S) = F) 

Axiom CS. ThKF_~. ~ J ~ E l ~  states that the prestate of CS for any non-number and poststate is 

false, i.e., that  such a CS is not permitted. A respective axiom for general comparator modules 

tests for pairs of numbers rather than numbers. The other axiom expresses the ' ru le  of the 

excluded miracle ~ (Dijkstra's first healthiness criterion [5]) for comparator modules: 

Axiom CS.IS.NOT.MIRACLE: (CS I F) = F 

Axiom CS. IS.  NOT.MIRACLE states that  the prestate of any CS with false poststate is false, i.e., 

comparator modules cannot establish "false ' .  

To determine the weakest precondition of some trace L that  is composed of comparator 

modules CS for poststate S, we define a "cs-maehine' ,  a function 

Defined Function: (M.CS H.,AG L S) 

that  composes calls to CS as prescribed by trace L. Beside L and S, M. CS takes a FLAG that 

signals whether the trace is to be executed in sequence (FLAG='SF~) or in parallel (FLhG='PAR). 

In accordance with our trace representation, F L A 6 = ' 5 ~  in top-level calls and FLA6 alternates 

with every recursive call. 

When FLAG='PhR, the trace represents a parallel command and its elements must be 

checked for independence. We can make use of the semantic declarations provided at Stage 1. 

The smallest component that  a semantic declaration for a sorting network will mention is the 

comparator module. We may therefore, from Stage l ,  assume knowledge about the indepen- 

dence of comparator modules and may express this knowledge by a declared function 

Declared Function: (IND.CS I J)  

that  evaluates the independence of comparator modules I and J. Again, look at I and J as 

integers or pairs of integers, as appropriate. We then define a function 

Defined Function: (ARE. IND. CS LI L2) 

that  uses IND.CS to determine the mutual independence of all comparator modules of trace L1 

with all comparator modules of trace L2. If the two members of a parallel command 

(remember the restriction to binary parallel commands) pass test ARE.IND.CS their execution_ 

has identical semantics in parallel as in sequence - only their execution time differs. 

The execution time of traces plays a role in the selection of proper transformation 

theorems. At  present, we take transformation theorems as given and only prove them by 

mechanical means. Therefore, execution time is left out of the current implementation. 
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The semantic equivalence of t a n -  and t a n  for any of the three previously described 

transformations is formally expressed as 

Lemma TAU.MAIN: O<N ~ ( (M.CS "SEQ (TAU- N) S) 
= (~.CS "SEq (TAU N) S) ) 

5.3. Trace Transformations 

Independence declarations are exploited via transformation rules that  express commuta- 

tions and parallel merges of independent program components. 

The theorem for para}lel merges corresponds to transformation rule (G3i) of Sect. 5.2 of 

[10]. 

Lemma 63±: (ARE, IND, CS L1 L2) 
( (M.CS 'SEQ <L1 L2> S) 
= (M.CS 'SEQ LI-~L2 S))  

For clarity, we return here to our previous notation for traces. Traces must, of course, be 

fully represented in the mechanized logic. 

To express commutations, we must be more specific about the meaning of 

"independence". The declaration of IND.CS does not provide any clues. We do not need to 

know everything about independence; otherwise we would define, not declare IND.CS. But we 

must be able to conclude that  independent comparator modules may be commuted. A~ we did 

with CS, we characterize IND. CS by axiom: 

A~iom GLOI~.  IND. CS: 
(IND~CS I J) 

~--~ ((CS J (CS I S))  = (CS I (CS J S ) ) )  

If we instantiate both FLA61 and FLA62 to "SE•, the following theorem enables com- 

mutations: 

Lemma ARE. INI).CS. IMPLIF£.COM~ft}TATIVITY: 
(ARE. IND. CS L1 L2) 

( (M.CS FLAG1 L1 (bl.CS FLAG2 L2 S))  
= (M.cs F I ~ 2  L2 (M.CS FLACi L1 S)) ) 

S.4. Independence Criteria 

For simple sorting networks, we have introduced the concept of °non-neighbors m to 

declare independence. Two simple comparator modules are non-neighbors if their indices dif- 

fer by at least 2. We may provide this known fact by axiom: 
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Axiom NON.NEIGiK~RS.ARE. IIIiD.CS: 
(NON.NEIGHBORS I J) =~ (IND.CS 3: J) 

where function NON.NEIGHBORS identifies non-neighbors. NON . NEIGHBORS is defined while 

IND.CS is declared. With IND.CS alone we could not decide the independence of anything; 

with this axiom we can decide the independence of simple comparator modules. We may, for 

example, apply theorem G3± with c s (5 )  for L1 and c s ( 3 ) + c s ( 1 )  for L2, since cs (5 )  is not 

neighbor of cs  (3) and cs  ( i ) :  

(M.CS "SE~ <cs(5)  c s (3 )  c s (1 )>  S) = (M.CS "SEQ <cs(5)  c s ( S ) + c s ( 1 ) >  S) 

Two more applications of G3i, exploiting also the non-neighborhood of c s (3 )  and c s (1 ) ,  

yield: 

(M.CS "SEQ <cs(5)  c s (3 )  c s (1 )>  S) = (bi. CS 'SEQ c s ( 5 ) + c s ( 3 ) + c s ( 1 )  S) 

This formula expresses the equivalence of the parallel and sequential execution of eomparator 

modules cs  (5), cs  (3), and cs  (1). 

For general sorting networks, we characterize independence by the concept of "non- 

over lap ' .  Two general comparator modules do not overlap, if they do not touch the same ar- 

ray element. This fact is provided by axiom: 

Axiom NO. 0VERIAP .ARE. IND. CS: 
(N0.OVERIAP I J) ~ (IND.CS i J) 

where function NO. 9VERIAP establishes non-overlap. 

5.6. A p p l i c a t i o n  T h e o r e m s  

Ideally, we would like to submit to the prover nothing else but an application theorem 

- ours are of the form: 

TAU.MAIN: O<N ~ ( (M.CS "SE[~ (TAU" N) S) 
= (M.CS 'SEQ (TAU N) S) ) 

where TAU and TAU- are defined appropriately - and have it certified without any further in- 

put. However, no existing prover is expert enough in the theory of trace transformations of 

sorting networks to accomplish such a proof on its own. To educate the prover, we must 

implement our theory on it, i.e., express the theory in the mechanized logic, and have it cer- 

tified and at disposal for further proofs. 

Up to this point, we have described the implementation of the basic semantic theory, the 
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part  that applies to all simple, resp., general sorting networks. It consists of the semantics of 

traces of comparator modules, a set of trace transformation theorems, and an independence 

criterion for comparator modules. The semantic theory is not fully represented in the 

mechanized logic: we introduced two declared (not defined) functions. The theory is also not 

fully certified: we made four axiomatic assumptions. They reflect the knowledge that  is 

presumed in the theory. 

Even with the basic semantic theory in place and after proper definition of the initial 

trace TAU and the final trace TAb'-, the work required to make the proof of an application 

ThU.Y/tIN succeed is substantial. Essentially, we have to communicate our proof strategy to 

the prover. Where the transformation consists of several steps, the prover may have to be in- 

formed about each individual step. For instance, since we can commute at any place where 

we can merge (remember that independence implies commutativity), we must tell the prover 

about the transformation that we prefer: commutation or merge. Our transformations of the 

insertion sort and the bitonic sort each consist of two steps: one of commutations and one of 

merges. The transformation of the odd-even sort consists of only one step of merges. For 

every step of the transformation, the trace parts that are manipulated must be identified, and 

their independence must be established. This generally involves educating the prover about 

useful facts of number theory. For our simple sorting networks, we had to tell the prover 

about properties of maximization, for our general sorting network about properties of division. 

Establishing these prerequisites before the proof of the application theorem is the most tedious 

aspect of a mechanized certification. For an effective use of a mechanized theory in many ap- 

plications, clean and widely applicable proof strategies are of central importance. 

BASIC 

THEORY 

independence 
criterion 

a lg e b r aic 
prerequisites 

APPLICATION transformation 
strategy 

auxiliary 
lemmas 

main theorem 

all comparator modules 

trace semantics 
trace transformation rules 

simple comp. roods, general comp. roods. 

non-neighbors no overlap 

insertion sort 

maximization 

1st step: commute 
2nd step: merge 

see [121 

TAU .PAIN 

odd-even 8ort 

maximization 

one step: merge 

TALl .MAIN 

bitonic sort 

division 

1st step: commute 
2nd step: merge 

see [6] 

TAU.MAIN 

We shall provide no further details of the individual proofs of our three applications. 

The previous table displays the overall proof structure. The proof of the insertion sort is 



I48 

documented in [t2I, ~hat of the bitonic sort in f6t. 

While the basic theory may contain some declared functions and axioms (and our's 

does), the application part of the proof should not (and ours do not). That is, with respect to 

the basic theory, applic;~tions should be completely certified. It is important that every 

axiomatic assumption is fully understood. An inconsistency in an axiom is not recognized by 

the prover and puts the entire mechanized theory into jeopardy! 

$. C o n c l u s i o n s  

By its very name, the area of automated theorem proving invites high expectations: the 

hope is kindled that, whene~cer the human prover seems lost or uncertain in a proof, the 

mechanism will take over and guide him along. A presently more fitting name would be 

automated proof checking: the human has to conceive and carry out the proof; but he can 

count on a mechanized certification of his proof steps, if these steps are chosen appropriately. 

In order to make the mechanized certification succeed, the human prover has to be familiar 

not only with the abstract theory on which his proof relies but also with its mechanized coun- 

terpart. Like it is the crux of numerical analysis that floating point numbers do not have the 

nice properties of real numbers, it is the dilemma of automated theorem proving that the 

mechanization of a logic does not preserve many of its desirable properties. Therefore, a proof 

certified by a mechanism is actually more difficult than a proof certified by a human. But it 

is also more reliable. 

Let us summarize some of the difficulties that we encountered in the automated as op- 

posed to human certification of trace transformations. 

Automated provers work by a set of heuristics. The human who develops the proof is 

best advised to follow these heuristics. Good heuristics are, of course, those that are naturally 

followed in many proofs. When the heuristics fail, the human has to document his proof 

strategy with aproof hints N. If a proof is loaded with proof hints, it is probably not tailored 

very well to the automated prover. (This could indicate a bad proof or a bad prover.) We 

have spent considerable effort on minimizing and structuring proof hints. 

A proof assertion may have many different representations. For instance, all of the for- 

mulas below represent the same assertion about a, b, and c :  

(a) a2÷b 2 = c 2 

(b) a 2 + b 2 - c  2 = 0 

(c) c 2 - a 2 - b  2 = o 

(d) aa+bb = cc 
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An automated prover may not recognize an assertion in all representations - unless it happens 

to be an expert on this particular class of assertions. Boyer & Moore's prover, for instance, is 

not enough of an expert in algebra to treat representations (a) to (d) equivalently. The human 

has to make sure that the proof uses only representations that the prover can treat as is 

desired. This can be accomplished by either disciplining the proof or educating the prover, i.e., 

making it aware of equivalent representations. Education of the prover is a two-edged sword. 

With too much knowledge, it may spend a long time searching for appropriate facts or even 

apply at points inappropriate proof rules. 

One major concern of automated certification is execution efficiency. The most fun- 

damental efficiency requirement is termination. An inappropriate choice of proof steps may 

lead to an infinite computation. For instance, many automated provers, like Boyer & Moore's, 

rewrite equalities only in one direction in order to avoid infinite looping. E.g., "with the 

knowledge of A=B, Boyer ~ Moore's prover will substitute B for h in proofs, but not vice versa. 

This has immediate consequences for the implementation of our theory: semantic declarations 

may be exploited only in one direction. In any particular proof, we may commute left or com- 

mute right, but not both; we may use idempotence to compress traces or expand traces, but 

not both; we may increase or decrease the parallelism in a trace, but not both. Even if we 

stick with one direction, we may have termination problems if our transformation sequence is 

not well-founded. For instance, decreasing parallelism is always well-founded, while increasing 

parallelism is not. Therefore, we actually let the prover transform traces "backwards M, from 

parallel to sequential. 

When solving a programming problem, a programmer has the choice of programming in 

an existing language, or designing a new language which is particularly suited for the class of 

problems that he is investigating. A new "special purpose" language may permit him to write 

more natural programs and may yield more efficient executions. An existing "general 

purpose" language may grant him more flexibility in reformulating the problem or moving to 

a different problem class altogether. The same choice presents itself in mechanizing certifica- 

tion. One might use an existing general purpose prover, or one might build a new special pur- 

pose prover. In choosing Boyer & Moore's mechanized logic, we have taken the "general 

purpose" option, exactly for the reasons stated: we prefer general certification power for the 

development of our mechanized theory of trace transformations and, in the long run, we do 

not want to confine ourselves to the language of sorting networks. Boyer & Moore's prover is 

a suitable and user-friendly tool for the implementation of specialized theories. 
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