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A b s t r a c t  

A scheme is presented which transforms systolic programs with a two-dimensional structure to 
one dimension. The elementary steps of the transformation are justified by theorems in the 
theory of communicating sequential processes and the scheme is demonstrated with an example 
in occam: matrix composition/decomposition. 

1 I n t r o d u c t i o n  

We combine two types of formal refinement to transform a two-dimensional systolic program to 
one dimension. Systolic array~ are particularly regular distributed processor networks capable 
of processing large amounts of data quickly by accepting streams of input and producing streams 
of output [6]. Typical applications are to image or signal processing; ours is an algorithm which 
subsumes matrix composition and decomposition. 

Systolic arrays are usually realized in hardware. We are interested in realizing them in 8oftware, 
because then they can run on one of the families of distributed compu~rs (now plentiful) capable 
of emulating systolic arrays. We are led to express such software in a distributed progralrm'ring 
language that provides constructs for process definition and communication. The production 
of that software is relatively straight-forward if the program's process and channel structure, 
which matches the processor and communication structure of the systolic array~ also matches 
the distributed computer. That is not always the case. If the distributed computer does not 
offer the processor layout and interconnections that the systolic program prescribes, one has 
two options: 

1. one can derive a systolic array that matches the limitations of the computer and derive a 
program from it~ or 

2. one can adjust the program derived from the ideal systolic array. 

We pursue the second route, following the principle that real-world limitations should be im- 
posed as late as possible in the design. 

We consider one specific case: the processor layout of the machine has fewer dimensions than 
the process layout of the systolic program. I In this case, a projection, i.e., a transformation of 
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the process layout of the systolic program is required. We consider the transformation of two- 
dimensional systolic programs into one-dimensional systolic programs. There are programming 
environments that permit the specific0~tion of a mapping from software processes to hardware 
processors (e.g., for a Transputer network [4]), which makes explicit program projections un- 
necessary. We require this mapping to be the identity in order to avoid inefficiencies caused by 
the software simulation of channel communication. 

The method we use to justify the projection from two to one dimension appears to be novel. It 
can be thought of as a variant of a hybrid of refinement techniques used in "formal methods". 
There, criteria for the refinement of sequential systems involve a relation between the states of 
the two systems [2,10]; criteria for the refinement of concurren~ systems enable one system to 
be replaced by another in any environment [1,5]. We employ a technique of state relabelling 
which enables one system to replace another in any of a restricted class of environments. We 
hope this feature will be useful in other contexts. The refinement, as usual, makes a program 
more specific for the machine at hand: by postulating a one-dimensional systolic architecture, 
it leads from the ideal two-dimensional design to a one-dimensionM implementation. 

2 T h e  P r o b l e m  

We are given three matrices: A, B and 6'. Our goal is to establish that C is the matrix product 

of A and B: 

( V i , j : O < i , j < n :  ci , j=(~k:O<k<n:a~,k .bk, j ) )  

That goal may be achieved in different ways, depending on which of the matrices are to be 
determined. We consider two possibilities. Because we wish to derive a systolic solution we 
shall assume that the matrices are distinct program objects, Le., they do not share elements. 

2.1 Matrix Composition 
A and B are input and C is output. A and B uniquely determine C. 

2.2 Matrix Decomposition 
C is input and A and B are output. F~r A and B to be determined uniquely, we require them to 
be triangular matrices: A is one on the diagonal and zero above it; B is zero below the diagonal. 

3 T h e  T w o - D i m e n s i o n a l  o c c a m  P r o g r a m  

A two-dimensional systolic occam program that establishes the required rdation between A, 13 
and C is listed in Appendix A.1. The program has been obtained by formal methods that are 
documented elsewhere [3,8]; we shall not justify its correctness here. We note some limitations 
of the original version of occarn [4]: 

Full Parenthe~ization. Arithmetic expressions must be fully parenthesized. 

One-Dimensional Arrays Only. We must represent an n x n matrix by an n * n vector. Read 
index [(n*col)+row] as index pair [col,row]~ 

No Floating-Point Arithmetic. We use a fioating-point packa.ge. Read gealOp(z,x,Op,y) as 

z := x Op y. 
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Figure 1 : 4  × 4 Matrix Composition/Decomposition - The Two-Diraensional Systolic Array 

A picture is helpful in understanding the structure of the program (see Fig. 1). Stream A 
moves through the processor array from bot tom to top, stream B from left to right, and stream 
C is stationary during the computation (it must be loaded into the array before and recovered 
from it after the computation). The systolic program consists of three sets of processors (or 
cells): 

Computation Cells. They first accept the stationary stream C from the left, then they execute 
the basic operations assigned to them, propagating streams A and B, and finally they 
eject stream C to the right. 

Input Cells. Input cells on the left of the array inject first stream C and then stream B. Input 
cells on the bot tom inject stream A. 

Output Cells. Output  cells on the right of the array extract first stream B and then stream C. 
Output  cells on the top extract stream A. 

Only the computation cells appear in Fig. 1, where they are represented by dots. The required 
channel connections can be inferred from the data flow. Fig. 1 indicates horizontal channels 
pointing right and vertical channels pointing up. 

The program refers to a basic operation Basic0p. Its body differs for matr ix  composition and 
decomposition. We have not filled in the preprocessing and postprocessing phases. They also 
differ for matr ix composition and decomposition. The following two subsections spedfy these 
individual refinements - for the sake of completeness. We shall not refer to them again. 
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3.1 Matrix Composition 

For matrix composition, the basic operation is defined as follows: 

PI~0C Basic0p(VALUE i, j, k, AElement, Bglement, VAK CElement) 
VAK tmp : 
SEQ 

Keal0p(tmp, AElement, Mul, BElement) 
Keal0p(CElement, CElement, Add, tmp) : 

In the preprocessing phas% output matrix C is initialized to zero. 

3.2 Matrix Decomposition 

For matrix decomposition, the basic operation is defined as follows: 

PKOC BasicOp(VALUE i, j, k~ VAI% AElement~ BElement, CElement) = 

VAI% trap : 
SEQ 

IF 
(i<=j) AND (i=k) 

BElement := CElement 
(i>j) AND (j=k) 

SEQ 
l%eal0p(tmp, One, Div, BElement) 
Keal0p(AElement, CElement, Mul, imp) 

(i>k) AND (j>k) 
SEQ 

Keal0p(tmp, AElement, Mul, BElement) 
KealOp(CElement, CElement, Sub, tmp) 

TRUE 
SKIP : 

In the preprocessing phase, the output matrices A and B are initialized to the identity and zero, 
respectively. 

4 T h e  P r o j e c t i o n  

We eliminate the vertical dimension by projecting horizontally. In accordance with Fig. 1, we 
shall refer to the three data streams as follows: 

A is the projected stream. Its direction of flow is in the dimension that disappears in the 
projection. A is turned from a moving into a stationary stream. 

B is the moving stream. It remains moving to the right. 

C is the stationary stream. It remains stationary. 

We perform the projection in two steps: we combine first the cells and then the channels of 
each column into one. Both steps result in startlingly simple program transformations as far 
as the moving and stationary streams are concerned. The cell projection of the handling of 
the projected stream is more complicated: it involves a conversion from moving to stationary 
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and - more seriously - a redirection of the stream i/o. We provide first an informal account 
of the projection~ then several transformation theorems and, finally, their application in the 
transformation. The reader may find it helpful to consult the appendix throughout the following 
subsections. 

4.1 In formal  D e s c r i p t i o n  

4.1.1 Cell Projection 

T h e  M o v i n g  a n d  S t a t i o n a r y  S t r e a m s  

We replace the PAR loop over the dimension that is projected away by a SEQ loop. In our case, 
it is the dimension indexed by row (App. A.1, line 20 and App. A.2, line 30). This combines 
the computation processes for each column in increasing sequence rather than in parallel. We 
account similarly for the  projection by replacing SEQ for PAR in the input and output loops on 
row (App. A.I~ lines 13 and 44 and App. A.2, lines 13 and 59). Also, since variables BEtement 
in each column of computation cells are now being accessed in sequence without overlap, we 
represent them by a single variable: we move the declaration of BEleraent from the loop on row 
out to the loop on co l  (App. A.1, line 21 and App. A.2, line 20). 

The Projected Stream 

For loading and recovery, we convert the flow direction of the stream from vertical to horizontal 
by commuting co l  and row in the input and output loops for the projected stream and replacing 
channels Up by channels R±ght (App. A.1, lines 10-12 and 50-52 and App. A.2, lines 10-12 
and 65-67). We must also eliminate the communications on Up in the computation processes 
(App. A.1, lines 32 and 36). Then we account for the projection by replacing SEQ for PAR, now 
for the loop on row (App. A.2., lines 10 and 65). We also add a loading and recovery phase 
to the computation processes (App. A.2, lines 22-29 and 50-57). Each process must hold the 
stationary elements of one column of the array. We convert variable AElement into a vector 
and declare it per column of the array instead of per column and row (App. A.1, line 21 and 
App. A.2, line 20). 

4.1.2 Channel Projection 

We simply discard the dimension that is projected away - here it is row - from the channel 
array. 

4 . 2  T h e o r e m s  

We reason in a language P ,  which has midway between CSP [1] mad the restricted subset of 
occam [11] used to express our programs. It includes those processes which engage in a finite 
number of inputs, outputs and a~signments before terminating. From CSP, it inherits a calculus 
of communication traces and refusals; from occam, it inherits local variables. Since we do not 
consider infinite or divergent programs, we are able to reason using a drastically simplified 
semantics. 

Each process P is described by 

• a channel alphabet 7 P  (those channels on which P may communicate), 

• a variable alphabet uP (P ' s  local program variables), 
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• communicat ions (via P ' s  failures; see [t, Chap. 39,  and 

• the change in program variables (which we describe by using a predicate whose free 
variables consist of the vector x of P ' s  variable values before execution and  the vector x ~ 
of P ' s  variable values after execution). 

There are three types of basic process in P .  We now describe each informally and say how their 
variables change; it is implicit that  a process cannot change variables outside its alphabet.  For 
a description of their refusals, the reader is referred to [1, Chap. 3]. There, slightly different 
syntax is used: each basic process is regarded as an  event and  is converted to a process by 
postfixing it with SKIP. From [1, Chap. 1], we also adopt the notat ion P s a t  S, which men,as 
that  process P satisfies condition S. 

An input  process P = c?x inputs  the value e communicated on channel  c and  assigns it to 
variable x. Its alphabet has 7 P  = {c} and  v P  = {x} and, regardless of its previous value, the 
final value x ~ of x equals e 

P s a t  x I = e .  

An output  process P = c!e outputs  the value of expression e on channel c. Its alphabet has 
7 P  = {c} and u P  = { }, so it cannot alter any variables. 

An assignment process P = x:=e assigns the value of expression e to variable x. Its alphabet 
has 7 P  = { } and v P  = {x}; it achieves the same program state as the previous input  process, 
bu t  without any communications: 

P s a t  x r = e .  

Processes are combined using sequential composition, denoted -% and parallel composition, 
denoted II. When a pair of processes is being composed, we use these symbols in infix; for 
the composition of a sequence (i : 0 _< i < n : P~) of processes, we use the prefix notations 
( 4  i : 0 <_ i < n : P~) and  (1t i : 0 _< i < ~ : Pd.  Again, we refer to [1] for laws satisfied by 
sequential and  parallel composition (there, the semicolon is used for sequential composition; 
we reserve that  symbol for forward composition of b inary relations and predicates). As usual, 
we suppose that  processes are only placed in parallel if none accesses a variable that  another 
modifies, thus 

7(ll i : O <_i < n : P J  = ( U  i :O <_i < n : TP~) 

v([[ i : 0 <_ i < n :Pi )  = ( U  i :  0 <_ i < n :  vPi) 

and, if Si is a predicate in the variables x and  x p of Pi with 

(Vi :0_< i < n :  P~ s a t  S~), 

then 
(ll i : O < i  < n : P d s a t ( V i : O < _ i  < n : S ~ ) .  

For sequential composition, no constraint on variable accesses applies, of course, thus 

7(-~ i : 0 < i < n : P i) = (U i :  0 _< i < n :TPi)  

v(-* i :O < i < n : P~)=(U i : O <_ i < n : vP~) 

and~ if Si is a predicate in the variables of Pi with 

(V i : 0 < i < n : Pi s a t  Si), 

then 
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(-~ i :0_< ~ < n : P,) sat  ( ; i  :0  < i < ~  : &). 

For example, if P and Q are processes with 

.P = {~, y} and ~Q = {y, ~} 

such that  

then 

P s a t  x ' = f ( x )  A y ' = g ( y )  

Q s a t  y ' = h ( y )  A z ' = k ( z )  

. ( P  -~ Q) = {x, y, z}  

(P  + Q) sat x" = f ( x )  A y' = h(g(y)) A z' = k(z). 

When considering a parallel composition, we shall often stress one process by referring to the 
other(s) as its environment. When we say that  P satisfies property S in environment Q, we 
mean 

(P  II Q) sat  S. 

Many of our transformations replace one process with another, in a given environment. 

We shall use the law 

((c!e - ,  P)  II (c?x --+ Q)) = ( &  ~ = - ~  --, ( e  II Q))- (1) 

Using this law, and those from [1,11], we reason in P about occam programs, just as one 
reasons in the language of guarded commands about Modula-2 programs. Down-coding is done 
by identifying the basic processes with occam programs (from [11, Sect, 2]): 

c?x with VARy : 
ALT (cry x:=x[y/x]) 

c!e with ALT (c!e x:=x) 

x:=e with x:=z[e / z] 

and by identifying I[ with PAR and -+ with SEQ. 

The final operation we require is that of concealment. If E C_ 7P,  then P \ E is a process which 
behaves like P but with all communications on channels in E concealed. Thus 7 (P  \ E)  = 
(TP) \ E and u(P \ E)  = vP,  and no variables are altered by P \ E.  For the failures of P \ E 
and for the laws satisfied by concealment, see [1, Chap. a]. 

In the following subsections, we justify all transformations except the movement of the decla- 
ration of variable BElement. 

4.2.1 Cell Projection 

We use three theorems. The first, the cell projection theorem, takes care of moving and sta- 
t ionary streams. Two more theorems, the stream projection and stream reflection theorem, 
address the treatment of projected streaans. 
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The Moving and Stationary Streams 

The cell projection theorem addresses two properties of a finite set of messages, which are 
communicated over separate channels: 

1. Messages that  axe consumed in a total order may be produced in the same order or in 
any approximating (i.e., less defined) order. 

2. Messages that are produced in some partial  order may be consumed in that  partial  order 
or in any more defined order, provided the target variables are distinct. 

For our purposes, a more restricted version of the cell projection theorem suffices: it takes for 
the approximating order the undefined order (which relates no dements  at a~) and for the 
approximated order a total order (which relates all elements). 

Cell  P r o j e c t i o n  Theorem: 

Let ci be distinct channels, ei expressions and xl distinct variables. The processes 

(1t i : 0 _< i < ~ : c~?=~) a n d  ( - ~  i : 0 _< i < n : c~?x~) 

both satisfy condition S = (V i : 0 _< i < n : x~ = ei) in either of the environments 

( [ [ i : 0 < i < n : c i ! e i )  or ( - - * i : 0 < _ i < n : c ~ ! e ~ ) .  

Proof. 

There are four processes to consider; we enumerate them for ease of reference (in fact, only 
the first three appear in our application). Even though their communication traces are not the 
same, the final state of all four processes are. 

(a) ( t l i :  0 _< i < , ~ :  c,!e,) II (ll i :  0_< i < n :  c,?x,) 
-- {by [1, Sect. 4.3: L1] and (1)} 

(11 i : 0 < i < n : c~!e; - *  x~:=e~)  
sat 

S. 

(b) ( H i :  0 _< i < n :  c,!e,) li (-~ i :  0 _< i < n :  c,?z,) 
= {by [1, Sect. 2.a.l: L7, Sect. 4.3: L1] and (1)} 

(--* i : 0 < i < n : c~!e~ ~ x;:=ei) 
sat 

S. 

The proofs that  

(¢) ( - ~ i : 0 < i < n : c , ! e ; ) l l ( - ~  ; : 0 < i < n : c ' ? x i )  sat S 

and 

(d) ( -~  i :  0 _< i < n : c,!e;) 1l (I1i:  0 _< i < n :  c;?x~) s a t  S 

are identical to (b). 

End of Proof. 
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T h e  P r o j e c t e d  S t r e a m  

Two things happen  in the t ransformation of a projected stream: 

1. "moving" is projected to "stationary";  this affects elements that  are processed in sequence 
by one column, 

2. "up" is reflected to "right"; this affects elements that  are processed in  parallel by different 
columns. 

Stream Projection Theorem: 

Let ci be distinct channels, fi expressions (i.e., functions) in one parameter,  xl distinct variables, 
x a variable and  let f = (; i : 0 _< i < n : fl) denote the forward relat ional  composition of the 
fi. Then,  condit ion z' = f (e )  is satisfied by both  the processes 

= (11 i :  0 _< i < n : ci?xi --* xi:=fi(xi) -~ ci+lIxi)\{i:  0 < i < n :  ci} P 

and 

Q = co?x --~ (-~ i :  0 ~ i < n :  x:=f~(x)) --~ a~!f(x) 

in environment  coIe -~ c~ ? z. 

Proof. 

In spite of the fact tha t  P and  Q have the same communicat ion traces, they are not  equal since 
they have different alphabets.  However, by a repeated application of [1, Sect. 3.5.1: L5], 

P = Co?Xo --+ (-'* i : 0 < i < n : x,+v=fi(xi))  --* c,~[xn 

hence 

P il (eo!e --~ e~?z)  s a t  z'  - -  f (e) .  

The result  for Q is immediate. 

End of Proof. 

The reflection is more intricate to express, because it is a conversion of the vertical-parallel i /o  
of s t ream values into a horizontal-sequenced i /o  with loading and recovery. 

Stream Reflection Theorem: 

Let cl and dl be distinct channels, fl expressions in one parameter  and xi, xini ,  xoutl and xtmpl 
distinct variables. Condit ion S = (V i : 0 < i < n : xout~ = f~(xin~)) is satisfied by the following 
processes in their respective environments:  

(a) by process 

( H i :  0 < i < n :  ci?xi -~ x,:=fi(x,)  -~ d~Ix,) 

in environment  

(tt i :  0 < i < n :  ci!xini) It (It i :  0 _< i < n :  di?xouti), 
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(b) by process 

( l l i : o ~ i < n :  

- -+  

in environment 

ci?xl 
(-+ j : i < j < n : c i?x tmpi  --+ ci+1!xtrnpl) 

(--+ j : 0 <_ j < i : ci?xtmp~ --+ ci+l!xtmp~) 

(--, i : o <_ i < n : ~o!xin~) tl (-+ i :  o < i < ~ : c .?xoutO.  

Proof. 

(a) By [1, Sect. 2.3.1: L7, Sect. 4.3: L1] and (1), this process simplifies to 

(ll i : 0 <_ i < n : ci!xini ~ x i :=f i (x in i )  -+ di ! f i (x in i )  --+ xou t i := f i ( x in i ) )  s a t  S 

(b) The resulting process cannot be simplified like the previous one (because of its com- 
munications) but  nevertheless satisfies the condition (which involves only variables) by 
induction. In the case n = 1, 

c0!~in0 II (co?~o -~ ~o:=fo(~o) -+ c~!xo) II c~?~o~to 
= {by [1, Sect. 2.3.1: LT, Sect. 4.3: LI] and (1)) 

ce]xino --+ xo:=fo(xino)  -+ c,! fo(x ino)  --+ xouto:=fo(x ino)  
sa t  

~out'o = Yo( xi~o ). 

For the induct ion step, assume the result for n. Then,  for n + 1, the i th process satisfies, 
after n + 1 - i inputs on channel cl, xtmp~ = e, where e is the n + 1 - i th value input on 
tha t  channel. Thus,  the process in its environment  satisfies 

(V i : 0 < i < n : xout~ = f i (xin~))  A xout~ = f~ (x inn )  

as required. 

End of Proo/. 

4.2.2 Channel  Projec t ion  

The channel project ion theorem states that  successive communicat ions on separate channels 
can be t ransmi t ted  over a common channel. 

Channel  Project ion Theorem: 

Let cl be distinct channels and c a channel, el expressions and x~ dist inct  variables. Condit ion 
S = (V i : 0 _< i < n : x~ = ei) is satisfied by the following processes in their  respective 
environments:  

(a) process (--+ i : 0 < i < n :  ci?xi) in environment (--+ i :  0 ~ i < n :  c,!e,), 

(b) process (-~ i : 0 _< i < n : c?xl) in environment  (-+ i : 0 < i < n : c!e~). 
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Proof. 

(a) Case (c) of cell projection. 

(b) Simply replace ci by c in the proof above since the condition is independent of chaxmel 
names. 

End o.f Proof, 

4 .3  A p p l i c a t i o n  

4.3.1 Cell  Projec t ion  

The Moving  and Stat ionary Streams 

The cell projection theorem is applied recursively to each column of cells, right to left. As the 
base case, consider the output cells. A substitution of the PAR on row by SEQ (App. A.1, line 44 
and App. A.2, line 59) is a conversion frora (a) to (b) in the theorem. The induction hypothesis 
is that the input of stationary and moving streams in some column has been projected. Consider 
the column to its left. In the induction step, we project the output of the stationary and moving 
streams in that  column by converting from (b) to (c), and the input of stationary and moving 
streams in that  column by converting from (a) to (b) again. This means replacing the PAR on 
row that  encases both the input and the output of stationary and moving streams by a SEq 
(App. A.1, line 20 and App. A.2, line 30). This is done for a fixed iteration of the encasing 
PAR loop on co l  (App. A.1 and A.2, line 19). The induction is on col .  Finally, we replace the 
PAR on ro~ in the column of input cells by a SEQ (App. A.1 and A.2, line 13), converting once 
more from (b) to (c). 

It is important  to note that  we apply the cell projection theorem in a benevolent environment: 
no communications other than the ones stated in the theorem are t ransmit ted over the stated 
channels; in particular,  there are no messages in the reverse direction, i.e., there is no feedback 
that could create circular dependencies. 

We do not justify the projection of variable BElement formally. The theory of CSP, as presented 
in [1], does not provide for this kind of program transformation. 

The Projec ted  S tream 

Initially, we had entertained the hope that we could split the cell projection of the treatment 
of stream A into two steps: 

1. the reflection of the stream from horizontal to vertical and its treatment as stationary, 
and 

2. the cell projection, as previously for stationary streams. 

Unfortunately, the intermediate (still two-dimensional) p r o g r a m -  the output of step i and input 
of step 2 - is not occam, tt is dangerous to pretend that the projected stream is stationary in 
the two-dimensional array when it reMly is not. Since cells share the stream's elements, they 
update shared variables, which is illegal in occam. 

The stream projection and stream rei~eetion theorem split the projection of stream A up differ- 
ently. We have to perform the cell projection first in order to avoid the ill-defined intermediate 
two-dimensionM program. Our transformation proceeds as follows. 
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By appealing to the stream projection theorem, we eliminate lines 32 and 36 of the two- 
dimensional program. These communications on Up correspond to the communications on 
the middle channels cl,...,c,~-1 in the theorem. We apply the theorem by substituting Q for 
P.  The transformation of the variables xi in P to the single variable x in Q corresponds to the 
movement of the declaration of variable #,Element from the PAI~ on row in the two-dimensional 
program (line 21) to the PAl~ loop on co l  in the one-dimensional program (line 20). AElement 
becomes a vector of variables as a result of an inductive application of the stream projection 
theorem. 

By appealing to the stream reflection theorem, we frame the computation cell code with code 
portions for the loading and recovery of stationary stream A (App. A.2, lines 22-29 and 50- 
57). We convert from (a) to (b). The stream reflection theorem also covers the reflection of the 
input and output from channels Up in the two-dimensional program (App. A.1, lines 10-12 and 
50-52) to channels Right in the one-dimensional program (App. A.2, lines 10-12 and 65-67). 

4.3.2 Channel Projection 

The channel projection theorem is also applied recursively, converting from (a) to (b). Each 
application collapses the set of channels between two columns (which have already been col- 
lapsed to single cells) to a single channel. At this point, there axe only stationary and moving 
streams left; no distinction needs to be made between them. 

5 C o n c l u s i o n s  

We have formulated a general projection scheme of cells and channels in systolic programs and 
have applied it to a specific example. We have stated and proved the transformation theorems 
in a language T', and our scheme applies to any distributed programming language that  obeys 
7~'s laws. The program example is in one implemented programming language that  obeys 
those laws: occam. At present, there is a gap between the theorems and their application; we 
have bridged it with English explanations. Making our transformations completely precise is 
possible but elaborate. It would be easier were we to replace the mechanical systolic design that 
produces our two-dimensional occam program by a derivation that  relies more on the semantics 
of processes in 7) - future work. Such a derivation would also simplify adjustments like the 
elimination of the PAR on lines 31 and 35 in the two-dimensional program together with the Up 
communications on lines 33 and 36 (PAI~s with just one statement can be dropped). 

Similar projection schemes can be applied to systolic programs with different stream movements. 
We have covered the three elementary cases: projected, moving and stationary streams. All 
of the required substitutions are static and can be easily incorporated into a compiler. We 
have tried to make the substitutions as simple as possible. The simplicity of the substitutions 
depends on the form of the program to be projected. 2 Luckily, our two-dimensional program 
is itself the product of a mechanical derivation [8]. Thus, we have the choice of imposing a 
derivation scheme that  simplifies projections. 

Our theorems axe simplified by the fact that we distinguish the computation cells from the i /o  
cells, and that  we reason about states rather than traces wherever possible. In the application 
of the theorems, we presume the absence of feedback between the computation and the i /o  
cells. Programs that  are compiled from linear systolic designs [8] do not have feedbazk, but 

2For example, letting computation ceils during the loading of stationary streams propagate elements first and 
then keep their own element leads to an inversion of the column's index in the input loop, which complicates the 
projection of stream A. 
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feedback may arise when a linear systolic design is partitioned, i.e., transformed into a ring or 
toroid (e.g., [9]). Therefore, to keep the transformations simple, we suggest to project first and 
partition later. 
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A T h e  o c c a m  P r o g r a m s  

A.1 The Two-Dimensional Program 

1 VAK Aln[n*n] , AOut [n*n] , 

2 Bln[n*n], BOut In*n], 

3 Cln[n*n] , COut [n,n] : 

4 CHAN Right [n*(n+l)] : 

5 CHAN Up[(n+l)*n] : 

6 SEQ 

-- PREPKOCESSING 

7 "read in input matrices" 

8 "initialize output matrices" 

9 PAR 

-- INPUT CELLS 

-- vertical input: inject stream A 

PAR coi = [0 FOR n] 

SEQ row = [0 FOR n] 

13 

14 

15 

16 

17 

18 

19 

20 

21 

-- horizontal channels 

-- vertical channels 

Up[((n+l)*col)+O] ! Aln[(n*col)+row] 

-- horizontal input: load stream C and inject stream B 

PAR row = [0 FOR n] 

SEQ 

SEQ col = [0 FOR n] 

Kight[(n*O)+row] ! CIn[(n*col)+row] 

SEQ col = [0 FOR n] 

Kight[(n*O)+row] ! Bln[(n*col)+row] 

-- COMPUTATION CELLS 

PAR col = [0 FOR n] 

PAR row = [0 FOR n] 

VAR AElement, BElement, CElement: 
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22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

3 4  

35  

36  

37  

38 

39 

40 

41 

42 

43 

44 

45 

46  

47  

48 

49 

SEQ 

-- load stream C 

Right[(n*col)+row] ? CElement 

SEQ unused = [0 F0K (n-l)-col] 

VAR tmp: 

SEQ 
Right[(n*col)+row] ? tmp 

Right[(n*(col+l))+row] ! tmp 

-- do the computation 

SEQ k = [0  FOR n] 

SEQ 

PAR 

Up[((n+l)*col)+row] 7 AElement 

Right[(n*co!)+row] ? BElement 

Basic0p(col, row, k, AElement, BElement, CElement) 

PAR 

Up[((n+l)*col)+row+l] ! AElement 

Right[(n*(co!+l))+row] ! BElement 

-- recover stream C 

SEQ k = [0 FOR c o l ]  

VAR tmp: 

SEQ 
Right[(n*col)+row] ? tmp 

Kight[(n*(col+l))+row] ! tmp 

Kight[(n*(col+l))+row] ! CElement 

- -  OUTPUT CELLS 

-- horizontal output: extract stream B and recover stream C 

PAR row = [0 FOR n] 

SEQ 

SEQ col = [0 FOR n] 

Right[(n*n)+row] ? BOut[(n*col)+row] 

SEQ col = [0 FOR n] 

Right[(n*n)+row] ? COut[(n*col)+row] 
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-- vertical output: extract stream A 

50 PAR col = [0 F0K n] 

51 SEQ row = [0 FOR n] 

52 Up[((n+l)~col)+n] ? A0ut[(n~col)+row] 

-- POSTPROCESSING 

53 "read out output matrices" 

A.2 The One-Dimensional Program 

1 VAR Aln[n~n], AOut [n~n], 

2 BIn[n~n], BOut [n,n], 

3 Cln[n*n], C0ut [n,n] : 

4 CHAN Right [n+l] : 

5 SEQ 

-- PREPROCESSING 

6 "read in input matrices" 

7 "initialize output matrices" 

8 PAR 

-- INPUT CELLS 

9 SEQ 

-- load stream A 

10 SEQ row = [0 FOR n] 

II SEQ col = [0 FOR n] 

12 Right[O] ! Aln[(n~col)+row] 

-- load stream C and inject stream B 

13 SEQ row = [0 F0R n] 

14 SEQ 

15 SEQ col = [0 FOR n] 

16 Right [0] ! CIn[(n~col)+row] 

17 SEQ col = [0 FOR n] 

18 Right [0] ! Bln[(n~col)+row] 
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2O 

21 

22 

23 

24 

25 

26 

27 

28 

29 

3O 

31 

32 

33 

34 

35 

36 

37 

38 

39 

4O 

41 

42 

43 
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-- COMPUTATION CELLS 

PAR col = [0 FOK n] 

VAK AElement [n] , BEiement : 

SEQ 

-- load stream A 

SEQ row = [0 FOK n] 

SEQ 

K~ght [col] ? AElement [row] 

SEQ unused = [0 FOE (n-l)-co!] 

VAK tmp : 

SEQ 

Kight[col] ? tmp 

Kight [col+l] ! tmp 

SEQ row = [0 F0K n] 

YAK CElement : 

SEQ 

-- load stream C 

Kight [col] ? CElement 

SEQ unused = [0 FOK (n-l)-col] 

YAK tmp : 

SEQ 

Kight [col] ? trap 

Kight [col+l] ! trap 

-- do the computation 

SEq k = [O F0K n7 

SEQ 

Kight [col] ? BElement 

BasicGp(co!, row, k, AElement[k] , BElement, CElement) 

Kight [col+l] ! BElement 



44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 
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- -  r e c o v e r  s t r e a m  C 

SEQ unused = [0 FOR col] 

VAR tmp : 

SEQ 

Right [col] ? trap 

Right [col+i] ! tmp 

Right [col+i] ! CElement 

-- recover stream A 

SEQ row = [O FOR n] 

SEQ 

SEq unused = [0 FOR col] 

VAR tmp: 

SEQ 

Right [col] ? trap 

Right [col+l] ! trap 

Right [col+i] ! AElement [row] 

-- OUTPUT CELLS 

SEQ 

-- extract stream B and recover stream C 

SEQ row = [0 FOR n] 

SEQ 

SEQ col = [0 FOR n] 

Right [n] ? BOut [(n*col)+row] 

SEQ col = [0 FOR n] 

Right [n] ? COut [(n*col)+row] 

-- recover stream A 

SEQ row = [O FOR n] 

SEQ col = [0 FOR n] 

Right [n] ? AOut [(n*col)+row] 

-- POSTPROCESSING 

"read out output matrices" 


