
How AspectJ is Used:
An Analysis of Eleven AspectJ Programs

Sven Apel† and Don Batory‡

† Department of Informatics and Mathematics, University of Passau
apel@uni-passau.de

‡ Department of Computer Sciences, University of Texas at Austin
batory@cs.utexas.edu

Technical Report, Number MIP-0801
Department of Informatics and Mathematics

University of Passau, Germany
April 2008

How AspectJ is Used:
An Analysis of Eleven AspectJ Programs

Sven Apel† and Don Batory‡

† Department of Informatics and Mathematics, University of Passau
apel@uni-passau.de

‡ Department of Computer Sciences, University of Texas at Austin
batory@cs.utexas.edu

Abstract. While it is well-known that crosscutting concerns occur in
many software projects, little is known on how aspect-oriented program-
ming and in particular AspectJ have been used. In this paper, we ana-
lyze eleven AspectJ programs by different authors to answer the ques-
tions: which mechanisms are used, to what extent, and for what purpose.
We found the code of these programs to be on average 86 % object-
oriented, 12 % basic AspectJ mechanisms (introductions and method ex-
tensions), and 2 % advanced AspectJ mechanisms (homogeneous advice
or advanced dynamic advice). There is one class of crosscutting concerns
– which is mostly concerned with introductions and method extensions
– that matches this result well: collaborations. These results and our
discussions with program authors indicate the bulk of coding activities
was implementing collaborations. Several studies and researchers suggest
that languages explicitly supporting collaborations are better suited than
aspects à la AspectJ for this task.

1 Introduction

While many studies have explored the capabilities of aspect-oriented program-
ming (AOP) [1] to improve the modularity, customization, and evolution of soft-
ware [2, 3, 4, 5, 6, 7, 8], little is known on how AOP has been used. As AspectJ 1

is the most widely used AOP language, we want to know which AspectJ mech-
anisms are used, to what extent, and for what kinds of crosscutting concerns.

Although the first versions of AspectJ were released over seven years ago and
there have been a large number of downloads of the ajc tool (in January 2007
alone there were 13,021 downloads), we and others [9] have noted that there
are only a few published, non-trivial programs using AspectJ in open literature.
With the help of colleagues, we have been able to locate eleven different AspectJ
programs authored at different universities, deliberately excluding our own case
studies [10, 11, 12, 13]. These programs range in size from small programs of
1 KLOC to larger programs of almost 130 KLOC.

AspectJ offers a variety of programming mechanisms [14]. Basic mechanisms
are simple introductions (a.k.a. inter-type declarations) and method extensions;

1http://www.eclipse.org/aspectj/

http://www.eclipse.org/aspectj/

advanced mechanisms include homogeneous advice and advanced advice, which
are intended for a wide variety of sophisticated dynamic join points [15]. But how
often are basic and advanced mechanisms actually used? And for what purpose?

In this paper, we define metrics to answer these questions. Our analysis of the
eleven programs shows on average 86 % of the code is object-oriented, 12 % uses
basic mechanisms, and 2 % uses advanced mechanisms. This is the first time to
our knowledge that a reasonable number of AspectJ programs has been analyzed
and actual percentages reported.

The usage distribution (86 %, 12 %, 2 %) raises a question: what kind of
crosscutting concern is represented predominantly by introductions and simple
method extensions? Our answer is collaborations. A collaboration is a protocol
that defines the inter-class communication necessary to complete a task [16, 17,
18,19,20,21,22,23]. A role encapsulates the protocol that a class provides when
a collaboration with other classes is established. When a role is added to a class,
new members are introduced and existing methods are extended.

These results and our discussions with the program authors indicate that
the bulk of coding activities is implementing collaborations. This is important,
as there are programming languages that are explicitly support collaborations,
though realized in different ways, e.g., Jak [20], FeatureC++ [24], ContextL [25],
Scala [22], Jiazzi [26], Classbox/J [27], Jx [28]. Although AspectJ can be used
to implement collaborations, as well [29, 30, 31, 32], it is designed to modularize
all kinds of crosscutting concerns, at the expense of more complex and less
specialized language mechanisms. So, we found that AspectJ is suboptimal in
the modularization of roles, which can be certainly credited to its general focus
on all kinds of crosscutting concerns. In contrast, collaboration languages such
as Classbox/J provide explicit means for the modularization of roles but are
suboptimal with regard to other kinds of crosscutting concerns [33].

Furthermore, a significant volume of prior work in the areas of programming
languages [20,24,25,22,26,27,28], generative programming [34,12,35,36,37,38,
39], and software design [16, 40, 41] has shown that programs can be created
solely by composing collaborations without advanced mechanisms, as provided
by AspectJ. The statistics that we report on AspectJ usage – that 98 % of a
program are collaborations (i.e., 86 % for the base program, which is itself a
collaboration, plus the 12 % for basic AspectJ mechanisms) are consistent with
this observation. We document these and other findings in this paper. We begin
with a classification of crosscutting concerns.

2 Classification of Crosscuts

In the literature crosscutting concerns (a.k.a. crosscuts) have been classified
along three dimensions (homogeneous/heterogeneous) [42], (static/dynamic) [18],
and (basic/advanced) [33]. We use an example to illustrate them all.

2

2.1 An Example

Consider a program that implements a graph data structure (Fig. 1). It consists
of a base program BasicGraph plus two features Color and Weight, which
crosscut the implementation of BasicGraph. BasicGraph refers to the graph
implementation without code implementing Weight and Color. The code of
Color is underlined and blue and the code of Weight is slanted and red.

1 package BasicGraph;
2 class Graph {
3 Vector nv = new Vector (); Vector ev = new Vector ();
4 Edge add(Node n, Node m) {
5 Edge e = new Edge(n, m);
6 nv.add(n); nv.add(m); ev.add(e);
7 e.weight = new Weight ();
8 return e;
9 }

10 Edge add(Node n, Node m, Weight w) {
11 Edge e = new Edge(n, m);
12 nv.add(n); nv.add(m); ev.add(e);
13 e.weight = w; return e;
14 }
15 void print() {
16 for(Edge edge : ev) { edge.print (); }
17 }
18 }
19 class Edge {
20 Node a, b;
21 Color color = new Color();

22 Weight weight;
23 Edge(Node _a, Node _b) { a = _a; b = _b; }
24 void print() {
25 Color.setDisplayColor(color);

26 a.print (); b.print ();
27 weight.print ();
28 }
29 }
30 class Node {
31 int id = 0;
32 Color color = new Color();

33 void print() {
34 Color.setDisplayColor(color);

35 System.out.print(id);
36 }
37 }
38 class Color { static void setDisplayColor(Color c) { ... } }
39 class Weight { void print () { ... } }

Fig. 1. A simple graph implementation.

2.2 Classifying Crosscuts

Homogeneous and Heterogeneous Crosscuts

A homogeneous crosscut extends a program at multiple join points by adding
the same piece of code at each join point. In our example, the Color feature is

3

homogeneous since it introduces the same piece of code to Edge (Lines 21, 25)
and Node (Lines 32, 34).

A heterogeneous crosscut extends multiple join points each with a unique
piece of code. The Weight feature is heterogeneous since it extends Graph and
Edge at different join points with different pieces of code (Lines 7, 10–14, 22, 27).

Static and Dynamic Crosscuts

A static crosscut extends the structure of a program statically, i.e., it adds new
classes and interfaces and injects new fields, methods, and interfaces, etc. Overall,
the features Color and Weight introduce 2 classes (Lines 38, 39) and inject a
method (Lines 10–14) to Graph and 3 fields (Lines 21, 22, 32) to Edge and Node.

A dynamic crosscut affects the runtime control flow of a program and can
be understood and defined in terms of an event-based model [43,18]: a dynamic
crosscut executes additional code when predefined events occur during program
execution. An example construct that implements a dynamic crosscut is an ex-
tension of a method, as we explain shortly. Overall, the features Color and
Weight extend 3 methods (Lines 7, 25, 27, 34).

Basic and Advanced Dynamic Crosscuts

The most primitive crosscut in AspectJ is a piece of advice that advises execu-
tions of a single method. Object-oriented (OO) languages and OO researchers
express such advice as method extensions via subclassing (virtual classes or
mixins), method overriding, and related mechanisms [44, 45, 46, 20, 28, 27, 23].
Dynamic crosscutting mechanisms in AspectJ transcend OO when they effect
events other than singleton method executions (e.g., [47, 48]). Hence, we distin-
guish two classes of dynamic crosscuts, basic dynamic crosscuts and advanced
dynamic crosscuts. Basic dynamic crosscuts:
1. affect executions of a single method,
2. access only runtime variables that are related to a method execution, i.e.,

arguments, result value, and enclosing object instance, and
3. affect a program control flow unconditionally.

All other dynamic crosscuts are advanced. A rule of thumb is that the join
points of basic dynamic crosscuts can be determined statically; the join points
of advanced dynamic crosscuts are determined at runtime. With AspectJ, an ad-
vanced dynamic crosscut is implemented by advanced advice and a basic dynamic
crosscut by basic advice. This distinction helps identify which pieces of advice
make use of advanced AspectJ mechanisms and which pieces merely implement
OO method extensions.

3 Code Metrics

To see how programmers use AspectJ, we define five metrics that distinguish
the use of aspects in terms of the classifications discussed in the last section. For

4

each metric, we count the number of lines of code (LOC) for different categories
and determine the fraction of the program’s source for each category.

While using LOC (eliminating blank and comment lines) as a metric might
be controversial (e.g., how are ‘if’ statements counted?), our yielded statistics
would be no different than, say, using a metric that counts statements. At the
end, we compare just fractions of a program’s code base associated with our
categories. The essential results would remain valid.

Classes, Interfaces, and Aspects (CIA)

With the CIA metric we measure the fraction of classes, interfaces, and aspects
of a program. It tells us whether aspects implement a significant or insignificant
part of the code base (as opposed to classes and interfaces).

We simply traverse all source files included in a given AspectJ project and
count the LOC of aspects, classes, and interfaces. Upfront we eliminate blank
lines and comments.

Heterogeneous and Homogeneous Crosscuts (HHC)

The HHC metric explores to what extent aspects implement heterogeneous and
homogeneous crosscuts. Specifically, we determine the fractions of the LOC as-
sociated with advice and inter-type declarations (introductions) that are hetero-
geneous and homogeneous. The HHC metric tells us whether the implemented
aspects take advantage of the wildcard and pattern-matching mechanisms of
AspectJ or merely emulate OO concepts.

We analyze each piece of advice and inter-type declaration: if its number
of join points is greater than one it is a homogeneous crosscut; otherwise it is
heterogeneous.

Code Replication Reduction (CRR)

Homogeneous advice and homogeneous inter-type declarations are useful for re-
ducing code replication in a program. Imagine an aspect that advises 100 join
points and executes at each join point 10 lines of code encapsulated in one piece
of advice. This aspect would reduce the code base by approximately 990 lines
of code. In order to quantify this benefit, the CRR metric counts the LOC that
could be reduced in an aspect-oriented version compared to an object-oriented
equivalent.2

We multiply the number of LOC of each homogeneous advice and inter-type
declaration with the number of join points it affects (minus one).

2We do not consider the fact that tangled code in the analyzed programs could
be refactored first using the ‘extract method’ refactoring before using aspects, thus,
decreasing the CRR. For a better comparability, we analyze the programs as they are.

5

Static and Dynamic Crosscuts (SDC)

The SDC metric determines the code fraction associated with static and dynamic
crosscuts. That is, it counts the LOC of inter-type declarations (static crosscut-
ting) and pieces of advice (dynamic crosscutting). Note that heterogeneous and
homogeneous crosscuts can be either static or dynamic. The SDC metric tells us
to what extend aspects crosscut the dynamic computation of a program, which
cannot be expressed well in OO languages, or the static structure of a program,
which is also supported by advanced OO mechanisms such as mixins or virtual
classes.

In AspectJ, we calculate the fraction of static and dynamic crosscuts by
counting the LOC associated with inter-type declarations and pieces of advice
and comparing them with the overall code base.

Basic and Advanced Dynamic Crosscuts (BAC)

The BAC metric determines the LOC associated with pieces of basic and ad-
vanced advice. The BAC metric tells us to what extent the aspects of a program
take advantage of the advanced capabilities of AspectJ for dynamic crosscutting.
Basic advice are method extensions, which can be expressed in OO languages.

In AspectJ, we consider a piece of advice to be advanced if its pointcut
involves more than simply a combination of execution (or call3), target, and
args.4

Tool Support

We have developed the AJStats5 tool to calculate general statistics such as the
number of LOC of classes, aspects, advice, inter-type declarations, etc. To iden-
tify homogeneous crosscuts and the number of affected join points we have used
the AJDTStats6 tool [10]. We are not aware of a tool that identifies advanced
advice. In order to do so, we had to examine the code by hand.

4 Case Studies

We analyzed a diverse selection of AspectJ programs (see Table 1). The first 7 are
small programs (< 20 KLOC); the last 4 are larger (≥ 20 KLOC). In our tables
and figures, the programs are listed from smallest (Tetris) to largest (Abacus).
We also indicate in Table 1 if the program was developed from scratch (Type S),
or if it was an AOP refactoring of an existing application (Type R).

3Although the semantics of call is to advise the client side invocations of a method,
it can be implemented as method extension – provided that all calls to the target
method are advised.

4execution can be combined with this, within, and withincode.
5http://wwwiti.cs.uni-magdeburg.de/iti_db/ajstats/
6http://wwwiti.cs.uni-magdeburg.de/iti_db/ajdtstats/

6

http://wwwiti.cs.uni-magdeburg.de/iti_db/ajstats/
http://wwwiti.cs.uni-magdeburg.de/iti_db/ajdtstats/

The percentages that we report are averaged over the individual percentages
of the eleven programs and rounded to the nearest integer, unless a fraction of a
percent is reported. We use a ± s to mean average a with standard deviation s.
So 14 ± 10 % means an average of 14 % was observed with a standard deviation
of 10. In certain situations, we will consider only a subset of the eleven programs,
e.g., large-sized programs only, in order to explore the specific properties of an
individual program or subset of programs.

Note that we do not consider development aspects, i.e., aspects that had been
used during program development and removed before deployment. The reason
is that the aspects are typically not available or even not existing anymore. Our
statistics and results should be interpreted with this fact in mind. A compari-
son of development aspects and aspects actually deployed is a topic of further
research.

4.1 Statistics and Interpretation

The raw data that our statistics are based on can be requested from the authors.

CIA Metric

Figure 2 shows that aspect code occupies on average 14± 10 % of a program’s
code base; the bulk are classes and interfaces. Aspects account for more of the
code base in small programs (20± 6 %) than in larger programs (3± 4 %).

� �� � �� � �� � �� � �� � � �

�� 	
�� � � �� �� �� 	��
���	�
�

� � � � � � � � � �� � � � � � � ! " � # � � � � � � �
Fig. 2. Fractions of aspect code and object-oriented code of the overall code
base.

HHC Metric

Figure 3 reveals the fractions of homogeneous and heterogeneous crosscuts. We
found 1± 1 % of the code base implements homogeneous advice and homoge-
neous inter-type declarations. In contrast, heterogeneous advice and heteroge-
neous inter-type declarations occupy a larger fraction 7± 6 %. The remaining

7

Table 1. Overview of the AspectJ programs analyzed.

Name LOC Source Description Typel

Tetris 1,030 Blekinge Inst.
of Technologya

Implementation of the popular game S

OAS 1,623 Lancaster
Universityb

Online auction system S

Prevayler 3,964 University of
Torontoc

Main memory database system R

AODP 3,995 University of
British Columbiad

AspectJ implementation of 23 design
patterns

R

FACET 6,364 Washington
Universitye

CORBA event channel
implementation

S

ActiveAspect 6,664 University of
British Columbiaf

Crosscutting structure
presentation tool

S

HealthWatcher 6,949 Lancaster
Universityg

Web-based information system S

AJHotDraw 22,104 open source
projecth

2D Graphics Framework R

Hypercast 67,260 University of
Virginiai

Protocol for multicast overlay networks R

AJHSQLDB 75,556 University of
Passauj

SQL relational database engine R

Abacus 129,897 University of
Torontok

CORBA Middleware
Framework

R

ahttp://www.guzzzt.com/coding/aspecttetris.shtml

bThe sources were kindly released by A. Rashid.

chttp://www.msrg.utoronto.ca/code/RefactoredPrevaylerSystem/

dhttp://www.cs.ubc.ca/˜jan/AODPs/

ehttp://www.cs.wustl.edu/ doc/RandD/PCES/facet/

f The sources were kindly released by W. Coelho and G. Murphy.

gThe sources were kindly released by A. Garcia.

hhttp://sourceforge.net/projects/ajhotdraw/

iThe sources were kindly released by Y. Song and K. Sullivan.

jhttp://sourceforge.net/projects/ajhsqldb/

kThe sources were kindly released by C. Zhang and H.-A. Jacobsen.

lDeveloped from scratch (S) or refactored an existing program (R)

8

6 % of the total 14 % of aspect code deals with local members in aspects. In
general, homogeneous crosscuts are used infrequently.

Homogeneous advice and homogeneous inter-type declarations occupy a larger
part in small programs (2± 1 %) than in larger programs (0.2± 0.3 %).

� �� � �� � �� � �� � �� � � �

�� 	
�� � � �� �� �� 	��
���	�� �� �� � � � �� � �� � � � �� � � � �� � �� � � ! � ! � � � " � # � #� $ �� % & � # �' � � ! � � � � $ #� $ �
Fig. 3. Fractions of homogeneous and heterogeneous crosscuts of the overall code
base.

CRR Metric

Figure 4 shows the different percentages of code reduction, i.e., cloned code
that was eliminated by homogeneous advice and homogeneous inter-type dec-
larations (6± 9 %). On average, the small programs achieve a slightly larger
reduction (7± 8 %) than larger programs (6± 11 %). Notice, the smallest pro-
gram (Tetris) had no reduction, while the second largest program (AJHSQLDB)
had the highest 23 %.

� �� � �� � �� � �� � �� � �� � �� � �	 � �
 � �� � � �

�� ��� �� �� �� ������
��

� � �� �� �� � � � � � � �� !" #� $ � � % �� ��� & ' � �" � � �
Fig. 4. Code reduction achieved by aspects.

9

SDC Metric

Figure 5 shows the fractions of inter-type declarations and pieces of advice. We
found 3± 3 % implements inter-type declarations and 5± 5 % implements advice.
The remaining 6 % of the total 14 % of aspect code deals with local members in
aspects. On average, inter-type declarations and pieces of advice have been used
to similar extents.

Since aspects have been used to a lesser extent in larger programs, also advice
(1± 2 %) and inter-type declarations (1± 2 %) account for a smaller fraction of
the code bases of large programs. In smaller programs advice (7± 5 %) accounts
for a slightly larger fraction that inter-type declarations (4± 4 %).

� �� � �� � �� � �� � �� � �� � �� � �	 � �
 � �� � � �

�� ��� �� �� �� ������
��

� �� �� ��� � � ! �" # � � �� $ � � � �% � & � ' � �� �� (� & # �� � � % � �%) * �� � ! % � �� � � � � % � �
Fig. 5. Fractions of static and dynamic crosscuts of the overall code base.

BAC Metric

Figure 6 shows the fractions of basic and advanced advice. We found 1± 1 % of
the code base implements advanced advice. In contrast, basic advice occupies a
larger fraction of 4± 4 %. The remaining 9 % of the 14 % that aspects occupy
deals with inter-type declarations and local members in aspects.

As with the HCC metric, we observed that advanced advice is used more
frequently in small programs (1± 1 %) than in larger programs (0.2± 0.3 %).

4.2 Discussion

Figure 7 depicts the fractions of the code base of the AspectJ programs that
exploit advanced mechanisms (i.e., homogeneous advice and homogeneous in-
troductions, and advanced advice) and basic mechanisms (heterogeneous ba-
sic advice and heterogeneous introductions). On average, only a minor fraction
of 2± 2 % of the analyzed code exploits the advanced capabilities of AspectJ;
12± 9 % implements basic aspects, and the remaining 86 % is OO code.

10

� �� � �� � �� � �� � �� � � �

�� 	
�� �
� �� �� ��
	��
���
	��

� �� � � � � � � �� � � �� � � � � � �� � � �� � � � � � � ! � � " � � # � $ � �$ � % � � #& $ � � � � # � � � $ � �
Fig. 6. Fractions of basic and advance advice of the overall code base.

� �� � �� � �� � �� � �� � � �

�� 	
�� � � �� �� �� 	��
���	�� � �� � � � � � �� � � � � ! � � " � � # � ! �$ � � # � �� � � � � ! � � " � � # � ! �% $ & � � �' % (# � � � � � � % � �
Fig. 7. Fractions of basic AspectJ and advanced AspectJ mechanisms of the
overall code base.

11

Our use of percentages of the overall code base may not tell the whole story.
An alternative is to examine the use of advanced AspectJ mechanisms within
the aspect code of a program, which could be argued as the fraction of the
program’s base that has been ‘factored-out’. This too does not tell the whole
story, as entire classes and interfaces may be (a potentially large) part of a
concern implementation that is ignored. Thus, percentages based only on aspect
code would provide an overestimation. Nevertheless, we show in Figure 8 that
even with this overestimation, only 15± 9 % of the aspect code accounts for
advanced AspectJ mechanisms; the rest is basic AspectJ mechanisms.

� �� � �� � �� � �� � �� � � �

�� 	
�� � � �� �� �� 	��
���	��
� �� � � � � � �� � � � � ! � � " � � # � ! �$ � � # � �� � � � � ! � � " � � # � ! �

Fig. 8. Fractions of AspectJ and advanced AspectJ mechanisms of a program’s
aspect code.

The 6± 9 % code reduction that we have observed is in line with prior work on
clone detection that conjectures that 5–15 % of large software projects are clones,
i.e., replicated code fragments [49]. So there might be an untapped potential
(further 9 %=15 %-6 %) of AspectJ to reduce code replication further because
not all clones have been discovered. Also, some clones are not exact matches [50],
so 5–15 % may be an upper bound that aspects can not reach.

5 Collaborations

In this section, we argue that the reason that basic AspectJ mechanisms (intro-
ductions and method extensions) account for notable 85 % of all aspect code is
that crosscutting concerns typically manifest themselves in the form of collabo-
rations (a.k.a., role-based designs). (As we mentioned earlier, 98 % of a program
are collaborations – the 86 % for the base program, which is itself a collabora-
tion, plus the 12 % for basic AspectJ mechanisms.) Collaborations are fundamen-
tal forms of crosscutting concerns that have appeared in many forms over the
last twenty years (e.g., object-oriented collaborations [16], role components [17],
object-oriented frameworks [41], design patterns [51], layers [21], subjects [52],

12

slices [53], family classes [54], higher-order hierarchies [23], units [46], refine-
ments [20]). In recent work, collaborations have been identified to be a class
of crosscutting concerns that can be implemented by AOP languages such as
AspectJ [30,29]. The next section outlines the basic ideas.

5.1 Illustrating Collaborations

A collaboration of classes is a role-based protocol that defines the inter-class com-
munication necessary to complete a predefined task [16, 17, 18, 19, 20, 21, 22, 23].
Classes play different roles in different collaborations [17]. A role encapsulates
the protocol that a class provides when a corresponding collaboration with other
classes is established.

When a collaboration is added to a program, new classes and roles are intro-
duced. A role adds new members (e.g., fields, methods) to a class and extends
existing methods. Hence, a collaboration crosscuts several places in a base pro-
gram [21]. Furthermore, a collaboration is predominantly characterized by het-
erogeneous basic advice and heterogeneous introductions. This is not surprising
since typically a communication between objects of different classes is asymmet-
rically. That is, in order to let the objects perform different tasks in a collabo-
ration they have to be extended in different ways. Note that a base program is
itself a collaboration: roles are pre-bound to existing classes.

The BasicGraph program and the Weight feature of Section 2 are collab-
orations. Weight extends BasicGraph at several points by different pieces of
code and it extends methods only. Figure 9 depicts a modular implementation
of Weight based on classboxes written in Classbox/J, a collaboration language
on top of Java [27]. The Weight collaboration extends the base program Ba-
sicGraph. It introduces the class Weight (Line 16) and extends the imported
classes Graph (Lines 1–11) and Edge (Lines 12–15) by refinements, which are
declared by the keyword refine. These refinements introduce new fields and
methods and extend existing methods. Within a method extension the keyword
original refers to the method that is being refined (Lines 5, 16).

Refinements can be implemented with several mechanisms, e.g., by using mix-
ins [17,21,46,45], virtual classes [44,22], nested inheritance [28], refinements [20],
and advice and inter-type declarations [30, 29]. All refinements and classes of a
collaboration are encapsulated inside a single module.

5.2 Advanced Aspects

Not all concerns can be compactly expressed just by simple introductions and
method extensions (e.g., basic AspectJ mechanisms). Sometimes there is a redun-
dancy in the introductions or in the method extensions implementing a concern,
which makes the crosscut being addressed homogeneous. Consider the Color
feature of the BasicGraph program of Section 2. Its representation in Class-
box/J is shown in Figure 10.

13

1 package Weight;
2 import BasicGraph.Graph; import BasicGraph.Edge;
3 refine class Graph {
4 Edge add(Node n, Node m) {
5 Edge e = original.add(n, m);
6 e.weight = new Weight (); return e;
7 }
8 Edge add(Node n, Node m, Weight w) {
9 Edge e = new Edge(n, m);

10 nv.add(n); nv.add(m); ev.add(e);
11 e.weight = w; return e;
12 }
13 }
14 refine class Edge {
15 Weight weight;
16 void print() { original.print (); weight.print (); }
17 }
18 class Weight { void print() { ... } }

Fig. 9. Implementing Weight as collaboration.

1 package Color;
2 import BasicGraph.Node; import BasicGraph.Edge;
3 interface Colored { ... }
4 class Color { ... }
5 refine class Node implements Colored {
6 Color color = new Color ();
7 void print() {
8 Color.setDisplayColor(color);
9 original.print ();

10 }
11 }
12 refine class Edge implements Colored {
13 Color color = new Color ();
14 void print() {
15 Color.setDisplayColor(color);
16 original.print ();
17 }
18 }

Fig. 10. Implementing Color as collaboration.

1 aspect AddColor {
2 interface Colored { ... }
3 declare parents: (Node || Edge) implements Colored;
4 Color Node.color = new Color ();
5 Color Edge.color = new Color ();
6 before(Colored c) : execution(void print ()) &&
7 this(c) { Color.setDisplayColor(c.color); }
8 static class Color { ... }
9 }

Fig. 11. Implementing Color as aspect.

14

Homogeneous Crosscuts

Note that the print methods of both Node and Edge are extended identically
(Figure 10; Lines 7–10 and 14–17), and also an identical field color is added to
each class (Lines 6 and 13). Color could be expressed as an advanced aspect
taking advantage of the wildcard and pattern-matching mechanisms of AspectJ
(see Figure 11). The aspect AddColor defines an interface Colored (Line 2) and
it declares that Node and Edge implement that interface (Line 3); it introduces
a field color (Lines 4–5), and it advises the execution of the method print of
Edge and Node (Lines 6–7); the class Color is introduced as static inner class
(Line 8).

Advanced Dynamic Crosscuts

Occasionally concerns can use dynamic crosscuts, such as a collaboration ap-
plying a role to a class that is dependent on the program control flow, which
is an advanced dynamic crosscut. For example, when implementing a new fea-
ture of our graph example that modifies the routine of printing graph structures
(PrintHeader) we can take advantage of the advanced mechanisms of As-
pectJ for dynamic crosscutting. Suppose the print methods of the participants
of the graph implementation call each other (especially, composite nodes that
call print of their inner nodes). To make sure that we do not advise all calls to
print, but only the top-level calls, i.e., calls that do not occur in the dynamic
control flow of other executions of print, we can use the cflowbelow pointcut
as a conditional (Fig. 12).

1 aspect PrintHeaderAspect {
2 before() : execution(void print ())&&
3 !cflowbelow(execution(void print ())) { header (); }
4 void header () { System.out.print("header: "); }
5 }

Fig. 12. Implementing PrintHeader as an Aspect.

Figure 13 depicts an excerpt and approximation of the behavior of Print-
Header implemented using Classbox/J; the complete implementation would be
more complex. Omitting advanced AspectJ mechanisms results in a workaround
(underlined and green) for tracing the control flow and executing the actual ex-
tension conditionally (Lines 6, 7).

While AspectJ code can be more compact, it is debatable whether the result
is easier to understand and maintain [55, 56], especially in situations where few
join points are affected (e.g., compare Figure 12 with Figure 13) [10]. Regardless,
we found that such dynamic crosscuts occur rarely (1 %).

15

1 package PrintHeader;
2 import BasicGraph.Node;
3 refine class Node {
4 static int count = 0;

5 void print() {
6 if(count == 0) printHeader ();
7 count++; original.print (); count- -;

8 }
9 void printHeader () { /∗ . . . ∗/ }

10 }

Fig. 13. Implementing PrintHeader via refinement.

5.3 Corroborating Evidence

A review of the eleven AspectJ programs reveals that aspects often implement
collaborations: typically, an aspect extends multiple objects by multiple pieces
of advice and inter-type declarations, and it extends the objects in different ways
to let them interact with each other and with other objects. In other words, the
extensions an aspect typically makes to a base program are heterogeneous. Fur-
thermore, we observed that aspects seldom used advanced AspectJ mechanisms
but mainly extended the static program structure by inter-type declarations and
the execution of methods by pieces of basic advice. This is similar to the nature
of collaborations as used in collaboration-based designs [16,17,40,21].

Other researchers that examined some of the eleven AspectJ programs came
to the same conclusion. For example, Liu et al. noted that the aspect refactoring
of Prevalyer corresponds closely to a collaboration version [12]. Also, Xin et al.
observed that the collaboration version of FACET is close to the aspect-oriented
version [34]. Design patterns are classic collaborations, and by definition so too
are their AODP implementations (Observer, Command, Visitor, Strategy, etc.).

Where there could be any doubt, we contacted the developers to ask if they
had collaborations in mind, but we did not reveal our statistical findings. In our
first correspondences with the authors we asked:

During the implementation of the aspects, did you have collaborations
between several objects in the mind. That is, did you think in terms
of: “for this functionality I have to extend class A, B, C in order to
let them collaborate and to implement a program feature”. In the AOP
community this is sometimes called a multi-object protocol.

In follow-up correspondences we clarified further (in this or a similar wording):

The alternatives to a collaboration would be either the extension of many
classes with the same code (homogeneous extension), which also means
that these classes do not collaborate (or interact, if you want), or the
extension of the dynamic control flow (advanced dynamic extension), in
the sense that you thought mainly about the control flow graph and the
crosscutting in this graph (e.g. using cflow).

We summarize below the authors’ responses:

16

– The developer of Abacus (C. Zhang) confirmed that his aspect composition
was driven by superimposition of views (roles). He extended existing classes
by using AspectJ style mixins and implemented the methods declared by
interfaces.

– The developer of FACET (R. Pratap) answered that he definitely had to
think of collaborations while implementing features in FACET.

– The developer of ActiveAspect (W. Coehlo) said that his aspects were writ-
ten with collaborations between several objects in mind. Generally, he did
not think in terms of crosscutting dynamic computation.

– The developer of AJHotDraw (M. Marin) explained that there are a num-
ber of refactored concerns in AJHotDraw whose implementations consist of
classes with multiple roles and various collaboration protocols.

– The developer of Prevayler (I. Godil) confirmed that there are aspects that
implement collaborations, which is in line with [12].

– K. Sullivan reported that his work on Hypercast was not intended (and did
not) explore the use of aspects to implement collaborations, but rather to
take some easy/classical applications of aspects, such as logging, and to use
them to evaluate the notion of ‘obliviousness’. Sullivan noted that he had
looked at the issue of collaborations and aspects in classpects [57].

– The developer of HealthWatcher (S. Soares) was unfamiliar with the concept
of collaborations, and was unable to say whether collaborations were used
or not.

We did not receive responses from the Tetris, OAS, and AJHSQLDB developers.
The majority of responses indicate that the developers noticed collaborations in
their work – although not all were aware of the concept or the term.

5.4 Validity Discussions

The statistics of our study should be interpreted with the fact in mind that we
limited our attention to AspectJ. That is, we could not consider development
aspects and other kinds of aspects such as used in container-based AOP.7 Fur-
thermore, there are three validity issues to our study: construct, internal, and
external.

Construct

The distinctions between different concern classifications – homogeneous/hetero-
geneous, static/dynamic, and basic/advanced – are both fundamental and well-
recognized in the literature [42, 2, 18, 15]. Our use of LOC (eliminating blank
and comment lines) as a metric yielded statistics that would be different than,
say, a metric that counts statements. Although any metric has problems (e.g.,
how are ‘if’ statements counted?), the essential result of our paper, namely that
advanced and homogeneous crosscuts are used infrequently in our case studies,
would remain valid.

7Examples of container-based AOP are JBossAOP (http://jboss.com/products/
aop) and SpringAOP (http://www.springframework.org/).

17

http://jboss.com/products/aop
http://jboss.com/products/aop
http://www.springframework.org/

Internal

There are always problems drawing significant conclusions from a small sample
size. This is a problem with any such study with AspectJ: there are few published,
non-trivial programs using AspectJ in open literature. If other programs exist,
we are not aware of them. Moreover, the eleven programs have been mainly
developed for academic purposes. A recent discussion in the AOSD.NET mailing
list8 reveals that there are only a few published industrial projects that use
AspectJ, none of them available for download.

Furthermore, we were unable to contact authors of three of the programs
to determine whether they had collaborations in mind. Even assuming negative
responses, a majority of the authors indicated that they were aware of collabo-
rations in their work.

Another possible issue is that because the term ‘collaboration’ is overloaded,
there could have been misunderstandings between the developers and us. To
minimize this, we defined collaborations in our correspondences with authors
(cf. Sec. 5.3).

External

We believe our results are representative of AspectJ usage. We explicitly omitted
our own internal case studies, whose statistics are nevertheless consistent with
those we reported [10,11,12,13]. We cite in related work additional corroborating
evidence. And finally, we and others have been building systems for years by
composing collaborations without using advanced AspectJ mechanisms; AspectJ
might have helped in the cases where advanced aspects could be used (e.g., to
reduce code replication). We are aware of only a few such cases in our own code
base.

The significance of collaborations in software development is addressed in the
next section.

6 Perspective

In the 2 % of the code base where advanced mechanisms are used, let us as-
sume that the use of AspectJ is appropriate. For the remaining 98 %, we need
a language to express collaborations. There are two options: (1) use AspectJ or
(2) use a language that is specifically designed to express collaborations, such as
Jak [20], FeatureC++ [24], ContextL [25], Scala [22], Jiazzi [26], Classbox/J [27],
Jx [28]. Although the support of collaborations is implemented very differently
in the latter group of languages, the key concepts with regard to collaborations
are very similar (see Section 7). Even some aspect-oriented languages were in-
spired by work on collaboration-based designs [18,19,58]. Here is a summary of
our findings and those of other researchers on this topic.

8http://aosd.net/pipermail/discuss_aosd.net/2007-May/002163.html

18

http://aosd.net/pipermail/discuss_aosd.net/2007-May/002163.html

First, with a collaboration language, each role of a collaboration encapsulates
a set of changes made to a single class and has the name of the class to which it is
bound (cf. Fig. 10 for a Classbox/J example). In this way a programmer is able
to infer the static OO structure of a resulting program as there is a one-to-one
mapping between the structural elements of the base program and the elements
of the collaboration; a base program and collaborations are merged recursively
by name and type [59,20,21,22].

In AspectJ and related languages [60, 57] collaborations are implemented
differently: the members of a role are implemented by pieces of advice and inter-
type declarations, which are not required to be listed consecutively in an aspect,
or even placed in a single aspect. Thus, the contents of a collaboration can
be scattered over and interspersed within many aspect files, which leads to a
suboptimal role modularity. Imposing a class-or-role-based organization is left
to the discipline of the programmer [31,29,30,32].

Second, simple concepts like method extensions have a compact and easier-
to-understand representation in collaboration-based languages. Fig. 14 shows a
typical extension expressed in both Classbox/J and AspectJ. We note that some
AOP languages even refrain from offering a pointcut-advice-mechanisms for this
reason [19,58,61].

1 public void delete(Transaction txn , DbEntry key) {
2 original(txn , key);
3 Tracer.trace(Level.FINE , "Db.delete", this , txn , key);
4 }

1 pointcut traceDel(Database db, Transaction txn , DbEntry key) :
2 execution(void Database.delete(Transaction , DbEntry)) &&
3 args(txn , key) && within(Database) && this(db);
4 after(Database db, Transaction txn , DbEntry key): traceDel(db, txn , key) {
5 Tracer.trace(Level.FINE , "Db.delete", db, txn , key);
6 }

Fig. 14. A method extension in Classbox/J (top) and AspectJ (bottom); taken
from [10]. (within is necessary to not affect subclasses of Database.)

Third, collaborations usually add new classes to a program. Collaboration
languages offer mechanisms to modularize the changes to existing classes as
well as the new classes a collaboration injects into a program. Here, AspectJ
provides no infrastructure to group several aspects and classes together to form
a module [62]. Stated differently, AspectJ does not support the modularization of
typical collaborations [33]. Programmers have to manipulate the compiler’s build
path to include or exclude certain aspect files [3], and must implement a non-
trivial workaround for modularization and composition of collaborations [63].
Alternatively, programmers can merge aspects and classes into packages. While
this groups aspects and classes belonging to a collaboration, it is not possible to
select and compose collaborations without difficulty [62].

19

Finally, researchers have argued that not expressing a collaboration in terms
of object orientation (i.e., roles implemented as modules) decreases program com-
prehension [64,18]. This is because programmers cannot recognize the OO struc-
ture of the woven program [64,55,56]. However, for our BasicGraph example,
it does not matter whether we use Classbox/J or AspectJ because BasicGraph
and its features are too small. But, as collaborations scale, i.e.,
1. as the number of roles per collaboration increases,
2. as the number of collaborations increases, and
3. as the complexity of roles increases,

the difficulty of comprehending the implemented collaborations grows (with col-
laboration languages and AspectJ-like languages).

Adressing the above issues, some researchers proposed to use AspectJ in a
more collaboration-oriented way: Hanenberg et al. [30] and Kendall [29] have
suggested that each role be implemented by a distinct aspect, thus establishing
a one-to-one mapping between the structural elements of the base program and
the elements of the collaboration (provided reasonable naming conventions are
used). Nevertheless, this mapping is not enforced by the language, and is left to
the discipline of the programmer.

Ultimately, we believe the most fruitful approach will be to combine collabo-
ration languages with AspectJ-like mechanisms: use a simple language to express
the simple program extensions of collaborations. Only when more sophisticated
program modifications are needed, use the advanced mechanisms in AspectJ.
This approach offers the best of both worlds. Previous work in support of this
position is [53,54,19,58,33].

7 Related Work

Collaborations

Although the concept of collaborations predates AOP by quite some time [16,
39, 17], mainstream programming languages have been very slow to support
them. AspectJ has filled the vacuum [65]. The weak support of collaborations
in aspect and non-aspect mainstream languages has contributed to a general
confusion regarding collaborations and their relationship to, importance to, and
frequency in crosscutting concerns. Nevertheless, several studies demonstrate
that collaboration languages suffice in implementing large applications [39, 36,
38,37,20,35].

There are many languages that incorporate the concept of roles and col-
laborations in its language design, although sometimes called differently, e.g.,
Jak [20], FeatureC++ [24], ContextL [25], Scala [22], Jiazzi [26], Classbox/J [27],
Jx [28]. While the capabilities and mechanisms of these languages differ consider-
ably, their aim at aggregating classes that collaborate in modules and extending
or overriding existing classes is very similar. For example, with Jx’s nested in-
heritance we can introduce and refine existing classes in almost the same way as
in with classboxes in Classbox/J, abstract types in Scala, components in Jiazzi,
or layers in ContextL.

20

Several approaches even combine collaboration-based design and advanced
AspectJ mechanisms to benefit from both worlds, e.g., Relationship Aspects [66],
CaesarJ [54], FeatureC++ [24], Aspectual Collaborations [19], and Object Teams [58],
but their use has not been extensive

Representative AOP Case Studies

Colyer and Clement refactored an application server using AspectJ (3 homo-
geneous and 1 heterogeneous crosscuts) [2]. While the number of aspects is
marginal, the size of the case study is impressively high (millions of LOC).
Although they draw positive conclusions, they admit (but did not explore) a
strong relationship of their aspects to collaborations.

Coady and Kiczales undertook a retroactive study of aspect evolution in
the code of the FreeBSD operating system (200–400 KLOC) [4]. They factored 4
crosscutting concerns into AspectC aspects; inherent properties of concerns were
not explained in detail.

Lohmann et al. examine the applicability of AspectC++ to embedded sys-
tems (2 homogeneous and 1 heterogeneous crosscuts) [5]. Tesanovic et al. imple-
mented 10 AspectC++ aspects for quality-of-service management in database
systems [67]; the aspects implement predominantly collaborations.

Lopez-Herrejon et al. analyzed an AspectJ implementation of the AHEAD
Tool Suite [13]. They found 1 % of the code base associated with advice; the rest
consists of introductions. They did not consider advanced advice.

Greenwood et al. conducted a quantitative case study exploring the effects of
an aspectual decomposition on design stability [8]. They implemented 8 crosscuts
in the HealthWatcher system with AspectJ, but they did not say whether these
are basic or advanced. Although they used AspectJ and CaesarJ they did not
explore the relationship of collaborations and AOP concepts.

Classification Schemes

Alternative classification schemes of aspects and the crosscutting concerns they
implement have been proposed in the literature. For example, spectative, regu-
lative, and invasive aspects [68], harmless and harmful advice [69], or observers
and assistants [70], that all classify aspects based on the invasiveness of their
effects on the base program. Our distinction between heterogeneous and homo-
geneous as well as static, basic and advanced dynamic is orthogonal to these
previous proposals. Our classification has been shown useful to compare two
different lines of research in programming languages.

AOP Metrics

Zhang and Jacobson use a set of object-oriented metrics to quantify the program
complexity reduction when applying AOP to middleware systems [3]. They show
that refactoring a middleware system (23 KLOC code base) into aspects reduces

21

the complexity and leads to a code reduction of 2–3 %, which is in line with our
results.

Garcia et al. analyzed several aspect-oriented programs (4–7 KLOC code
base) and their OO counterparts [6, 71]. They observe that the AOP variants
have fewer lines of code than their OO equivalents (12 % code reduction).

Zhao and Xu propose several metrics for aspect cohesion based on aspect
dependency graphs [72]. Gelinas et al. discuss previous work on cohesion metrics
and propose an approach based on dependencies between aspect members [73].

All of the above proposals and case studies take neither the structure of cross-
cutting concerns nor the difference between collaborations and other concerns
into account.

Lopez-Herrejon et al. propose a set of code metrics for analyzing the cross-
cutting structure of aspect-based product lines [74]. They do not consider ele-
mentary crosscuts but analyze crosscutting properties of entire subsystems (fea-
tures), which may have a substantial size. Thus, the crosscutting structure of a
feature can be homogeneous, heterogeneous, or any value in between the spec-
trum of both. They do not distinguish between basic and advanced dynamic
crosscuts.

8 Conclusions

We analyzed eleven AspectJ programs of different sizes and complexity. We
found that on average 2 % of the code base is associated with advanced AspectJ
mechanisms; 12 % is associated with basic AspectJ mechanisms; and 86 % is
object-oriented. We presented evidence from many sources that a crosscutting
concept whose characteristics (i.e., one that is predominantly introductions and
method extensions) matches this result is collaborations. This is in line with
prior results in programming languages [20,24, 25,22,26, 27,28], generative pro-
gramming [34, 12, 35, 36, 37, 38, 39], and software design [16, 40, 41]. It is also in
line with the experience of others who have distinguished aspects and collabora-
tions [18,19,58,11,74,13,12], and is consistent with our own internal case studies
on AspectJ [10, 11, 12, 13]. Furthermore, for a number of programs, prior work
confirmed that aspects implemented collaborations. Where it was possible, we
were able to confirm that a majority of authors of the AspectJ programs had
notions of collaborations in mind.

As noted, it is not the case that all aspects used in these programs could
be readily implemented or conceived as collaborations. Using aspects to express
homogeneous crosscuts to reduce code redundancy, to express program-wide
invariants [75], and contract enforcement [76] are examples. While such examples
do indeed occur, they presently occupy a small fraction of aspect usage. Due to
the arrangement of our analysis, other kinds of aspects such as development or
container-based aspects have not been considered.

Modularizing concerns will continue to be a source of inspiration for advances
in software engineering. The essential message of this paper is that languages
and tools that focus on collaborations, with judicious use of mechanisms for

22

advanced dynamic and homogeneous crosscuts, will be more useful in future
programming environments than using collaboration languages and AspectJ-like
languages alone.

Acknowledgments

We thank K. Fisler, M. Grechanik, C. Kästner, P. Kim, S. Krishnamurthi, C.
Lengauer, and D. Perry for their helpful comments on earlier drafts of this pa-
per. Batory’s research is sponsored by NSF’s Science of Design Project #CCF-
0438786.

References

1. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Proc. Europ. Conf. Object-Oriented
Programming. (1997)

2. Colyer, A., Clement, A.: Large-Scale AOSD for Middleware. In: Proc. Int’l. Conf.
Aspect-Oriented Software Development. (2004)

3. Zhang, C., Jacobsen, H.A.: Resolving Feature Convolution in Middleware Sys-
tems. In: Proc. Int’l. Conf. Object-Oriented Programming, Systems, Languages,
and Applications. (2004)

4. Coady, Y., Kiczales, G.: Back to the Future: A Retroactive Study of Aspect Evo-
lution in Operating System Code. In: Proc. Int’l. Conf. Aspect-Oriented Software
Development. (2003)

5. Lohmann, D., Scheler, F., Tartler, R., Spinczyk, O., Schröder-Preikschat, W.: A
Quantitative Analysis of Aspects in the eCos Kernel. In: Proc. Int’l. EuroSys Conf.
(2006)

6. Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., v. Staa, A.:
Modularizing Design Patterns with Aspects: A Quantitative Study. In: Proc. Int’l.
Conf. Aspect-Oriented Software Development. (2005)

7. Garcia, A., Sant’Anna, C., Chavez, C., Silva, V., v. Staa, A., Lucena, C.: Separation
of Concerns in Multi-Agent Systems: An Empirical Study. In: Software Engineering
for Multi-Agent Systems II, Research Issues and Practical Applications. (2003)

8. Greenwood, P., Bartolomei, T., Figueiredo, E., Dosea, M., Garcia, A., Cacho, N.,
Santa-Anna, C., Soares, S., Borba, P., Kulesza, U., Rashid, A.: On the Impact
of Aspectual Decompositions on Design Stability: An Empirical Study. In: Proc.
Europ. Conf. Object-Oriented Programming. (2007)

9. Störzer, M.: Impact Analysis for AspectJ – A Critical Analysis and Tool-based
Approach to AOP. PhD thesis, School of Computer Science and Mathematics,
University of Passau (2007)

10. Kästner, C., Apel, S., Batory, D.: A Case Study Implementing Features using
AspectJ. In: Proc. Int’l. Software Product Line Conf. (2007)

11. Apel, S., Batory, D.: When to Use Features and Aspects? A Case Study. In: Proc.
Int’l. Conf. Generative and Component-Based Software Engineering. (2006)

12. Liu, J., Batory, D., Lengauer, C.: Feature-Oriented Refactoring of Legacy Appli-
cations. In: Proc. Int’l. Conf. Software Engineering. (2006)

13. Lopez-Herrejon, R., Batory, D.: From Crosscutting Concerns to Product Lines:
A Function Composition Approach. Technical Report TR-06-24, Department of
Computer Sciences, The University of Texas at Austin (2006)

23

14. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Proc. Europ. Conf. Object-Oriented Programming,
Springer (2001)

15. Apel, S.: The Role of Features and Aspects in Software Development. PhD thesis,
School of Computer Science, University of Magdeburg (2007)

16. Reenskaug, T., Andersen, E., Berre, A., Hurlen, A., Landmark, A., Lehne, O.,
Nordhagen, E., Ness-Ulseth, E., Oftedal, G., Skaar, A., Stenslet, P.: OORASS:
Seamless Support for the Creation and Maintenance of Object-Oriented Systems.
J. Object-Oriented Programming 5(6) (1992)

17. VanHilst, M., Notkin, D.: Using Role Components in Implement Collaboration-
based Designs. In: Proc. Int’l. Conf. Object-Oriented Programming, Systems, Lan-
guages, and Applications. (1996)

18. Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Pro-
gramming and Aspects. In: Proc. Int’l. Symp. Foundations of Software Engineering.
(2004)

19. Lieberherr, K.J., Lorenz, D., Ovlinger, J.: Aspectual Collaborations – Combining
Modules and Aspects. Computer J. 46(5) (2003)

20. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Trans. Software Engineering 30(6) (2004)

21. Smaragdakis, Y., Batory, D.: Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM Trans. Soft-
ware Engineering and Methodology 11(2) (2002)

22. Odersky, M., Zenger, M.: Scalable Component Abstractions. In: Proc. Int’l. Conf.
Object-Oriented Programming, Systems, Languages, and Applications. (2005)

23. Ernst, E.: Higher-Order Hierarchies. In: Proc. Europ. Conf. Object-Oriented Pro-
gramming. (2003)

24. Apel, S., Rosenmüller, M., Leich, T., Saake, G.: FeatureC++: On the Symbio-
sis of Feature-Oriented and Aspect-Oriented Programming. In: Proc. Int’l. Conf.
Generative and Component-Based Software Engineering. (2005)

25. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-Oriented Programming. J.
Object Technology 7(3) (2008)

26. McDirmid, S., Flatt, M., Hsieh, W.C.: Jiazzi: New-Age Components for Old-
Fashioned Java. In: Proc. Int’l. Conf. Object-Oriented Programming, Systems,
Languages, and Applications. (2001)

27. Bergel, A., Ducasse, S., Nierstrasz, O.: Classbox/J: Controlling the Scope of
Change in Java. In: Proc. Int’l. Conf. Object-Oriented Programming, Systems,
Languages, and Applications. (2005)

28. Nystrom, N., Chong, S., Myers, A.C.: Scalable Extensibility via Nested Inheri-
tance. In: Proc. Int’l. Conf. Object-Oriented Programming, Systems, Languages,
and Applications. (2004)

29. Kendall, E.A.: Role Model Designs and Implementations with Aspect-Oriented
Programming. In: Proc. Int’l. Conf. Object-Oriented Programming, Systems, Lan-
guages, and Applications. (1999)

30. Hanenberg, S., Unland, R.: Roles and Aspects: Similarities, Differences, and Syner-
getic Potential. In: Proc. Int’l. Conf. Object-Oriented Information Systems. (2002)

31. Pulvermüller, E., Speck, A., Rashid, A.: Implementing Collaboration-Based De-
signs Using Aspect-Oriented Programming. In: Proc. Int’l. Conf. Technology of
Object-Oriented Languages and Systems. (2000)

32. Sihman, M., Katz, S.: Superimpositions and Aspect-Oriented Programming. The
Computer Journal 46(5) (2003)

24

33. Apel, S., Leich, T., Saake, G.: Aspectual Feature Modules. IEEE Trans. Software
Engineering 34(2) (2008)

34. Xin, B., McDirmid, S., Eide, E., Hsieh, W.C.: A Comparison of Jiazzi and As-
pectJ for Feature-Wise Decomposition. Technical Report UUCS-04-001, School of
Computing, The University of Utah (2004)

35. Trujillo, S., Batory, D., Diaz, O.: Feature Refactoring a Multi-Representation
Program into a Product Line. In: Proc. Int’l. Conf. Generative and Component-
Based Software Engineering. (2006)

36. Batory, D., Thomas, J.: P2: A Lightweight DBMS Generator. J. Intell. Inf. Syst.
9(2) (1997)

37. Batory, D., Johnson, C., MacDonald, B., v. Heeder, D.: Achieving Extensibility
Through Product-Lines and Domain-Specific Languages: A Case Study. ACM
Trans. Software Engineering and Methodology 11(2) (2002)

38. Batory, D., Coglianese, L., Goodwin, M., Shafer, S.: Creating Reference Architec-
tures: An Example from Avionics. In: Proc. Int’l. Symp. Software Reuse. (1995)

39. Batory, D., O’Malley, S.: The Design and Implementation of Hierarchical Soft-
ware Systems with Reusable Components. ACM Trans. Software Engineering and
Methodology 1(4) (1992)

40. VanHilst, M., Notkin, D.: Decoupling Change from Design. In: Proc. Int’l. Symp.
Foundations of Software Engineering. (1996)

41. Johnson, R., Foote, B.: Designing Reusable Classes. J. Object-Oriented Program-
ming 1(2) (1988)

42. Colyer, A., Rashid, A., Blair, G.: On the Separation of Concerns in Program
Families. Technical Report COMP-001-2004, Computing Department, Lancaster
University (2004)

43. Wand, M., Kiczales, G., Dutchyn, C.: A Semantics for Advice and Dynamic Join
Points in Aspect-Oriented Programming. ACM Trans. Programming Languages
and Systems 26(5) (2004)

44. Madsen, O.L., Moller-Pedersen, B.: Virtual Classes: A Powerful Mechanism in
Object-Oriented Programming. In: Proc. Int’l. Conf. Object-Oriented Program-
ming, Systems, Languages, and Applications. (1989)

45. Bracha, G., Cook, W.R.: Mixin-Based Inheritance. In: Proc. Europ. Conf. Object-
Oriented Programming and Int’l. Conf. Object-Oriented Programming, Systems,
Languages, and Applications. (1990)

46. Findler, R.B., Flatt, M.: Modular Object-Oriented Programming with Units and
Mixins. In: Proc. Int’l. Conf. Functional Programming. (1998)

47. Ostermann, K., Mezini, M., Bockisch, C.: Expressive Pointcuts for Increased Mod-
ularity. In: Proc. Europ. Conf. Object-Oriented Programming. (2005)

48. Masuhara, H., Kawauchi, K.: Dataflow Pointcut in Aspect-Oriented Programming.
In: Proc. Asian Symp. Programming Languages and Systems. (2003)

49. Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., Bier, L.: Clone Detection Using
Abstract Syntax Trees. In: Proc. Int’l. Conf. Software Maintenance. (1998)

50. Baker, B.S.: On Finding Duplication and Near-Duplication in Large Software
Systems. In: Proc. Work. Conf. Reverse Engineering. (1995)

51. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

52. Harrison, W., Ossher, H.: Subject-Oriented Programming: A Critique of Pure
Objects. In: Proc. Int’l. Conf. Object-Oriented Programming, Systems, Languages,
and Applications. (1993)

25

53. Tarr, P., Ossher, H., Harrison, W., Sutton, Jr., S.M.: N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In: Proc. Int’l. Conf. Software Engi-
neering. (1999)

54. Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: An Overview of CaesarJ.
Trans. Aspect-Oriented Software Development 1(1) (2006)

55. Steimann, F.: The Paradoxical Success of Aspect-Oriented Programming. In: Proc.
Int’l. Conf. Object-Oriented Programming, Systems, Languages, and Applications.
(2006)

56. Alexander, R.: The Real Costs of Aspect-Oriented Programming. IEEE Software
20(6) (2003)

57. Rajan, H., Sullivan, K.J.: Classpects: Unifying Aspect- and Object-Oriented Lan-
guage Design. In: Proc. Int’l. Conf. Software Engineering. (2005)

58. Herrmann, S.: Object Teams: Improving Modularity for Crosscutting Collabora-
tions. In: Proc. Int’l. Net.ObjectDays Conf. (2002)

59. Ossher, H., Harrison, W.: Combination of Inheritance Hierarchies. In: Proc.
Int’l. Conf. Object-Oriented Programming, Systems, Languages, and Applications.
(1992)

60. Spinczyk, O., Lohmann, D., Urban, M.: AspectC++: An AOP Extension for C++.
Software Developer’s Journal (2005)

61. Johansen, R., Sestoft, P., Spangenberg, S.: Zero-Overhead Composable Aspects
for .NET. In: Proc. Lipari Summer School. (2008)

62. Lopez-Herrejon, R., Batory, D., Cook, W.R.: Evaluating Support for Features in
Advanced Modularization Technologies. In: Proc. Europ. Conf. Object-Oriented
Programming. (2005)

63. Hunleth, F., Cytron, R.: Footprint and Feature Management Using Aspect-
Oriented Programming Techniques. SIGPLAN Not. 37(7) (2002)

64. Steimann, F.: Domain Models are Aspect Free. In: Proc. Int’l. Conf. Model Driven
Engineering Languages and Systems. (2005)

65. Masuhara, H., Kiczales, G.: Modeling Crosscutting in Aspect-Oriented Mecha-
nisms. In: Proc. Europ. Conf. Object-Oriented Programming. (2003)

66. Pearce, D.J., Noble, J.: Relationship Aspects. In: Proc. Int’l. Conf. Aspect-
Oriented Software Development. (2006)

67. Tesanovic, A., Amirijoo, M., Bjork, M., Hansson, J.: Empowering Configurable
QoS Management in Real-Time Systems. In: Proc. Int’l. Conf. Aspect-Oriented
Software Development. (2005)

68. Katz, S.: Aspect Categories and Classes of Temporal Properties. Trans. Aspect-
Oriented Software Development 1(1) (2006)

69. Dantas, D.S., Walker, D.: Harmless Advice. In: Proc. Int’l. Symp. Principles of
Programming Languages. (2006)

70. Clifton, C., Leavens, G.: Observers and Assistants: A Proposal for Modular Aspect-
Oriented Reasoning. In: Proc. Int’l. Workshop Foundations of Aspect-Oriented
Languages. (2002)

71. Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., v. Staa, A., Lucena, C.: Quan-
tifying the Effects of Aspect-Oriented Programming: A Maintenance Study. In:
Proc. Int’l. Conf. Software Maintenance. (2006)

72. Zhao, J., Xu, B.: Measuring Aspect Cohesion. In: Proc. Int’l. Conf. Fundamental
Approaches to Software Engineering. (2004)

73. Gelinas, J.F., Badri, M., Badri, L.: A Cohesion Measure for Aspects. J. Object
Technology 5(7) (2006)

26

74. Lopez-Herrejon, R., Apel, S.: Measuring and Characterizing Crosscutting in
Aspect-Based Programs: Basic Metrics and Case Studies. In: Proc. Int’l. Conf.
Fundamental Approaches to Software Engineering. (2007)

75. Smith, D.R.: A Generative Approach to Aspect-Oriented Programming. In: Proc.
Int’l. Conf. Generative and Component-Based Software Engineering. (2004)

76. Briand, L.C., Dzidek, W.J., Labiche, Y.: Instrumenting Contracts with Aspect-
Oriented Programming to Increase Observability and Support Debugging. In: Proc.
Int’l. Conf. Software Maintenance. (2005)

27

