
An Overview of
Feature Featherweight Java

Sven Apel†, Christian Kästner‡, and Christian Lengauer†

† Department of Informatics and Mathematics, University of Passau, Germany
{apel,lengauer}@uni-passau.de

‡ School of Computer Science, University of Magdeburg, Germany
ckaestne@ovgu.de

Technical Report, Number MIP-0802
Department of Informatics and Mathematics

University of Passau, Germany
April 2008

An Overview of Feature Featherweight Java

Sven Apel†, Christian Kästner‡, and Christian Lengauer†

† Department of Informatics and Mathematics, University of Passau, Germany
{apel,lengauer}@uni-passau.de

‡ School of Computer Science, University of Magdeburg, Germany
ckaestne@ovgu.de

Abstract. Feature-oriented programming (FOP) is a paradigm that in-
corporates programming language technology, program generation tech-
niques, and stepwise refinement. In their GPCE’07 paper, Thaker et al.
suggest the development of a type system for FOP in order to guarantee
safe feature composition. We present such a type system along with a
calculus for a simple feature-oriented, Java-like language, called Feature
Featherweight Java (FFJ). Furthermore, we explore several extensions of
FFJ and how they affect type soundness.

1 Introduction

Feature-oriented programming (FOP) aims at the modularization of software
systems in terms of features. A feature implements a stakeholder’s requirement
and is typically an increment in program functionality [32,8]. Different vari-
ants of a software system are distinguished in terms of their individual fea-
tures [21]. Contemporary feature-oriented programming languages and tools such
as AHEAD [8], FSTComposer [7], and FeatureC++ [5] provide varying mecha-
nisms that support the specification and composition of features properly. A key
idea is that a feature, when added to a software system, introduces new struc-
tures, such as classes and methods, and refines existing ones, such as extending
method bodies by overriding.

Stepwise refinement (SWR) is a related software development paradigm that
aligns well with FOP [36]. In SWR, one adds detail to a program incrementally
using refinements in order to satisfy a program specification. In terms of FOP,
the individual refinements implement features.

In prior work, features have been modeled as functions and feature composi-
tion as function composition [8,25]. The function model tames feature composi-
tion in that it disallows features from affecting program structures that have been
added by subsequent development steps, i.e., by features applied subsequently.
This restriction is supposed to decrease the potential interactions between differ-
ent program parts (i.e., features) and to avoid inadvertent interactions between
present features and program elements that have been introduced in later devel-
opment steps [25,27].

In their GPCE’07 paper, Thaker et al. raised the question of how the cor-
rectness of feature-oriented programs can be checked [34]. The problem is that

feature-oriented languages and tools involve usually a code generation step in
that they transform code into a lower-level representation. For example, the
AHEAD Tool Suite transforms feature-oriented Jak code into object-oriented
Java code by translating refinements of classes into subclasses [8]. Other lan-
guages and tools work similarly [5,4,7]. A problem of these languages and tools
is that errors can be detected only at compilation-time, not at composition-time.
While the compiler may detect errors caused by improper feature composition,
it cannot recognize the actual cause of their occurrences. The reason is that
information about features and their composition is lost during translation to
the lower-level representation. For example, a feature may refer to a class that is
not present because the feature the class belongs to is not present in a program
variant, or a feature may affect a program element that is being introduced in a
subsequent development step, which violates the principle of SWR.

Consequently, Thaker et al. suggested the development of a type system for
feature-oriented languages and tools that can be used to check for the above
errors at composition-time. We present such a formal type system along with a
soundness proof. To this end, we develop a calculus for a simple feature-oriented
language on top of Featherweight Java (FJ) [18], called Feature Featherweight
Java (FFJ). The syntax and semantics of FFJ conform with common feature-
oriented languages. The type system not only incorporates language constructs
for feature composition, but it also guarantees that the principle of SWR is not
violated.

FFJ is interesting insofar as it is concerned partly with the programming
language level (it provides language constructs for class, method, and constructor
refinement on top of FJ) and partly with the composition engine at the meta-
level (it relies on information about features that is collected outside the program
text during composition), which is different from FJ. To our knowledge, FFJ is
the first that aims at and incorporates both levels (base-level and the meta-level).
Prior work on mixins, traits, and virtual classes concentrated on the language
level, which is discussed in Section 6.

2 An Overview of FFJ

Before we go into detail, we give an informal overview of FFJ. FFJ builds on
FJ. FJ is a language that models a minimal subset of Java. For example, FJ
provides basic constructs like classes, fields, methods, and inheritance, but it does
not support interfaces, exceptions, access modifiers, overloading, etc., even not
assignment. In fact, FJ represents a functional core of Java and, therefore, every
FJ program is also a regular Java program, but not vice versa. The designers
of FJ concentrated on the module and type system of Java in order to simplify
formal reasoning about Java-like languages and programs [18].

FFJ extends FJ by new language constructs for feature composition and by
according evaluation and type rules. Although it is an extension of FJ, FFJ’s
key innovations can be used with other languages, e.g., C#.

2

As with other feature-oriented languages [8,5,7], the notion of a feature does
not appear in the language syntax. That is, the programmer does not explicitly
state in the program text that a class or method belongs to a feature. Merely,
features are represented by containment hierarchies that are directories which
aggregate the code artifacts belonging to a feature [8]. This is necessary since a
feature may contain, beside code, also further supporting documents, e.g., doc-
umentation, test cases, and design documents. By superimposing containment
hierarchies, the code artifacts of different features are merged [8,7].

In FFJ, a programmer can add new classes to a program via the introduction
of a new feature, which is trivial since only a new class file with a distinct name
has to be supplied by the feature’s containment hierarchy. Furthermore, using a
feature, one can extend an existing class by a class refinement. A class refinement
is declared like a class but preceded by the keyword refines. For example, refines
class A refers to a class refinement that extends the class A. During composition,
classes and refinements with the same name are merged, i.e., their members
are merged. Finally, a class refinement may refine an existing method. This is
handled similarly to overriding of a superclass’ method by a subclass’ method
in Java.

The distinction between code artifacts (classes and class refinements) and fea-
tures (containment hierarchies) requires a special treatment in FFJ’s semantics
and type system, which is different from previous approaches (see Section 6).
Consequently, we use information in the type system about features that has
been collected by the composition engine and that does not appear in the pro-
gram text. For example, the name of a class refinement is made up of the name
of the class that is refined and the feature the refinement belongs to. In order
to check whether a feature’s code does not refer to code from features added
subsequently, FFJ uses information about the features’ composition order.

We begin with a description of basic FFJ, that provides language constructs
for feature composition, and proceed with four extensions for SWR. The exten-
sions are largely orthogonal and can be combined individually and in any order
with basic FFJ.

2.1 Basic FFJ

Figure 1 depicts a simple FFJ program that implements an expression evaluator,
which is a solution to the infamous “expression problem” [35].1 It consists of
three features. The feature Add is the base feature that supports only addition
of simple expressions; it introduces two classes Expr and Add (Lines 1–7). The
feature Sub adds support for subtraction by introducing a class Sub (Lines 8–
11). The feature Eval adds to each class a method eval for expression evaluation
(Lines 12–23).

This simple example illustrates the main capabilities of FFJ. Like FJ, an FFJ
program consists of a set of classes that, in turn, contain a single constructor
1 Although not part of FJ and FFJ, we use basic data types, constants, and operators
in our examples for sake of comprehensibility.

3

1 class Expr extends Object { // Feature Add ...
2 Expr() { super(); }
3 };
4 class Add extends Expr {
5 int a; int b;
6 Add(int a, int b) { super(); this.a=a; this.b=b; }
7 }

8 class Sub extends Expr { // Feature Sub ...
9 int a; int b;

10 Sub(int a, int b) { super(); this.a=a; this.b=b; }
11 }

12 refines class Expr { // Feature Eval ...
13 refines Expr() { original(); }
14 int eval() { return 0; }
15 }
16 refines class Add {
17 refines Add(int a, int b) { original(a,b); }
18 refines int eval() { return this.a+this.b; }
19 }
20 refines class Sub {
21 refines Sub(int a, int b) { original(a,b); }
22 refines int eval() { return this.a−this.b; }
23 }

Fig. 1. A solution to the “expression problem” in FFJ.

each, as well as methods and fields. For example, the class Add contains two fields
and a constructor. Unlike FJ, an FFJ program may contain class refinements
each of which contain a constructor refinement, a set of methods and fields
that are added to the class that is refined, and a set of method refinements
that refine the methods of the class that is refined (a.k.a. the base class). A
base class along with its refinements has the semantics of a compound class
that contains all fields and methods of its constituents, i.e., class refinements
add new members. Constructor refinements extend the base constructor and
method refinements replace base methods, i.e., class refinements change and
extend existing members.

A feature may contain several classes and class refinements, but we impose
some restrictions. First, a feature is not allowed to introduce a class that is
already present in a program it is composed with. This includes also that a
feature must not introduce two classes with the same name. The reason is that
classes must be unambiguously identifiable. For example, the feature Eval is
not allowed to add any further class with the name Expr. Second, a feature
is not allowed two apply two refinements to the same class. The reason is that,
otherwise, the order of applying class refinements cannot be determined precisely.
For example, Eval cannot refine the class Add twice. Finally, a feature is not

4

allowed to introduce a class together with a refinement of this class. This is to
keep the changes a feature can make as simple as possible. For example, the
feature Sub cannot introduce a class Sub along with a refinement of Sub.

Like in FJ, each class must declare exactly one superclass, which may be Ob-
ject. In contrast, a class refinement does not declare (additional) superclasses.
Later on, we will extend FFJ such that class refinements declare further super-
classes to a base class.

Typically, with a sequence of features, a programmer can apply several refine-
ments to a class, which is called a refinement chain. A refinement that is applied
before another refinement in the chain is called its predecessor. Conversely, a
class refinement that is applied after another refinement is called its successor.
For example, when selecting the features Add and Eval, the refinement chain of
Add consists of a base class and a refinement applied by Eval ; further refinements
may follow. The order of refinements in a refinement chain is determined by the
selection of features and their composition order.

Figure 2 depicts the refinement and inheritance relationships of our expres-
sion example. Refinements are depicted using the name of the base class, followed
by an ‘@’, and the name of the feature that the refinement belongs to.

chains

refinement

Sub Sub@Eval

Add@Eval

Expr@Eval

Sub EvalAdd

refinement

inheritance

Expr

Add

Object

Fig. 2. Refinement and inheritance relationships of the expression example.

Fields are unique within the scope of a class and its inheritance hierarchy
and refinement chain. That is, a refinement or subclass is not allowed to add a
field that is already defined. For example, the feature Eval is not allowed to add
a further field a or b to the class Add. With methods this is different. A property
that FFJ has inherited from FJ is that subclasses may override methods of
superclasses. Similarly to FJ, FFJ does not allow the programmer to use super
inside a method body, as it would be possible in Java. That is, method overriding
in FFJ means essentially method replacement.

Methods in FFJ (and FJ) are similar to Java methods except that a method
body is an expression (preceded by return) and not a sequence of statements.
This is due to the functional nature of FFJ (and FJ). Furthermore, overloading

5

of methods (methods with equal names and different argument types) is not
allowed in FJ and FFJ.

Unlike classes, class refinements are not allowed to define methods that have
already been defined before in the refinement chain. That is, class refinements
cannot override methods. This is to avoid inadvertent replacement. But, instead,
a class refinement may declare a method refinement. A method refinement is
like a method declaration but preceded with the keyword refines. This enables
the type checker to recognize the difference between method refinement and
inadvertent overriding/replacement and, possibly, to warn the programmer. For
example, the feature Eval adds a method to the class Expr (Line 14). This way,
also the subclasses of Expr, Add and Sub, have this method. Furthermore, Eval
applies two method refinements (Lines 18, 22) to the eval methods specifying
that Add and Sub are being inherited from Expr. Note that refinements may
also refine methods that have been introduced by any superclass or by other
refinements that belong to previous development steps. The difference between
method refinement and method overriding in subclasses becomes more useful in
an extension of basic FFJ that allows a method refinement to reuse the body of
a refined method (see Section 2.2).

As shown in Figure 2, refinement chains grow from left to right and inher-
itance hierarchies from top to bottom. When looking up a method body, FFJ
traverses the combined inheritance and refinement hierarchy of the object the
method belongs to and selects the right-most and bottom-most method body of a
method declaration or method refinement that is compatible. That is, first, FFJ
looks for a method declaration or method refinement in the refinement chain of
the object’s class, starting with the last refinement back to the class declaration
itself. The first body of a matching method declaration or method refinement is
returned. If the method is found neither in the class’ refinement chain nor in its
declaration, the methods in the superclass (and then the superclass’ superclass,
etc.) are searched, each again from latest refinement to the class declaration
itself.

For example, looking up the method (new Add(3,4)).eval(), the inheritance
hierarchy of Add is traversed and, eventually, eval defined in Expr is selected.
Then, all refinements and superclasses of Add are traversed and the method
refinement of eval defined in the class refinement of Add in the feature Eval is
returned finally, which is bottom-most and right-most.

Finally, each class must declare exactly one constructor that is used solely
to initialize the class’ fields. Similarly, a class refinement must declare exactly
one constructor refinement that initializes the class refinement’s fields. A con-
structor expects values for all fields that have been declared by its class and the
class’ superclasses. The values for the superclass are passed via super. Similarly,
a constructor refinement expects values for all fields that have been declared by
previous refinements in the refinement chain and the base class. The values for
the predecessor in the refinement chain are passed via original. For example, the
constructor of the class Add expects two integers that are assigned to its fields a
and b via this.a=a and this.b=b (Line 6), and it invokes super without arguments

6

since the superclass Expr does not have any fields (Line 6); the constructor refine-
ment of Add in the feature Eval expects two integers for its base class Add that
are passed via original; it does not add any fields to Add so that the constructor
refinement still expects only two integers (Line 17). Note that this approach to
constructor refinement fixes the order in a refinement chain. The reason is that
each refinement has to “know” who its predecessor is, as it has to pass the prede-
cessor’s constructor arguments via original. We use this mechanism in basic FFJ
for simplicity. In the next section, we discuss an extension that is more flexible
in this regard.

2.2 Extensions for SWR

On top of basic FFJ, we introduce several extensions that model certain aspects
of FOP and SWR.

Method Extension

A principle that has become best practice in FOP is that the replacement of ex-
isting methods is inelegant programming style [34]. In FFJ, method refinements
may override methods and effectively replace them (same for method overriding
in subclasses). This prevents programmers from extending existent functional-
ity and leads to code replication in that programmers repeat code of extended
methods that cannot be reused. In order to foster extension [34], we allow pro-
grammers to invoke the refined method from the method refinement, which is
done using the keyword original. If original is not invoked, an error is reported.2
This helps further to avoid inadvertent replacement, as has been demonstrated
in several case studies [34].

For example, a feature might refine the eval methods of our expression eval-
uator in order to log their invocation. Using original, the method refinement of
eval can extend the existing method instead of replacing it:3

1 refines class Add { // Feature Logging ...
2 refines int eval() { return new Log().write(original()); }
3 } ...

Default Values

A class refinement in FFJ may add new fields to a class and the according
constructor refinement extends the class’ constructor initializing these fields.
The problem of this simple mechanism is that a class cannot be used anymore
by client classes that have been added before the class refinement in question.
This is because the class refinement extends the constructor’s signature and, for
2 Alternatively, the error could be softened into a warning.
3 The method write of Log expects an integer, logs the values, and returns the integer
unchanged.

7

a client class that has been introduced before, knowing about these new fields
in the first place is unlikely. Moreover, passing the values violates the principle
of SWR, as a constructor refinement and fields are referenced that have been
added subsequently (see also our ’backward references’ extension).

Suppose a refinement of Expr that adds a new field and that refines the base
class constructor accordingly:

1 refines class Expr {
2 int id;
3 refines Expr(int id) { original(); this.id=id; }
4 }

Applying this refinement breaks the constructor of Add; the constructor’s super
call receives an empty list of arguments, whereas the refined constructor of Expr
expects an integer.

There are three options for solving this problem: (1) the constructor of Add
can be modified expecting a value for id, (2) the constructor of Add can be
refined expecting a value for id that is passed to Expr via super, or (3) the field
id can be initialized with some sort of a default value. The first two options
necessitate, for each refinement of a class, a modification or refinement of all
its client classes (i.e., the classes that use the base class and its refinements
in question). Moreover, with the first option, Add is aware of id that has been
introduced subsequently, which violates the principle of SWR. Therefore, we
choose the third option: providing default values for uninitialized fields.

When instantiating a class, a programmer does not need to pass values for
all arguments of the class’ constructor but only for some of them (i.e., for a
subsequence of the argument list). The remaining arguments are filled with de-
fault values supplied by the type system. This is similar to C++, where fields
that are allocated in the static data segment are initialized with their default
constructors. An alternative would be to let the programmer specify the default
values in the constructor declaration, much like in C++. We refrain from this
alternative in our formalization as it complicates the calculus unnecessarily. As
we will see later on, default values can be generated completely automatically,
without asking the programmer to supply them.

Superclass Declaration

In basic FFJ, class refinements may add new field and method declarations
and refine existing methods. A practice that has proved useful in SWR is that
subsequent features may also alter the inheritance hierarchy [31]. Therefore, in
an extension of FFJ, we let each class refinement declare a superclass, much like
a class declaration. For example, we can refine the class Add in order to inherit
also from Comparable:

1 class Comparable extends Object {
2 Comparable() { super(); }
3 boolean equals(Comparable c) { return true; }

8

4 }
5 refines class Add extends Comparable {
6 refines Add(int a, int b) { super(); original(a, b); }
7 refines boolean equals(Comparable c) {
8 return ((Add)c).a == this.a && ((Add)c).b == this.b;
9 }

10 }

Note that Add inherits now from both Expr and Comparable. In order to pass
arguments properly, the constructor of Add’s refinement uses super for passing
arguments to the superclass and original for passing arguments to the base class.

Effectively, a class that is merged with its class refinements inherits from mul-
tiple classes, which is a kind of multiple inheritance. However, our intension is
not meant to solve the tricky problems of multiple inheritance, e.g., the diamond
problem [33], so we impose some restrictions. First, a class refinement is only
allowed to declare a superclass that has not been declared before in the refine-
ment chain, except for Object. Second, all further superclasses of this superclass
must not be declared before. Third, the superclass (incl. all its superclasses)
must not introduce a field or method that has been introduced before in the
refinement chain; this is to avoid name clashes. The rules for method overrid-
ing and refinement are similar to basic FFJ. Finally, the method body look up
mechanism changes. Now, looking up the refinement chain also requires to look
in a refinement’s superclasses for a method body.

Backward References

This extension allows the type system to check whether all classes, class re-
finements, methods, method refinements, and fields contain only references to
features that have been added before, which we call backward references. In
contrast, the type checker rejects programs containing forward references. This
is in line with the principle of SWR disallowing code of previous development
steps to affect code of subsequent development steps. Adhering to this princi-
ple decreases potential interactions in a software system and improves software
comprehension [36,25].

For example, in Figure 1, the base class Add may contain a reference to the
class Expr but must not contain a reference to the class Sub and its members
because they are being introduced subsequently. We can enforce this property
by checking superclass and field declarations, as well as bodies and signatures
of methods and method refinements for the direction of their type or member
references.

3 The Basic FFJ Calculus

FJ is a calculus that models a minimal subset of Java. FFJ extends FJ for FOP
and SWR. Due to the lack of space we cannot give a formal description of FJ. In-
stead, we explain the relationship between FJ and FFJ when exploring the details

9

of the FFJ calculus. For a better understanding of the changes and extensions
that FFJ makes to FJ, in the colored version of the paper, we highlight modified
rules with shaded yellow boxes and new rules with shaded purple boxes .

3.1 Syntax

CD ::= class declarations:
class C extends C { C f; KD MD }

CR ::= class refinements:

refines class C { C f; KR MD MR }

KD ::= constructor declarations:
C(D g, C f) { super(g); this.f=f; }

KR ::= constructor refinements:

refines C(E h, C f) { original(h); this.f=f; }

MD ::= method declarations:
C m(C x) { return t; }

MR ::= method refinements:

refines C m(C x) { return t; }

t ::= terms:
x variable
t.f field access
t.m(t) method invocation
new C(t) object creation
(C) t cast

v ::= values:
new C(v) object creation

Fig. 3. Syntax of basic FFJ.

In Figure 3, we depict the syntax of FFJ, which is a straightforward exten-
sion of the syntax of FJ [18]. An FFJ program consists of a set of class and
refinement declarations, an expression, and external information about features
collected by the composition engine. A class declaration CD contains a list C f
of fields,4 a constructor declaration KD, and list MD of method declarations. A
class refinement CR contains a list C f of fields, a constructor refinement KR,
a list MD of method declarations, and a list MR of method refinements. The
declaration of a class refinement is preceded by the keyword refines. Method
and constructor declarations are taken from FJ without change: A method m
expects arguments C x, contains a body return t, and returns a result of type C.
A constructor expects two lists D g and C f of arguments for the fields of the
superclass (passed via super(g)) and for the fields of its own class (initialized via
this.f=f). A constructor refinement KR expects arguments for the predecessor re-
finement (via original(h)) and for its own fields (this.f=f). A method refinement
is much like a method declaration; constructor and method refinements begin
with the keyword refines. The remaining syntax rules for terms t and values v
are straightforward and taken from FJ without change.

4 We abbreviate lists in the obvious way: C f is shorthand for C1 f1, . . . , Cn fn;
C f; is shorthand for C1 f1; . . . ; Cn fn; and this.f=f; is shorthand for
this.f1=f1; . . . ; this.fn=fn;.

10

Class names (metavariables A–E) are simple identifiers. A refinement (metavari-
ables R–T) is identified by the name of the class C it refines and the name of the
feature F it belongs to. Declarations of classes and refinements can be looked up
via the class table CT . As in FJ, we impose some sanity conditions on the class
table: (1) CT (C) = class C. . . for every C ∈ dom(CT); (2) Object /∈ dom(CT);
(3) for every class name C (except Object) appearing anywhere in CT , we have
C ∈ dom(CT); and (4) there are no cycles (incl. self-cycles) in the inheritance
relation. The conditions for class refinements are analogous.

3.2 Subtyping and Refinement

Navigating the refinement chain

S is the successor of R
succ(R) = S

S is the predecessor of R
pred(R) = S

Subtyping C <: D

C <: C
C <: D D <: E

C <: E
CT (C) = class C extends D { . . . }

C <: D

Fig. 4. Subtyping and refinement in basic FFJ.

In Figure 4, we show the refinement and subtyping relations of FFJ. There are
two auxiliary functions that return the next refinement (succ) and the previous
refinement (pred) in a refinement chain. These definitions rely on information
collected by the composition engine, e.g., the features’ composition order. For
simplicity, the two functions may be used with classes and class refinements, and
they return Object if there is no class refinement that matches.

Finally, there is a subtype relation <: identical to the one of FJ. That is, in
basic FFJ, class, method, and constructor refinement do not affect the subtype
relation.

3.3 Auxiliary Definitions

For FFJ, we have modified some auxiliary definitions of FJ, and we have added
some, as shown in Figures 5 and 6. The function fields returns the fields of a
class including the fields of its subclasses and, in extension to FJ, the fields
added by its refinements. The function rfields is similar except that the refine-
ment chain is searched from right to left. This is useful to determine the fields
that have been introduced before a given refinement, e.g., in the well-formedness
rule of class refinements (Figure 9). The function mtype returns the type of a
method. In contrast to FJ, in FFJ first the refinement chain is searched from
left to right and, if an appropriate method is not found, the search is contin-
ued in the according superclass. Like rfields, the function rmtype is used to

11

Field lookup fields(C) = C f

fields(Object) = • CT (C) = class C extends D { C f; KD MD }
fields(C) = fields(D), C f, fields(succ(C))

CT (R) = refines class C { C f; KR MD MR }
fields(R) = C f, fields(succ(R))

Reverse field lookup rfields(R) = C f

rfields(Object) = • CT (C) = class C extends D { C f; KD MD }
rfields(C) = fields(D), C f

CT (R) = refines class C { C f; KR MD MR }
rfields(R) = rfields(pred(R)), C f

Method type lookup mtype(m,C) = C→C

CT (C) = class C extends D { C f; KD MD } B m(B x) { return t; } ∈ MD
mtype(m,C) = B→B

CT (C) = class C extends D { C f; KD MD }
m is not defined in MD mtype(m, succ(C))

mtype(m,C) = mtype(m, succ(C))

CT (C) = class C extends D { C f; KD MD }
m is not defined in MD ¬mtype(m, succ(C))

mtype(m,C) = mtype(m,D)

CT (R) = refines class C{ C f; KR MD MR } B m(B x) { return t; } ∈ MD
mtype(m,R) = B→B

CT (R) = refines class C { C f; KR MD MR } m is not defined in MD
mtype(m,R) = mtype(m, succ(R))

Fig. 5. Auxiliary definitions of basic FFJ.

12

Reverse method type lookup rmtype(m,C) = C→C

CT (C) = class C extends D { C f; KD MD } B m(B x) { return t; } ∈ MD
rmtype(m,C) = B→B

CT (R) = refines class C { C f; KR MD MR } B m(B x) { return t; } ∈ MD
rmtype(m,R) = B→B

CT (R) = refines class C { C f; KR MD MR } m is not defined in MD
rmtype(m,R) = rmtype(m, pred(R))

Method body lookup mbody(m,C) = (x, t)

CT (C) = class C extends D { C f; KD MD }
B m(B x) { return t; } ∈ MD ¬mbody(m, succ(C))

mbody(m,C) = (x, t)

CT (C) = class C extends D { C f; KD MD }
m is not defined in MD ¬mbody(m, succ(C))

mbody(m,C) = mbody(m,D)

mbody(m, C) = mbody(m, succ(C))

CT (R) = refines class C { C f; KR MD MR } ¬mbody(m, succ(R))
B m(B x) { return t; } ∈ MD or refines B m(B x) { return t; } ∈ MR

mbody(m,R) = (x, t)

CT (R) = refines class C { C f; KR MD MR }
mbody(m,R) = mbody(m, succ(R))

Valid method overriding override(m,D,C→C0)

mtype(m,D) = D→D0 implies C = D and C0 = D0

override(m,D,C→C0)

Valid method introduction introduce(m,C)

¬mtype(m, succ(C))
introduce(m,C)

Valid method refinement extend(m,R,C→C0)

rmtype(m, pred(R)) = B→B0 implies C = B and C0 = B0

extend(m,R,C→C0)

Fig. 6. Auxiliary definitions of basic FFJ (continued).

13

look for a method type from right to left in a refinement chain. This is needed
when checking whether a method refinement really refines a method, e.g., in the
auxiliary function extend . Function mbody looks up the most specific and most
refined method body. That is, it returns the method body that is right-most and
bottom-most in the combined refinement and inheritance hierarchy of an object,
as explained in Section 2.1. The function override establishes whether a method
of a superclass is appropriately overridden in a subclass, i.e., whether their sig-
natures match. The function introduce establishes whether a method introduced
by a class refinement has not been introduced before in its refinement chain.
Finally, the function extends establishes whether a method refinement refines a
method properly, i.e., whether an according method has been introduced before
and their signatures match.

3.4 Evaluation

fields(C) = C f
(new C(v)).fi −→ vi

(E-ProjNew)

mbody(m,C) = (x, t0)
(new C(v)).m(u) −→ [x 7→ u, this 7→ new C(v)] t0

(E-ProjInvk)

C <: D
(D)(new C(v)) −→ new C(v)

(E-CastNew)

t0 −→ t′0
t0.f −→ t′0.f

(E-Field)

t0 −→ t′0
t0.m(t) −→ t′0.m(t)

(E-InvkRecv)

ti −→ t′i
v0.m(v, ti, t) −→ v0.m(v, t′i, t)

(E-InvkArg)

ti −→ t′i
new C(v, ti, t) −→ new C(v, t′i, t)

(E-NewArg)

t0 −→ t′0
(C)t0.f −→ (C)t′0.f

(E-Cast)

Fig. 7. Evaluation of basic FFJ.

With the extended/modified auxiliary functions, the evaluation rules of FFJ,
shown in Figure 7, are entirely the same as in FJ. In rule E-ProjNew, fields
looks up all fields of a class, including the fields of its refinements. The fact that
each class refinement must refine the constructor makes sure that the number

14

of supplied values in a class instantiation is equal to the number of fields that
fields returns. With the ‘default values’ extension, this will be different (see Sec-
tion 4.2). In rule E-InvkNew, mbody returns the appropriate method body also
considering method refinements, so nothing changes compared to FJ. The rule
E-CastNew is not changed in FFJ since the subtype relation is equal to FJ.
The remaining congruence rules are straightforward and equal in FJ and FFJ.

3.5 Typing

Term typing Γ ` t : C
x : C ∈ Γ

Γ ` x : C
(T-Var)

Γ ` t0 : C0 fields(C0) = C f
Γ ` t0.fi : Ci

(T-Field)

Γ ` t0 : C0 mtype(m,C0) = D→C Γ ` t : C C <: D
Γ ` t0.m(t) : C

(T-Invk)

fields(C) = D f Γ ` t : C C <: D
Γ ` new C(t) : C

(T-New)

Γ ` t0 : D D <: C
Γ ` (C)t0 : C

(T-UCast)

Γ ` t0 : D C <: D C 6= D
Γ ` (C)t0 : C

(T-DCast)

Γ ` t0 : D C 6<: D D 6<: C stupid warning

Γ ` (C)t0 : C
(T-SCast)

Fig. 8. Typing in basic FFJ.

Figures 8 and 9 displays the type rules of FFJ. We took the rules for term
typing from FJ (Figure 8). This was possible since we changed the auxiliary
functions incorporating class, method, and constructor refinement. However, we
extended the well-formedness rules (Figure 9). The two rules for well-formed
methods enforce that the type of the method body’s term is a subtype of the
declared return type, that a method of a superclass is being overridden appro-
priately, and that no subsequent refinement introduces a method with the same
name (note that overloading is not allowed in FJ and FFJ). That is, override
considers methods that are overridden by the given method and introduce con-
siders methods that are introduced later and establishes whether they replace the
given method or not. The well-formedness rule of method refinement enforces,

15

Method typing MD OK in C/R

x : C, this : C ` t0 : E0 E0 <: C0 CT (C) = class C extends D { . . . }
override(m,D,C→C0) introduce(m,C)

C0 m(C x) { return t0; } OK in C

x : C, this : C ` t0 : E0 E0 <: C0 CT (R) = refines class C { . . . }
introduce(m,R)

C0 m(C x) { return t0; } OK in R

Method refinement typing MR OK in R

x : C, this : C ` t0 : E0 E0 <: C0 CT (R) = refines class C { . . .MD . . . }
m not defined in MD extend(m,R,C→C0)

refines C0 m(C x) { return t0; } OK in R

Class typing C OK

KD = C(D g, C f) { super(g); this.f=f; } fields(D) = D g MD OK in C
class C extends D { C f; KD MD } OK

Class refinement typing R OK

KR = C(E h, C f) { original(h); this.f=f; }
rfields(pred(R)) = E h MD OK in R MR OK in R

CT (R) = refines class C { C f; KR MD MR }

refines class C { C f; KR MD MR } OK

Fig. 9. Typing in basic FFJ (continued).

16

beside the standard properties, that an according method is being introduced
before (and not in the same class refinement) and that the signatures of the
two methods match. The well-formedness rule for classes is similar to FJ. It en-
forces the well-formedness of the constructor, the fields, and the methods. The
well-formedness rule of class refinements enforces, in addition, that all method
refinements are well-formed and that appropriate values are passed for the fields
of the refinement and its predecessor.

3.6 Type Soundness

FFJ is type-sound. We formulate the type soundness of FFJ via the standard
theorems Preservation and Progress [37]. The proof is the same as the one of
FJ [18], except for some minor modifications. This is the case because the changes
and extensions basic FFJ makes to FJ are largely concerned with the method and
field lookup and do not interfere too much with the evaluation order and type
system. In some of our extensions this will be different, as we will explain in the
next section. See Appendix B.1 for the complete proof and further explanations.

4 Extensions for SWR

In this section, we integrate each extension individually into FFJ, obtaining:
– FFJME—Method extension
– FFJDV—Default values
– FFJSD—Superclass declaration
– FFJBR—Backward references

For each extension we show how the syntax, evaluation, and type rules change
and if and how the type soundness proof is affected. As the extensions are largely
orthogonal, they can be combined freely to obtain a consistent and type-sound
variant of FFJ. Nevertheless, we provide a full version of FFJ, that contains all
extensions, along with a type soundness proof in the Appendix C.

4.1 FFJME—Method Extension

In basic FFJ, a method refinement replaces the body of the method that is
refined. In FFJME , method bodies must invoke original; otherwise a method is
not well-formed. The keyword original refers to the method that is refined.

To obtain FFJME , we make the following changes to FFJ. First, we extend
the syntax such that original may occur in terms:

t ::= terms:
. . . basic FFJ terms
original(t) original invocation

Second, we modify mbody such that it substitutes every occurrence of original
with the method body that is being refined (arguments are renamed); if the

17

refined body contains original in turn, the process is repeated. The evaluation
rule E-ProjInvk (Figure 7) is divided into two new rules as follows:

mbody(m,C) = (x, t0) succ(C) = Object
(new C(v)).m(u) −→ [x 7→ u, this 7→ new C(v)] t0

(E-ProjInvk1)

mbody(m,C) = (x, t0) R is the final refinement of C
(new C(v)).m(u) −→ [x 7→ u, this 7→ new C(v)] eval(m,R, t0)

(E-ProjInvk2)

The latter rule uses an auxiliary function eval that performs the actual substi-
tution. It begins with the final refinement R in the refinement chain of C and
searches the method bodies for original. Each occurrence of original is substi-
tuted with the method body that is refined and variables are renamed properly;
this recurses until the method body in question does not contain original (see
Appendix A.1).

Third, we have to add a premise to the well-formedness rule of method re-
finements of Figure 9 to let the type system make sure that every body of a
well-formed method refinement contains a reference to original:

Method refinement typing MR OK in R

x : C, this : C ` t0 : E0 E0 <: C0 CT (R) = refines class { . . . }
extend(m,R,C→C0) t0 contains original
refines C0 m(C x) { return t0; } OK in R

Analogously, we have to add a premise to the two well-formedness rules of
method typing in order to reject method declarations whose bodies contain orig-
inal (see Appendix C).

The introduction of original to method bodies does not interfere with the
evaluation order and the type system. Function eval substitutes all occurrences
of original with the method bodies that are refined, which effectively allows
a refinement to extend a method body. As a consequence, method bodies in
FFJME are indistinguishable from the ones in basic FFJ. Evaluation and typing
in FFJME can proceed similarly to basic FFJ. Consequently, FFJME is type-
sound (see Appendix B.2 for more details).

4.2 FFJDV—Default Values

In order to include default values, we make some changes to FFJ, obtaining
FFJDV . First, we allow instantiations of classes to supply only a subsequence
of arguments to the constructor. Since the type checker cannot always recognize
which formal arguments are meant, such a subsequence must match a prefix
of the sequence of expected arguments, which is similar to user-defined default
values in C++.

With this mechanism, classes can be instantiated without knowledge of re-
finements that subsequently add new fields. In order to assign proper values to

18

the fields that have not been initialized, we use default values generated by the
FFJDV calculus. Default values are in some sense the neutral elements of a given
type. We use generated default values instead of null or predefined values to keep
the calculus simple. Both latter options would be possible but are beyond the
scope of the paper.

Furthermore, only bottom-level classes of the class hierarchy can be instan-
tiated using default values. The reason is that otherwise mapping arguments to
fields is difficult. See Section 5 for a discussion.

In FFJDV , default values can be computed solely on the basis of a class
definition (incl. its refinements). That is, the auxiliary function default(C) com-
putes the default value of class C without relying on extra information supplied
by the programmer. For a simple class without fields, the default value is just
the empty instantiation, e.g., default(Object) = new Object() or default(Expr) =
new Expr(). The default value of a more complex class is computed recursively:

default(Object) = new Object()

fields(C) = C f
default(C) = new C(default(C1), . . . , default(Cn))

Using default values, we divide the evaluation rule E-ProjNew for projec-
tion of Figure 7 into E-ProjNew1 and E-ProjNew2:

fields(C) = C f |v| ≥ i
(new C(v)).fi −→ vi

(E-ProjNew1)

fields(C) = C f |v| < i

(new C(v)).fi −→ default(Ci)
(E-ProjNew2)

If the sequence of supplied values contains the value of the projected field fi
(E-ProjNew1), nothing changes compared to basic FFJ. On the other hand, if
the sequence of supplied values does not contain the value of the projected field
fi (E-ProjNew2), a default value v is supplied.

Furthermore, we have to add a new type rule which specifies the type of a
default value:

` default(C) : C (T-Default)

A default value of a class belongs always to the class’ type. This is a straight-
forward consequence of the semantics of default values.

Finally, we have to update the type rule T-New (Figure 8) in order to allow
a smaller number of values to be supplied than the number of fields a class
actually contains (incl. its refinements and superclasses):

fields(C) = D f,E h Γ ` t : C C <: D
Γ ` new C(t) : C

(T-New)

The type rules that make sure that the number of arguments of a constructor
match the number of fields (C OK and R OK, shown in Figure 9), do not need

19

to change since only the number of value varies and not the number of formal
constructor arguments.

The modified evaluation and type rules induce some changes in basic FFJ’s
type soundness proof in order to carry over to FFJDV . Essentially, the cases
of instantiations of classes and of projections of fields change such that also
subsequences of arguments for a constructor are accepted. In Appendix B.3, we
explain how the proof changes and show that FFJDV is type-sound.

4.3 FFJSD—Superclass Declaration

With this extension, each class refinement declares a superclass, possibly Object.
Effectively, a class has multiple superclasses, declared by itself and its refine-
ments. We have to change FFJ in several ways to take multiple superclasses into
account, obtaining FFJSD .

First, we modify the syntax rules of FFJ such that a class refinement declares
a superclass and a constructor refinement passes the values intended for its
superclass via super:

CR ::= class refinements:
refines class C extends D { C f; KR MD MR }

KR ::= constructor refinements:
refines C(D g, E h, C f) { super(g); original(h); this.f=f; }

Second, we extend the subtype relation in order to consider also the super-
classes of a class that have been declared by its refinements:

CT (R) = refines class C extends D { . . . }
C <: D

Third, we have to modify and extend some auxiliary functions. Now, the
function fields also collects the fields of the superclasses declared by the class
refinements:

CT (R) = refines class C extends D { C f; KR MD MR }
fields(R) = fields(D), C f, fields(succ(R))

Two new rules for method type and body lookup incorporate also the superclasses
of class refinements:

CT (R) = refines class C extends D { C f; KR MD MR }
m is not defined in MD ¬mtype(m, succ(R))

mtype(m,R) = mtype(m,D)

CT (R) = refines class C extends D { C f; KR MD MR }
m is not defined in MD or MR ¬mbody(m, succ(R))

mbody(m,R) = mbody(m,D)

20

The premises ¬mtype(. . .) and ¬mbody(. . .) are necessary to make sure that
superclasses are only looked up in the case that there are no matching methods
in subsequent class refinements. The remaining rules of the auxiliary functions
are simply updated to be compatible with the new syntax of class refinements.

Fourth, the well-formedness rules for methods and class refinements change.
Method declarations in class refinements must override methods of the class
refinement’s superclasses properly:

x : C, this : C ` t0 : E0 E0 <: C0 CT (R) = refines class C extends D { . . . }
override(m,D,C→C0) introduce(m,R)

C0 m(C x) { return t0; } OK in R

The well-formedness rule of class refinement also enforces that the arguments
for the superclass’ constructor are passed properly by a constructor refinement:

KR = C(D g, E h, C f) { super(g); original(h); this.f=f; }
fields(D) = D g rfields(pred(R)) = E h
MD OK in R MR OK in R inherit(C,R)

CT (R) = refines class C extends D { C f; KR MD MR }

refines class C extends D { C f; KR MD MR } OK

Note that, using the auxiliary function inherit , the rule checks whether a class
refinement does not declare a superclass that has been declared before in the
refinement chain (see Appendix A.2). The remaining type and evaluation rules
are simply updated considering the new syntax of class refinements.

Finally, the type soundness proof changes minimally in that, in the cases of
casts, also multiple superclasses are considered. In Appendix B.4, we explain
how the proof changes and show that FFJSD is type-sound.

4.4 FFJBR—Backward References

In order to disallow forward references in FFJ, we have to modify the well-
formedness rules for methods, method refinements, classes, and class refinements,
obtaining FFJBR. To this end, we introduce a predicate backward that establishes
whether a reference to a member or class is a backward reference from a given
class or refinement. Function backward establishes either whether a reference to
a class/refinement is a backward reference or whether a term contains backward
references. The former case is simple, as the compiler simply checks whether a
class has been introduced before another class or refinement (i.e., by a previous
feature). In the latter case, the given term is traversed and each subterm is
checked for backward references to classes (in casts and class instantiations) and
to members (in field accesses and method invocations). See Appendix A.3 for
the definition of backward .

We use backward in the well-formedness rules of FFJBR for methods, method
refinements, classes, and class refinements. For brevity, we give here only the rules

21

for methods and classes:

Method typing MD OK in C

x : C, this : C ` t0 : E0 E0 <: C0 CT (C) = class C extends D { . . . }
override(m,D,C→C0) introduce(m,C)

backward(C,C) backward(C0,C) backward(t0,C)

C0 m(C x) { return t0; } OK in C

Class typing C OK

KD = C(D g, C f) { super(g); this.f=f; } fields(D) = D g MD OK in C
backward(C,C) backward(D,C) backward(D,C)

class C extends D { C f; KD MD } OK

The remaining well-formedness rules are updated analogously (see Appendix C).
The modified well-formedness rules of FFJBR do not interfere with the type

soundness proof of basic FFJ (Appendix B.1). This is easy to see since the well-
formedness rules of FFJBR reject some programs that are well-formed in FFJ.
That is, the set of well-formed FFJBR programs is a subset of the set of well-
formed FFJ programs. Consequently, the type soundness theorem also holds for
FFJBR, i.e., FFJBR is type-sound.

4.5 Type Soundness of FFJ with all Extensions

We have shown that FFJME , FFJDV , FFJSD and FFJBR are type-sound. As
these extensions are largely orthogonal, it is easy to show that FFJ with all
extensions together is type-sound as well. For the complete syntax, evaluation,
and typing rules as well as the type soundness proof we refer the interested
reader to Appendix C.

5 Discussion

FFJ and its extensions model several mechanisms of contemporary feature-
oriented languages and tools. In Table 1, we compare FFJ with a selection,
namely Java, FSTComposer [7] and two versions of Jak: an earlier version [8],
which we call Jak1, and an extended version [34], which we call Jak2.

It is important to note that the purpose of FFJ and its extensions is to rea-
son about properties of feature-oriented languages and tools, like type soundness,
formally. The formalizations model only a small subset of their real-world coun-
terparts, though an important one with respect to the type system. But, as we
have shown, in some cases FFJ is more consequent than contemporary feature-
oriented languages, e.g., FFJ disallows forward reference to types referred to
from method signatures, which is not enforced by Jak [34].

Nevertheless, FFJ is far from being a full programming language, and so it is
not surprising that some extensions do not exert their full power. For example,

22

FJ FFJ FFJME FFJDV FFJSD FFJBR

Java
√

Jak1
√ √ √a √b

Jak2
√ √ √ √b √d

FSTComposer
√ √ √ √b √c

a While Jak1 supports method extensions, in some versions it
does not inform the programmer that a refinement replaces
a method.
b Jak and FSTComposer support user-defined default values
(not generated values).
c In FSTComposer, a class refinement may declare new in-
terfaces but not superclasses.
d Jak2 does not cover all checks of FFJBR for disallowing
forward references, e.g., method signatures are not checked.

Table 1. Overview of which mechanisms are supported by which calculus and
which language or tool.

default values in FFJDV are used to model what is necessary in order not to
violate the principle of SWR. But, in the scope of FFJ, default values are only of
limited use. Having multiple independent refinements of a class, it is difficult to
assign new values to fields that have been initialized with a default value during
compilation. For example, if we add two independent refinements to a class A,
each adding a new field, it is difficult to assign values via setB and setC for both
of them:

1 class A { E a; }
2 refines class A { E b; A setB(E b) { return new A(this.a,b); }
3 refines class A { E c; A setC(E c) { return new A(this.a,c); }

The reason is that, doing so, both refinements would have to know about each
other in order to supply also a value for the field of the other refinement, e.g.:

1 refines class A { E b; A setB(C b) { return new A(this.a,b,this.c); }
2 refines class A { E c; A setC(E c) { return new A(this.a,this.b,c); }

In this case, both refinements know about each other, which violates the prin-
ciple of SWR. Letting only the second refinement know about the first fixes the
composition order. The first refinement must exist so that the second can be
applied, although both are semantically independent.

However, this is only a problem of FFJ and not of feature-oriented languages
in general, and it occurs because of the lack of assignment. FJ and FFJ omit
assignments in order to simplify the formal system. Real languages and tools
are more powerful. Another example is that, when instantiating a class with a
subsequence of arguments, the subsequence must match a prefix of the construc-
tor’s argument list. This impairs the refinements of classes that have subclasses.

23

Therefore, we require that only bottom-level classes are instantiated with default
values (see Section 4.2). Again, this limitation appears only in the formalism and
vanishes in a real programming language or tool.

6 Related Work

Our work on FFJ was motivated by the work of Thaker et al. [34]. They suggested
the development of a type system for feature-oriented programming languages
and sketched some key type rules. Furthermore, they reported from some case
studies in which they found hidden errors using these rules. Nevertheless, their
type system is just a sketch, described only informally, and they do not provide a
soundness proof. We have presented such a type system along with a soundness
proof that provides a superset of the rules of Thaker et al.

FFJ is inspired by several feature-oriented languages and tools, most notably
AHEAD [8], FeatureC++ [5], FSTComposer [7], and Prehofer’s feature-oriented
Java extension [32]. A key aim of these languages is to separate the implemen-
tation of software artifacts, e.g., classes and methods, from the definition of fea-
tures. That is, classes and refinements are not annotated or declared to belong
to a feature. There is no statement in the program text that defines explicitly a
connection between code and features. Instead, the mapping of software artifacts
to features is established via containment hierarchies, as explained in Section 2.
The advantage of this approach is that a feature’s implementation can include,
beside classes in form of Java files, also other supporting documents, e.g., docu-
mentation in form of HTML files, grammar specification in form of JavaCC files,
or build scripts and deployment descriptors in form of XML files [8]. To this end,
feature composition merges classes not only with their refinements but also other
artifacts such as HTML or XML files with their respective refinements [2,7].

Jiazzi and C#3.0 are two languages that are commonly not associated with
FOP but that provide very similar mechanisms. With Jiazzi, a programmer can
aggregate several classes in a component and compose them in a feature-oriented
fashion [26]. The mapping between code and components is described externally
by means of a separate linker language. In C#, there is the possibility to specify
a class refinement, which is called a partial class. Aggregating a set of (partial)
classes in a file system directory is very similar to feature-oriented languages, in
which a feature’s constituting artifacts are aggregated in a containment hierar-
chy. A difference is that also the class that is refined must be declared as partial,
which has to be anticipated by the programmer.

Another class of programming languages that provide mechanisms for the def-
inition and extension of classes and class hierarchies includes, e.g., ContextL [16],
Scala [30], Classbox/J [9], and Jx [28]. The difference to feature-oriented lan-
guages is that they provide explicit language constructs for aggregating the
classes that belong to a feature, e.g., family classes, classboxes, or layers. This
implies that noncode software artifacts cannot be included in a feature [6].

Similarly, related work on a formalization of the key concepts underlying FOP
has not separated features from code. Especially, calculi for mixins [14,10,1,20],

24

traits [24], family polymorphism and virtual classes [19,13,17,11], dependent
types [30,29], dependent classes [15], and nested inheritance [28] either support
only the refinement of single classes or expect the classes that form a seman-
tically coherent unit (i.e., that belong to a feature) to be located in a physical
module that is defined in the host programming language. For example, a vir-
tual class is by definition an inner class of the enclosing object, or a classbox is a
package that aggregates a set of related classes. Thus, FFJ differs from previous
approaches in that it relies on contextual information that has been collected by
the composition engine, e.g., the features’ composition order or the mapping of
classes and refinements to features.

A different line of research aims at the language-independent reasoning about
features [8,25,7,23]. gDeep is most related to FFJ since it provides a type system
for feature-oriented languages that is language-independent [3]. The idea is that
the recursive process of merging software artifacts and their refinements, when
composing hierarchically structured features, is very similar for different host
languages, e.g., for Java, C#, and XML. gDeep describes formally how feature
composition is performed and what type constraints have to be satisfied. In
contrast, FFJ does not aspire to be language-independent, although the key
concepts can certainly be used with different languages. The advantage of FFJ
is that its type system can be used to check whether terms of the host language
(Java/FJ) violate the principles of FOP and SWR, e.g., whether methods refer
to classes that have been added subsequently. Due to its language independence,
gDeep does not have enough information to perform such checks; however, both
FFJ and gDeep could be integrated.

Czarnecki et al. have presented an automatic verification procedure for en-
suring that no ill-structured UML model template instances will be generated
from a valid feature selection [12]. They use OCL constraints to express and
implement a type system for model composition. In this sense, their aim is very
similar to FFJ, but limited to UML diagram artifacts.

Kästner et al. have implemented a tool, called CIDE, that allows a developer
to refactor a legacy software system into features [22,23]. In contrast to the
feature-oriented languages and tools we have discussed so far, the link between
code and features is established via annotations. Hence, the code of features
is not separated physically. If a user selects a set of features, all code that is
annotated with features that are not present in the selection is removed. A set
of type rules ensures that only well-typed programs can be generated, e.g., if
a method declaration is removed, the remaining code must not contain calls to
that method anymore. This guaranty of well-formedness is very similar to FFJ.
In some sense, our approach and the approach of CIDE are two sides of the same
coin: one aims at feature composition and the other at feature decomposition.

7 Conclusion

FOP is a paradigm that incorporates programming language technology, pro-
gram generation techniques, and SWR. The question of what a type system for

25

FOP should look like has not been answered before [34]. We have presented a
type system for FOP on top of a simple, feature-oriented language, called FFJ.
The type system can be used to check before compilation whether a given com-
position of features is safe. FFJ is interesting insofar as it incorporates reasoning
at the programming language level and the composition engine at the meta level,
which is different from previous work. We have been able to show that FFJ’s
type system is sound.

Furthermore, we have explored several variations of FFJ for SWR and have
shown that they are type-sound as well. FFJ is a promising start in experi-
menting with further extensions such as separate compilation, method signature
extension, field overriding, feature interfaces, optional method refinements, and
many more.

References

1. D. Ancona, G. Lagorio, and E. Zucca. Jam—Designing a Java Extension with
Mixins. ACM Trans. Programming Languages and Systems, 25(5):641–712, 2003.

2. F. Anfurrutia, O. Díaz, and S. Trujillo. On Refining XML Artifacts. In Proc. Int’l.
Conf. Web Engineering, volume 4607 of LNCS, pages 473–478. Springer-Verlag,
2007.

3. S. Apel and D. Hutchins. An Overview of the gDeep Calculus. Technical Re-
port MIP-0712, Department of Informatics and Mathematics, University of Passau,
2007.

4. S. Apel, C. Kästner, T. Leich, and G. Saake. Aspect Refinement - Unifying AOP
and Stepwise Refinement. Journal of Object Technology – Special Issue: TOOLS
EUROPE’07, 2007.

5. S. Apel, T. Leich, M. Rosenmüller, and G. Saake. FeatureC++: On the Symbiosis
of Feature-Oriented and Aspect-Oriented Programming. In Proc. Int’l. Conf. Gen-
erative Programming and Component Engineering, volume 3676 of LNCS, pages
125–140. Springer-Verlag, 2005.

6. S. Apel, T. Leich, and G. Saake. Aspectual Feature Modules. IEEE Trans. Software
Engineering, 34(2):162–180, 2008.

7. S. Apel and C. Lengauer. Superimposition: A Language-Independent Approach to
Software Composition. In Proc. Int’l. Symp. Software Composition, volume 4954
of LNCS, pages 20–35. Springer-Verlag, 2008.

8. D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. IEEE
Trans. Software Engineering, 30(6):355–371, 2004.

9. A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J: Controlling the Scope of
Change in Java. In Proc. Int’l. Conf. Object-Oriented Programming, Systems,
Languages, and Applications, pages 177–189. ACM Press, 2005.

10. V. Bono, A. Patel, and V. Shmatikov. A Core Calculus of Classes and Mixins.
In Proc. Europ. Conf. Object-Oriented Programming, volume 1628 of LNCS, pages
43–66. Springer-Verlag, 1999.

11. D. Clarke, S. Drossopoulou, J. Noble, and T. Wrigstad. Tribe: A Simple Virtual
Class Calculus. In Proc. Int’l. Conf. Aspect-Oriented Software Development, pages
121–134. ACM Press, 2007.

12. K. Czarnecki and K. Pietroszek. Verifying Feature-Based Model Templates Against
Well-Formedness OCL Constraints. In Proc. Int’l. Conf. Generative Programming
and Component Engineering, pages 211–220. ACM Press, 2006.

26

13. E. Ernst, K. Ostermann, and W. Cook. A Virtual Class Calculus. In Proc. Int’l.
Symp. Principles of Programming Languages, pages 270–282. ACM Press, 2006.

14. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and Mixins. In Proc. Int’l.
Symp. Principles of Programming Languages, pages 171–183. ACM Press, 1998.

15. V. Gasiunas, M. Mezini, and K. Ostermann. Dependent Classes. In Proc. Int’l.
Conf. Object-Oriented Programming, Systems, Languages, and Applications, pages
133–152. ACM Press, 2007.

16. R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-Oriented Programming. J.
Object Technology, 7(3):125–151, 2008.

17. D. Hutchins. Eliminating Distinctions of Class: Using Prototypes to Model Virtual
Classes. In Proc. Int’l. Conf. Object-Oriented Programming, Systems, Languages,
and Applications, pages 1–19. ACM Press, 2006.

18. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A Minimal Core Calcu-
lus for Java and GJ. ACM Trans. Programming Languages and Systems, 23(3):396–
450, 2001.

19. A. Igarashi, C. Saito, and M. Viroli. Lightweight Family Polymorphism. In Proc.
Asian Symp. Programming Languages and Systems, volume 3780 of LNCS, pages
161–177. Springer-Verlag, 2005.

20. T. Kamina and T. Tamai. McJava – A Design and Implementation of Java with
Mixin-Types. In Proc. Asian Symp. Programming Languages and Systems, volume
3302 of LNCS, pages 398–414. Springer-Verlag, 2004.

21. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, 1990.

22. C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software Product Lines.
In Proc. Int’l. Conf. Software Engineering. ACM Press, 2008.

23. C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory. Language-
Independent Safe Decomposition of Legacy Applications into Features. Technical
Report 02/2008, School of Computer Science, University of Magdeburg, 2008.

24. L. Liquori and A. Spiwack. FeatherTrait: A Modest Extension of Featherweight
Java. ACM Trans. Programming Languages and Systems, 30(2):1–32, 2008.

25. R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined Approach to As-
pect Composition. In Proc. Int’l. Symp. Partial Evaluation and Semantics-Based
Program Manipulation, pages 68–77. ACM Press, 2006.

26. S. McDirmid, M. Flatt, and W. Hsieh. Jiazzi: New-Age Components for Old-
Fashioned Java. In Proc. Int’l. Conf. Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 211–222. ACM Press, 2001.

27. N. McEachen and R. T. Alexander. Distributing Classes with Woven Concerns:
An Exploration of Potential Fault Scenarios. In Proc. Int’l. Conf. Aspect-Oriented
Software Development, pages 192–200. ACM Press, 2005.

28. N. Nystrom, S. Chong, and A. Myers. Scalable Extensibility via Nested Inheri-
tance. In Proc. Int’l. Conf. Object-Oriented Programming, Systems, Languages,
and Applications, pages 99–115. ACM Press, 2004.

29. M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A Nominal Theory of Ob-
jects with Dependent Types. In Proc. Europ. Conf. Object-Oriented Programming,
volume 2743 of LNCS, pages 201–224. Springer-Verlag, 2003.

30. M. Odersky and M. Zenger. Scalable Component Abstractions. In Proc. Int’l.
Conf. Object-Oriented Programming, Systems, Languages, and Applications, pages
41–57. ACM Press, 2005.

31. K. Ostermann. Nominal and Structural Subtyping in Component-Based Program-
ming. J. Object Technology, 7(1):121–145, 2008.

27

32. C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In Proc.
Europ. Conf. Object-Oriented Programming, volume 1241 of LNCS, pages 419–443.
Springer-Verlag, 1997.

33. A. Taivalsaari. On the Notion of Inheritance. ACM Comp. Surv., 28(3):438–479,
1996.

34. S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of Product
Lines. In Proc. Int’l. Conf. Generative Programming and Component Engineering,
pages 95–104. ACM Press, 2007.

35. M. Torgersen. The Expression Problem Revisited. In Proc. Europ. Conf. Object-
Oriented Programming, volume 3086 of LNCS, pages 123–143. Springer-Verlag,
2004.

36. N. Wirth. Program Development by Stepwise Refinement. Comm. ACM,
14(4):221–227, 1971.

37. A. K. Wright and M. Felleisen. A Syntactic Approach to Type Soundness. Inf.
Comput., 115(1):38–94, 1994.

A Auxiliary Functions

A.1 Evaluation of Method Refinements

The auxiliary function eval substitutes every occurrence of original with the
body of the method that is refined. The arguments of the methods are renamed
accordingly:

CT (C) = class C extends D { . . .MD }
pred(R) = C C0 m(C x) { return t0 } ∈ MD

eval(m,R, t) −→ [original(y) 7→ [x 7→ y] t0] t

CT (S) = refines class C { . . .MD }
pred(R) = S C0 m(C x) { return t0 } ∈ MD

eval(m,R, t) −→ [original(y) 7→ [x 7→ y] t0] t

CT (S) = refines class C { . . .MR }
pred(R) = S refines C0 m(C x) { return t0 } ∈ MR
eval(m,R, t) −→ eval(m, S, [original(y) 7→ [x 7→ y] t0] t)

CT (S) = refines class C { . . .MD MR }
pred(R) = S m is not defined in MR or MD

eval(m,R, t) −→ eval(m, S, t)

A.2 Valid Superclass Declaration

The auxiliary function inherit returns whether a refinement declares no super-
class that has been declared before in the refinement chain:

inherit(C,C)

super(C) ∩ super(R) = {Object} inherit(C, pred(R))
inherit(C,R)

28

It relies on the function super that returns all superclasses of a class or class
refinement:

super(Object) = ∅

CT (C) = class C extends D { . . . }
super(C) = {D} ∪ super(D) ∪ super(succ(C))

CT (R) = refines class C extends D { . . . }
super(R) = {D} ∪ super(D) ∪ super(succ(R))

A.3 Backward References

The function backward expects as arguments a class or refinement and another
class or refinement and returns wheter the former has been introduced previously
(we show here only the cases for classes):

D has been introduced before C
backward(D,C)

or a list of classes or refinements and a class or refinement:

backward(D1,C) . . . backward(Dn,C)
backward(D,C)

Furthermore, backward may be used with a list of terms and a class or refinement:

backward(t1,C) . . . backward(tn,C)
backward(t,C)

or a single term and a class or refinement, in which the term may have six
different shapes:

backward(x,C)
backward(t,C)

backward(original(t),C)

Γ ` t : D RT (D, f) = R backward(R,C) backward(t,C)
backward(t.f,C)

Γ ` t : D RT (D,m) = R
backward(R,C) backward(t,C) backward(t,C)

backward(t.m(t),C)

backward(D,C) backward(t,C)
backward(new D(t),C)

backward(D,C) backward(t,C)
backward((D)t,C)

Note that in two of the above rules a refinement table RT is used to determine
the refinement that adds a field or method to a class: RT (D, f) determines the
refinement that adds the field f to class D; RT (D,m) determines the refinement
that adds the method f to class D.

29

B Type Soundness

B.1 Type Soundness Proof of Basic FFJ

Theorem B1 (Preservation): If Γ ` t : C and t −→ t′, then Γ ` t′: C′ for some
C′<: C.

Before giving the main proof, we develop some required lemmas.
Lemma B1: If mtype(m,D) = C → C0, then mtype(m,C) = C → C0 for all
C <: D.

Proof. Straightforward induction on the derivation of C <: D. Note that, whether
m is defined in CT (C) or not, mtype(m,C) should be the same as mtype(m,E)
where either CT (C) = class C extends E { . . . } or succ(C) = E. That is, overrid-
ing or refining a method with an refinement preserves the type of the method.

Lemma B2 (Term substitution preserves typing): If Γ, x : B ` t : D and Γ, s : A,
where A <: B, then Γ ` [x 7→ s] t : C for some C <: D.

Proof. By induction on the derivation of Γ, x : B ` t : D.
Case (T-Var): t = x x : D ∈ Γ

If x 6∈ x, then the result is trivial since [x 7→ s] x = x. On the other hand, if
x = xi and D = Bi, then, since [x 7→ s] x = si, letting C = Ai finishes the case.
Case (T-Field): t = t0.fi Γ, x : B ` t0 : D0 fields(D0) = C f D = Ci

By the induction hypothesis, there is some C0 such that Γ ` [x 7→ s] t0 : C0

and C0 <: D0. It is easy to check that fields(C0) = (fields(D0),D g) for some D g.
Therefore, by T-Field, Γ ` ([x 7→ s] t0).fi : Ci. The fact that a class’ refinements
can add new fields does not affect this case. D g contains the fields that C0 adds
and the fields that the refinements of C0 add.
Case (T-Invk): t = t0.m(t) Γ, x : B ` t0 : D0 mtype(m,D0) = E→D
Γ, x : B ` t : D D <: E

By the induction hypothesis, there are some C0 and C such that:

Γ ` [x 7→ s] t0 : C0 C0 <: D0 Γ ` [x 7→ s] t : C C <: D.

By Lemma B1, it follows mtype(m,C0) = E → D. Moreover, C <: E by the
transitivity of <:. Therefore, by T-Invk, Γ ` [x 7→ s] t0.m([x 7→ s] t) : D. Since
a refinement can override a method but not change the type (no overloading),
this case does not change with FFJ.
Case (T-New): t = new D(t) fields(D) = D f Γ, x : B ` t : C C <: D

By the induction hypothesis, Γ ` [x 7→ s] t : E for some E with E <: C. We
have E <: D by the transitivity of <:. Therefore, by the rule T-New, Γ `
new D([x 7→ s] t) : D. Since each refinement must extend the constructor to ini-
tialize the fields it adds, this case remains unchanged. That is, the number of
arguments (t) equals the number of fields (f) the function fields returns.
Case (T-UCast): t = (D)t0 Γ, x : B ` t0 : C C <: D

30

By the induction hypothesis, there is some E such that Γ ` [x 7→ s] t0 : E and
E <: C. We have E <: D by the transitivity of the subtype relation <:, which
yields Γ ` (D)([x 7→ s] t0) : D by T-UCast.
Case (T-DCast): t = (D)t0 Γ, x : B ` t0 : C D <: C D 6= C

By the induction hypothesis, there is some E such that Γ ` [x 7→ s] t0 : E
and E <: C. If E <: D or D <: E, then Γ ` (D)([x 7→ s] t0) : D by T-UCast or
T-DCast, respectively. If both D 6<: E and E 6<: D, then Γ ` (D)([x 7→ s] t0) : D
(with a stupid warning) by T-SCast.
Case (T-SCast): t = (D)t0 Γ, x : B ` t0 : C D 6<: C C 6<: D

By the induction hypothesis, there is some E such that Γ ` [x 7→ s] t0 : E
and E <: C. This means that E 6<: D (in basic FFJ, each class has just one
superclass. It follows that, if both E <: C and E <: D, then either C <: D or
D <: C) So Γ ` (D)([x 7→ s] t0) : D (with a stupid warning), by T-SCast.

Lemma B3 (Weakening): If Γ ` t : C, then Γ, x : D ` t : C

Proof. Straightforward induction. Nothing changes in FFJ compared to FJ.

Lemma B4: If mtype(m,C0) = D→D, and mbody(m,C0) = (x, t), then for some
D0 and some C <: D we have C0 <: D0 and x : D, this : D0 ` t : C.

Proof. By induction on the derivation of mbody(m,C0). The base case (in which
m is defined in C0) is easy since m is defined in CT (C0) and the well-formedness
of the class table implies that we must have derived x : D, this : C0 ` t : C by
the well-formedness rules of method declarations and refinements. The induction
step is also straightforward. This lemma holds for FFJ since a method refinement
does not change the argument and result types of a method and this points always
to the class that is refined.

Proof of Theorem B1 (Preservation). By induction on a derivation of t −→ t′,
with a case analysis on the final rule.
Case (E-ProjNew): t = new C0(v).fi t′ = vi fields(C0) = D f

From the shape of t, we see that the final rule in the derivation of Γ ` t : C
must be T-Field, with premise Γ ` new C0(v) : D0, for some D0, and that
C = Di. Similarly, the last rule in the derivation of Γ ` new C0(v) : D0 must be
T-New, with premises Γ ` v : C and C <: D, and with D0 = C0. In particular,
Γ ` vi : Ci, which finishes the case, since Ci <: Di.
Case (E-InvkNew): t = (new C0(v)).m(u) t′ = [x 7→ u, this 7→ new C0(v)] t0
mbody(m,C0) = (x, t0)

The final rule in the derivation of Γ ` t : C must be T-Invk and T-New,
with premises Γ ` new C0(v) : C0, Γ ` u : C, C <: D, and mtype(m,C0) =
D → C. By Lemma B4, we have x : D, this : D0 ` t : B for some D0 and B,
with C0 <: D0 and B <: C. By Lemma B3, Γ, x : D, this : D0 ` t0 : B. Then, by
Lemma B2, Γ [x 7→ u, this 7→ new C0(v)] t0 : E for some E <: B. By the transitiv-
ity of <:, we obtain E <: C. Letting C′ = E completes the case.

31

Case (E-CastNew): t = (D)(new C0(v)) C0 <: D t′ = new C0(v)

The proof of Γ ` (D)(new C0(v)) : C must end with T-UCast since ending
with T-SCast or T-DCast would contradict the assumption C0 <: D. The
premises of T-UCast, give us Γ ` new C0(v) : C0 and D = C, finishing the
case.

The cases for the congruence rules are easy. We show just the case E-Cast.
Case (E-Cast): t = (D)t0 t′ = (D)t′0 t0 −→ t′0

There are three subcases according to the last typing rule used.
Subcase (T-UCast): Γ ` t0 : C0 C0 <: D D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. By transitiv-
ity of <:, C′0 <: C. Therefore, by T-UCast Γ ` (C)t′0 : C (with no additional
stupid warning).
Subcase (T-DCast): Γ ` t0 : C0 D <: C0 D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. If C′0 <: C or
C <: C′0, then Γ ` (C)t′0 : C by T-UCast or T-DCast (without any additional
stupid warning). On the other hand, if both C′0 6<: C or C 6<: C′0, then, Γ `
(C)t′0 : C with a stupid warning by T-SCast.
Subcase (T-SCast): Γ ` t0 : C0 D 6<: C0 C0 6<: D D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. Then, both
C′0 6<: C and C 6<: C′0 also hold. Therefore Γ ` (C)t′0 : C with a stupid warning .

If C′0 6<: C, then C 6<: C′0 since C 6<: C0 and, therefore, Γ ` (C)t′0 : C with
stupid warning . If C′0 <: C, then Γ ` (C)t′0 : C by T-UCast (with no additional
stupid warning). This subcase is analogous to the case T-SCast of the proof of
Lemma B2.

Theorem B2 (Progress): Suppose t is a well-typed term.
1. If t includes new C0(t).fi as a subterm, then fields(C0) = C f for some C and

f.
2. If t includes new C0(t).m(u) as a subterm, then mbody(m,C0) = (x, t0) and
|x| = |u| for some x and t0.

Proof. If t has new C0(t).fi as a subterm, then, by well-typedness of the subterm,
it is easy to check that fields(C0) is well-defined and fi appears in it. The fact
that class refinements may add fields (that have not been defined already) does
not change this conclusion. Similarly, if t has new C0(t).m(u) as a subterm, then
it is also easy to show that mbody(m,C0) = (x, t0) and |x| = |u| from the fact
that mtype(m,C0) = C→D where |x| = |C|. This conclusion holds for FFJ since
a method refinement must have the same signature than the method refined.

Theorem B3 (FFJ Type Soundness): If ∅ ` t : C and t −→∗ t′ with t′ a normal
form, then t′ is either a value v with ∅ ` v : D and D <: C, or a term containing
(D)(new C(t)) in which C <: D.

32

Proof. Immediate from Theorem B1 and B2. Nothing changes in the proof of
Theorem B3 for FFJ compared to FJ.

B.2 Type Soundness Proof of FFJME

The case E-InvkNew of the proof of Theorem B1 (Preservation) is the only that
might be affected by the extension of FFJME since in its assumption it contains
a method body, which now may contain an original. However, E-InvkNew2, the
new evaluation rule of FFJME , substitutes each occurrence of original. This eval-
uation process results in a method body that is indistinguishable from a common
FFJ (or FJ) method body. Thus, the proof proceeds with the assumptions of
FFJ. That is, FFJME is type-sound.

B.3 Type Soundness Proof of FFJDV

Compared to basic FFJ, the case T-New of the proof of Lemma B2 changes as
follows:
Case (T-New): t = new D(t) fields(D) = D f,H h Γ, x : B ` t : C C <: D

By the induction hypothesis, Γ ` [x 7→ s] t : E for some E with E <: C. We
have E <: D by the transitivity of <:. Therefore, by the FFJDV version of T-
New, Γ ` new D([x 7→ s] t) : D. The key is that only for a subset of fields (D f)
values have to be provided, instead of values for all fields (D f,H h).

Furthermore, the case E-ProjNew of the proof of Theorem B1 (Preserva-
tion) changes. Since we have now two cases for projection (E-ProjNew1 and
E-ProjNew2), we need two consider both in the new proof:
Case (E-ProjNew1): t = new C0(v).fi t′ = vi fields(C0) = D f,E h
|v| = |f| |C| = |D|

With default values, the number of arguments v that are supplied during the
instantiation of the class can be lesser than the number of fields D f,E h of the
class. In this case, a value vi is supplied for the field fi that is projected. The
remaining proof is similar to FFJ without default values.
Case (E-ProjNew2): t = new C0(v).hi t′ = default(Ei) fields(C0) = D f,E h
|v| = |f| |C| = |D|

In this case, no value is supplied for the field hi that is projected. Therefore,
by rule E-ProjNew2, a default value default(Ei) is supplied. By the typing rule
T-Default Γ ` default(Ei) : Ei, which finishes the case, since Ei <: Ei.

Including the above changes, FFJDV is type-sound.

B.4 Type Soundness Proof of FFJSD

Compared to basic FFJ, the only cases that differ are for stupid casts since now
classes may inherit from multipe superclasses. Case T-SCast of the proof of
Lemma B2 changes as follows:
Case (T-SCast): t = (D)t0 Γ, x : B ` t0 : C D 6<: C C 6<: D

33

By the induction hypothesis, there is some E such that Γ ` [x 7→ s] t0 : E
and E <: C. If E 6<: D, by the transitivity of <:, D 6<: E since D 6<: C and Γ `
(D)([x 7→ s] t0) : D (with a stupid warning) by T-SCast. On the other hand, if
E <: D, then Γ ` (D)([x 7→ s] t0) : D by T-UCast. This case is different from
FJ since E can be a subclass of C and D with D 6<: C and C 6<: D. In FFJ, there
would be either D <: C or C <: D. Thus, in FFJ, if E <: D T-UCast finishes
the case; otherwise, like in FJ, T-SCast finishes the case.

Subcase T-SCast of the proof of Theorem B1 (Preservation) changes as
follows:

Subcase (T-SCast): Γ ` t0 : C0 D 6<: C0 C0 6<: D D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. If C′0 6<: C, then
C 6<: C′0 since C 6<: C0 and, therefore, Γ ` (C)t′0 : C with stupid warning . If
C′0 <: C, then Γ ` (C)t′0 : C by T-UCast (with no additional stupid warning).
This subcase is analogous to the case T-SCast of the proof of Lemma B2.

Including the above changes, FFJSD is type-sound.

C The Complete FFJ Calculus Including all Extensions

For completeness, we provide in this section the FFJ calculus including all ex-
tensions, called full FFJ, along with the type soundness proof.

C.1 Syntax of Full FFJ

In Figure 10, we depict the syntax rules of full FFJ.

C.2 Subtyping and Refinement in Full FFJ

In Figure 11, we define the subtyping and refinement relations of full FFJ.

C.3 Auxiliary Definitions of Full FFJ

In Figures 12, 13, 14, 15, we list the auxiliary definitions used in full FFJ.

C.4 Evaluation of Full FFJ

In Figure 16, we show the evaluation rules of full FFJ.

C.5 Typing of Full FFJ

In Figure 16, we show the type rules of full FFJ.

34

CD ::= class declarations:
class C extends C { C f; KD MD }

CR ::= class refinements:
refines class C extends D { C f; KR MD MR }

KD ::= constructor declarations:
C(D g, C f) { super(g); this.f=f; }

KR ::= constructor refinements:
refines C(D g, E h, C f) { super(g); original(h); this.f=f; }

MD ::= method declarations:
C m(C x) { return t; }

MR ::= method refinements:
refines C m(C x) { return t; }

t ::= terms:
x variable
t.f field access
t.m(t) method invocation
original(t) original invocation
new C(t) object creation
(C) t cast

v ::= values:
new C(v) object creation

Fig. 10. Syntax of FFJ including all extensions.

Navigating the refinement chain
S is the successor of R

succ(R) = S
S is the predecessor of R

pred(R) = S

Subtyping C <: D

C <: C
C <: D D <: E

C <: E
CT (C) = class C extends D { . . . }

C <: D

CT (R) = refines class C extends D { . . . }
C <: D

Fig. 11. Subtyping and refinement in FFJ including all extensions.

35

Field lookup fields(C) = C f

fields(Object) = • CT (C) = class C extends D { C f; KD MD }
fields(C) = fields(D), C f, fields(succ(C))

CT (R) = refines class C extends D { C f; KR MD MR }
fields(R) = fields(D), C f, fields(succ(R))

Reverse field lookup rfields(R) = C f

rfields(Object) = • CT (C) = class C extends D { C f; KD MD }
rfields(C) = fields(D), C f

CT (R) = refines class C extends D { C f; KR MD MR }
rfields(R) = rfields(pred(R)), fields(D), C f

Method type lookup mtype(m,C) = C→C

CT (C) = class C extends D { C f; KD MD } B m(B x) { return t; } ∈ MD

mtype(m,C) = B→B

CT (C) = class C extends D { C f; KD MD }
m is not defined in MD mtype(m, succ(C))

mtype(m,C) = mtype(m, succ(C))

CT (C) = class C extends D { C f; KD MD }
m is not defined in MD ¬mtype(m, succ(C))

mtype(m,C) = mtype(m,D)

CT (R) = refines class C extends D{ C f; KR MD MR } B m(B x) { return t; } ∈ MD

mtype(m,R) = B→B

CT (R) = refines class C extends D { C f; KR MD MR }
m is not defined in MD ¬mtype(m, succ(R))

mtype(m,R) = mtype(m,D)

CT (R) = refines class C extends D { C f; KR MD MR }
m is not defined in MD mtype(m, succ(R))

mtype(m,R) = mtype(m, succ(R))

Fig. 12. Auxiliary definitions of FFJ including all extensions.

36

Reverse method type lookup rmtype(m,C) = C→C

CT (C) = class C extends D { C f; KD MD } B m(B x) { return t; } ∈ MD

rmtype(m,C) = B→B

CT (R) = refines class C extends D { C f; KR MD MR } B m(B x) { return t; } ∈ MD

rmtype(m,R) = B→B

CT (R) = refines class C extends D{ C f; KR MD MR } m is not defined in MD
rmtype(m,R) = rmtype(m, pred(R))

Method body lookup mbody(m,C) = (x, t)

CT (C) = class C extends D { C f; KD MD }
B m(B x) { return t; } ∈ MD ¬mbody(m, succ(C))

mbody(m,C) = (x, t)

CT (C) = class C extends D { C f; KD MD }
m is not defined in MD ¬mbody(m, succ(C))

mbody(m,C) = mbody(m,D)
mbody(m, C) = mbody(m, succ(C))

CT (R) = refines class C extends D { C f; KR MD MR } ¬mbody(m, succ(R))
B m(B x) { return t; } ∈ MD or refines B m(B x) { return t; } ∈ MR

mbody(m,R) = (x, t)

CT (R) = refines class C extends D { C f; KR MD MR }
m is not defined in MD or MR ¬mbody(m, succ(R))

mbody(m,R) = mbody(m,D)

CT (R) = refines class C extends D { C f; KR MD MR }
mbody(m,R) = mbody(m, succ(R))

Valid method overriding override(m,D,C→C0)

mtype(m,D) = D→D0 implies C = D and C0 = D0

override(m,D,C→C0)

Valid method introduction introduce(m,C)

¬mtype(m, succ(C))
introduce(m,C)

Valid method refinement extend(m,R,C→C0)

rmtype(m, pred(R)) = B→B0 implies C = B and C0 = B0

extend(m,R,C→C0)

Fig. 13. Auxiliary definitions of FFJ including all extensions (continued).

37

Method refinement evaluation eval(m,R, t)

CT (C) = class C extends D { . . .MD }
pred(R) = C C0 m(C x) { return t0 } ∈ MD

eval(m,R, t) −→ [original(y) 7→ [x 7→ y] t0] t

CT (S) = refines class C extends D { . . .MD }
pred(R) = S C0 m(C x) { return t0 } ∈ MD

eval(m,R, t) −→ [original(y) 7→ [x 7→ y] t0] t

CT (S) = refines class C extends D { . . .MR }
pred(R) = S refines C0 m(C x) { return t0 } ∈ MR
eval(m,R, t) −→ eval(m,S, [original(y) 7→ [x 7→ y] t0] t)

CT (S) = refines class C extends D { . . .MD MR }
pred(R) = S m is not defined in MR or MD

eval(m,R, t) −→ eval(m,S, t)

Valid superclass declaration inherit(C,R)

inherit(C,C)
super(C) ∩ super(R) = {Object} inherit(C, pred(R))

inherit(C,R)

Superclass lookup super(C)

super(Object) = ∅ CT (C) = class C extends D { . . . }
super(C) = {D} ∪ super(D) ∪ super(succ(C))

CT (R) = refines class C extends D { . . . }
super(R) = {D} ∪ super(D) ∪ super(succ(R))

Fig. 14. Auxiliary definitions of FFJ including all extensions (continued).

38

Backward reference backward(D,C)

D has been introduced before C
backward(D,C)

backward(D1,C) . . . backward(Dn,C)

backward(D,C)

backward(t1,C) . . . backward(tn,C)

backward(t,C)

backward(x,C)
backward(t,C)

backward(original(t),C)

Γ ` t : D RT (D, f) = R backward(R,C) backward(t,C)

backward(t.f,C)

Γ ` t : D RT (D,m) = R
backward(R,C) backward(t,C) backward(t,C)

backward(t.m(t),C)

backward(D,C) backward(t,C)

backward(new D(t),C)

backward(D,C) backward(t,C)

backward((D)t,C)

Default value default(C)

default(Object) = new Object()

fields(C) = C f
default(C) = new C(default(C1), . . . , default(Cn))

Fig. 15. Auxiliary definitions of FFJ including all extensions (continued).

39

fields(C) = C f |v| ≥ i

(new C(v)).fi −→ vi
(E-ProjNew1)

fields(C) = C f |v| < i

(new C(v)).fi −→ default(Ci)
(E-ProjNew2)

mbody(m,C) = (x, t0) succ(C) = Object
(new C(v)).m(u) −→ [x 7→ u, this 7→ new C(v)] t0

(E-ProjInvk1)

mbody(m,C) = (x, t0) R is the final refinement of C
(new C(v)).m(u) −→ [x 7→ u, this 7→ new C(v)] eval(m,R, t0)

(E-ProjInvk2)

C <: D
(D)(new C(v)) −→ new C(v)

(E-CastNew)

t0 −→ t′0
t0.f −→ t′0.f

(E-Field)

t0 −→ t′0
t0.m(t) −→ t′0.m(t)

(E-InvkRecv)

ti −→ t′i
v0.m(v, ti, t) −→ v0.m(v, t′i, t)

(E-InvkArg)

ti −→ t′i
new C(v, ti, t) −→ new C(v, t′i, t)

(E-NewArg)

t0 −→ t′0
(C)t0.f −→ (C)t′0.f

(E-Cast)

Fig. 16. Evaluation of FFJ including all extensions.

40

Term typing Γ ` t : C
x : C ∈ Γ

Γ ` x : C
(T-Var)

Γ ` t0 : C0 fields(C0) = C f
Γ ` t0.fi : Ci

(T-Field)

Γ ` t0 : C0 mtype(m,C0) = D→C Γ ` t : C C <: D
Γ ` t0.m(t) : C

(T-Invk)

fields(C) = D f,E h Γ ` t : C C <: D
Γ ` new C(t) : C

(T-New)

Γ ` t0 : D D <: C
Γ ` (C)t0 : C

(T-UCast)

Γ ` t0 : D C <: D C 6= D
Γ ` (C)t0 : C

(T-DCast)

Γ ` t0 : D C 6<: D D 6<: C stupid warning

Γ ` (C)t0 : C
(T-SCast)

` default(C) : C (T-Default)

Fig. 17. Typing in FFJ including all extensions.

41

Method typing MD OK in C/R

x : C, this : C ` t0 : E0 E0 <: C0 CT (C) = class C extends D { . . . }
override(m,D,C→C0) introduce(m,C) t0 does not contain original

backward(C,C) backward(C0,C) backward(t0,C)

C0 m(C x) { return t0; } OK in C

x : C, this : C ` t0 : E0 E0 <: C0 CT (R) = refines class C extends D { . . . }
override(m,D,C→C0) introduce(m,R) t0 does not contain original

backward(C,C) backward(C0,C) backward(t0,C)

C0 m(C x) { return t0; } OK in R

Method refinement typing MR OK in R

x : C, this : C ` t0 : E0 E0 <: C0 CT (R) = refines class C extends D { . . .MD . . . }
m not defined in MD extend(m,R,C→C0) t0 contains original

backward(C,R) backward(C0,R) backward(t0,R)

refines C0 m(C x) { return t0; } OK in R

Class typing C OK

KD = C(D g, C f) { super(g); this.f=f; } fields(D) = D g MD OK in C
backward(C,C) backward(D,C) backward(D,C)

class C extends D { C f; KD MD } OK

Class refinement typing R OK

KR = C(D g, E h, C f) { super(g); original(h); this.f=f; }
fields(D) = D g rfields(pred(R)) = E h inherit(C,R)

MD OK in R MR OK in R CT (R) = refines class C { C f; KR MD MR }
backward(C,R) backward(D,R) backward(E,R) backward(D,R)

refines class C extends D { C f; KR MD MR } OK

Fig. 18. Typing in FFJ including all extensions (continued).

42

C.6 Type Soundness of Full FFJ

In this section, we provide the type soundness proof of full FFJ.
Theorem C1 (Preservation): If Γ ` t : C and t −→ t′, then Γ ` t′: C′ for some
C′<: C.

Before giving the main proof, we develop some required lemmas.
Lemma C1: If mtype(m,D) = C → C0, then mtype(m,C) = C → C0 for all
C <: D.

Proof. Straightforward induction on the derivation of C <: D. Note that, whether
m is defined in CT (C) or not, mtype(m,C) should be the same as mtype(m,E)
where either CT (C) = class C extends E { . . . } or succ(C) = E. That is, overrid-
ing or refining a method with an refinement preserves the type of the method.

Lemma C2 (Term substitution preserves typing): If Γ, x : B ` t : D and Γ, s : A,
where A <: B, then Γ ` [x 7→ s] t : C for some C <: D.

Proof. By induction on the derivation of Γ, x : B ` t : D.
Case (T-Var): t = x x : D ∈ Γ

If x 6∈ x, then the result is trivial since [x 7→ s] x = x. On the other hand, if
x = xi and D = Bi, then, since [x 7→ s] x = si, letting C = Ai finishes the case.
Case (T-Field): t = t0.fi Γ, x : B ` t0 : D0 fields(D0) = C f D = Ci

By the induction hypothesis, there is some C0 such that Γ ` [x 7→ s] t0 : C0

and C0 <: D0. It is easy to check that fields(C0) = (fields(D0),D g) for some D g.
Therefore, by T-Field, Γ ` ([x 7→ s] t0).fi : Ci. The fact that a class’ refinements
can add new fields does not affect this case. D g contains the fields that C0 adds
and the fields that the refinements of C0 add.
Case (T-Invk): t = t0.m(t) Γ, x : B ` t0 : D0 mtype(m,D0) = E→D
Γ, x : B ` t : D D <: E

By the induction hypothesis, there are some C0 and C such that:

Γ ` [x 7→ s] t0 : C0 C0 <: D0 Γ ` [x 7→ s] t : C C <: D.

By Lemma C1, it follows mtype(m,C0) = E → D. Moreover, C <: E by the
transitivity of <:. Therefore, by T-Invk, Γ ` [x 7→ s] t0.m([x 7→ s] t) : D. Since
a refinement can override a method but not change the type (no overloading),
this case does not change with FFJ.
Case (T-New): t = new D(t) fields(D) = D f,H h Γ, x : B ` t : C C <: D

By the induction hypothesis, Γ ` [x 7→ s] t : E for some E with E <: C. We
have E <: D by the transitivity of <:. Therefore, by the rule T-New, Γ `
new D([x 7→ s] t) : D. The key is that only for a subset of fields (D f) values
have to be provided, instead of values for all fields (D f,H h).
Case (T-UCast): t = (D)t0 Γ, x : B ` t0 : C C <: D

43

By the induction hypothesis, there is some E such that Γ ` [x 7→ s] t0 : E and
E <: C. We have E <: D by the transitivity of the subtype relation <:, which
yields Γ ` (D)([x 7→ s] t0) : D by T-UCast.
Case (T-DCast): t = (D)t0 Γ, x : B ` t0 : C D <: C D 6= C

By the induction hypothesis, there is some E such that Γ ` [x 7→ s] t0 : E
and E <: C. If E <: D or D <: E, then Γ ` (D)([x 7→ s] t0) : D by T-UCast or
T-DCast, respectively. If both D 6<: E and E 6<: D, then Γ ` (D)([x 7→ s] t0) : D
(with a stupid warning) by T-SCast.
Case (T-SCast): t = (D)t0 Γ, x : B ` t0 : C D 6<: C C 6<: D

By the induction hypothesis, there is some E such that Γ ` [x 7→ s] t0 : E
and E <: C. If E 6<: D, by the transitivity of <:, D 6<: E since D 6<: C and Γ `
(D)([x 7→ s] t0) : D (with a stupid warning) by T-SCast. On the other hand, if
E <: D, then Γ ` (D)([x 7→ s] t0) : D by T-UCast. This case is different from
FJ since E can be a subclass of C and D with D 6<: C and C 6<: D. In FFJ, there
would be either D <: C or C <: D. Thus, in FFJ, if E <: D T-UCast finishes
the case; otherwise, like in FJ, T-SCast finishes the case.

Lemma C3 (Weakening): If Γ ` t : C, then Γ, x : D ` t : C

Proof. Straightforward induction. Nothing changes in FFJ compared to FJ.

Lemma C4: If mtype(m,C0) = D→D, and mbody(m,C0) = (x, t), then for some
D0 and some C <: D we have C0 <: D0 and x : D, this : D0 ` t : C.

Proof. By induction on the derivation of mbody(m,C0). The base case (in which
m is defined in C0) is easy since m is defined in CT (C0) and the well-formedness
of the class table implies that we must have derived x : D, this : C0 ` t : C by
the well-formedness rules of method declarations and refinements. The induction
step is also straightforward. This lemma holds for FFJ since a method refinement
does not change the argument and result types of a method and this points always
to the class that is refined.

Proof of Theorem C1 (Preservation). By induction on a derivation of t −→ t′,
with a case analysis on the final rule.
Case (E-ProjNew1): t = new C0(v).fi t′ = vi fields(C0) = D f,E h
|v| = |f| |C| = |D|

With default values, the number of arguments v that are supplied during the
instantiation of the class can be lesser than the number of fields D f,E h of the
class. In this case, a value vi is supplied for the field fi that is projected. The
remaining proof is similar to FFJ without default values.
Case (E-ProjNew2): t = new C0(v).hi t′ = default(Ei) fields(C0) = D f,E h
|v| = |f| |C| = |D|

In this case, no value is supplied for the field hi that is projected. Therefore,
by rule E-ProjNew2, a default value default(Ei) is supplied. By the typing rule
T-Default Γ ` default(Ei) : Ei, which finishes the case, since Ei <: Ei.

44

Case (E-InvkNew): t = (new C0(v)).m(u) t′ = [x 7→ u, this 7→ new C0(v)] t0
mbody(m,C0) = (x, t0)

The final rule in the derivation of Γ ` t : C must be T-Invk and T-New,
with premises Γ ` new C0(v) : C0, Γ ` u : C, C <: D, and mtype(m,C0) =
D → C. By Lemma C4, we have x : D, this : D0 ` t : B for some D0 and B,
with C0 <: D0 and B <: C. By Lemma C3, Γ, x : D, this : D0 ` t0 : B. Then, by
Lemma C2, Γ [x 7→ u, this 7→ new C0(v)] t0 : E for some E <: B. By the transitiv-
ity of <:, we obtain E <: C. Letting C′ = E completes the case.

Note that this case is not affected by the extension of FFJME since E-
InvkNew2 substitutes each occurrence of original. This results in a method
body that is indistinguishable from a common FFJ (or FJ) method body. Thus,
the proof proceed with the assumptions of basic FFJ.
Case (E-CastNew): t = (D)(new C0(v)) C0 <: D t′ = new C0(v)

The proof of Γ ` (D)(new C0(v)) : C must end with T-UCast since ending
with T-SCast or T-DCast would contradict the assumption C0 <: D. The
premises of T-UCast, give us Γ ` new C0(v) : C0 and D = C, finishing the
case.

The cases for the congruence rules are easy. We show just the case E-Cast.
Case (E-Cast): t = (D)t0 t′ = (D)t′0 t0 −→ t′0

There are three subcases according to the last typing rule used.
Subcase (T-UCast): Γ ` t0 : C0 C0 <: D D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. By transitiv-
ity of <:, C′0 <: C. Therefore, by T-UCast Γ ` (C)t′0 : C (with no additional
stupid warning).
Subcase (T-DCast): Γ ` t0 : C0 D <: C0 D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. If C′0 <: C or
C <: C′0, then Γ ` (C)t′0 : C by T-UCast or T-DCast (without any additional
stupid warning). On the other hand, if both C′0 6<: C or C 6<: C′0, then, Γ `
(C)t′0 : C with a stupid warning by T-SCast.
Subcase (T-SCast): Γ ` t0 : C0 D 6<: C0 C0 6<: D D = C

By the induction hypothesis, Γ ` t′0 : C′0 for some C′0 <: C0. If C′0 6<: C, then
C 6<: C′0 since C 6<: C0 and, therefore, Γ ` (C)t′0 : C with stupid warning . If
C′0 <: C, then Γ ` (C)t′0 : C by T-UCast (with no additional stupid warning).
This subcase is analogous to the case T-SCast of the proof of Lemma C2.

Theorem C2 (Progress): Suppose t is a well-typed term.
1. If t includes new C0(t).fi as a subterm, then fields(C0) = C f for some C and

f.
2. If t includes new C0(t).m(u) as a subterm, then mbody(m,C0) = (x, t0) and
|x| = |u| for some x and t0.

Proof. If t has new C0(t).fi as a subterm, then, by well-typedness of the subterm,
it is easy to check that fields(C0) is well-defined and fi appears in it. The fact

45

that class refinements may add fields (that have not been defined already) does
not change this conclusion. Similarly, if t has new C0(t).m(u) as a subterm, then
it is also easy to show that mbody(m,C0) = (x, t0) and |x| = |u| from the fact
that mtype(m,C0) = C→D where |x| = |C|. This conclusion holds for FFJ since
a method refinement must have the same signature than the method refined.

Theorem C3 (FFJ Type Soundness): If ∅ ` t : C and t −→∗ t′ with t′ a normal
form, then t′ is either a value v with ∅ ` v : D and D <: C, or a term containing
(D)(new C(t)) in which C <: D.

Proof. Immediate from Theorem C1 and C2. Nothing changes in the proof of
Theorem C3 for FFJ compared to FJ.

Theorem C4 (Reduction Preserves Cast-Safety): If t is cast-safe in Γ and t −→
t′, then t′ is cast-safe in Γ .

Proof. The proof is straightforward; nothing changes for FFJ as compared to
FJ.

Theorem C5 (Progress of Cast-Safe Programs): Suppose t is cast-safe in Γ . If
t has (C)new C0(t) as a subtem, then C0 <: C.

Proof. The proof is straightforward; nothing changes for FFJ as compared to
FJ.

Corollary C1 (No Typecast Errors in Cast-Safe Programs): If t is cast-safe
in ∅ and t −→∗ t′ wiht t′ a normal form, then t′ is a value.

Proof. The proof is straightforward; nothing changes for FFJ as compared to
FJ.

46

