Superimposition:
A Language-Independent Approach to
Software Composition

Sven Apel and Christian Lengauer

Department of Informatics and Mathematics
University of Passau, Germany
{apel,lengauer}@uni-passau.de

ff((

Technical Report, Number MIP-0711
Department of Informatics and Mathematics
University of Passau, Germany

Superimposition: A Language-Independent
Approach to Software Composition

Sven Apel and Christian Lengauer

Department of Informatics and Mathematics
University of Passau, Germany
{apel, lengauer}@uni-passau.de

Abstract. Superimposition is a composition technique that has been
applied successfully in several areas of software development. In order
to unify several languages and tools that rely on superimposition, we
present an underlying language-independent model that is based on fea-
ture structure trees (FSTs). Furthermore, we offer a tool, called FST-
COMPOSER, that composes software components represented by FSTs.
Currently, the tool supports the composition of components written in
Java or Jak. Three non-trivial case studies demonstrate the practicality
of our approach. Finally, we outline how FSTCOMPOSER has to be ex-
tended in order to compose components containing artifacts written in
different languages.

1 Introduction

Software composition is the process of constructing software systems from a
set of components. It aims at improving the reusability, customizability, and
maintainability of large software systems.

One popular approach to software composition is superimposition. Super-
imposition is the process of composing software artifacts of different components
by merging their corresponding substructures. For example, when composing two
components, two internal classes with the same name, say Foo, are merged, and
the result is called again Foo.

Superimposition has been successfully applied to the composition of class
hierarchies in multi-team software development [I], the extension of distributed
programs [23], the implementation of collaboration-based designs [4I5l6], feature-
oriented programming [7I8], subject-oriented programming [9T0], aspect-oriented
programming [TTT2], and software component adaptation [I3].

It has been noted that, when composing software, not only code artifacts
have to be considered but also non-code artifacts, e.g., documentation, grammar
files, makefiles [8I10]. Thus, superimposition, as a composition technique, should
be applicable to a wide range of software artifacts. While there are tools that
implement superimposition for non-code artifacts [SITZUTHITOIT7IT8ITI], they are
specific to their underlying languages.

It is an irony that, while superimposition is such a general approach, up
to now, it has been implemented for every distinct kind of software artifact

from scratch. In our recent work, we have explored the essential properties of
superimposition and developed an algebraic foundation for software composition
based on superimposition [20].

We present a model of superimposition based on feature structure trees (FSTs).
An FST represents the abstract hierarchical structure of a software component.
That is, it hides the language-specific details of a component’s implementation.
The nodes of an FST represent the structural elements of a component. However,
an FST contains only nodes that represent the hierarchical modular component
structure (modules and submodules) and that are relevant for composition.

Furthermore, we have a tool, called FSTCOMPOSER, that implements com-
position by superimposition on the basis of FSTs. At present, FSTCOMPOSER is
able to compose software components written in Java or J akﬂ Three non-trivial
case studies demonstrate the practicality and scalability of our approach and
tool.

Finally, we illustrate how one can integrate other languages into our tool and
we put our work into perspective.

2 A Tree Representation of Software Artifacts

A software component is represented as an FST. The nodes of an FST represent
a component’s structural elements. Each node has a namel’| which is also the
name of the structural element that is represented by the node.

FSTs are designed to represent any kind of component with a hierarchical
structure. For example, a component written in Java contains packages, classes,
methods, etc., which are represented by nodes in the FST. An XML document
(e.g., XHTML) may contain tags that represent the underlying document struc-
ture, e.g., chapters, sections, paragraphs; an XML module system makes the tags
composable [I4]. A makefile or build script consists of definitions and rules that
may be nested.

Principally, a component may contain elements written in different code
and non-code languages, e.g., makefiles, design documents, performance pro-
files, mathematical models, diagrams, documentation, or deployment descrip-
tors, which all can be represented as FSTs [Q/10]. While our work is not limited
to code artifacts, for simplicity, we focus here on components written in Java.

Figure [1] depicts an excerpt of the implementation of a Java component
BASICSTACK and its representation in form of an FST. One can think of an
FST as a kind of abstract syntax tree. However, it contains only information
relevant for the superimposition of hierarchical component structures. For ex-
ample, a Java FST contains nodes of different types that represent packages,

1 Jak is a Java-like language for stepwise refinement and feature-oriented program-
ming [2I]. It extends Java by the keyword refines in order to express subsequent
class extensions.

2 Mapped to specific component languages, a name could be a string, an identifier, a
signature, etc.

BasicStack

package util;
class Stack { -uti| ackage
LinkedList data = new LinkedList (); P 9
void push(Object obj) {
data.addFirst (obj);
3 Stack class
Object pop() {
return data.removeFirst ();

)

method pop field

O OO0~ U WN -

—

}

Fig. 1. Java code and FST of the component BASICSTACK.

(inner) classes, (inner) interfaces, fields, and methods. It does not contain in-
formation about the internal structure of methods or the value assignments of
fields.

Furthermore, type information is attached to the nodes. This is important
during component composition in order to prevent the composition of incom-
patible nodes, e.g., the composition a field with a method.

The FSTs we consider are unordered trees. That is, the children of a node
in an FST do not have a fixed order, much like the order of field declarations
in a Java class is irrelevant. However, some languages may require a fixed order
(e.g., the order of sections in a text document matters). This will be addressed
in further work.

3 Component Composition by FST Superimposition

Superimposition is the process of composing trees recursively by composing
nodes at the same level (counting from the root) with the same name and type.
Our aim is to abstract from the specifics of present tools and languages and to
make superimposition available to a broader range of software artifacts. More-
over, a general model allows us to study the essence of software composition
by superimposition, apart from language- and tool-specific issues. Our work is
motivated by the observation that, principally, composition by superimposition
is applicable to any kind of software artifact that provides a sufficient struc-
ture [SU10], i.e., a structure that can be represented as an FST.

With superimposition, two trees are composed by composing their corre-
sponding nodes, starting from the root and proceeding recursively. Two nodes
are composed to form a new node (1) when their parents (if there are parents)
have been composed, i.e., they are on the same level, and (2) when they have
the same name and type. The new node receives the name and type of the nodes
that have been composed. Some nodes (the leaves of an FST) have also content,
which is composed as well (see Sec. . If two nodes have been composed, the
process of composition proceeds with their children. If a node has no counterpart
to be composed with, it is added as separate child node to the composed parent
node. This recurses until all leaves have been reached.

© 00~ U WN -

In Figure 2| we list a Java function compose that implements recursive com-
position. In Line[2] two nodes are composed, which succeeds only when the nodes
are compatible (same name and type). In the case that the two nodes are termi-
nals, their content is composed, as well. In Lines all children of the input
trees are composed recursively (which are in fact subtrees). That is, for each
node in treeA, £indChild returns the corresponding node in treeB, if there is
one. Then, in Lines [§ and the remaining nodes that have no counterpart
to be composed with are added to the new parent node.

static Tree compose(Tree treeA, Tree treeB) {
Node newNode = treeA.node().composeNode(treeB.node());
if (newNode != null) {
Tree newTree = new Tree (newNode);
for (Tree childA : treeA.children()) {
Tree childB = treeB.findChild(childA.name(),childA.type());
if(childB !'= null) newTree.addChild(compose(childA, childB));
else newTree.addChild(childA.copy ());
}
for (Tree childB : treeB.children()) {
Tree childA = treeA.findChild(childB.name(),childB.type());
if (childA == null) newTree.addChild(childB.copy ());
¥
return newTree;
} else return null;
}

Fig. 2. A Java function for composing FSTs.

Figure[3|illustrates the process of FST superimposition with a Java example;
Figure [4 depicts the corresponding Java code. Our component BASICSTACK is
composed with a component TOPOFSTACK. The result is a new component,
which is called COMPSTACK, that is represented by the superimposition of the
FSTs of BasicSTACK and ToPOFSTACK. The nodes util and Stack are com-
posed with their counterparts and their subtrees (i.e., their methods and fields)
are composed in turn (i.e., are merged).

TopOfStack BasicStack CompStack

[J Stack —

pop

Fig. 3. FST superimposition of TOPOFSTACK e BASICSTACK = COMPSTACK.

D UL W N W N

O UL W N

package util;
class Stack {

Object top() { return data.getFirst(); }
}

[

package util;
class Stack {

LinkedList data = new LinkedList ();

void push(Object obj) { data.addFirst(obj); }

Object pop() { return data.removeFirst(); }
}

package util;

class Stack {
LinkedList data = mew LinkedList ();
void push(Object obj) { data.addFirst(obj); }
Object pop() { return data.removeFirst(); }
Object top() { return data.getFirst(); }

}

Fig. 4. Java code of TOPOFSTACK e BASICSTACK = COMPSTACK.

3.1 Terminal and Non-Terminal Nodes

Independently of a particular language, an FST is made up of two different kinds
of nodes:

Non-terminal nodes are the inner nodes of an FST. The subtree rooted at a
non-terminal node reflects the structure of some implementation artifact of a
component. The artifact structure is transparent and subject to the recursive
composition process. That is, a non-terminal node has only a name and a
type.

Terminal nodes are the leaves of an FST. Conceptually, a terminal node may
also be the root of some structure, but this structure is opaque to our model.
The substructure of a terminal does not appear in the FST. That is, a
terminal node has a name, a type, and content.

While the composition of two non-terminals continues the recursive descent in
the FSTs to be composed, the composition of two terminals terminates the
recursion and requires a special treatment. There is a choice of whether and how
to compose terminals:

Option 1: Two terminal nodes with the same name and type cannot be com-
posed. If this occurs, it is considered an error.

Option 2: Two terminal nodes with the same name and type can be composed
in some circumstances; each type has to provide its own rule for composition

(see Sec.[3.2)).

In Java FSTs. packages, classes, and interfaces are represented by non-terminals.
The implementation artifacts they contain are represented by child nodes, e.g., a
package contains several classes and classes contain inner classes, methods, and
fields. Two compatible non-terminals are composed by composing their child
nodes, e.g., two packages with equal names are merged into one package that
contains the composition of the child elements (classes, interfaces, subpackages)
of the two original packages.

Java methods, fields, imports, modifier lists, and extends, implements, and
throws clauses are represented by terminals (the leaves of an FST), in which the
recursion terminates. Their inner structure or content is not considered in the
FST model, e.g., the fact that a method contains a sequence of statements or
that a field refers to a value or an expression. With respect to Java and related
languages the first option of disallowing terminal composition [I] is not prefer-
able. For example, it prevents extending methods, which is common practice
in many approaches of software composition [T0J22I23/2425]268/6]. Therefore,
we choose the second option: providing language-specific composition rules for
composing terminal nodes.

3.2 Composition of Terminals

In order to compose terminals, each terminal type has to provide its own rule
for composition. Here are seven examples for Java-like languages:

— Two methods are composed if it is specified how the method bodies are
composed (e.g., by overriding and using the non-standard Java keywords
original [25] or Super [§] inside a method body).

— Two fields are composed by replacing one value with the value of the other
or by requiring that one has a value assigned (e.g., int i=0;) and the other
has not (e.g., int i;).

— Two implements clauses are composed by concatenating their entries and
removing duplicates.

— Two extends clauses are composed by replacing one entry with another
entry (in the case of single inheritance) or by concatenating their entries
and removing duplicates (in the case of multiple inheritance).

— Two throws clauses are composed by concatenating their entries and remov-
ing duplicates.

— Two modifier lists are composed by replacement following certain rules, e.g.,
public may replace private, but not vice versa.

— Two lists of import declarations are composed by concatenating their entries
and removing duplicates.

Im summary, in Java-like languages, there are three kinds of basic composition
rules: overriding (methods), replacement (fields, extends clauses, modifier lists),
and concatenation (imports, implements and throws clauses).

Figures[5] and [6] depict how Java methods are composed during the composi-
tion of the two features EMPTYCHECK and BASICSTACK. The methods push of

EMPTYCHECK and BASICSTACK are composed by one method (push) wrapping
the other (push_wrappee). The two pop methods are composed analogously. The
(non-standard) Java keyword originalﬂ which we borrow from Classbox/J [25],
provides a means to specify (without knowledge of their source code) how method
bodies are merged. This composition rule is specific to Java but may be similar
in other languages.

EmptyCheck BasicStack CompStack
Stack [J Stack —

\ push \ \count\ \ push \ \ data \

\ 7

", [pop] S Lol

N N

terminal composition wrappers

Fig. 5. Composing Java methods (FST representation).

Harrison et al. [27] propose a catalog of more sophisticated composition rules
that permit a quantification over and a renaming of the structural elements of
components. We argue that their rules are not specific to Java and can be reused
to compose components written in other languages.

3.3 Discussion

Superimposition of FSTs requires several properties of the language in which
the elements of a component are expressed:

1. The substructure of a component must be hierarchical, i.e., an n-ary tree.

2. Every element of a component must provide a name that becomes the name
of the node in the FST.

3. An element must not contain two or more direct child elements with the
same name and type.

4. Elements that do not have a hierarchical substructure (terminals) must pro-
vide composition rules.

These constraints are usually satisfied by object-oriented languages. But also
other (non-code) languages align well with them [8[14]. Languages that do not
satisfy these constraints do not provide sufficient structural information for a
composition by superimposition. However, they may be enriched by providing
an overlaying module structure [14].

3 In the composed variant original is replaced by a call to the wrapper.

DU WN - WUk WN -

= O WO ~O0 Ul WN -

=

package util;
class Stack {
int count = 0;
void push(Object obj) { original(obj); count++; }
Object pop() {
if (count > 0) { count--; return original(); } else return null;
}
}
[]
package util;
class Stack {
LinkedList data = new LinkedList ();
void push(Object obj) { data.addFirst(obj); }
Object pop() { return data.removeFirst(); }
}

package util;

class Stack {
int count = 0;
LinkedList data = mew LinkedList ();
void push_wrappee(Object obj) { data.addFirst(obj); }
void push(Object obj) { push_wrappee(obj); count++; }
Object pop_wrappee() { return data.removeFirst(); }
Object pop() {

if (count > 0) { count--; return pop_wrappee(); } else return null;

}

}

Fig. 6. Composing Java methods.

4 Implementation

We have a tool, called FSTCOMPOSER, that implements superimposition based
on the FST model. Currently, it supports the composition of components written
in Java or Jak.

FSTCOMPOSER expects a list of software components that participate in
a composition. It takes a file as input that contains a list of the component
names. Then, FSTCoOMPOSER looks up the locations of the components in the
file system.

In FSTCOMPOSER, software components are represented by containment
hierarchies [§], but other representations are possible, e.g., packages [25], type
parameters [19], family classes [11], or units [I2]. Containment hierarchies are file
system directories that contain all artifacts (code and non-code) that belong to
a component; the directories may contain subdirectories denoting Java packages,
etc.

Based on an input list of components, the parser of FSTCOMPOSER gen-
erates an FST per component. There must be a distinct parser per language.
That is, when composing components that contain Java and XML artifacts,

two different parsers create the corresponding FSTs. However, for now, we do
not consider inter-language interaction [28]. That is, while FSTCOMPOSER can
compose components containing artifacts written in different languages, it can-
not recognize interactions between these artifacts. For example, a Java class may
expect some XML document as input, which is defined in another component.

Currently, our Java and Jak parsers generate FSTs containing nodes for pack-
ages, classes, interfaces, methods, fields, imports, modifier lists, and implements,
extends, and throws clauses. Packages, classes, and interfaces the non-terminal
nodes of a Java FST. The rest are terminals. We have implemented the seven
composition rules for terminal nodes, that we have explained in Section [3.2] for
Java and for Jak.

Usually, after the composition step, FSTCOMPOSER writes out the composed
Java/Jak program. But it can also write out the FSTs of the input and out-
put components in the form of an XML document. This language-independent
program representation can be the input for further pre- or post-processing of
components and component compositions, e.g., optimization, visualization, in-
teraction analysis, or error checking on the basis of FSTs (see Sec. .

The FSTCOMPOSER tool along with some examples and case studies can be
downloaded from the FSTComPOSER Web site]

5 Case Studies

We conducted three case studies to assess the practicality of our approach.
Firstly, we composed a series of programs of a small library of graph algorithms,
called graph product line (GPL), which was implemented by Lopez-Herrejon
and Batory [29]. Secondly, we composed a graphical programming tool, called
GUIDSL, out of a set of software components, which was implemented by Ba-
tory [30]. Both case studies are written in Jak. Thirdly, we composed several
variants of a graphical UML editor, which is an open source Java program that
was refactored into components by a student. The source code of the three case
studies can be downloaded at the FSTCoMPOSER Web site.

5.1 Graph Product Line

GPL consists of 26 components written in Jak. For example, the basic compo-
nents implement weighted, unweighted, directed, and undirected graph struc-
tures. Further components implement advanced features such as breadth-first
search, depth-first search, cycle checking, the Kruskal algorithm, the Prim al-
gorithm, etc. The overall code base of GPL contains 57 classes implemented by

4 http://www.infosun.fim.uni-passau.de/cl/staff/apel/FSTComposer/

http://www.infosun.fim.uni-passau.de/cl/staff/apel/FSTComposer/

1,308 lines of Jak codeE| Note that 26 of the 57 classes are partial classes, i.e.,
refinements to be applied to existing classes via superimposition (cf. Fig. [3]).

Overall, we generated 10 different variants of graph structures along with
compatible algorithms with a minimum of 8 and a maximum of 12 components.
The code bases of the generated programs range from 200 to 400 lines of com-
posed Java code.

We used a configuration tool to guarantee the validity of the generated config-
urations [30], e.g., the Kruskal algorithm requires a weighted graph. We checked
the correctness of the composed graph implementation with automated tests.
The entire composition process, including parsing the Jak code, took less than
a second per composed program variant.

5.2 GUIDSL

As a second case study, we chose the code base of GUIDSL [30]. GUIDSL is a
tool for software product line configuration. Note that we used GUIDSL before in
the GPL case study to select valid graph/algorithm implementations. GUIDSL
consists of 26 components. For example, there are components that implement
the graphical user interface, a parser for grammars that define valid configura-
tions, user event handling, etc. Overall, the code base of GUIDSL contains 294
classes (from which 145 final classes are being composed) implemented by 9,345
lines of Jak code.

GUIDSL was developed in a stepwise manner using components in order to
foster extensibility and maintainability. Basically, there is only one valid con-
figuration that forms a meaningful working tool. Other configurations may be
valid (syntactically correct) but do not contain all necessary features to work
appropriately. We generated a GUIDSL variant consisting of all 26 components
implemented by 7,684 lines of composed Java code.

We checked the correctness of the composition by testing GUIDSL manually.
This was feasible since it is a graphical tool with a fixed set of functions and
options that all could be tested. All parser passes and the generation of the
composed Java program took less than two seconds.

5.3 Violet

As a third case study, we chose the code base of Violetﬂ Violet is a graphical
UML diagram editor written in Java. It was refactored by a student as a class
project at the University of Texas at Austirﬂ The refactored version of Violet

5 For comparability of the lines of code metric, we formatted the code of our case
studies using a standard Java pretty printer (http://uranus.it.swin.edu.au/~jn/
java/style.htm). Furthermore, we counted only lines that contain more than two
characters (thus, ignoring lines with just a single bracket) and that are not simply
comments (http://www.csc.calpoly.edu/~jdalbey/SWE/PSP/LOChelp.html).

S http://sourceforge.net/projects/violet/

" The project was done in the course of the 2006 FOP class at the Department of
Computer Sciences of the University of Texas at Austin.

10

http://uranus.it.swin.edu.au/~jn/java/style.htm
http://uranus.it.swin.edu.au/~jn/java/style.htm
http://www.csc.calpoly.edu/~jdalbey/SWE/PSP/LOChelp.html
http://sourceforge.net/projects/violet/

consists of 88 components that implement support for different UML diagram
types as well as drag-and-drop and look-and-feel functionality. Overall, the refac-
tored code base of Violet contains 157 classes (from which 67 final classes are
being composed) implemented by 5,220 lines of Java code.

We generated 10 different variants of Violet with a minimum of 51 and a
maximum of 88 components. The code bases of the generated programs range
from 3,100 to 4,100 lines of composed Java code.

In order to guarantee their validity we used the GUIDSL tool for selecting
the components of the 10 variants. We tested the variants manually, which was
feasible since they differed mainly in their options available in the graphical
menus of the editor. All parser passes and the generation of the composed Java
programs took less than two seconds each.

6 Integrating Further Languages

In the previous section, we have illustrated how the FST model abstracts from
implementation-specific details of programming languages, while capturing well
the abstract hierarchical structure of software components. Currently, FST Com-
POSER supports the composition of components written in Java and Jak. Due to
the generality of the FST model, FSTCOMPOSER can be extended to compose
also further kinds of artifacts.

Suppose we want to compose software components containing Bali gram-
mar files (a declarative language and tool for processing BNF grammars) [g].
It has been demonstrated that Bali grammars are ready for composition by
superimposition. That is, they can be represented as FSTs and composed by
superimposition using a proprietary tool [§]. Firstly, we would need a parser
that produces FSTs in a format accessible to FSTCOMPOSER. Such a parser
can be built by extending an existing parser. Secondly, we would have to define
the types of nodes (by providing a typically empty subclass per type) that may
appear in a Bali FST, e.g., nodes for grammar production rules, axioms, etc.
Finally, we would have to define Bali-specific composition rules for composing
terminal nodes, e.g., production rules can be extended by providing additional
alternatives, similarly to method overriding in Java. Section [§] lists a selection of
languages that can be modeled by FSTs.

7 Perspective

Software composition is an important field of research. Superimposition is a
composition technique that has been applied successfully in different areas of
software development. While it has been noted that there is a unique core of all
composition mechanisms based on superimposition [8/I0], researchers have not
condensed the essence of superimposition into a set of general tools.

We believe that our FST model captures the essence of superimposition.
It is language-independent. We envision tools that operate on FSTs (or their
algebraic representations) to compose, visualize, optimize, and verify software

11

components. Thus, the FST model provides an intermediate format not only for
different languages but also for different tools that reason about components.

In a parallel line of research we have developed an algebra of feature com-
position which is consistent with the FST model [20]. It will allow us to explore
general properties of software composition. Furthermore, it is a means to infer
whether a certain language fits the FST model and, more interestingly, which
properties a language must have to be ‘ready’ for FST-based superimposition.

Beside superimposition, also other composition techniques have been pro-
posed. For example, composition by quantification, as used in metaprogram-
ming [31] and aspect-oriented programming [32], is a frequently discussed tech-
nique. In the context of our FST model, quantification can be modeled as a tree
walk [20], in which each node is visited and a predicate specifies whether the
node is modified or not. Aggregation is another popular component composition
technique. It can be modeled by FSTs that contain nodes that represent them-
selves components, i.e., that contain FSTs. Even aggregated components can be
superimposed, since they have a hierarchical structure that can be represented
as an FST. In summary, FSTs are a means to model the connection between
different composition techniques and to explore their relationship; FSTs are not
specific to superimposition.

Furthermore, the FST model is a foundation for the vision of automatic
feature-based program synthesis [3334]. Treating programs as values of metapro-
grams that manipulate them requires abstraction mechanisms for programs and
a model that describes what kind of program transformations are allowed. For
example, a simple deletion of program text in program synthesis is certainly
to be taken with a grain of salt: features may depend on code that is being
deleted by other features. Metaprograms that apply arbitrary changes are even
dangerous, since they can introduce subtle errors.

A formalization of the FST model will be useful for a new direction of research
on program synthesis and generative programming, which is called architectural
metaprogramming [33]. It applies metaprogramming techniques at the level of
the software architecture. The FST model provides a means to express the nec-
essary abstraction from the implementation level. In fact, the FST model and its
formalization can be used to reason about and manipulate software architecture.
Metaprograms operate on FSTs to synthesize programs at the architectural level.
At every step, FST's maintain the connection between the architectural and the
implementation level. It guarantees that the operations transform the structures
from one to another consistent state.

8 Related Work

Superimposition was initially used for extending distributed programs in mul-
tiple places [2I3]. Subsequently, several researchers adopted this idea in order
to merge class hierarchies developed by multiple teams [I], to adapt compo-
nents [I3], to support subject-oriented programming [9I0], feature-oriented pro-

12

gramming [7)8], and aspect-oriented programming [I1I12], and to implement
collaboration-based designs [6].

Batory et al. [§], Tarr et al. [10], and Clarke et al. [I5] noted that super-
imposition as a composition technique is not limited to source code artifacts
but applies to any kind of artifact relevant in the software development pro-
cess. Several proprietary tools support the composition of non-source code arti-
facts [TARTOIT7IIRITI). Our FST model is general enough to describe a compo-
nent containing these non-code artifacts, since all their representations can be
mapped to FSTs.

Several languages support composition by superimposition, e.g., Scala [35],
Jiazzi 23], Classbox/J [25], ContextL [36], Jak [8], and FeatureC++ [37]. Our
model hides the details of the languages and provides an underlying abstraction.

Harrison et al. [27] propose a sophisticated set of rewriting rules that are
applied when composing hierarchical code structures. Their rules can be modeled
as tree walks in the FST model that rename and modify nodes. This view is
close to the concept of quantification used in metaprogramming [31] and aspect-
oriented programming [32]. The FST model helps to understand the relationship
between different approaches of software composition.

9 Conclusion

We model software components by tree structures and component composition
by tree superimposition. The FST model abstracts from the specifics of a partic-
ular programming language or tool. Any reasonably structured software artifact
that can be represented as an FST, can be composed by our approach.

As a proof of concept, we have developed a tool that implements FST super-
imposition. Currently, we have parsers for Java and Jak that generate FSTs
ready for composition. Beside generating code for feature composition, FST-
COMPOSER is able to generate XML documents representing the FSTs involved
in a composition, ready for further processing.

Three case studies have demonstrated the applicability of our approach and
our tool: FST superimposition scales to medium-sized programs (10 KLOC).
Scalability to larger programs remains to be shown in further work.

We intend to plug different other languages into the tool in order to demon-
strate the generality of our approach. Xak (an XML module system) and Bali
(grammar specifications) have been shown to be compatible with the FST model
and superimposition [I4]8]. Furthermore, we are working on a formalization of
the FST model and further tools that operate on FSTs, e.g., a tool that visualizes
FSTs and a tool that analyzes interactions between components.

Acknowledgments

We would like to thank Don Batory and Christian Késtner for helpful com-
ments on earlier drafts of this paper. We also thank Sebastian Scharinger who

13

implemented the Java and Jak parsers of FSTCoOMPOSER and Don Batory who
provided the source code of GPL and GUIDSL.

References

10.

11.

12.

13.

14.

15.

16.

Ossher, H., Harrison, W.: Combination of Inheritance Hierarchies. In: Proc. of Int’l.
Conf. on Object-Oriented Programming, Systems, Languages, and Applications,
ACM Press (1992) 25-40

. Katz, S.: A Superimposition Control Construct for Distributed Systems. ACM

Trans. on Programming Languages and Systems 15 (1993) 337-356

Bouge, L., Francez, N.: A Compositional Approach to Superimposition. In: Proc. of
Int’l. Symp. on Principles of Programming Languages, ACM Press (1988) 240-249
VanHilst, M., Notkin, D.: Using Role Components in Implement Collaboration-
based Designs. In: Proc. of Int’l. Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, ACM Press (1996) 359-369

Reenskaug, T., Andersen, E., Berre, A., Hurlen, A., Landmark, A., Lehne, O.,
Nordhagen, E., Ness-Ulseth, E., Oftedal, G., Skaar, A., Stenslet, P.. OORASS:
Seamless Support for the Creation and Maintenance of Object-Oriented Systems.
Journal of Object-Oriented Programming 5 (1992) 2741

Smaragdakis, Y., Batory, D.: Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM Trans. on Soft-
ware Engineering and Methodology 11 (2002) 215-255

Prehofer, C.: Feature-Oriented Programming: A Fresh Look at Objects. In: Proc.
of European Conf. on Object-Oriented Programming. Volume 1241 of LNCS.,
Springer (1997) 419-443

Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Trans. on Software Engineering 30 (2004) 355-371

Harrison, W., Ossher, H.: Subject-Oriented Programming: A Critique of Pure
Objects. In: Proc. of Int’l. Conf. on Object-Oriented Programming, Systems, Lan-
guages, and Applications, ACM Press (1993) 411-428

Tarr, P., Ossher, H., Harrison, W., S. M. Sutton, J.: N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In: Proc. of Int’l. Conf. on Software
Engineering, IEEE Computer Society (1999) 107-119

Mezini, M., Ostermann, K.: Conquering Aspects with Caesar. In: Proc. of Int’l.
Conf. on Aspect-Oriented Software Development, ACM Press (2003) 90-100
McDirmid, S., Hsieh, W.C.: Aspect-Oriented Programming with Jiazzi. In: Proc.
of Int’l. Conf. on Aspect-Oriented Software Development, ACM Press (2003) 70-79
Bosch, J.: Super-Imposition: A Component Adaptation Technique. Information
and Software Technology 41 (1999) 257273

Anfurrutia, F.I., Diaz, O., Trujillo, S.: On Refining XML Artifacts. In: Proc. of
Int’l. Conf. on Web Engineering. Volume 4607 of LNCS., Springer (2007) 473-478
Clarke, S., Harrison, W., Ossher, H., Tarr, P.: Subject-Oriented Design: Towards
Improved Alignment of Requirements, Design, and Code. In: Proc. of Int’l. Conf.
on Object-Oriented Programming, Systems, Languages, and Applications, ACM
Press (1999) 325-339

Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.: Refac-
toring Product Lines. In: Proc. of Int’l. Conf. on Generative Programming and
Component Engineering, ACM Press (2006) 201-210

14

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Bravenboer, M., Visser, E.: Concrete Syntax for Objects: Domain-Specific Lan-
guage Embedding and Assimilation Without Restrictions. In: Proc. of Int’l. Conf.
on Object-Oriented Programming, Systems, Languages, and Applications, ACM
Press (2004) 365-383

Czarnecki, K., Antkiewicz, M.: Mapping Features to Models: A Template Approach
Based on Superimposed Variants. In: Proc. of Int’l. Conf. on Generative Pro-
gramming and Component Engineering. Volume 3676 of LNCS.,; Springer (2005)
422-437

Kamina, T., Tamai, T.: Lightweight Scalable Components. In: Proc. of Int’l. Conf.
on Generative Programming and Component Engineering, ACM Press (2007) 145—
154

Apel, S., Lengauer, C., Batory, D., Méller, B., Késtner, C.: An Algebra for Feature-
Oriented Software Development. Technical Report MIP-0706, Department of In-
formatics and Mathematics, University of Passau (2007)

Batory, D.: Jakarta Tool Suite (JTS). SIGSOFT Softw. Eng. Notes 25 (2000)
103-104

Hutchins, D.: Eliminating Distinctions of Class: Using Prototypes to Model Vir-
tual Classes. In: Proc. of Int’l. Conf. on Object-Oriented Programming, Systems,
Languages, and Applications, ACM Press (2006) 1-19

McDirmid, S., Flatt, M., Hsieh, W.C.: Jiazzi: New-Age Components for Old-
Fashioned Java. In: Proc. of Int’l. Conf. on Object-Oriented Programming, Sys-
tems, Languages, and Applications, ACM Press (2001) 211-222

Nystrom, N., Chong, S., Myers, A.C.: Scalable Extensibility via Nested Inheritance.
In: Proc. of Int’l. Conf. on Object-Oriented Programming, Systems, Languages,
and Applications, ACM Press (2004) 99-115

Bergel, A., Ducasse, S., Nierstrasz, O.: Classbox/J: Controlling the Scope of
Change in Java. In: Proc. of Int’l. Conf. on Object-Oriented Programming, Sys-
tems, Languages, and Applications, ACM Press (2005) 177-189

Cardone, R., Lin, C.: Comparing Frameworks and Layered Refinement. In: Proc.
of Int’l. Conf. on Software Engineering, IEEE Computer Society (2001) 285-294
Harrison, W., Ossher, H., Tarr, P.: General Composition of Software Artifacts. In:
Proc. of Int’l. Symp. on Software Composition. Volume 4089 of LNCS., Springer
(2006) 194-210

Grechanik, M., Batory, D., Perry, D.E.: Design of Large-Scale Polylingual Systems.
In: Proc. of Int’l. Conf. on Software Engineering, IEEE Computer Society (2004)
357-366

Lopez-Herrejon, R.E., Batory, D.: A Standard Problem for Evaluating Product-
Line Methodologies. In: Proc. of Int’l. Conf. on Generative and Component-Based
Software Engineering. Volume 2186 of LNCS., Springer (2001) 10-24

Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Proc. of
Int’l. Software Product Line Conf. Volume 3714 of LNCS., Springer (2005) 7-20
Kiczales, G., Rivieres, J.D.: The Art of the Metaobject Protocol. MIT Press (1991)
Masuhara, H., Kiczales, G.: Modeling Crosscutting in Aspect-Oriented Mecha-
nisms. In: Proc. of European Conf. on Object-Oriented Programming. Volume
2743 of LNCS., Springer (2003) 2-28

Batory, D.: From Implementation to Theory in Program Synthesis (2007) Keynote
at the Intl. Symposium on Principles of Programming Languages.

Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

15

35.

36.

37.

Odersky, M., Zenger, M.: Scalable Component Abstractions. In: Proc. of Int’l.
Conf. on Object-Oriented Programming, Systems, Languages, and Applications,
ACM Press (2005) 41-57

Costanza, P., Hirschfeld, R., de Meuter, W.: Efficient Layer Activation for Switch-
ing Context-Dependent Behavior. In: Proc. of the Joint Modular Languages Conf.
Volume 4228 of LNCS., Springer (2006) 84-103

Apel, S., Leich, T., Rosenmiiller, M., Saake, G.: FeatureC++: On the Symbiosis
of Feature-Oriented and Aspect-Oriented Programming. In: Proc. of Int’l. Conf.
on Generative Programming and Component Engineering. Volume 3676 of LNCS.,
Springer (2005) 125-140

16

