
T H E P R O J E C T I O N OF S Y S T O L I C P R O G R A M S

C. LENGAUERt'$ AND J. W. SANDERS
PROGRAMMING RESEARCH GROUP

OXFORD UNIVERSITY COMPUTING LABORATORY
8-11 KEBLE ROAD, OXFORD, ENGLAND OXl 3QD

A b s t r a c t

A scheme is presented which transforms systolic programs with a two-dimensional structure to
one dimension. The elementary steps of the transformation are justified by theorems in the
theory of communicating sequential processes and the scheme is demonstrated with an example
in occam: matrix composition/decomposition.

1 I n t r o d u c t i o n

We combine two types of formal refinement to transform a two-dimensional systolic program to
one dimension. Systolic array~ are particularly regular distributed processor networks capable
of processing large amounts of data quickly by accepting streams of input and producing streams
of output [6]. Typical applications are to image or signal processing; ours is an algorithm which
subsumes matrix composition and decomposition.

Systolic arrays are usually realized in hardware. We are interested in realizing them in 8oftware,
because then they can run on one of the families of distributed compu~rs (now plentiful) capable
of emulating systolic arrays. We are led to express such software in a distributed progralrm'ring
language that provides constructs for process definition and communication. The production
of that software is relatively straight-forward if the program's process and channel structure,
which matches the processor and communication structure of the systolic array~ also matches
the distributed computer. That is not always the case. If the distributed computer does not
offer the processor layout and interconnections that the systolic program prescribes, one has
two options:

1. one can derive a systolic array that matches the limitations of the computer and derive a
program from it~ or

2. one can adjust the program derived from the ideal systolic array.

We pursue the second route, following the principle that real-world limitations should be im-
posed as late as possible in the design.

We consider one specific case: the processor layout of the machine has fewer dimensions than
the process layout of the systolic program. I In this case, a projection, i.e., a transformation of

~On leave from the Department of Computer Sciences, The University of Texas at Austin, Taylor Hall 2.124,
Austin, Texas 78712-1188.

:~Supported in part by the following funding agencies: through Oxford University by the Science and Engi-
neering Research Council under Contract GR/E 63902; through the University of Texas at Austin by the Office
of Naval Research under Contract N00014-86-K-0763, and by the National Science Foundation under Contract
DCR-8610427.

1For work that explores the first option, see [7].

308

the process layout of the systolic program is required. We consider the transformation of two-
dimensional systolic programs into one-dimensional systolic programs. There are programming
environments that permit the specific0~tion of a mapping from software processes to hardware
processors (e.g., for a Transputer network [4]), which makes explicit program projections un-
necessary. We require this mapping to be the identity in order to avoid inefficiencies caused by
the software simulation of channel communication.

The method we use to justify the projection from two to one dimension appears to be novel. It
can be thought of as a variant of a hybrid of refinement techniques used in "formal methods".
There, criteria for the refinement of sequential systems involve a relation between the states of
the two systems [2,10]; criteria for the refinement of concurren~ systems enable one system to
be replaced by another in any environment [1,5]. We employ a technique of state relabelling
which enables one system to replace another in any of a restricted class of environments. We
hope this feature will be useful in other contexts. The refinement, as usual, makes a program
more specific for the machine at hand: by postulating a one-dimensional systolic architecture,
it leads from the ideal two-dimensional design to a one-dimensionM implementation.

2 T h e P r o b l e m

We are given three matrices: A, B and 6'. Our goal is to establish that C is the matrix product

of A and B:

(V i , j : O < i , j < n : ci , j=(~k:O<k<n:a~,k .bk, j))

That goal may be achieved in different ways, depending on which of the matrices are to be
determined. We consider two possibilities. Because we wish to derive a systolic solution we
shall assume that the matrices are distinct program objects, Le., they do not share elements.

2.1 Matrix Composition
A and B are input and C is output. A and B uniquely determine C.

2.2 Matrix Decomposition
C is input and A and B are output. F~r A and B to be determined uniquely, we require them to
be triangular matrices: A is one on the diagonal and zero above it; B is zero below the diagonal.

3 T h e T w o - D i m e n s i o n a l o c c a m P r o g r a m

A two-dimensional systolic occam program that establishes the required rdation between A, 13
and C is listed in Appendix A.1. The program has been obtained by formal methods that are
documented elsewhere [3,8]; we shall not justify its correctness here. We note some limitations
of the original version of occarn [4]:

Full Parenthe~ization. Arithmetic expressions must be fully parenthesized.

One-Dimensional Arrays Only. We must represent an n x n matrix by an n * n vector. Read
index [(n*col)+row] as index pair [col,row]~

No Floating-Point Arithmetic. We use a fioating-point packa.ge. Read gealOp(z,x,Op,y) as

z := x Op y.

309

b3,3-~ b2,3..~ b~,3.+ ba,~.4

b3,2...P, b2,2-~, bz,2-b ~,2 -b

~,~ ~,~ %3 ~.3
@ $ • @

~,2 ~.2 ~.2 ~.~
e @ @ @

@ @ @ @

%.a ~,o %.a %~
e @ @

2, 3,

3. 3

Figure 1 : 4 × 4 Matrix Composition/Decomposition - The Two-Diraensional Systolic Array

A picture is helpful in understanding the structure of the program (see Fig. 1). Stream A
moves through the processor array from bot tom to top, stream B from left to right, and stream
C is stationary during the computation (it must be loaded into the array before and recovered
from it after the computation). The systolic program consists of three sets of processors (or
cells):

Computation Cells. They first accept the stationary stream C from the left, then they execute
the basic operations assigned to them, propagating streams A and B, and finally they
eject stream C to the right.

Input Cells. Input cells on the left of the array inject first stream C and then stream B. Input
cells on the bot tom inject stream A.

Output Cells. Output cells on the right of the array extract first stream B and then stream C.
Output cells on the top extract stream A.

Only the computation cells appear in Fig. 1, where they are represented by dots. The required
channel connections can be inferred from the data flow. Fig. 1 indicates horizontal channels
pointing right and vertical channels pointing up.

The program refers to a basic operation Basic0p. Its body differs for matr ix composition and
decomposition. We have not filled in the preprocessing and postprocessing phases. They also
differ for matr ix composition and decomposition. The following two subsections spedfy these
individual refinements - for the sake of completeness. We shall not refer to them again.

310

3.1 Matrix Composition

For matrix composition, the basic operation is defined as follows:

PI~0C Basic0p(VALUE i, j, k, AElement, Bglement, VAK CElement)
VAK tmp :
SEQ

Keal0p(tmp, AElement, Mul, BElement)
Keal0p(CElement, CElement, Add, tmp) :

In the preprocessing phas% output matrix C is initialized to zero.

3.2 Matrix Decomposition

For matrix decomposition, the basic operation is defined as follows:

PKOC BasicOp(VALUE i, j, k~ VAI% AElement~ BElement, CElement) =

VAI% trap :
SEQ

IF
(i<=j) AND (i=k)

BElement := CElement
(i>j) AND (j=k)

SEQ
l%eal0p(tmp, One, Div, BElement)
Keal0p(AElement, CElement, Mul, imp)

(i>k) AND (j>k)
SEQ

Keal0p(tmp, AElement, Mul, BElement)
KealOp(CElement, CElement, Sub, tmp)

TRUE
SKIP :

In the preprocessing phase, the output matrices A and B are initialized to the identity and zero,
respectively.

4 T h e P r o j e c t i o n

We eliminate the vertical dimension by projecting horizontally. In accordance with Fig. 1, we
shall refer to the three data streams as follows:

A is the projected stream. Its direction of flow is in the dimension that disappears in the
projection. A is turned from a moving into a stationary stream.

B is the moving stream. It remains moving to the right.

C is the stationary stream. It remains stationary.

We perform the projection in two steps: we combine first the cells and then the channels of
each column into one. Both steps result in startlingly simple program transformations as far
as the moving and stationary streams are concerned. The cell projection of the handling of
the projected stream is more complicated: it involves a conversion from moving to stationary

311

and - more seriously - a redirection of the stream i/o. We provide first an informal account
of the projection~ then several transformation theorems and, finally, their application in the
transformation. The reader may find it helpful to consult the appendix throughout the following
subsections.

4.1 In formal D e s c r i p t i o n

4.1.1 Cell Projection

T h e M o v i n g a n d S t a t i o n a r y S t r e a m s

We replace the PAR loop over the dimension that is projected away by a SEQ loop. In our case,
it is the dimension indexed by row (App. A.1, line 20 and App. A.2, line 30). This combines
the computation processes for each column in increasing sequence rather than in parallel. We
account similarly for the projection by replacing SEQ for PAR in the input and output loops on
row (App. A.I~ lines 13 and 44 and App. A.2, lines 13 and 59). Also, since variables BEtement
in each column of computation cells are now being accessed in sequence without overlap, we
represent them by a single variable: we move the declaration of BEleraent from the loop on row
out to the loop on co l (App. A.1, line 21 and App. A.2, line 20).

The Projected Stream

For loading and recovery, we convert the flow direction of the stream from vertical to horizontal
by commuting co l and row in the input and output loops for the projected stream and replacing
channels Up by channels R±ght (App. A.1, lines 10-12 and 50-52 and App. A.2, lines 10-12
and 65-67). We must also eliminate the communications on Up in the computation processes
(App. A.1, lines 32 and 36). Then we account for the projection by replacing SEQ for PAR, now
for the loop on row (App. A.2., lines 10 and 65). We also add a loading and recovery phase
to the computation processes (App. A.2, lines 22-29 and 50-57). Each process must hold the
stationary elements of one column of the array. We convert variable AElement into a vector
and declare it per column of the array instead of per column and row (App. A.1, line 21 and
App. A.2, line 20).

4.1.2 Channel Projection

We simply discard the dimension that is projected away - here it is row - from the channel
array.

4 . 2 T h e o r e m s

We reason in a language P , which has midway between CSP [1] mad the restricted subset of
occam [11] used to express our programs. It includes those processes which engage in a finite
number of inputs, outputs and a~signments before terminating. From CSP, it inherits a calculus
of communication traces and refusals; from occam, it inherits local variables. Since we do not
consider infinite or divergent programs, we are able to reason using a drastically simplified
semantics.

Each process P is described by

• a channel alphabet 7 P (those channels on which P may communicate),

• a variable alphabet uP (P ' s local program variables),

312

• communicat ions (via P ' s failures; see [t, Chap. 39, and

• the change in program variables (which we describe by using a predicate whose free
variables consist of the vector x of P ' s variable values before execution and the vector x ~
of P ' s variable values after execution).

There are three types of basic process in P . We now describe each informally and say how their
variables change; it is implicit that a process cannot change variables outside its alphabet. For
a description of their refusals, the reader is referred to [1, Chap. 3]. There, slightly different
syntax is used: each basic process is regarded as an event and is converted to a process by
postfixing it with SKIP. From [1, Chap. 1], we also adopt the notat ion P s a t S, which men,as
that process P satisfies condition S.

An input process P = c?x inputs the value e communicated on channel c and assigns it to
variable x. Its alphabet has 7 P = {c} and v P = {x} and, regardless of its previous value, the
final value x ~ of x equals e

P s a t x I = e .

An output process P = c!e outputs the value of expression e on channel c. Its alphabet has
7 P = {c} and u P = { }, so it cannot alter any variables.

An assignment process P = x:=e assigns the value of expression e to variable x. Its alphabet
has 7 P = { } and v P = {x}; it achieves the same program state as the previous input process,
bu t without any communications:

P s a t x r = e .

Processes are combined using sequential composition, denoted -% and parallel composition,
denoted II. When a pair of processes is being composed, we use these symbols in infix; for
the composition of a sequence (i : 0 _< i < n : P~) of processes, we use the prefix notations
(4 i : 0 <_ i < n : P~) and (1t i : 0 _< i < ~ : Pd. Again, we refer to [1] for laws satisfied by
sequential and parallel composition (there, the semicolon is used for sequential composition;
we reserve that symbol for forward composition of b inary relations and predicates). As usual,
we suppose that processes are only placed in parallel if none accesses a variable that another
modifies, thus

7(ll i : O <_i < n : P J = (U i :O <_i < n : TP~)

v([[i : 0 <_ i < n :Pi) = (U i : 0 <_ i < n : vPi)

and, if Si is a predicate in the variables x and x p of Pi with

(Vi :0_< i < n : P~ s a t S~),

then
(ll i : O < i < n : P d s a t (V i : O < _ i < n : S ~) .

For sequential composition, no constraint on variable accesses applies, of course, thus

7(-~ i : 0 < i < n : P i) = (U i : 0 _< i < n :TPi)

v(-* i :O < i < n : P~)=(U i : O <_ i < n : vP~)

and~ if Si is a predicate in the variables of Pi with

(V i : 0 < i < n : Pi s a t Si),

then

313

(-~ i :0_< ~ < n : P,) sat (; i :0 < i < ~ : &).

For example, if P and Q are processes with

.P = {~, y} and ~Q = {y, ~}

such that

then

P s a t x ' = f (x) A y ' = g (y)

Q s a t y ' = h (y) A z ' = k (z)

. (P -~ Q) = {x, y, z}

(P + Q) sat x" = f (x) A y' = h(g(y)) A z' = k(z).

When considering a parallel composition, we shall often stress one process by referring to the
other(s) as its environment. When we say that P satisfies property S in environment Q, we
mean

(P II Q) sat S.

Many of our transformations replace one process with another, in a given environment.

We shall use the law

((c!e - , P) II (c?x --+ Q)) = (& ~ = - ~ --, (e II Q))- (1)

Using this law, and those from [1,11], we reason in P about occam programs, just as one
reasons in the language of guarded commands about Modula-2 programs. Down-coding is done
by identifying the basic processes with occam programs (from [11, Sect, 2]):

c?x with VARy :
ALT (cry x:=x[y/x])

c!e with ALT (c!e x:=x)

x:=e with x:=z[e / z]

and by identifying I[with PAR and -+ with SEQ.

The final operation we require is that of concealment. If E C_ 7P, then P \ E is a process which
behaves like P but with all communications on channels in E concealed. Thus 7 (P \ E) =
(TP) \ E and u(P \ E) = vP, and no variables are altered by P \ E. For the failures of P \ E
and for the laws satisfied by concealment, see [1, Chap. a].

In the following subsections, we justify all transformations except the movement of the decla-
ration of variable BElement.

4.2.1 Cell Projection

We use three theorems. The first, the cell projection theorem, takes care of moving and sta-
t ionary streams. Two more theorems, the stream projection and stream reflection theorem,
address the treatment of projected streaans.

314

The Moving and Stationary Streams

The cell projection theorem addresses two properties of a finite set of messages, which are
communicated over separate channels:

1. Messages that axe consumed in a total order may be produced in the same order or in
any approximating (i.e., less defined) order.

2. Messages that are produced in some partial order may be consumed in that partial order
or in any more defined order, provided the target variables are distinct.

For our purposes, a more restricted version of the cell projection theorem suffices: it takes for
the approximating order the undefined order (which relates no dements at a~) and for the
approximated order a total order (which relates all elements).

Cell P r o j e c t i o n Theorem:

Let ci be distinct channels, ei expressions and xl distinct variables. The processes

(1t i : 0 _< i < ~ : c~?=~) a n d (- ~ i : 0 _< i < n : c~?x~)

both satisfy condition S = (V i : 0 _< i < n : x~ = ei) in either of the environments

([[i : 0 < i < n : c i ! e i) or (- - * i : 0 < _ i < n : c ~ ! e ~) .

Proof.

There are four processes to consider; we enumerate them for ease of reference (in fact, only
the first three appear in our application). Even though their communication traces are not the
same, the final state of all four processes are.

(a) (t l i : 0 _< i < , ~ : c,!e,) II (ll i : 0_< i < n : c,?x,)
-- {by [1, Sect. 4.3: L1] and (1)}

(11 i : 0 < i < n : c~!e; - * x~:=e~)
sat

S.

(b) (H i : 0 _< i < n : c,!e,) li (-~ i : 0 _< i < n : c,?z,)
= {by [1, Sect. 2.a.l: L7, Sect. 4.3: L1] and (1)}

(--* i : 0 < i < n : c~!e~ ~ x;:=ei)
sat

S.

The proofs that

(¢) (- ~ i : 0 < i < n : c , ! e ;) l l (- ~ ; : 0 < i < n : c ' ? x i) sat S

and

(d) (-~ i : 0 _< i < n : c,!e;) 1l (I1i: 0 _< i < n : c;?x~) s a t S

are identical to (b).

End of Proof.

315

T h e P r o j e c t e d S t r e a m

Two things happen in the t ransformation of a projected stream:

1. "moving" is projected to "stationary"; this affects elements that are processed in sequence
by one column,

2. "up" is reflected to "right"; this affects elements that are processed in parallel by different
columns.

Stream Projection Theorem:

Let ci be distinct channels, fi expressions (i.e., functions) in one parameter, xl distinct variables,
x a variable and let f = (; i : 0 _< i < n : fl) denote the forward relat ional composition of the
fi. Then, condit ion z' = f (e) is satisfied by both the processes

= (11 i : 0 _< i < n : ci?xi --* xi:=fi(xi) -~ ci+lIxi)\{i: 0 < i < n : ci} P

and

Q = co?x --~ (-~ i : 0 ~ i < n : x:=f~(x)) --~ a~!f(x)

in environment coIe -~ c~ ? z.

Proof.

In spite of the fact tha t P and Q have the same communicat ion traces, they are not equal since
they have different alphabets. However, by a repeated application of [1, Sect. 3.5.1: L5],

P = Co?Xo --+ (-'* i : 0 < i < n : x,+v=fi(xi)) --* c,~[xn

hence

P il (eo!e --~ e~?z) s a t z' - - f (e) .

The result for Q is immediate.

End of Proof.

The reflection is more intricate to express, because it is a conversion of the vertical-parallel i /o
of s t ream values into a horizontal-sequenced i /o with loading and recovery.

Stream Reflection Theorem:

Let cl and dl be distinct channels, fl expressions in one parameter and xi, xini , xoutl and xtmpl
distinct variables. Condit ion S = (V i : 0 < i < n : xout~ = f~(xin~)) is satisfied by the following
processes in their respective environments:

(a) by process

(H i : 0 < i < n : ci?xi -~ x,:=fi(x,) -~ d~Ix,)

in environment

(tt i : 0 < i < n : ci!xini) It (It i : 0 _< i < n : di?xouti),

316

(b) by process

(l l i : o ~ i < n :

- -+

in environment

ci?xl
(-+ j : i < j < n : c i?x tmpi --+ ci+1!xtrnpl)

(--+ j : 0 <_ j < i : ci?xtmp~ --+ ci+l!xtmp~)

(--, i : o <_ i < n : ~o!xin~) tl (-+ i : o < i < ~ : c .?xoutO.

Proof.

(a) By [1, Sect. 2.3.1: L7, Sect. 4.3: L1] and (1), this process simplifies to

(ll i : 0 <_ i < n : ci!xini ~ x i :=f i (x in i) -+ di ! f i (x in i) --+ xou t i := f i (x in i)) s a t S

(b) The resulting process cannot be simplified like the previous one (because of its com-
munications) but nevertheless satisfies the condition (which involves only variables) by
induction. In the case n = 1,

c0!~in0 II (co?~o -~ ~o:=fo(~o) -+ c~!xo) II c~?~o~to
= {by [1, Sect. 2.3.1: LT, Sect. 4.3: LI] and (1))

ce]xino --+ xo:=fo(xino) -+ c,! fo(x ino) --+ xouto:=fo(x ino)
sa t

~out'o = Yo(xi~o).

For the induct ion step, assume the result for n. Then, for n + 1, the i th process satisfies,
after n + 1 - i inputs on channel cl, xtmp~ = e, where e is the n + 1 - i th value input on
tha t channel. Thus, the process in its environment satisfies

(V i : 0 < i < n : xout~ = f i (xin~)) A xout~ = f~ (x inn)

as required.

End of Proo/.

4.2.2 Channel Projec t ion

The channel project ion theorem states that successive communicat ions on separate channels
can be t ransmi t ted over a common channel.

Channel Project ion Theorem:

Let cl be distinct channels and c a channel, el expressions and x~ dist inct variables. Condit ion
S = (V i : 0 _< i < n : x~ = ei) is satisfied by the following processes in their respective
environments:

(a) process (--+ i : 0 < i < n : ci?xi) in environment (--+ i : 0 ~ i < n : c,!e,),

(b) process (-~ i : 0 _< i < n : c?xl) in environment (-+ i : 0 < i < n : c!e~).

317

Proof.

(a) Case (c) of cell projection.

(b) Simply replace ci by c in the proof above since the condition is independent of chaxmel
names.

End o.f Proof,

4 .3 A p p l i c a t i o n

4.3.1 Cell Projec t ion

The Moving and Stat ionary Streams

The cell projection theorem is applied recursively to each column of cells, right to left. As the
base case, consider the output cells. A substitution of the PAR on row by SEQ (App. A.1, line 44
and App. A.2, line 59) is a conversion frora (a) to (b) in the theorem. The induction hypothesis
is that the input of stationary and moving streams in some column has been projected. Consider
the column to its left. In the induction step, we project the output of the stationary and moving
streams in that column by converting from (b) to (c), and the input of stationary and moving
streams in that column by converting from (a) to (b) again. This means replacing the PAR on
row that encases both the input and the output of stationary and moving streams by a SEq
(App. A.1, line 20 and App. A.2, line 30). This is done for a fixed iteration of the encasing
PAR loop on co l (App. A.1 and A.2, line 19). The induction is on col . Finally, we replace the
PAR on ro~ in the column of input cells by a SEQ (App. A.1 and A.2, line 13), converting once
more from (b) to (c).

It is important to note that we apply the cell projection theorem in a benevolent environment:
no communications other than the ones stated in the theorem are t ransmit ted over the stated
channels; in particular, there are no messages in the reverse direction, i.e., there is no feedback
that could create circular dependencies.

We do not justify the projection of variable BElement formally. The theory of CSP, as presented
in [1], does not provide for this kind of program transformation.

The Projec ted S tream

Initially, we had entertained the hope that we could split the cell projection of the treatment
of stream A into two steps:

1. the reflection of the stream from horizontal to vertical and its treatment as stationary,
and

2. the cell projection, as previously for stationary streams.

Unfortunately, the intermediate (still two-dimensional) p r o g r a m - the output of step i and input
of step 2 - is not occam, tt is dangerous to pretend that the projected stream is stationary in
the two-dimensional array when it reMly is not. Since cells share the stream's elements, they
update shared variables, which is illegal in occam.

The stream projection and stream rei~eetion theorem split the projection of stream A up differ-
ently. We have to perform the cell projection first in order to avoid the ill-defined intermediate
two-dimensionM program. Our transformation proceeds as follows.

318

By appealing to the stream projection theorem, we eliminate lines 32 and 36 of the two-
dimensional program. These communications on Up correspond to the communications on
the middle channels cl,...,c,~-1 in the theorem. We apply the theorem by substituting Q for
P. The transformation of the variables xi in P to the single variable x in Q corresponds to the
movement of the declaration of variable #,Element from the PAI~ on row in the two-dimensional
program (line 21) to the PAl~ loop on co l in the one-dimensional program (line 20). AElement
becomes a vector of variables as a result of an inductive application of the stream projection
theorem.

By appealing to the stream reflection theorem, we frame the computation cell code with code
portions for the loading and recovery of stationary stream A (App. A.2, lines 22-29 and 50-
57). We convert from (a) to (b). The stream reflection theorem also covers the reflection of the
input and output from channels Up in the two-dimensional program (App. A.1, lines 10-12 and
50-52) to channels Right in the one-dimensional program (App. A.2, lines 10-12 and 65-67).

4.3.2 Channel Projection

The channel projection theorem is also applied recursively, converting from (a) to (b). Each
application collapses the set of channels between two columns (which have already been col-
lapsed to single cells) to a single channel. At this point, there axe only stationary and moving
streams left; no distinction needs to be made between them.

5 C o n c l u s i o n s

We have formulated a general projection scheme of cells and channels in systolic programs and
have applied it to a specific example. We have stated and proved the transformation theorems
in a language T', and our scheme applies to any distributed programming language that obeys
7~'s laws. The program example is in one implemented programming language that obeys
those laws: occam. At present, there is a gap between the theorems and their application; we
have bridged it with English explanations. Making our transformations completely precise is
possible but elaborate. It would be easier were we to replace the mechanical systolic design that
produces our two-dimensional occam program by a derivation that relies more on the semantics
of processes in 7) - future work. Such a derivation would also simplify adjustments like the
elimination of the PAR on lines 31 and 35 in the two-dimensional program together with the Up
communications on lines 33 and 36 (PAI~s with just one statement can be dropped).

Similar projection schemes can be applied to systolic programs with different stream movements.
We have covered the three elementary cases: projected, moving and stationary streams. All
of the required substitutions are static and can be easily incorporated into a compiler. We
have tried to make the substitutions as simple as possible. The simplicity of the substitutions
depends on the form of the program to be projected. 2 Luckily, our two-dimensional program
is itself the product of a mechanical derivation [8]. Thus, we have the choice of imposing a
derivation scheme that simplifies projections.

Our theorems axe simplified by the fact that we distinguish the computation cells from the i /o
cells, and that we reason about states rather than traces wherever possible. In the application
of the theorems, we presume the absence of feedback between the computation and the i /o
cells. Programs that are compiled from linear systolic designs [8] do not have feedbazk, but

2For example, letting computation ceils during the loading of stationary streams propagate elements first and
then keep their own element leads to an inversion of the column's index in the input loop, which complicates the
projection of stream A.

319

feedback may arise when a linear systolic design is partitioned, i.e., transformed into a ring or
toroid (e.g., [9]). Therefore, to keep the transformations simple, we suggest to project first and
partition later.

6 A c k n o w l e d g e m e n t s

The first author is indebted to Tony Hoare for the invitation to join PRG for a term, and to all
members of PRG for making his stay a fruitful, enjoyable, and unforgettable one. Thanks go
also to Richard Miller, Andrew Kay, and Geraint Jones, who assisted in the use of the occam
language and compiler.

7 R e f e r e n c e s

[1] C. A. R. Hoare, Communicating Sequential Processes, Series in Computer Science, Prentice-
Hall Int., 1985.

[2] C. A. R. Hoare, He Jifeng and J. W. Sanders, "Prespecification in Data Refinement",
Information Processing Letters 25, 2 (May 1987), 71-76.

[3] C.-H. Huang and C. Lengauer, "The Derivation of Systolic Implementations of Programs",
Acts Informatiea 24, 6 (Nov. 1987), 59.5-632.

[4] INMOS Ltd., occam Programming Manual, Series in Computer Science, Prentice-Hall Int.,
1984.

[5] J. L. Jacob, "On Shared Systems", D. Phil. Thesis, Programming Research Group, Oxford
University Computing Laboratory, 1987.

[6] H. T. Kung and C. E. Leiserson, "Algorithms for VLSI Processor Arrays", in Introduction
to VLSI Systems, C. Mead and L. Conway (eds.), Addison-Wesley, 1980, Sect. 8.3.

[7] P. Lee, Z. Kedem, "Synthesizing Linear Array Algorithms from Nested for Loop Algo-
rithms", IEEE Trans. on Computers TC-37, 12 (Dec. 1988), 1578-1598.

[8] C. Lengauer, "Towards Systolizing Compilation: An Overview", Proc. Conf. on Parallel
Architectures and Languages Europe (PARLE 89), June 1989, to appear as Springer-Verlag
Lecture Notes in Computer Science.

[9] D. I. Moldovan and J. A. B. Fortes, "Partitioning and Mapping Algorithms into Fixed-Size
Systolic Arrays", IEEE Trans. on Computers C-35, 1 (Jan. 1986), 1-12.

[10] T. Nipkow, "Non-Determinstic Data Types", Acts Informatica 22, 6 (Mar. 1986), 629-661.

[11] A. W. Roscoe and C. A. R. Hoare, "The Laws of occam Programming", Theoretical Com-
puter Science 60, 2 (1988), 177ff.

10

11

12

320

A T h e o c c a m P r o g r a m s

A.1 The Two-Dimensional Program

1 VAK Aln[n*n] , AOut [n*n] ,

2 Bln[n*n], BOut In*n],

3 Cln[n*n] , COut [n,n] :

4 CHAN Right [n*(n+l)] :

5 CHAN Up[(n+l)*n] :

6 SEQ

-- PREPKOCESSING

7 "read in input matrices"

8 "initialize output matrices"

9 PAR

-- INPUT CELLS

-- vertical input: inject stream A

PAR coi = [0 FOR n]

SEQ row = [0 FOR n]

13

14

15

16

17

18

19

20

21

-- horizontal channels

-- vertical channels

Up[((n+l)*col)+O] ! Aln[(n*col)+row]

-- horizontal input: load stream C and inject stream B

PAR row = [0 FOR n]

SEQ

SEQ col = [0 FOR n]

Kight[(n*O)+row] ! CIn[(n*col)+row]

SEQ col = [0 FOR n]

Kight[(n*O)+row] ! Bln[(n*col)+row]

-- COMPUTATION CELLS

PAR col = [0 FOR n]

PAR row = [0 FOR n]

VAR AElement, BElement, CElement:

321

22

23

24

25

26

27

28

29

30

31

32

33

3 4

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

SEQ

-- load stream C

Right[(n*col)+row] ? CElement

SEQ unused = [0 F0K (n-l)-col]

VAR tmp:

SEQ
Right[(n*col)+row] ? tmp

Right[(n*(col+l))+row] ! tmp

-- do the computation

SEQ k = [0 FOR n]

SEQ

PAR

Up[((n+l)*col)+row] 7 AElement

Right[(n*co!)+row] ? BElement

Basic0p(col, row, k, AElement, BElement, CElement)

PAR

Up[((n+l)*col)+row+l] ! AElement

Right[(n*(co!+l))+row] ! BElement

-- recover stream C

SEQ k = [0 FOR c o l]

VAR tmp:

SEQ
Right[(n*col)+row] ? tmp

Kight[(n*(col+l))+row] ! tmp

Kight[(n*(col+l))+row] ! CElement

- - OUTPUT CELLS

-- horizontal output: extract stream B and recover stream C

PAR row = [0 FOR n]

SEQ

SEQ col = [0 FOR n]

Right[(n*n)+row] ? BOut[(n*col)+row]

SEQ col = [0 FOR n]

Right[(n*n)+row] ? COut[(n*col)+row]

322

-- vertical output: extract stream A

50 PAR col = [0 F0K n]

51 SEQ row = [0 FOR n]

52 Up[((n+l)~col)+n] ? A0ut[(n~col)+row]

-- POSTPROCESSING

53 "read out output matrices"

A.2 The One-Dimensional Program

1 VAR Aln[n~n], AOut [n~n],

2 BIn[n~n], BOut [n,n],

3 Cln[n*n], C0ut [n,n] :

4 CHAN Right [n+l] :

5 SEQ

-- PREPROCESSING

6 "read in input matrices"

7 "initialize output matrices"

8 PAR

-- INPUT CELLS

9 SEQ

-- load stream A

10 SEQ row = [0 FOR n]

II SEQ col = [0 FOR n]

12 Right[O] ! Aln[(n~col)+row]

-- load stream C and inject stream B

13 SEQ row = [0 F0R n]

14 SEQ

15 SEQ col = [0 FOR n]

16 Right [0] ! CIn[(n~col)+row]

17 SEQ col = [0 FOR n]

18 Right [0] ! Bln[(n~col)+row]

19

2O

21

22

23

24

25

26

27

28

29

3O

31

32

33

34

35

36

37

38

39

4O

41

42

43

323

-- COMPUTATION CELLS

PAR col = [0 FOK n]

VAK AElement [n] , BEiement :

SEQ

-- load stream A

SEQ row = [0 FOK n]

SEQ

K~ght [col] ? AElement [row]

SEQ unused = [0 FOE (n-l)-co!]

VAK tmp :

SEQ

Kight[col] ? tmp

Kight [col+l] ! tmp

SEQ row = [0 F0K n]

YAK CElement :

SEQ

-- load stream C

Kight [col] ? CElement

SEQ unused = [0 FOK (n-l)-col]

YAK tmp :

SEQ

Kight [col] ? trap

Kight [col+l] ! trap

-- do the computation

SEq k = [O F0K n7

SEQ

Kight [col] ? BElement

BasicGp(co!, row, k, AElement[k] , BElement, CElement)

Kight [col+l] ! BElement

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

324

- - r e c o v e r s t r e a m C

SEQ unused = [0 FOR col]

VAR tmp :

SEQ

Right [col] ? trap

Right [col+i] ! tmp

Right [col+i] ! CElement

-- recover stream A

SEQ row = [O FOR n]

SEQ

SEq unused = [0 FOR col]

VAR tmp:

SEQ

Right [col] ? trap

Right [col+l] ! trap

Right [col+i] ! AElement [row]

-- OUTPUT CELLS

SEQ

-- extract stream B and recover stream C

SEQ row = [0 FOR n]

SEQ

SEQ col = [0 FOR n]

Right [n] ? BOut [(n*col)+row]

SEQ col = [0 FOR n]

Right [n] ? COut [(n*col)+row]

-- recover stream A

SEQ row = [O FOR n]

SEQ col = [0 FOR n]

Right [n] ? AOut [(n*col)+row]

-- POSTPROCESSING

"read out output matrices"

