
An Analysis of cpp Preprocessor-Based Software
Product Lines

Jörg Liebig

Department of Informatics and Mathematics
University of Passau, Germany
joerg.liebig@uni-passau.de

1 Introduction, Motivation, and Goal

A software product line (SPL) is is a set of software intensive systems that
are tailored to a specic domain or market segment and that share a common
set of features [3]. A feature represents a requirement according to the given
domain, that is of interest to end-users. Although the research on SPL is still
quite new, techniques and tools have been proposed for a long time. One tool
that is available for more than 20 years is the cpp (The C Preprocessor).

The cpp is an extension to the programming language C, adding additional
capabilities for meta programming. It has been observed that the cpp is quite
common and used heavy when implementing software systems in C [2]. Nev-
ertheless to our knowledge very little is known about cpp-based feature imple-
mentations and software product lines. Hence, we explore foundations for imple-
menting SPLs with the cpp and give an overview of the cpp usage in open source
software systems. To this end, we present metrics for analyzing 40 open source
software projects regarding SPL implementation techniques. Using these met-
rics we are able to measure the kind, granularity, and complexity of cpp-based
feature implementations.

Based on the statistics collected in our analysis, we discuss the possibility to
refactor cpp-based feature implementations using alternative feature implemen-
tation mechanisms like aspects [4] or feature modules [1]. The statistics of our
analysis are promising to give a complete overview about possible refactorings
and are of interest to language designers and tool writers.

2 Implementing SPL with cpp

The cpp is a text-processing tool, which works on the basis of directives. These
directives are part of the source code and provide capabilities to include the
content of other files, to define macros for text-based substitution and to express
conditional inclusion of source code fragments. We illustrate how, with a subset
of these directives, programmers are able to implement features and we highlight
connections to the fundamental concept of software product line engineering.
Figure 1 shows an excerpt of a list SPL. The #define SORTALGO (Line 3) for



1 #define INSERTIONSORT 0
2 #define BUBBLESORT 1
3 #define SORTALGO INSERTIONSORT
4
5 void insert(node* elem) {
6 #if SORTALGO == BUBBLESORT || SORTALGO == INSERTIONSORT
7 node *a = NULL;
8 node *b = NULL;
9 #endif ...

Fig. 1. List example with sorting feature

instance marks a feature with the possibility to select between different sorting
algorithms.

With the knowledge about feature implementations on the basis of the cpp,
we setup our analysis to derive the information about the cpp usage.

3 Analysis, Discussion, and Conclusion

To get an overview of the cpp usage and to discuss alternative implementation
techniques, we define a set of code metrics, which represent the kind, granularity,
and complexity of cpp-based feature implementations. The metrics comprises the
number of features, the lines of code attached to a feature, the behavior of an
extension, and the granularity of an extension (where does the extension appear
in source code and which extensions are made at this point).

We have developed a tool called cppstats, measuring the metrics listed above
for 40 software systems from different domains including operating systems,
database management systems, libraries, and application software. Early results
reveal that most features add a new variable or function at global scope of a
file. Additionally, features extend the body of functions, conditions, or loops. In
contrast we rarely found the extension of statements, conditional expressions,
or method signatures. We believe that the results of our analysis also apply to
other software systems using the preprocessor, as the analyzed software systems
are influenced both from academic and industrial background.

References

1. D. Batory et al. Scaling Step-Wise Refinement. IEEE Transactions on Software
Engineering (TSE), 30(6):355–371, 2004.

2. M. Ernst et al. An Empirical Analysis of C Preprocessor Use. IEEE Transactions
on Software Engineering (TSE), 28(12):1146–1170, 2002.

3. K. Kang et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Tech-
nical Report CMU/SEI-90-TR-21, Carnegie-Mellon University Software Engineering
Institute, Pittsburgh, PA, USA, November 1990.

4. G. Kiczales et al. Aspect-Oriented Programming. In Proceedings of European Con-
ference on Object-Oriented Programming (ECOOP), volume 1241 of Lecture Notes
in Computer Science, pages 220–242. Springer Verlag, 1997.


