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Abstract. The goal of Feature-oriented Programming (FOP) is to modularize
software systems in terms of features. A feature is an increment in functionality
and refines the content of other features. A software system typically consists of
a collection of different kinds of software artifacts, e.g. source code, build scripts,
documentation, design documents, and performance profiles. We and others have
noticed a principle of uniformity, which dictates that when composing features,
all software artifacts can actually be refined in a uniform way, regardless of what
they represent. Previous work did not take advantage of this uniformity; each
kind of software artifact used a separate tool for composition, developed from
scratch. We present gDEEP, a core calculus for features and feature composition
which is language-independent; it can be used to compose features containing
any kinds of artifact. This calculus allows us to define general algorithms for
feature refinement, composition, and validation. We provide the formal syntax,
operational semantics, and type system of gDEEP and explain how different kinds
of software artifacts, including Java, Bali, and XML files, can be represented. A
prototype tool and three case studies demonstrate the practicality of our approach.

1 Introduction

The goal of Feature-oriented Programming (FOP) is to modularize software systems
in terms of features [1,2]. A feature reflects a stakeholder’s requirement and is an incre-
ment in program functionality. AHEAD (Algebraic Hierarchical Equations for Applica-
tion Design) is an architectural model for FOP and a framework for large-scale program
synthesis based on features [2].

The idea behind AHEAD is to unify several approaches of FOP and scale them to
programming in the large. First, AHEAD generalizes the operations that are performed
when a feature is composed with a base program. A feature encapsulates a program
refinement, which is a set of changes to a base program. Such changes include the intro-
duction of new program elements and the modification of existing program elements.
Second, AHEAD scales the idea of program refinement to arbitrary kinds of software
artifacts. A feature typically includes changes to not only the source code, but also to
other supporting documents, e.g., HTML documentation, ANT build scripts, perfor-
mance models, and design documents.

The unification and scaling of refinement is captured by the principle of uniformity:
features are implemented by a diverse selection of software artifacts, and any kind of



software artifact can be the subject of subsequent refinement [2]. We call a feature
consisting of different kinds of artifacts a multi-representation feature.

While the principle of uniformity captures the philosophy behind AHEAD and
guides us when reasoning about feature-based program synthesis [3], it is rather ab-
stract. During our work on FOP [4,5,6,7,8,9,10] we realized that the formal foundation
of AHEAD and the principle of uniformity alone do not provide a sufficient basis for
efficient software development. When we were implementing tools for composing pro-
grams from source code artifacts (e.g., FeatureC++ [10] and ARJ [6]), we observed
that we needed tools for more and more kinds of artifacts. We noticed that, despite the
uniform process of program refinement, every time we introduced a new kind of soft-
ware artifact, we had to introduce new language constructs and build new tools from
scratch.

We realized that although program refinement is similar for all artifact types, we
had no way to express and reason about this similarity. We need a formal mathematical
model of the principle of uniformity in order to answer several important questions:
What is the essence of program refinement? What properties are mandatory for soft-
ware artifacts to be refined? What is common to all artifact languages and what are the
differences? A theory of features and feature composition would help us answer these
questions.

We propose gDEEP, a core calculus for feature composition, as the backbone of
such a theory. The gDEEP calculus has several benefits:

1. It enables us to describe and analyze the properties and procedures of program
refinement and feature composition in a formal way.

2. Software artifacts of different types (e.g., Java, C++, HTML, XML) can be plugged
into the calculus and treated equally by the algorithms for feature refinement, com-
position, and validation. The algorithms can be expressed in a uniform and language-
independent way.

3. Tools that implement the algorithms operate directly on a concrete representation
of gDEEP. This way, a tool implemented for a specific problem can be reused for
various types of artifacts.

gDEEP generalizes and scales previous work on a formal foundation for FOP [4] in
order to capture the principle of uniformity. It is an alternative to related approaches
that rely on algebra [11,12,13]. We present the syntax, operational semantics, and type
system of gDEEP and explain how different artifact languages can be plugged into it,
including Java, Bali, and XML. Furthermore, we share our experience with a prototype
tool that implements feature composition on top of gDEEP.

2 Feature-Oriented Programming

2.1 Features and Feature Composition

A feature refines the content of a base program by either adding new elements, or by
modifying and extending existing elements. Mathematically, we treat features as func-
tions that transform their input in a well-defined way. Features are composed together
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to synthesize individual programs, and such composition is static (i.e., done at compile-
time).

A feature composition starts off with a base program, and then applies a sequence of
features to modify and extend it. The order in which features are applied is important;
earlier features in the sequence may add elements that are refined by later features. A
sequence of features along with a base program forms a layered design, as illustrated in
Figure 1.

refines

Artifact X Artifact Y Artifact Z

Feature A

Feature B

Base program

Fig. 1. A layered feature-oriented design.

2.2 AHEAD

AHEAD is an architectural model for large-scale feature-based program synthesis [2].
Features consist not only of source code, but also of other kinds of software arti-
facts, e.g., documentation, test cases, design documents, makefiles, performance pro-
files, mathematical models, etc. Every kind of software artifact that is part of a feature
can be refined by subsequent features.

With AHEAD, each feature is implemented by a containment hierarchy, which is a
directory that maintains a subdirectory structure organizing the feature’s artifacts. Com-
posing features means composing containment hierarchies and, to this end, composing
corresponding artifacts recursively by name and type, much like the mechanisms of
hierarchy combination [14], mixin composition [15,16], superimposition [17,18], and
higher-order hierarchies [19]. In contrast to these earlier approaches, for each artifact
type a different implementation of the composition operator (‘•’) has to be provided in
AHEAD (see. Sec. 2.3).

Figure 2 shows the features Base and Add containing source and non-source code
artifacts. The feature equation ‘Calc1 = Add • Base’ composes both features. Feature
composition is implemented as a (recursive) combination of the containment hierar-
chies of the features. For example, the resulting artifact Calc.java is composed of its
counterparts in Base and in Add, matched by name and type.

2.3 Refinement of Software Artifacts

For each artifact type there is a distinct composition operator, i.e., a tool that composes
the artifacts. We review a selection of tools available for several artifact types – most
are integrated in the AHEAD Tool Suite [2].
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Doc.htmlDoc.html

1

Calc.java Doc.htmlCalc.java Calc.java

Calc.java = Calc.java   Calc.java

BaseCalc Add

Fig. 2. Composing the containment hierarchies of two features.

Code Artifacts. Several languages and tools are available for composing source code
artifacts [20,21,22,23,24,25,26]. For example, Jak [2] and FeatureC++ [10] extend the
syntax of Java and C++ by the keyword refines, which indicates that a class is refined.
Figure 3 depicts a Java class Add (Lines 1–5) and a Jak refinement (Lines 6–11). The
refinement adds a new field (Line 7) and extends an existing method via overriding
(Lines 8–10). Calling Super invokes the refined method (Line 9). FeatureC++ refine-
ments provide a similar syntax on top of C++ [10].

1 class Add {
2 i n t add ( i n t a , i n t b ) {
3 return a + b ;
4 }
5 }

6 ref ines class Add {
7 i n t buf = 0 ;
8 i n t add ( i n t a , i n t b ) {
9 buf = Super . add ( a , b ) ; return buf ;

10 }
11 }

Fig. 3. A class (top) and a refinement in Jak (bottom).

Non-Code Artifacts. Non-code artifacts can also be composed in an FOP fashion.
For example, Bali is a tool for synthesizing program manipulation tools on the basis
of extensible grammar specifications [27]. It defines grammars and refines them subse-
quently by composing grammar specifications.

Figure 4 depicts a simple grammar for processing arithmetic expressions (Lines 1–
2) and a refinement that extends the rule Val for supporting real numbers (Line 3). Dur-
ing composition Bali grammars and their refinements are matched by their file names.
The keyword Super refers to the refined grammar rule.

Another example is Xak. Xak is a language and tool for composing various kinds
of XML documents [28]. It enhances XML by a module structure necessary for re-
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1 Expr : Val | Val Oper Expr ;
2 Val : INTEGER;

3 Val : Super . Val | REAL;

Fig. 4. A Bali grammar for processing arithmetic expressions (top) and a refinement for
supporting real numbers (bottom).

finement. This way, a broad spectrum of software artifacts can be refined, since many
artifacts can be expressed in XML, e.g., UML diagrams (XMI), build scripts (ANT),
deployment descriptors, or XHTML. Figure 5 depicts an XHTML document embedded
in a Xak module CalcDoc (Lines 1–10) as well as a refinement (Lines 11–17) that adds
several visual elements by overriding the Xak tag Operations (Lines 13–16). The tag
xak:extends denotes overriding and xak:super refers to the refined Xak tag (Line 14).

1 <html xmlns : xak=" h t t p : / / www. onekin . org / xak "
2 xak : a r t i f a c t = " CalcDoc " xak : type=" xhtml ">
3 <head>< t i t l e > Ca l cu la to r Documentation </ t i t l e > </head>
4 <body bgco lor= " whi te ">
5 <h1> Ca l cu la to r Documentation </h1>
6 < u l xak : module=" Operat ions ">
7 < l i > Add i t i on o f in tegers </ l i >
8 </ ul >
9 </body>

10 </ html >

11 <xak : ref ines xmlns : xak=" h t t p : / / www. onekin . org / xak "
12 xak : a r t i f a c t = " CalcDoc ">
13 <xak : extends xak : module=" Operat ions ">
14 <xak : super xak : module=" Operat ions " / >
15 < l i >Sub t rac t i on o f in tegers </ l i >
16 </ xak : extends>
17 </ xak : refines >

Fig. 5. A Xak/XHTML document (top) and a refinement (bottom).

Further types of code and non-code artifacts are, e.g., feature equations [2], feature
models [29], grammar specifications [30], UML models [31,32], and aspects [6].

3 A Multi-Representation SPL

The Calculator Software Product Line (CalcSPL) is a multi-representation SPL that
implements a simple calculator. It consists of several multi-representation features for

5



handling and processing arithmetic expressions and serves as our motivating example.
Figure 6 depicts the feature diagram of CalcSPL1. CalcSPL supports basic arithmetic
operations and provides command line access.

Add Sub Mult Div

Operations

Calculator

CmdLine

Fig. 6. Feature diagram of CalcSPL.

Figure 7 depicts CalcSPL’s stack of features in top-down order as well as their
internal artifacts. The remaining section describes the features in detail.

Adapter.jak

Adapter.jakGrammar.bBuild.xml

Calc.jak

CmdLine

CalcBase

Doc.html

Doc.html Grammar.bCalc.jakAdd

Doc.html Build.xml

Fig. 7. Features of CalcSPL.

3.1 Feature CalcBase

CalcBase is the core of CalcSPL. It provides basic support for handling arithmetic
expressions and is the basis of further features. CalcBase contains the following arti-
facts:
1. The Jak file Calc.jak contains a class Calc that provides the basic functionality

for handling arithmetic expressions. The method enter stores an integer, clear
initializes the calculator, and top returns the processed value:

class Calc {
i n t e0 = 0 , e1 = 0 , e2 = 0;
void enter ( i n t va l ) {

e2 = e1 ; e1 = e0 ; e0 = va l ;
}
void c l ea r ( ) {

1 Boxes denote features and subfeatures; a filled bullet denotes a mandatory feature; a filled arc
denotes a group of features in which at least one feature needs to be selected [33].
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e0 = e1 = e2 = 0;
}
S t r i n g top ( ) {

return S t r i n g . valueOf ( e0 ) ;
}

}

2. The HTML file Doc.html sets up the documentation of CalcSPL. Figure 8 depicts
the documentation displayed in a browser; the subset introduced by CalcBase is
annotated accordingly.

Add

CmdLine

CalcBase

Fig. 8. HTML documentation of the CalcSPL.

3. The XML file Build.xml controls the build process of CalcSPL.

3.2 Feature CmdLine

CmdLine provides command line access to the calculator. It contains the following
artifacts:
1. The Bali grammar Grammar.b is the basis for generating a parser that processes

a user’s input:

Expr : Val | Val Oper Expr ;
Val : INTEGER;

It needs to be refined by concrete operations on integers.
2. A refinement of Build.xml adds commands for generating the parser from the

grammar.
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3. The class Adapter connects the parser and the class Calc to exchange informa-
tion between the user and the calculator.

4. A refinement of Doc.html adds information about how to use the command line
of the calculator (see Fig. 8).

3.3 Feature Add

The feature Add provides support to sum integers. It contains the following artifacts:
1. A refinement of the class Calc introduces a method add to sum two integers that

have been entered into the calculator:

ref ines class Calc {
void add ( ) {

e0 = e1 + e0 ; e1 = e2 ;
}

}

2. A refinement of the Bali grammar (Grammar.b) introduces the ‘+’ operator, thus
extending the parser to be generated:

"+ " PLUS
Oper : super . Oper | PLUS;

3. A refinement of the class Adapter extends the information exchange between
parser and the calculator.

4. A refinement of Doc.html lists ‘Addition’ as supported operation and explains
the command line syntax for the addition of integers (see Fig. 8).

3.4 Further Features

The features Sub, Mult, and Div are implemented analogously to the feature Add.

4 The Role of gDEEP

As we have illustrated in the previous section, multi-representation features exist and
need to be represented and composed. But the degree of detail in which contemporary
models such as AHEAD describe what happens when refining and composing features
is far too low. Every time we want to incorporate a new type of software artifact, we are
forced to reinvent the wheel by developing a new composition tool. We need a formal
model of feature composition and program refinement that is language-independent.

We propose such a formal model in form of a calculus. Our goal is twofold: (1) to
provide deeper insight into the underlying principles of feature composition, and (2)
to develop generic algorithms and tools that can be used to manipulate many kinds of
software artifacts.

We call our calculus gDEEP, which is short for generalized DEEP. gDEEP general-
izes the ideas of the DEEP calculus [4], which is a Java-like programming language and
type system with built-in support for virtual classes and deep mixin composition [4].
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Work on DEEP has demonstrated that it is possible to build a formal type theory that
can handle feature composition.

The gDEEP calculus simplifies DEEP by stripping out all of the parts that are specific
to Object-oriented Programming. What remains is a pure module system, and a set of
rules for composing and refining modules.

4.1 The Module System

In gDEEP features are represented as modules, which have a deep hierarchical struc-
ture. A module may contain submodules, subsubmodules, and so forth. There are two
kinds of modules with different composition semantics: (1) compound modules, and (2)
atomic modules.

Compound modules have a named hierarchical substructure. Java packages and
classes are good examples. Composing two compound modules together will compose
submodules recursively with the same name and type.

Atomic modules do not have a particular substructure which gDEEP can intepret; an
atomic module can be any arbitrary term in the artifact language. Examples are: Java
methods and fields, XML code, Bali grammar rules, etc. When two atomic modules are
composed, one simply overrides the other. However, the overriding definition may refer
to the original definition using the original keyword (see Sec. 5), which is similar to the
super keyword in Java. The original keyword allows the text of two atomic modules to
be combined in a way that is specific to the particular modules and artifact language in
question.

(Note that gDEEP uses original as a keyword, whereas AHEAD uses Super. We
made this change to avoid confusion with the super keyword in Java.)

4.2 Feature Composition

In Figure 9, we illustrate the composition of compound and atomic modules. The mod-
ules A and B are compound modules, while C, D, and E are atomic. Modules are com-
posed by deep mixin composition [15,4]. That is, A and B are composed recursively by
composing their constituents. The refinement of submodule D uses the original key-
word to refine the text of D.

4.3 Plugging Artifact Languages into gDEEP

When representing a software artifact in gDEEP, all of the structural elements in the
artifact language must be mapped onto the two kinds of modules that are supported by
gDEEP: compound modules and atomic modules.

Bali and XML are simple artifact languages, because they do not define any com-
pound modules. As a result, they are very easy to plug into gDEEP. The gDEEP calculus
provides a hierarchical module system, and all expressions in the artifact language be-
come leaves (i.e. atomic modules) in the module hierarchy. The module calculus and
the artifact language are almost completely orthogonal.

Java is a complex artifact language, because it defines its own compound modules
in the form of packages, classes, and interfaces. Packages contain named subpackages
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module A

module B module C

module D module E

module A

module B

module D

...

...

refinementbase program

compound module atomic module

original.D

Fig. 9. Composition (‘•’) of compound and atomic modules.

and classes, while classes contain named inner classes, methods and fields. Methods and
fields have no named substructure, so we represent them as atomic modules. We handle
classes by defining a translation function that maps Java classes onto gDEEP compound
modules. The translation function is one-to-one, so any manipulations performed within
gDEEP can be mapped back to Java.

Once a software artifact has been translated to gDEEP, we can use the calculus to
compose features in a language-independent way. Perhaps even more importantly, we
can perform further analysis and manipulation steps, e.g. type-checking, consistency
and error checking [34], or feature interaction analysis [35]. Figure 10 illustrates the
role of gDEEP in software composition.

composition, typing, etc.

Java

XML

Bali

artifact
languages

artifact
languages

Dg EEP

calculus

Fig. 10. Language-independent composition with gDEEP.

4.4 Pluggable Type Systems

In addition to providing an operational semantics for feature composition, the gDEEP
calculus also defines a language-independent type system for features. This type system
provides judgements that are needed to do modular type-checking, and which are not
specific to any particular artifact language. It has two main capabilities.

First, there is a subtype relation defined over features and feature equations. Subtyp-
ing can be nominal, structural, or a mixture of both, and it supports multiple inheritance.
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Features which require other features can express that dependency via subtyping. The
type checker will ensure that all dependencies are properly declared as requirements,
and that all requirements in a composition are satisfied.

Second, it is possible to plug artifact-specific type systems into the gDEEP type sys-
tem. Current feature composition tools, such as AHEAD, do not support modular type
checking. In the case of programs written in Java or other statically typed languages,
all type checking must be done after composition. By plugging the artifact type system
into gDEEP, it is possible to do type-checking before composition.

In the case of Java, the standard Java type system is responsible for assigning types
to Java expressions, which always occur in atomic modules. The gDEEP type system is
responsible for looking up class and method names within features, since names cross
module boundaries. These two sets of judgements are largely orthogonal, so little work
is needed to integrate the two.

An interesting interpretation of the role of gDEEP in type checking is the idea of
hierarchical type systems. gDEEP is at the root of a hierarchy of type systems, because
it provides basic capabilities that are common to all feature languages. Artifact-specific
type systems extend gDEEP to check further artifact-specific properties.

4.5 gDEEP as a Formalism and a Tool

There are two ways of using gDEEP. Firstly, gDEEP is a means for formal reasoning
about features and feature composition. It helps us to understand the general structure
of features and the properties of feature composition, and it reveals the mandatory and
optional properties that artifact languages must obey in order to support features and
feature composition.

Secondly, gDEEP is an intermediate representation for language-independent fea-
ture composition. A concrete instantiation of gDEEP serves to express and reason about
features in order to implement composition, consistency and error checking, feature
interaction analysis and resolution, etc. [34,35].

Although, in Section 8, we outline an implementation of gDEEP and a tool that
composes features based on our calculus, we focus here mainly on the mathematical
formalism. Nevertheless, we believe that gDEEP will have an impact on both, the theory
and practice of FOP.

5 Overview of the gDEEP Core Calculus

gDEEP by itself is not a full system. It is a base system into which another core calculus
can be plugged, such as Featherweight Java (FJ) [36]. gDEEP provides a module system
which supports feature composition. It does not handle the syntax, evaluation, or typing
of concrete software artifacts; these must be provided by a “sister calculus” (e.g. FJ)
that it is paired with. As examples, we will show how gDEEP can be combined with FJ
and with proprietary formalizations of Bali and XML.

Figure 11 shows the syntax and Figure 12 shows the operational semantics of
gDEEP. The syntax is divided into two parts. The first part, shown on the left, is a
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Feature Calculus:

X, Y, Z Variable (module)
` Slot labels (all)
J, K, L ⊂ ` Slot labels (module)
j, k, l ⊂ ` Slot labels (artifact)

M, N, O ::= Terms:
X variable
λX+ ≤ M. N function
µX{D}[ξ] module
M(N) function application
M@(N).L delegation
M ⊗ V composition

D, E ::= Declarations:
L : M nested module
l : d artifact declaration

V, W ::= Values:
λX+ ≤ M. N function
µX{D}[ξ] module

Artifact-specific constructs:

d, e ::= Artifact-specific declarations:
... (unspecified)

ξ ::= Artifact-specific module info:
• empty
ξ ⊗ ξ composition
... (unspecified)

Notation:

• D denotes a possibly empty sequence of declarations D1 .. Dn, in which each declaration
is terminated by a semicolon.

• DL and Dl denote the declaration with label L or l, respectively, in the sequence D.
• dom(D) denotes the set of labels in the sequence of declarations D.
• [X 7→ M ] N denotes the capture-avoiding substitution of term M for the variable X within

N .

Syntax sugar:
• M.L and M.l are syntax sugar for M@(M).L and M@(M).l, respectively.
• originalX .` (where ` can be L or l), is syntax sugar for M@(X).`, when the original key-

word appears in the context:
M ⊗ µX{...originalX .`...}. Furthermore, the X may be omitted, e.g. original.`, in cases
that are unambiguous.

Term Equality: α-renaming of bound variables x, plus

D is a permutation of E

µX{D}[ξ] = µX{E}[ξ]

Fig. 11. Syntax of gDEEP
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Evaluation Context: E ::= [] | E(M) | V (E) | E@(M).L | V @(E).L | E ⊗ V

M −→ M ′

E[M ] −→ E[M ′]
(E-CONG)

L : N ∈ D

µX{D}@(V ).L −→ [X 7→ V ]N
(E-DLG)

l : d ∈ D

µX{D}@(V ).l −→ [X 7→ V ]d
(EA-DLG)

(λX+ ≤ M. N)(V ) −→ [X 7→ V ]N (E-APP)

µX{C}[ξ1]⊗ µX{D}[ξ2] −→ µX{C ]D}[ξ1 ⊗ ξ2] (E-COMP)

where C ]D = E such that dom(E) = dom(C) ∪ dom(D)

and E` =

(
D` if ` ∈ dom(D)

C` otherwise

• ⊗ • = • (ξ-COMP)

Fig. 12. Operational semantics of gDEEP

calculus for features. This part represents the core calculus proper, and it is the only
part which is common across all applications of gDEEP.

The second part of the calculus, shown on the right, is artifact-specific. These terms
serve as placeholders for the particular language to which gDEEP is being applied –
the target artifact language, or target language. When support for features is added
to Java, these terms are “filled in” with Java constructs. When support for features is
added to XML, they are XML trees, and so on. The precise rules by which a target
artifact language can be integrated with gDEEP will be described in later sections.

5.1 Records

In gDEEP, the classes and modules of a base program and features are encoded as recur-
sive records. Records are declared using the syntax µX{D}[ξ], where D is a sequence
of declarations. ξ is a artifact-specific annotation of some kind. It is used by the artifact
language for the composition of artifact-specific details, but is otherwise ignored by the
core calculus. (see Sec. 5.5).

The variable X provides a name for “self” within the record, much like the keyword
this in C++ or Java. Records in gDEEP can be nested, so it is important that each record
has a unique name for “self”. The self-variable allows any declaration within a record
to refer to other declarations within the same record by means of a path. The semantics
of paths are somewhat subtle, and are explained in Section 5.2.
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Declarations. There are two basic kinds of declaration:

1. L : M declares a nested compound module.
2. l : d declares a nested atomic module. The term d is an arbitrary declaration in the

artifact language.

Atomic modules are treated as raw “chunks of code” and are not otherwise interpreted
by gDEEP.

Composition. Feature composition is represented by recursive module composition.
Module composition in gDEEP is very similar to object-oriented inheritance. The equa-
tion N = M ⊗ µX{...} is analogous to the Java syntax:

class N extends M { . . . }

The expression M⊗V combines the declarations in M and the declarations in V to
a single record. Conflicts are resolved by overriding; if M and V both have a declaration
with the same label, then the one in V overrides the one in M . In order to be type-safe,
declarations in V which are overriding must be subtypes of those in M (see Sec. 5.4).

5.2 Paths and Delegation

Delegation, written using the syntax M@(N).L, projects the declaration named L from
the record M . Any occurrences of the self-variable X will be bound to N . Declara-
tions in gDEEP are similar to methods in object-oriented languages. Each record comes
equipped with a self-variable, and the body of a declaration may refer to “self” us-
ing that variable. In most object-oriented languages, including C++ and Java, “self” is
treated as a hidden argument that is passed implicitly during a method call. In gDEEP,
the “self” argument is not hidden, but is passed explicitly.

Usually, M and N are the same term, in which case the standard object-oriented
dot notation M.L can be used as syntax sugar for M@(M).L. The expression M.L
projects the slot named L from M , passing M as “self.” The case where M and N are
different arises when a refinement wishes to delegate behavior to a base program, as is
discussed later.

The following example demonstrates how delegation works in the simple case: ex-
pressions of the form M.L. For clarity, we use Java as the artifact language:

l e t M1
def= µX{

A : : µY{ int a ; } ;
B : : X .A ⊗ µZ{ int b ; } ;

}

In this example, M1 is defined as a record which contains the two nested records A and
B. A is stand-alone definition, while B inherits from A. Note that B refers to A using
the self-variable X .

Like object-oriented languages, gDEEP uses late binding. The variable X is not
assigned a value until B is actually projected from M1, e.g.,

M1.B −→ M1.A⊗ µZ{int b; } −� µZ{int a; int b; }
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In the next example, we create a new record M2, which extends M1 by adding a
new field named a2 to A:

l e t M2
def= M1 ⊗ µX{

A : : originalX .A ⊗ µY{ int a2 ; } ;
}

Because of late binding, extending the definition of A will automatically extend
the definition of B. M2 inherits B from M1. However, when the expression M2.B is
evaluated, X will be bound to M2 rather than M1, e.g.,

M2.B −→ M2.A⊗ µZ{int b; } −� µZ{int a; int a2; int b; }

The definition of M2 given above also introduces a more complex use of delegation,
which is similar to further binding in BETA. Notice that the record A is overridden with
a version that inherits from originalX .A. The “original” module in this case is M1,
so originalX .A is syntax sugar for M1@(X).A. The expression M1@(X).A means:
“extract the declaration named A from M1, but pass X , which is the self-variable for
M2, as self.”

When a derived module inherits from a base module, it may wish to delegate some
behavior to its parent. This has shown to be useful in program refinement via fea-
tures [2,9]. Java provides a special keyword for delegation, called super, and the syntax
given here mimics that behavior more formally. Note that we cannot use simple dot no-
tation to perform delegation. The expression M1.A projects A from M1, but it passes
M1 as self, which defeats the whole point of late binding. In order to inherit from A
properly, we need to project A from M1, using the self variable for M2.

Type Constraints. It is neither sensible, nor type-safe, to pass just any term as self. A
declaration M@(N).L has a type constraint; it is only well-formed if N is subtype of
M . In the case of the simple dot notation, M.L, this constraint is trivially satisfied. It is
also safe for a derived module to delegate to a base module.

5.3 Extensible Fixpoints

The mechanism for late binding described above is one of the key technical innovations
that gDEEP inherits from DEEP. As the syntax suggests, a record µX{...} denotes a
fixpoint. The formal theory of fixpoints is well-established, but most formal calculi
expand the fixpoint immediately at the point of declaration. This immediate expansion
prevents a recursive structure from being extended.

gDEEP differs from other calculi because it uses extensible fixpoints. A self-variable
is not bound at the point of declaration, it is bound at the point of use. This is a prereq-
uisite for modeling feature composition based on recursive module composition.

5.4 Monotone Functions

In gDEEP, functions are used to represent features. Like many other module calculi,
gDEEP allows functions to be defined over modules. The expression λX+ ≤ M. N is

15



a function that accepts any subtype of M as an argument. The expression Add(Base)
will call a function Add with the argument Base (cf. Sec. 2). As is standard practice,
functions which accept multiple arguments are encoded by currying.

Similar to generic Java and System F≤, gDEEP uses bounded quantification [37]
to establish type constraints on formal arguments. Bounded quantification relies on the
subtype relation, rather than signatures or kinding.

Unlike most other module calculi, functions in gDEEP are monotone, which is why
they are declared with the curious X+ notation on the variables. If F is a monotone
function and A and B are base programs, then:

∀A,B. A ≤ B implies F (A) ≤ F (B)

This property is enforced in gDEEP because functions are primarily used to encode
features. It is certainly possible to include general-purpose (i.e. non-monotone) func-
tions as well, but such flexibility is overkill for modeling features, and would needlessly
complicate the calculus.

A feature which is applicable to a base program A can be declared using the follow-
ing syntax:

λX+ ≤ A. X ⊗ µY {...}

In other words, a feature takes an argument X , and extends it by adding the decla-
rations given in {...}. If we were to write out this definition using a Java-like syntax, it
would look like:

class F <X extends A> extends X { . . . }

Note that this declaration is illegal in Java, because Java does not allow a class to
inherit from a type argument. gDEEP supports features by removing this restriction,
and establishing a monotonicity constraint so that feature compositions obey sensible
subtyping laws.

Subtyping Laws for Features. A feature encapsulates a slice of program behavior.
Applying a feature to a program will extended the functionality of the program in some
way. This leads us to two typing laws for features. If F is a feature and A and B are
base programs, then:

∀A. F (A) ≤ A
∀A,B. A ≤ B implies F (A) ≤ F (B)

The first law states that a feature always extends its argument. We can express the
first law as a subtyping rule by saying that F is a feature if and only if F ≤ λX+. X .
The second law (monotonicity) states that if a feature is applied to a more specific
program, it will always generate a more specific result.

Together, these two laws allow us to derive subtyping rules for feature compositions.
If F1..Fn are a set of features, and G1..Gm are a set of features, we can say that

F1(F2(...Fn(A))) ≤ G1(G2(...Gm(A)))
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if and only if F1..Fn contains all of the features in G1..Gn, and all of those features are
applied in the same order.

This rule is somewhat similar to multiple inheritance, but it includes a restriction on
the order in which features are applied. Two expressions which apply the same features,
but apply them in a different order, e.g. F (G(A)) and G(F (A)), will generate programs
with different behavior, as common in FOP. The subtype rules given here neatly capture
this distinction.

5.5 Artifact-Specific Constructs

gDEEP provides two main “hooks” for integration with a particular artifact language.
Declarations in the artifact language are denoted by d. In the case of Java, d represents
field and method declarations. Artifact declarations are completely opaque; gDEEP does
not interpret them in any way.

However, there are some cases where an expression in the target language should
not be opaque. For example, a Java class is somewhat similar to a record in gDEEP.
A class contains a set of named fields and methods, and we would like to use feature
composition to extend classes.

gDEEP makes classes transparent by modeling them as a special kind of record.
Records can be annotated with a domain-specific construct, named ξ. ξ is defined to
hold all of the specific information about classes that Java requires, but that gDEEP
does not include. In our encoding of FJ, we use it to hold the class constructor, along
with the extends clause. Using this information, is is possible to create a one-to-one
mapping between Java classes and records in gDEEP, as we will show in Section 6.

5.6 Type System

The type system of gDEEP is based on the type system of DEEP. A full discussion of
meta-theory and a proof of type safety is well beyond the scope of this paper; please
see the original paper on DEEP [4] for details. Figures 13 and 14 depict the type rules
of gDEEP.

The type system defines three relations over terms: ≤, ≡, and l. For compactness,
we use C as a meta-variable which ranges over all three relations.

The judgement M ≤ N means that M is a subtype of N . gDEEP supports both
structural and nominal subtyping. Structural subtyping compares records and functions
by comparing their slots and bodies. Nominal subtyping compares names in the form
of variables and paths, e.g., X.A ≤ X.A.

The judgement M ≡ N means that M is equivalent to N . Two terms are equivalent
if they reduce to a common result.

The judgement M l N means that N is a minimal upper bound of M . This relation
is very similar to subtyping, except that it does not discard information. The statement
M l R, where R is a record, says that R is the most specific interface that can be
derived for M .

These three relations do double-duty. First, they can be used to compare two terms to
see whether one is related to another; e.g., given M and N , we wish to know whether
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Γ ::= Contexts
∅ empty context
Γ, X ≤ M variable bound
... artifact specific

C ::= Subtype judgements
≤ subtype
l minimal subtype
≡ term equivalence

Notation:
• Γ ` J1, J2 is shorthand for Γ ` J1 and Γ ` J2.
• fv(M) denotes the set of free variables in M .
• iv(M) denotes the set of free variables that occur in invariant positions in M .

A variable occurs in an invariant position if it occurs within I in the following terms: λX+ ≤
I. M , or M@(I).L.

Subtyping: M C M, D C D

Γ ` M ≡ N

Γ ` M l N

Γ ` M l N

Γ ` M ≤ N
(S-WEAK1-2)

Γ ` M C N, N C O, N wf
Γ ` M C O

(S-TRANS)

Γ ` N ≡ M

Γ ` M ≡ N

M −→ N

Γ ` M ≡ N

(S-SYM)
(S-RED)

Γ ` X ≡ X
X ≤ M ∈ Γ

Γ ` X l M

(S-VAR)
(SE-VAR)

Γ ` M C M ′, N ≡ N ′

Γ ` M(N) C M ′(N ′)

Γ ` N ≤ N ′

Γ ` M(N) ≤ M(N ′)

(S-APP1)
(S-APP2)

Γ ` M C M ′, N ≡ N ′

Γ ` M@(N).L C M ′@(N ′).L
(S-DLG)

Γ ` M C M ′, V C V ′

Γ ` M ⊗ V C M ′ ⊗ V ′ Γ ` M ⊗ V ≤ M
(S-CMP)
(S-SUP)

Γ ` M ≡ M ′

Γ, X ≤ M ` N C N ′

Γ ` λX+ ≤ M. N C λX+ ≤ M ′. N ′ (S-FUN)

dom(D) {C} dom(E)

Γ, X ≤ µX{D}[ξ1] ` ξ1 C ξ2, ∀` ∈ dom(E). D` ≤ E`

Γ ` µX{D}[ξ1] C µX{E}[ξ2]

where
S {≤} S′ iff S ⊇ S′

S {l} S′ iff S = S′

S {≡} S′ iff S = S′

(S-REC)

Γ ` M C N

Γ ` L : M C L : N
(S-DCL)

artifact specific
Γ ` l : d C l : e

artifact specific
Γ ` ξ1 C ξ2

(S-ART1-2)

Fig. 13. Subtyping rules of gDEEP.
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Well-formedness: Γ wf, M wf, D wf

∅ wf
Γ wf Γ ` M wf X 6∈ dom(Γ )

Γ, X ≤ M wf
(W-CTX1-2)

Γ ` M wf, M l λX+ ≤ N ′. O
Γ ` N wf, N ≤ N ′

Γ ` [X 7→ N ] O wf
Γ ` M(N) wf

(W-APP)

Γ ` M wf, M ≤ µX{D}[ξ] ` ∈ dom(D)
Γ ` N wf, N ≤ M

Γ ` M@(N).` wf
(W-DLG)

Γ wf, X ≤ M ∈ Γ

Γ ` X wf
(W-VAR)

X 6∈ iv(N)
Γ ` M wf Γ, X ≤ M ` N wf

Γ ` λX+ ≤ M. N wf
(W-FUN)

Γ, X ≤ µX{D}[ξ] ` D wf, ξ wf
Γ ` µX{D}[ξ] wf

(W-REC)

Γ ` M wf, M l µX{C}[ξ1] S = dom(C) ∩ dom(D)

Γ, X ≤ M ⊗ µX{D}[ξ2] ` ξ1 ⊗ ξ2 wf, C ]D wf, ∀` ∈ S. D` ≤ C`

Γ ` M ⊗ µX{D}[ξ2] wf
(W-CMP)

Γ ` M wf
Γ ` L : M wf

artifact specific
Γ ` l : d wf

(W-DCL1-2)

Fig. 14. Wellformedness rules of gDEEP.
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M ≤ N . Second, given a single term M , we wish to find a bounding type for M , a
record or function V such that M ≤ V .

These two uses require different algorithms; the algorithm for finding a supertype
is different from the one for comparing two terms. Logically, however, both algorithms
implement the same mathematical relations. This property is easiest to see for ≡. The
algorithm for finding a V such that M ≡ V is the same as evaluation; we evaluate
M to obtain V . Supertypes and minimal supertypes can be computed in an analagous
manner.

Type Checking. Since the subtype relation can be used to derive upper bounds, there is
no need for a conventional typing relation. Instead, type-checking is done by ensuring
that terms are well-formed. The well-formedness judgement does the following checks:

– It ensures that every function (i.e., every feature) is monotone.
– For a function call F (A), it ensures that F is a function and A has the correct type.
– For delegation M@(N).L, it ensures that N ≤ M , and M is a record with a slot

named L.
– For M ⊗ V , it ensures that every overriding slot in V is a subtype of the corre-

sponding slot in M .

Type-checking is modular, unlike existing tools for FOP [2,10]. Each feature is type-
checked before it is composed. Unfortunately, not all type errors can be caught before
composition, as shown in the following example, which uses Java as a target artifact
language.

A = µX { String a; };
B = A ⊗ µX{
String foo(int i) { return a + i; }

};
F = λX+ ≤ A. X ⊗ µY{

int foo(int i) { return i + a; }
};
C = F(B)

In this example, A and B have no type errors. The feature F introduces one type
error, because it tries to add a string to an integer, which is not allowed in Java. This error
will be caught immediately. The declaration of C introduces a second error, because the
type signature for foo provided by F conflicts with the one already present in B.

Java 1.5 avoids the second error by making the declaration of F illegal — it is not
possible to inherit from a variable. gDEEP removes this restriction (thus, supporting
feature composition), but it must do type-checking in two passes. The body of F is
checked once at the point where F is declared, and a second time when F is applied to
B. The second check will catch naming and type conflicts that are specific to a particular
composition.
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x, y, z Variables
m, n ⊂ l method names
f, g ⊂ l field names
b, c ⊂ L class names

A, B, C ::= Class
Object universal supertype
M gDeep term

CL ::= Class declaration
class c extends C {FD KD MD}

FD ::= C f ; Field declaration

KD ::= Constructor declaration
c(C x) {super(t); this.f = t; }
refines c(C x) {this.f = t; }

MD ::= Method declaration
C m(C x) {return t; }

d, e ::= FD | MD Declarations

s, t, u ::= Terms
x variable
instance C {f = t} (object)
t.f field access
t.m(u) method access
C@(t).m(u) delegation
new C(t) constructor call
(C) t cast

v, w ::= Values
instance C {f = v} object

ξ ::= Extra class info
(extends C, KD) superclass + constructor
ξ ⊗ ξ composition

Mapping from gFJ to gDEEP:

〈〈class c extends B {FD KD MD}〉〉 =

µX{〈〈FD〉〉 〈〈MD〉〉} [(extends B, KD)] where X chosen fresh, KD = c(B x){...}
〈〈C f〉〉 = f : C f

〈〈C m(B x) { return t; }〉〉 = m : C m(B x) { return t; }

(extends B, c(C x) {super(s); this.f = t; }) ⊗ (extends B, refines c(C x) {this.g = u; }) =

(extends B, c(C x) {super(s); this.f = t; this.g = u; })

Syntax Sugar: original.m(t) is syntax sugar for C@(this).m(t), when it appears within the
context C ⊗ 〈〈class c extends B {...original.m(t)...}

Fig. 15. Syntax and translation of gFJ
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Evaluation Context:

E ::= [] | E.f | E.m(t) | v.m(w, E, t) | C@(E).m(t) | C@(v).m(w, E, t)

| new C(v, E, t) | (C)E | instance C {f = v, g = E, f ′ = t}

Reduction: t −→ t

t −→ t′

E[t] −→ E[t′]
(E-CONGRUENCE)

instance C {f = v}.fi −→ vi (E-FIELD)

v = instance C {f = u}
method(C, m) = B m(A x) {return t; }

v.m(w) −→ [this 7→ v][x 7→ w]t
(E-METH)

v = instance D {f = u}
method(C, m) = B m(A x) {return t; }
C@(v).m(w) −→ [this 7→ v][x 7→ w]t

(E-DLG)

construct(C, v)
def
= f t

new C(v) −→ instance C {f = t}
(E-NEW)

φ ` C <: B

(B) instance C{f = t} −→ instance C{f = t}
(E-CAST)

Java Subtyping: C <: C

Γ ` C <: Object
Γ ` C ≡ B

Γ ` C <: B

Γ ` A <: B B <: C

Γ ` A <: C

Γ ` C ≤ 〈〈class c extends B {FD KD MD}〉〉
Γ ` C <: B

Method and Constructor Lookup:

C −� 〈〈class c extends B {FD KD MD}〉〉
method(C, m)

def
= MDm

C −� 〈〈class c extends B {FD KD MD}〉〉
m 6∈ dom(MD)

method(C, m)
def
= method(B, m)

construct(Object, •) def
= •

C −� 〈〈class c extends B {FD KD MD}〉〉
KD = c(C′ x) {super(t); this.g = u; }

construct(C, s)
def
= construct(B, [x 7→ s]t), g [x 7→ s]u

Fig. 16. Operational semantics of gFJ
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6 Generalized Featherweight Java

Featherweight Java (FJ) is a minimal core calculus for Java, which models the type sys-
tem and the core semantics of the Java language [36]. We have developed generalized
Featherweight Java (gFJ) on top of FJ, so that we can translate and plug it into gDEEP.
Figure 15 depicts the syntax and transformation rules and Figure 16 depicts operational
semantics of gFJ.

6.1 Classes and Delegation

gFJ extends FJ in two fundamental ways. First and foremost, it eliminates the global
class table. FJ uses a flat class table, in which class names c are mapped to class decla-
rations CL. In contrast, gFJ refers to classes using using arbitrary gDEEP expressions,
rather than simple names. In most cases, a gFJ program will refer to a class c using a
local path X.c, where X is the self-variable for the enclosing module.

Second, gFJ introduces a syntax for delegating behavior from the refinement of a
method to the original definition of that method. This mechanism is essentially the same
as module delegation in gDEEP, and is much like the super keyword in Java.

When evaluating the term C@(t).m(u), gDEEP will look up the method m in class
C, and then call that method with u as arguments, passing t as the target object. In
practical programming, t is always this, and C is the original version of the class cur-
rently being refined, so we introduce some syntax sugar: original.m(u). (The original
keyword replaces the Super keyword which is used in AHEAD).

6.2 Constructors and Instances

Our goal in formalizing gFJ was to remain as close to the definition of FJ as possible.
We replace class names with arbitrary gDEEP expressions, and add delegation, since
these concepts are fundamental to FOP. However, we would like to avoid any other
changes to the core FJ syntax.

Unfortunately, FJ has one significant limitation that requires us to make further
changes. The actual extension is not as interesting as the fact that we were forced to
make this modification in the first place. Although support for features can be added
to different languages, they cannot be added to just any language. Some languages,
including FJ, are not “feature-friendly” or “feature-ready”. Although this section deals
with FJ in particular, it is a case study in the kinds of constraints that FOP places on
language design.

In Java, the term new C(t) is an expression, which creates an instance of class C
by evaluating the constructor for C. FJ deliberately simplifies this mechanism in an
effort to make the core calculus as small as possible. In FJ, the term new C(t) is not an
expression. It is a value which represents an instance of class C.

The problem with using new C(t) as a value is that every field in the class must
be listed as an argument in the constructor. This limitation means that a feature cannot
add a new field to a class without changing the constructor signature, and changing
the signature will break any code which uses the class. In a feature-friendly language,
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constructors should be “virtual”. It should be possible to refine a constructor without
altering its signature, much like a overriding a virtual method.

In order to support constructor refinement, gFJ follows the Java model, rather than
the FJ model. The expression new C(t) will evaluate the constructor for C, and re-
turn an instance, which is represented by the syntax instance C{f = t}. All fields
must be initialized within the constructor, but they do not have to appear as constructor
arguments.

6.3 Type System

Figures 17 and 18 depict the type rules of gFJ. We did not make any changes to inheri-
tance, although we could have. Feature composition is very similar to inheritance, and
gDEEP already provides a subtype relation. Thus, we could have drafted a smaller and
more elegant calculus by using gDEEP to handle inheritance, subtyping, and method
lookup.

There are two reasons why we did not attempt such a simplification. First, it would
change the type system dramatically, so the resulting calculus would bear little resem-
blance to either FJ, or full Java. Second, there is a subtle semantic difference between
inheritance and feature refinement. With inheritance, a derived class can have different
constructors than the base class. Feature refinement is more strict; constructors must
keep the same signature.

6.4 Translation

The core of the encoding of gFJ is the translation between Java-like syntax and gDEEP
syntax. The translation function, denoted by 〈〈_〉〉, provides a one-to-one mapping be-
tween gFJ declarations and gDEEP declarations (cf. Fig. 15). Because the function is
bijective, it is also possible to convert gDEEP terms back to gFJ.

Classes in gFJ map to records in gDEEP, while fields and methods map to atomic
declarations within those records. (gFJ splits the set l of slot labels into subsets m
and f , containing field names and method names, respectively.) The superclass and
constructor are placed in the artifact-specific term [ξ]. This encoding demonstrates how
ξ is intended to be used; it is a mechanism for capturing artifact-specific information
that does not fit into standard gDEEP records.

gFJ also provides an artifact-specific way of composing constructors and extends
clauses. Two classes can only be composed if they have the same superclass, and if the
constructor on the right refines the constructor on the left. The constructor for a class
is responsible for initializing all of its fields. Composing two constructors together will
merge the two sets of initialization statements. The refines keyword ensures that the
two definitions do not call the superclass constructor in different ways.

6.5 Formalities

The operational semantics of gFJ is largely self-contained, and fairly similar to FJ.
However, gFJ relies on gDEEP for one thing: every class expression C must be re-
duced to a class declaration CL. The helper functions “method” and “construct” contain
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Syntax:
Γ ::= ...

Γ, x : T variable type

Typing: t : C

x : C ∈ Γ

Γ ` x : C
(T-VAR)

Γ ` fields(C) = f B, t : B

Γ ` instance C{f = t} : C
(T-OBJECT)

Γ ` t : B, fields(B) = f C

Γ ` t.fi : Ci
(T-FIELD)

Γ ` t : C, C@(t).m(u) : B

Γ ` t.m(u) : B
(T-METH)

Γ ` t : C′, C′ ≤ C

Γ ` mtype(C, m) = A → B, u : A

Γ ` C@(t).m(u) : B
(T-DLG)

Γ ` t : A

Γ ` C ≤ 〈〈class c extends B{FD KD MD}〉〉
KD = c(A x) {super(t); this.g = u; }

Γ ` new C(t) : C
(T-NEW)

Γ ` t : B, C <: B

Γ ` (C) t : C
(T-CAST)

Γ ` t : B, C /<: B, B /<: C
stupid warning
Γ ` (C) t : C

(T-WARN)

Γ ` t : B, B <: C

Γ ` t : C
(T-SUB)

Fig. 17. Type rules of gFJ (I)
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Field and Method Lookup: Γ ` fields(Object) = •

Γ ` C l 〈〈class c extends B {FD KD MD}〉〉
Γ ` fields(C) = fields(B), FD

Γ ` mtype(Object, m) = •

Γ ` C ≤ 〈〈class c extends C′ {FD KD MD}〉〉
B m(A x) {return t; } ∈ MD

Γ ` mtype(C, m) = A → B

Γ ` C ≤ 〈〈class c extends B {FD KD MD}〉〉
m 6∈ dom(MD)

Γ ` mtype(C, m) = mtype(B, m)

gDEEP Subtyping: Γ ` d C d, ξ C ξ

Γ ` B ≡ C

Γ ` c(B x) {super(t); f = u} ≤ c(C y) {super(t′); f = u′}

Γ ` B ≡ C

Γ ` refines c(B x) {f = u} ≤ refines c(C y) {f = u′}

Γ ` C ≡ C′

Γ ` f C ≡ f C′

Γ ` A ≡ A′, B ≡ B′

Γ ` A m(B x) {return t; } ≤ A′ m(B′ y) {return u; }

Well-formedness: Γ ` ξ wf, MD wf

Γ ` A wf
Γ ` C l 〈〈class c extends B{f A′; KD MD}〉〉

Γ, this : C, x : A ` u : A′, new B(t) : B

Γ, X ≤ C ` c(A x) {super(t); this.f = u; } wf

Γ ` A wf, B wf
Γ, this : C, x : B ` t : A

Γ ` C l 〈〈class c extends C′{FD; KD MD}〉〉
Γ ` mtype(C′, m) is either B → A or •
Γ, X ≤ C ` A m(B x) {return t; } wf

Fig. 18. Type rules of gFJ (II)
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premises of the form:

C −� 〈〈class c extends B {FD KD MD}〉〉

These premises use gDEEP to reduce the expression C to a value, which can be con-
verted to a class declaration by using the inverse of the translation function 〈〈_〉〉.

Typing is done similarly – the type rules in gFJ use the subtype rules provided by
gDEEP in order to do modular type checking. The basic issue is the same: the type
system needs to derive a class declaration CL from an expression C. gFJ also adds
artifact- specific subtype and well-formedness rules that directly extend the correspond-
ing judgements in gDEEP (see Fig. 18).

Typing differs from evaluation because during typing, a class expression C may
contain free variables; e.g., it may be a local path of the form X.c. As a result, we
cannot reduce C to a value. However, the subtype rules for gDEEP (i.e., the relations ≤,
l and ≡) can be used to derive a minimal upper bound for C, using the judgement:

C l 〈〈class c extends B {FD KD MD}〉〉

In some cases an upper bound is sufficient, so ≤ is used instead of l.

7 Integrating Further Artifact Languages

We illustrate how further artifact languages can be used with gDEEP, using Bali and
XML as examples. Figure 19 shows the syntax of gBALI and gXML. In both cases, we
have simplified the syntax for the purpose of clarity and presentation. The precise syntax
of XML is both complex and irrelevant to the present discussion, and Bali similarly has
more syntactic forms than those shown here.

Neither Bali nor Xak define their own compound modules. There are no Bali-
specific or Xak-specific module annotations, and thus no need for a translation function.
gDEEP records can be used as-is.

Bali grammars and XML documents are non-code artifacts. This means that there
is no operational semantics, and no real type system. For both gBALI and gXML, we
provide trivial rules for subtyping and well-formedness of artifact declarations.

There is really nothing more to define for gBALI and gXML other than the syntax.
The only piece of syntax which needs to be interpreted and validated is delegation:
terms of the form M@(N).l. The operational semantics and type system for gDEEP
already provide reduction and well-formedness rules for delegation. Delegation is used
similarly in both languages, as described below.

Bali. Rules in Bali can refer to other rules in the same grammar by name (i.e., l). They
can also refer to the original definitions of rules in a base grammar (i.e., original.l).
Both of these terms are syntax sugar for standard gDEEP delegation – M@(N).l.

XML. A modular XML document assigns names to particular chunks of XML. It must
be possible for one chunk of XML to refer to another chunk by name. It must also be
possible for a named chunk of XML to refer to the original version of that chunk. Like
gBALI, gXML uses standard gDEEP delegation to do both tasks.
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gBALI Syntax: gXML Syntax:

a, b literal characters

d ::= t artifact declarations

s, t, u ::= terms
M@(M).l rule path
ε empty string
‘a’ character token
“a” regular expression
t t concatenation
t | t alternation
t∗ zero or more
t+ one or more

a, b Literal characters
g, h Tag & attribute names

d ::= t Artifact declarations

s, t, u ::= Terms (XML elements)
M@(M).l cross-reference
<g α /> atomic XML node
<g α > β </c > compound XML node

α ::= XML attribute
g =“a”

β ::= XML node body
a literal text
t XML element

Type rules for both systems:

Γ ` d C d (S-ARTDECL)

Γ ` d wf (W-ARTDECL)

Fig. 19. Syntax and semantics of gBALI and gXML.
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8 Implementation

In this work, we have been using gDEEP to explore the formal properties of features
and feature composition. In a parallel line of research, we have been exploring how
to take advantage of gDEEP in practical software development. We have developed a
concrete representation of features, based on gDEEP, and a tool, called FSTCOMPOSE
that composes features following the rules of gDEEP [38].

In a nutshell, we have a parser that generates a hierarchical language-independent
representation of features (i.e., a concrete instance of gDEEP) that are written in Java.
The representation is essentially an XML dialect that provides special tags for modeling
compound and atomic modules. The tags contain proper type information (e.g., whether
a module represents a class or a method) as well as the content of the modules and
declarations of the artifact language.

Based on this representation, FSTCOMPOSE can compose a sequence of features,
as defined by gDEEP’s operator ⊗, and generate according Java code. The composi-
tion is performed entirely on the intermediate representation. Though tested with Java,
FSTCOMPOSE is implemented generically. Further artifact languages can be integrated,
presumed they obey a hierarchical module structure, as exposed by gDEEP. How to
technically integrate further artifact languages, is explained elsewhere [38].

We have used our tool in three case studies to compose different Java programs (1–
10 KLOC) of a set of features (8–88 features). The composition process has generated
several tailored programs based on a user’s feature selection. Our case studies have
shown that our approach scales to medium-sized software projects: the average time of
composition took less than two seconds for program sizes of up to 10 KLOC and 88
features. Further details about the case studies can be found elsewhere [38].

9 Related Work

gDEEP is inspired by DEEP [4], which is a formal object calculus that implements
virtual classes [39] in a type-safe manner. The type system of DEEP is based on proto-
types, which blur the distinction between objects and types. While DEEP works fine for
Java-like software artifacts, it is overkill for artifacts like XML documents since there
is no notion of computation in non-source code artifacts. We have stripped down DEEP
to gDEEP. Several other calculi have been developed for virtual classes, e.g., vc [40],
Tribe [41], vObj [42], .FJ [43]. All of them focus on the dynamic semantics and typing
issues of virtual classes and thus are not appropriate for modeling multi-representation
features.

It has been explored how features and feature composition can be expressed in terms
of algebra [11,12,13]. The advantage of an algebra-based approach is that we can reason
on an even more abstract level about features than gDEEP. The disadvantage is that
the higher abstraction level of the algebra disallows formulating a precise definition
of recursive hierarchical feature composition and of a general type system for FOP.
We believe that both abstraction levels (calculus and algebra) are equally important
exploring the principles of feature composition.
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The notion of a feature is close to that of a component. The implementation a fea-
ture encapsulates several software artifacts, much like a component. However, multi-
representation features consist of a diverse selection of artifacts of different types. Cur-
rent component systems do not consider the composition of non-source code artifacts.
It is not obvious how to extend or modify contemporary component and composition
calculi (e.g., [44,45,46,47,48]) to incorporate artifacts of different types.

Several programming languages can be used to implement features in an FOP fash-
ion, e.g., CaesarJ [20], Hyper/J [22], Classbox/J [21], Jx [23], Scala [25], Jiazzi [24],
FeatureC++ [10], Jak [2]. However, only FeatureC++, Jak, and Jiazzi separate the no-
tion of a feature (collaboration) and the underlying artifact-specific host language (C++
and Java). Thus, they can be used for the implementation of multi-representation fea-
tures. gDEEP is a calculus to treat them uniformly and is a basis for a tool suite that
composes artifacts written in these languages.

Several tools support the subsequent refinement and the composition of code and
non-code artifacts, e.g., feature equations [2], feature diagrams [29], syntax specifi-
cations [30], UML models [31,32], and aspects [6]. All of them could be part of a
multi-representation feature and formalized in gDEEP.

Several case studies on AHEAD demonstrated the necessity of managing multi-
representation features [2,49,28,9] and work on SPLs and component models (e.g.,
CORBA, DCOM) in general suggests that a software product usually consists of many
different artifacts (a.k.a. assets) [50]. Another branch of research explores the possibili-
ties of interaction between artifacts written in different languages [51], which would be
the next logical step in implementing multi-representation features and their formaliza-
tion in gDEEP.

10 Conclusion

The principle of uniformity states that features are implemented typically by multiple
types of software artifacts, and these artifacts are subject of subsequent refinement.
We have developed gDEEP as a formal core calculus that encapsulates the essence of
feature composition and refinement. It abstracts from artifact-specific details and treats
any kind of software artifact in the same way. We have presented a formal syntax,
operational semantics, and type system of gDEEP and illustrated what a language needs
to provide when it is plugged into gDEEP and how languages are prepared in case they
are not “feature-ready”. We have adapted and developed formalizations of Java, Bali,
and XML and plugged them into the core calculus. This demonstrates the generality of
expressivness of gDEEP.

Our calculus serves also as an intermediate language for feature representation and
manipulation, which is a foundation for large-scale feature-oriented program synthe-
sis [3]. We have a tool that implements feature composition following the principles
of gDEEP. Three case studies demonstrate its practicality and scalability. Further al-
gorithms and tools can be developed on top of the calculus to provide a seamless in-
frastructure for developing, managing, composing, and validating features in different
representations.
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