
Scanning Index Sets with Polynomial

Bounds Using Cylindrical Algebraic

Decomposition

Armin Größlinger

Department of Informatics and Mathematics, University of Passau
armin.groesslinger@uni-passau.de

Technical Report, Number MIP-0803
Department of Informatics and Mathematics

University of Passau, Germany
June 2008

Scanning Index Sets with Polynomial Bounds

Using Cylindrical Algebraic Decomposition

Armin Größlinger

University of Passau
Department of Informatics and Mathematics

armin.groesslinger@uni-passau.de

Abstract. Automatic, model-based program transformation relies on
the ability to generate code from a model description of the program. In
the context of automatic parallelisation, cache optimisation and similar
transformations, the task is to generate loop nests which enumerate the
iteration points within given domains. Several approaches to code gener-
ation from polyhedral descriptions of iteration sets have been proposed
and are in use. We present an approach to generating loop nests for
index sets with arbitrary polynomials as bounds using cylindrical alge-
braic decomposition. The generated loops are efficient in the sense that
no integer superset is enumerated. We also state where this technique is
useful, i.e., where non-linearities in the loop bounds arise in loop pro-
gram transformations and show some examples for our approach with
polyhedral and non-polyhedral input.

1 Introduction

Optimisation of program execution is an ubiquitous challenge in computer sci-
ence. Programs have to be adapted to exploit parallelism, use caches efficiently or
save power on new architectures. Using a model representation of the programs
in question, one can facilitate an automatic or semi-automatic transformation
process. The model represents the characteristics of the program at an abstract
level, modelling, e.g., the execution order of dependent operations or the memory
accesses of the program. The transformation is performed in this model which
permits an optimising search for the best transformation to achieve the desired
target program, e.g., infusing a maximum of parallelism or a minimum of cache
misses. After the model of a program has been transformed, corresponding code
which can execute on the target architecture has to be generated from the model.

One successful example of such a model is the so-called polyhedron model
(previously called the polytope model) of loop programs [Len93] in which loops
are modelled by polyhedra. It has been used successfully to infuse parallelism
and enhance cache behaviour. The code generation step has long been a subject
of study, cf. Section 3. But not all useful transformations of programs can be
expressed by linear algebra on polyhedra which have linear bounds; there has
been an increasing demand for non-linear transformations.

1

We drop the restriction to polyhedral index sets, allowing arbitrary semi-
algebraic sets, i.e., index sets bounded by polynomials in the variables and pa-
rameters. We give an example demonstrating the limitations of the polyhedron
model and illustrating the idea of our code generation technique in Section 2.
After discussing related work in Section 3, we give a precise formulation of the
problem we solve and our main result, its solution, in Section 4. Section 5 presents
some examples for polyhedral and non-polyhedral inputs. Section 6 discusses
possible future improvements of the code generation algorithm and Section 7
concludes.

2 Introductory Examples

We introduce the problem of code generation by means of a simple example
in Section 2.1. A reader who is familiar with polyhedral code generation may
want to skip to Section 2.2, which illustrates the additional challenges for code
generation in our more general case.

2.1 Introduction to Code Generation

When we speak of code generation, we aim at generating loops that enumerate
so-called index sets and execute statements (loop bodies) for each enumerated
point. For example, let us generate code for two statements T1 and T2, where
T1 is executed at every point in D1 = {x | 2 ≤ x ≤ 8} and T2 at every point in
D2 = {x | 2 ≤ x ≤ p}. The sets D1 and D2 are called the index sets of T1 and T2,
respectively. Since T1 is to be executed for x = 2, . . . , 8 and T2 for 2, . . . , p (for
p ∈ Z), we have to generate loops with the index variable x which enumerate
the respective x-values and execute T1 and T2 at the respective index points.
Unfortunately, enumerating the x-values for the two statements independently,
as in the following sequence of loops:

for (x=2; x<=8; x++)

T1;

for (x=2; x<=p; x++)

T2;

is not the solution we desire, because the enumeration of the index points has
to respect the ordering on the index variable x. For example, the execution of
T2 for x = 2 may happen before or after T1 for x = 2, but it must happen
before any execution of T1 or T2 for x ≥ 3. The generation of correct code is
complicated by the fact that we do not know the value of the upper bound p at
code generation time, so the emitted code must work for all possible (integral)
values of p. Figure 1 shows three possible codes which enumerate the index
sets correctly. The figure illustrates that there is tradeoff between code size and
efficiency of the generated code. The code in Figure 1(a) specifies the evaluation
of two conditionals (in the if statements) in every iteration of the loop. The
codes in Figures 1(b) and 1(c) have no overhead for evaluating conditions inside

2

the loops. With the case distinctions on p, the code in Figure 1(c) never executes
an empty loop, i.e., when a loop is reached, the upper bound is guaranteed to
be greater than or equal to the lower bound. This property comes at the price
of an increased code length. The code in Figure 1(b) is shorter and there are no
case distinctions in p apart from the loop bounds, but loops may be empty, for
example, the last loop is empty for p ≤ 8. The algorithm we present subsequently
produces code without conditionals inside the loops.

for (x=2; x<=max(8,p); x++) {
if (2 <= x && x <= 8)

T1;

if (2 <= x && x <= p)

T2;

}
(a) simple code with conditionals

for (x=2; x<=min(8,p); x++)

{ T1; T2; }
for (x=max(p+1,2); x<=8; x++)

T1;

for (x=9; x<=p; x++)

T2;
(b) tricky loop bounds

if (p >= 9) {
for (x=2; x<=8; x++)

{ T1; T2; }
for (x=9; x<=p; x++)

T2;

} else if (p == 8) {
for (x=2; x<=8; x++)

{ T1; T2; }
} else if (p >= 2) {
for (x=2; x<=p; x++)

{ T1; T2; }
for (x=p+1; x<=8; x++)

T1;

} else {
for (x=2; x<=8; x++)

T1;

}
(c) case distinctions on p

Fig. 1. Three possible codes for D1 = {x | 2 ≤ x ≤ 8} and D2 = {x | 2 ≤ x ≤ p}

In general, the ordering of the operations is determined by the lexicographic
order of the index set points. For example, in the case of a two-dimensional index
set with (x, y) coordinates, the outer loop of the generated code enumerates the
x-dimension, and an inner loop enumerates the y-dimension in dependence of x,
i.e., for given x, all values y such that (x, y) is in the index set are enumerated.
The main task of code generation is to partition the index sets of the statements
such that each partition can be scanned by a loop nest. In the above example,
a suitable disjoint union of the domains D1 ∪D2 = U1 ∪̇U2 ∪̇U3 is given by the
following three sets:

U1 = {x | 2 ≤ x ≤ min(8, p)}
U2 = {x | max(p+1, 2) ≤ x ≤ 8}
U3 = {x | 9 ≤ x ≤ p}

Note that a statement executes either at every point or not at all in Ui. T1

executes in U1 ∪̇U2 and T2 executes in U1 ∪̇U3. In addition, the sets Ui are
convex, which implies that each set can be enumerated by a single for loop.

3

This scheme generalises to the case of n-dimensional polytopes as index sets,
i.e., the index sets of the statements can always be represented as a disjoint
union of polytopes such that each partition is either a subset of a given index set
or disjoint from it and each partition can be enumerated by a single nest of for
loops. The mathematical reason is that intersection and difference of polytopes
can, again, be represented by (a union of) polytopes, and polytopes are convex
sets. In the generalisation that we are pursuing, this is not true. Index sets with
arbitrary multivariate polynomial bounds can, in general, not be represented as
a union of convex sets.

2.2 Non-linearity and Non-convexity

Let D = {(x, y) | 1 ≤ x ≤ 7, 1 ≤ y ≤ 9, (y − 4)2 + 12 − 3x ≥ 0} be a non-convex
index set. D is depicted in Figure 2(a). It is non-convex due to the parabolic piece
of the border. Code generators for the polyhedron model treat non-convexities
arising from differences of polytopes by representing the domain as a finite union
of convex domains, but this is not possible here. D cannot be represented as a
finite union of convex sets. Instead, the code generation has to handle non-
convexity directly in the general code generation procedure. All loop bounds
that are needed to enumerate the domain correctly are roots of (multivariate)
polynomials. For example, the roots of (y− 4)2 +12− 3x, namely 4±

√
3x − 12,

are bounds of respective inner loops in the code shown in Figure 2(b). Our main
result (cf. Theorem 13) states that the needed polynomials and their roots can
be computed, if the index sets are described by polynomial inequalities.

x

y

0 1 4 7

1

9

0

4

(a) depiction

for (x=1; x<=4; x++)

for (y=1; y<=9; y++)

T1(x,y);

for (x=5; x<=7; x++) {
for (y=1; y<=

¨
4−

√
3x− 12

˝
; y++)

T1(x,y);

for (y=
˚
4+

√
3x− 12

ˇ
; y<=9; y++)

T1(x,y);

}
(b) generated code to scan the domain

Fig. 2. Non-convex domain {(x, y) | 1 ≤ x ≤ 7, 1 ≤ y ≤ 9, (y − 4)2 + 12 − 3x ≥ 0}

4

We are aware of three frequent sources of non-linearities:

1. The source program contains non-linear loop bounds. This is the case, for
example, in the sieve of Eratosthenes (cf. Section 5.2). The outermost loop
has a non-linear bound and can be written as a for loop in C-like languages
as for (i=2; i*i<=n; i++).

2. The source program has non-constant strides. Before transformations are ap-
plied to the program model, the loop strides are normalised to unit strides,
such that every integral point in the iteration domain represents an execu-
tion of the loop body. E.g., the loop for (j=0; j<=n; j+=i) is normalised
to for (k=0; k*i<=n; k++), replacing j by k*i in the loop body. Normali-
sation is a necessary step in automatic loop program transformation, since
code generators usually generate code which scans every integral point in the
index sets (cf. the definition of the code generation problem, Definition 5).

3. A non-linear transformation can be applied to the program. For example,
it has been shown that non-linear schedules can substantially improve the
performance of solving affine recurrence equations over linear schedules. An
example is presented in Section 5.2.

All these cases could not be handled by a general procedure so far, since no
code could be generated in the presence of non-linearities. We illustrate here the
feasibility of code generation for non-linear, non-convex domains, although the
efficiency of the code generation procedure has to be improved to be applicable
to bigger examples (cf. Section 5).

3 Related Work

The problem of generating code from polyhedral descriptions has been studied
for about two decades. Early work concentrated on code generation for a single
statement [Iri88]. After seminal steps in this area [AI91], solutions were devel-
oped successively for the case with several statements and unions of polyhedra
as index sets [CF93,Wet95,KPR95,QRW00,Bas04].

Code generation for a single statement has been solved for more general cases.
In our own previous work [GGL04], we have shown that code can be generated
for a polyhedral index set which may depend on non-linear parameters (i.e., the
inequalities describing the index set may contain products between a variable
and polynomials in the parameters) using quantifier elimination in the reals.
Recently, an efficient method for generating code for a tiled index sets of one
statement with parametric parallelepiped tiles has been presented [RKRS07].

Our definition of the code generation problem (Definition 5) requires the
dimensionality of the domains to agree and does not mention so-called scat-
tering functions (i.e., the index sets to enumerate are given as affine images
of polytopes) as are supported by CLooG [Bas04], for example. But this is no
principal restriction, because scattering functions (even non-invertible ones) and
variations in dimensionality can be encoded in the general definition – possibly
losing efficiency both in the generation of the code and in the execution of the

5

generated code. Improving the algorithm for such special cases is on our future
agenda.

4 Code Generation for Semi-Algebraic Index Sets

Having seen some introductory examples, let us now state precisely for which
index sets we can generate code and that the generated code is efficient in the
sense that it does not enumerate an integer superset of the given domains. We
start by giving the definitions we need for our main theorem and the algorithm.

4.1 Definitions

We start by defining the code generation problem and its prerequisites.

Definition 1. The inputs for the code generator depend on some structural
parameters (simply parameters for short) p = (p1, . . . , pk) ∈ Z (k ∈ N), i.e., the
input (and hence also the output) of the code generator is parametrised in p and
the generated code must work for all choices of p. The possible values for p are
usually restricted to p ∈ C ⊆ Z

k, the context of the problem.

Definition 2. A statement T (x) is a piece of code (in a given programming
language) which depends on a number of variables x = (x1, . . . , xn) (n ∈ N).

We need not specify statements T (x) more concretely, because we are only con-
cerned with the generation of code for scanning the index sets of the statements,
i.e., loops, and the statements themselves have no influence on the structure of
the generated loops. The loops are determined by the index sets of the state-
ments.

Definition 3. An index set (also called domain) of a statement T (x) is a set
D(p) ⊆ R

n containing all the integral values for x for which T (x) shall execute.
One instance (i.e., an execution of T (x) for a given x) is called an operation. An
index set is called bounded, if D(p) is bounded for every p ∈ C.

We consider only bounded index sets, because unbounded index sets cannot be
enumerated by proper for loops with a finite lower and upper bound. Our code
generation algorithm works, in principle, also for unbounded index sets; only
outputting code with proper for loops is, obviously, impossible then.

The order of the operations is defined by the lexicographic order.

Definition 4. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n. Then x is called

lexicographically less than y, written as x ≺ y, if and only if there exists an
r ∈ {0, . . . , n − 1} such that (

∧r

i=1
xi = yi) ∧ xr+1 < yr+1 holds.

We can now define the code generation problem.

Definition 5. Let k, n,m ∈ N, C ⊆ Z
k. Given statements T1(x), . . . , Tm(x) and

domains D1(p), . . . ,Dm(p) ⊆ Z
n, the problem of code generation is to generate

a program P which, for any given p ∈ C, executes all (and no more) operations
Ti(x) with x ∈ Di(p) ∩ Z

n for 1 ≤ i ≤ m, such that Ti(x) is executed before
Tj(y) if x ≺ y for 1 ≤ j ≤ m, y ∈ Dj(p) ∩ Z

n.

6

4.2 Code Generation as Cylindrical Decomposition

A program solving the code generation problem has to enumerate the points
of the domains of the statements in lexicographic order. This implies that the
outermost dimension is enumerated by one or a sequence of several loops and,
inside every such loop, the next dimension is enumerated in dependence of the
outer dimension, etc. The concept of a loop nest that scans a union of domains
lexicographically is captured by the following definition.

Definition 6. A loop nest is called cylindrical for (x1, . . . , xn) in context C, if
n = 0 and it is the empty loop nest (i.e., it consists only of a loop body), or
n ≥ 1 and it is a sequence of r ∈ N loops in x1

for (x1 = l1(p); x1 ≤ u1(p); x1++)

P1;

...

for (x1 = lr(p); x1 ≤ ur(p); x1++)

Pr;

such that all li and ui are continuous functions in p, li(p) < ui(p) for every
p ∈ C, 1 ≤ i ≤ r and ui(p) < li+1(p) for every p ∈ C, 1 ≤ i ≤ r − 1 and for
every 1 ≤ i ≤ r, Pi is cylindrical for (x2, . . . , xn) in context C × [li(p), ui(p)]
(note that x1 becomes a parameter in the subprograms P1, . . . , Pr).

We call this kind of loop nest cylindrical, because the bounds of the loops de-
fine a cylindrical decomposition of R

n. We continue by giving the definition of
cylindrical decomposition.

Definition 7. A non-empty connected subset of R
n (n ∈ N) is called a region.

For a region R, we define the cylinder over R, written as Z(R), as R × R.

The cylinder over R
0 = {()} is R

0 × R = R.

Definition 8. Let R be a region of R
n. An f-section of Z(R) is the set

{(
a, f(a)

) ∣∣ a ∈ R
}

for a continuous function f : R → R. An (f1, f2)-sector of Z(R) is the set

{(
a, b

) ∣∣ a ∈ R, b ∈ R, f1(a) < b < f2(a)
}

where f1 = −∞ or f1 : R → R is continuous, and f2 = ∞ or f2 : R → R is
continuous, and f1(x) < f2(x) for every x ∈ R.

Obviously, sections and sectors are regions. Figure 3 shows some sections and
sectors of R

1 in (a), and some sections and sectors of a cylinder over an interval
in R

2 in (b). The sections and sectors shown in Figure 3 also form stacks, as
defined by the following definition.

7

sectors

sections

(a) 1-dimensional
x1

x2

sections sectors

(b) 2-dimensional

Fig. 3. Sections and sectors

Definition 9. Let X ⊆ R
n. A decomposition of X is a finite collection of

pairwise disjoint regions whose union is X. Let R be a region, r ∈ N, and
f1, . . . , fr : R → R be continuous functions with f1(x) < f2(x) < · · · < fr(x)
for every x ∈ R. Then (f1, . . . , fr) defines a decomposition of Z(R) consisting of
the sets

– fi-sections of Z(R) for 1 ≤ i ≤ r,
– (fi, fi+1)-sectors of Z(R) for 1 ≤ i < r,
– the (−∞, f1)-sector of Z(R),
– the (fr,∞)-sector of Z(R).

Such a decomposition is called a stack over R defined by (f1, . . . , fr). In the case
of r = 0, the decomposition consists only of the (−∞,∞)-sector of Z(R), i.e.,
the stack consists of the single region Z(R).

If the decomposition into stacks is made at every level, i.e., also for inner dimen-
sions, the decomposition obtained is called cylindrical.

Definition 10. A decomposition D of R
n is called cylindrical, if either

(1) n = 1 and D is a stack over R
0, or

(2) n > 1 and there is a cylindrical decomposition D′ of R
n−1 such that, for

each region R of D′, D contains a stack over R.

The lower and upper bounds (l1, u1, . . . , lr, ur) of the loops in Definition 6 define
a decomposition of R and, since the requirements for the inner dimensions are
the same, the loops define a cylindrical decomposition of R

n. Note that the loops
do not scan every region of the decomposition; for example, the region between
the upper bound of a loop and the lower bound of its successor is not scanned.

The code generation problem can now be reduced to computing a cylindrical
decomposition of R

n such that every region in the decomposition is, for every
index set, either a subset of this index set or disjoint from it. The code generated
by code generators for the polyhedron model like CLooG is, in fact, cylindrical.
The solution to generating code for the more general case with non-linear index
set bounds relies on an algorithm for computing a cylindrical decomposition of

8

R
n. The algorithm cannot, in general, compute a cylindrical decomposition with

a minimal set of regions, because it computes a cylindrical algebraic decompo-
sition which has the additional restriction that the functions fi (which define
the sections of a stack) are polynomial expressions. Polyhedral code generators
generate loop bounds which are maxima or minima of linear expressions for the
lower or upper bound of a polytope. Since the minimum or maximum of two ex-
pressions is, in general, not a polynomial, the code generated by our algorithm
for polyhedral input is longer than the code generated by polyhedral techniques
(for an example, cf. Section 5.1). Sections 4.5 and 6 discuss techniques for reduc-
ing the amount of generated code by combing two or more loops into a single
loop by exploiting properties of the generated bounds.

Definition 11. A set S ⊆ R
n is called semi-algebraic, if it can be defined by a

quantifier-free formula of polynomial equalities and inequalities.
A decomposition of R

n is called algebraic if each of its regions is a semi-
algebraic set. A cylindrical algebraic decomposition (CAD) is a decomposition
which is both cylindrical and algebraic.

4.3 The Efficiency of a Solution

The definition of code generation (Definition 5) does not take efficiency into ac-
count. For example, all examples shown in Figure 1 are solutions to the code
generation problem stated there, but obviously the code in Figure 1(a) is less
efficient because it evaluates two conditions in the if statements in every iter-
ation of the loop. A different source of inefficiency are inner loops which have
empty iteration sets for some iterations of the outer loops, i.e., the outer loops
enumerate points (in the outer coordinates) which do not belong to integer solu-
tions of the index sets. Very inefficient code can be generated for a large class of
code generation problems. To obtain some solution, it is sufficient to enumerate
some arbitrarily large but finite superset of the union of all index sets

⋃
Di(p)

and to test for every enumerated point x whether x ∈ Di(p) and execute Ti(x)
if that is the case (like in Figure 1(a)).

To capture the notion of an efficient program, which does not enumerate
integral values from a superset of the domains, we introduce the concept of a
proper scan in R and Z for cylindrical loop nests. The idea is to call a loop nest
a proper Z-scan, if, for some values enumerated by r outer loops of a loop nest,
we can be sure that there is an integral point in the domain that matches the
enumerated values and, hence, the body of the loop nest will be executed for the
choice of the outer r dimensions. A less strict property, called a proper R-scan,
is that there exists any value (maybe with real values for the inner dimensions)
that matches the outer dimensions.

Definition 12. Let P be a cylindrical loop nest solving the code generation
problem for some domains and statements without if statements inside its loops.
P is said to perform a proper R-scan or a proper Z-scan, respectively, of the
domains if for every loop nest

9

for (x1 = l1(p); x1 ≤ u1(p); x1++)

...

for (xn = ln(p, x1, . . . , xn−1); xn ≤ un(p, x1, . . . , xn−1); xn++)

Tj(x1, . . . , xn);
surrounding an occurrence of Tj in P , for every 0 ≤ r ≤ n−1, and X = R or
X = Z, respectively, the following condition holds:

p ∈ C ∧
r∧

i=1

(
xi ∈ Z ∧ li(p, x1, . . . , xi−1) ≤ xi ≤ ui(p, x1, . . . , xi−1)

)

=⇒ ∃xr+1, . . . , xn ∈ X : (x1, . . . , xn) ∈ Dj(p)

Note that, since the program is cylindrical, it is impossible for two distinct
parts of the program to enumerate the same values (x1, . . . , xr) for the outer
dimensions (this would violate the cylindricality of the program).

It is desirable to have programs which perform proper Z-scans, because this
guarantees that every iteration an outer loop performs will lead to at least one
execution of the body. In contrast, the proper R-scan property only guarantees
that the program does not enumerate integer points from a superset of the
domains of the statements, but outer loops may perform superfluous iterations
which have empty inner loops. For example, the program

for (x=0; x<=p; x++)

for (y=ceil(x/(2*p)); y<=1-floor(x/(2*p)); y++)

T(x,y);

performs a proper R-scan of the domain

D(p) = {(x, y) | 0 ≤ x ≤ p, 2x ≤ 2py + x ≤ 2p}
for p ≥ 0, because for every 0 ≤ x ≤ p there exists y ∈ R such that 2x ≤
2py + x ≤ 2p, for example, y = 0.5. Only the iteration x = 0 has a non-empty y

loop with y ∈ {0, 1} but, for x ≥ 1, the real y-values of D lie only in the open
interval between 0 and 1. Cases like these do occur in practice when two index
variables are linked by an equation or a system of equations which has integer
“holes” in its solution set, as in the Eratosthenes example (cf. Section 5.2). On
the other hand, the problem is rarely caused by inequalities, i.e., inequalities
with real solutions but without integral solutions are infrequent in practice.

4.4 Code Generation for Semi-algebraic Sets

Theorem 13. Let C and Di be as in Definition 5 where the Di are bounded
index sets. The code generation problem can be solved with a cylindrical loop
nest which performs a proper R-scan of the domains if the extended index sets
D̂i = {(p,x) |p ∈ C,x ∈ Di(p)} are semi-algebraic. A solution can be com-
puted algorithmically from the defining formulas with polynomial (in)equalities
for D1(p), . . . ,Dm(p) and C from a sign-invariant cylindrical algebraic decom-

position of R
n for the formulas defining the D̂i and the algorithm shown in

Figure 4. The generated code performs a proper R-scan of the domains.

10

Proof. Let Ψ be the set of all polynomials in the formulas defining the D̂i. A sign-
invariant cylindrical algebraic decomposition of R

k+n for Ψ can be computed
by well-known algorithms [ACM98]. This yields decompositions Rj of R

j for
1 ≤ j ≤ k + n with two important properties:

(1) For every 1 ≤ i ≤ m and S ∈ Rk+n, either S ⊆ D̂i or S∩D̂i = ∅. This is due
to the sign invariance of the decomposition. All ψ ∈ Ψ have constant sign on
S and, therefore, the truth value of the formula defining D̂i is constant on
S.

(2) Due to the cylindrical nature of the decomposition, the regions of a stack are
ordered lexicographically. Let w ∈ R

j−1 and regions S1, S2 ∈ Rj , S1 6= S2,
and define the sets of xj-coordinates of points “above” w in S1 and S2 by

A1 = {xj ∈ R | (w, xj) ∈ S1}
A2 = {xj ∈ R | (w, xj) ∈ S2}.

Then either A1 ∩ A2 = ∅, or A1 and A2 are ordered (i.e., all points in A1

are either less than or greater than all points in A2).

Code is generated as specified by the algorithm in Figure 4. It is a recursive
procedure which, in each step of the recursion, generates the loops for the next
dimension. The main code generation function is code gen(S,t,d), where d is
the number of the current dimension, S a sector or section from the decompo-
sition of R

d−1 and t ∈ S, a so-called test point which is used (in the base case

of the recursion) to test whether a domain D̂i is a subset of the current region
(for which loops are generated). These properties of S, d and t are an invariant
of the recursion.

Code generation starts with S = {()}, t = (), d = 1. Note that S is the only
sector of a decomposition of R

0 (d− 1 = 0), and t ∈ S holds. In each step of the
recursion, code is generated for the fi-sections and (fi, fi+1)-sectors over S in
the functions section code and sector code, respectively. Note that the code
is composed such that the lexicographic ordering is respected due to property
(2) of the decompositions. The code generated is different depending on whether
the current dimension d is a parameter dimension (1 ≤ d ≤ k) or an index set
variable (k+1 ≤ d ≤ k+n). For a parameter dimension, a conditional statement
is generated that checks that the actual value of the parameter satisfies the
constraint imposed by the current section or sector. For an index set dimension,
the code generated is a loop that enumerates the integral points between the two
sections of a sector (if code for a sector is generated), or a loop with exactly one
iterations if and only if the section has an integral value (for the given values
of the outer dimensions). Note that in the course of the recursion a test point
t ∈ S is constructed. The function rational between(a,b) is used to compute
a rational point between a and b.

The base case of the recursion is d = n + k + 1, in which no more loops are
generated and the loop body is written. If t ∈ D̂i for a domain D̂i, then S ⊆ D̂i;
otherwise S ∩ D̂i = ∅ (due to property (1) of the decomposition). That is, the
body of the loop nest generated has to contain exactly the statements Ti for
which t ∈ D̂i holds. ⊓⊔

11

Note that our algorithm generates code which has exactly one lower and one
upper bound in each loop generated.

Let us illustrate the relation between the index set, a cylindrical algebraic
decomposition and the code generated for the example shown in Figure 5. The
roots (i.e., sections) for x defining R1 are 1, 4, 7, i.e., we have to handle the
cases x = 1, 1 < x < 4, x = 4, 4 < x < 7, and x = 7. For 1 ≤ x < 4, the
decompositions of {1} × R and]1, 4[×R are given by the roots 1 and 9 for y.
For x = 4, the roots for y are given by 1, 4, and 9. For 4 < x < 7, the roots for
y are 1, 4 −

√
3x − 12, 4 +

√
3x + 12, and 9 and, for x = 7, we have the roots

1, 4 +
√

3x + 12, and 9. The sections and test points (i.e., points which lie on
each of the sections and in each of the sectors and are used to test whether the
respective region is part of a domain) for the domain are shown in Figure 5(b).
The roots correspond directly to the loop bounds of the code in Figure 5(c).

4.5 Improving the Code

The example in Figure 5 shows that the code generated by the algorithm is
quite lengthy. The key observation to reducing the code size is that the loops
for neighbouring regions (sections and sectors) in a stack often contain the same
inner loops and loop bodies. For example, the loops on x for 1 ≤ x ≤ 1 and
1 < x < 4 contain syntactically identical code. These two loops on x could be
combined straight away into one loop for 1 ≤ x < 4. Combing this loop with the
loop for 4 ≤ x ≤ 4 is not possible at first, since at x = 4 there is an additional
case distinction for y = 4 (the apex of the parabolic piece of the border). But,
of course, if we combine the loops on y inside the loops on x first, the first three
loops an x only contain a loop on y for 1 ≤ y ≤ 9 in their respective bodies, and
1 ≤ x ≤ 4 can be scanned by a single loop on x (with a single loop on y inside).

The situation is more complex with the two loops on x for 4 < x ≤ 7. Com-
bining the loops on y inside the x loops yields the following two loop nests:

for (x=4+1; x<=7-1; x++) { for (x=7; x<=7; x++) {
for (y=1; y<=

⌊
4−

√
3x−12

⌋
; y++) for (y=1; y<=1; y++)

T1(x,y); T1(x,y);

for (y=
⌈
4+

√
3x−12

⌉
; y<=9; y++) for (y=

⌈
4+

√
3x−12

⌉
; y<=9; y++)

T1(x,y); T1(x,y);

} }
The obvious problem which prevents us from combining these two loops is
that the upper bounds of the respective first loops on y are different, namely⌊
4−

√
3x−12

⌋
and 1. But the values of the bounds are the same for x = 7, namely

1. This happens since both expressions are roots of polynomials which define the
iteration domain and an implementation of a CAD algorithm naturally selects
the root with the lower degree if two roots coincide in a stack (here: the stack
over x = 7). This problem occurs every time when roots of different polynomials
cross. We have to note that “crossing polynomials” excludes polynomials which
vanish on an entire cylinder (i.e., which are called identically zero in a term used
in the CAD literature). For example, the polynomial x − 1, whose root x = 1

12

// Generate loops from a cylindrical decomposition

// n: dimensionality of the index sets

// k: number of parameters

// T1, . . . , Tm: statements

// bD1, . . . , bDm: extended index sets of the statements

// Parameters of code gen:

// S: generate loops for the cylinder over this section or sector

// t: a test point from S

// d: level of the loops to be generated

code gen(S,t,d):

code="";

if d = n + k + 1 then

for i:=1 to m

if t ∈ bDi then

code += "Ti(x1, ..., xn);";
end if

end for

else

let f1, . . . , fr be the sections defining the stack over S

for i:=1 to r − 1
code += section code(S,fi,t,d);

code += sector code(S,fi,fi+1,t,d);

end for

code += section code(S,fr,t,d);

end if

return code;

section code(S,f,t,d):

inner=code gen(section(S,f),(t,f(t)),d + 1);
if inner6="" then

if d ≤ k then

return "if pd = f {" + inner + "}";
else

return "for xd−k=ceil(f) to floor(f) {" + inner + "}";
end if

end if

return "";

sector code(S,f,g,t,d):

t′=(t,rational between(f(t),g(t)));
inner=code gen(sector(S,f,g),t′,d + 1);
if inner6="" then

if d ≤ k then

return "if pd > f and pd < g {" + inner + "}";
else

return "for xd−k=floor(f+1) to ceil(g-1) {" + inner + "}";
end if

end if

return "";

Fig. 4. Code generation algorithm

13

x

y

0 1 4 7

1

9

0

4

(a) depiction

x

y

0 1 4 7

1

9

0

4

(b) CAD sections and test points

for (x=1; x<=1; x++) {
for (y=1; y<=1; y++) T1(x,y);

for (y=1+1; y<=9-1; y++) T1(x,y);

for (y=9; y<=9; y++) T1(x,y);

}
for (x=1+1; x<=4-1; x++) {
for (y=1; y<=1; y++) T1(x,y);

for (y=1+1; y<=9-1; y++) T1(x,y);

for (y=9; y<=9; y++) T1(x,y);

}
for (x=4; x<=4; x++) {
for (y=1; y<=1; y++) T1(x,y);

for (y=1+1; y<=4-1; y++) T1(x,y);

for (y=4; y<=4; y++) T1(x,y);

for (y=4+1; y<=9-1; y++) T1(x,y);

for (y=9; y<=9; y++) T1(x,y);

}
for (x=4+1; x<=7-1; x++) {
for (y=1; y<=1; y++)

T1(x,y);

for (y=1+1; y<=
˚
4−

√
3x−12

ˇ
-1; y++)

T1(x,y);

for (y=
˚
4−

√
3x−12

ˇ
; y<=

¨
4−

√
3x−12

˝
; y++)

T1(x,y);

for (y=
˚
4+

√
3x−12

ˇ
; y<=

¨
4+

√
3x−12

˝
; y++)

T1(x,y);

for (y=
¨
4+

√
3x−12

˝
+1; y<=9-1; y++)

T1(x,y);

for (y=9; y<=9; y++)

T1(x,y);

}
for (x=7; x<=7; x++) {
for (y=1; y<=1; y++)

T1(x,y);

for (y=
˚
4+

√
3x−12

ˇ
; y<=

¨
4+

√
3x−12

˝
; y++)

T1(x,y);

for (y=
¨
4+

√
3x−12

˝
+1; y<=9-1; y++)

T1(x,y);

for (y=9; y<=9; y++)

T1(x,y);

}
(c) generated code to scan the domain

Fig. 5. Code for domain {(x, y) | 1 ≤ x ≤ 7, 1 ≤ y ≤ 9, (y−4)2 +12−3x ≥ 0} according
to the algorithm in Figure 4

14

crosses the roots y = 1 and y = 7 (and which vanishes on {1} × R), does not
inhibit the combining of the loops for x = 1 and 1 < x < 4. To be able to com-
bine loops in the general case that several polynomials have the same root in a
stack, the CAD procedure must retain all the roots which can be used as bounds
(i.e., which define the sections), and the code generation procedure selects those
which achieve a maximum of combining possibilities. So the intermediate code
(after combining the loops on y) is

for (x=4+1; x<=7-1; x++) {
for (y=1; y<=

⌊
4−

√
3x−12

⌋
; y++)

T1(x,y);

for (y=
⌈
4+

√
3x−12

⌉
; y<=9; y++)

T1(x,y);

}
for (x=7; x<=7; x++) {

for (y=OneOf{1,
⌈
4−

√
3x−12

⌉
}; y<=OneOf{1,

⌊
4−

√
3x−12

⌋
}; y++)

T1(x,y);

for (y=
⌈
4+

√
3x−12

⌉
; y<=9; y++)

T1(x,y);

}
where OneOf means that the code output procedure is free to choose either of
the given roots. Combining loops as much as possible yields the desired simple
code which has already been shown in Figure 2(b).

5 Examples

In this section we give several examples of the code generated by our procedure
outlined in Section 4. We start by comparing the code generated to that gen-
erated by polyhedral code generators for polyhedral input in Section 5.1 before
we show some non-polyhedral cases in Section 5.2.

5.1 Comparison with Polyhedral Code Generation

A Triangular Index Set As a first example, consider the triangular domain
D = {(x, y) | y ≥ 1, y ≤ x, y ≤ −x + p} depicted in Figure 6. Polyhedral code
generators like CLooG have no difficulty combining parts of index sets bounded
by different upper (or lower) bounds, like the bounds y ≤ x and y ≤ −x + p

in the example. CLooG implicitly computed a cylindrical decomposition of R
2

with the two sections x1 = 1 and x2 = p to decompose R and the two sections

y1(x) = 1

and y2(x) =

{
x if 1 ≤ x ≤ p

2

−x + p if p

2
< x ≤ p

to decompose [1, p]× R. Note that this decomposition is not algebraic (cf. Defi-
nition 11), because y2 is not a polynomial (due to its non-smoothness at x = p

2
).

15

Therefore, a cylindrical algebraic decomposition must have an additional sec-
tion at x3 = p

2
and the scanning of the x-dimension in the code generated by

our method is divided into two loops for both halves of the triangle. This is a
slight optimisation in terms of loop bound evaluation costs, because the poly-
hedral code has to evaluates two upper bounds for y and take their minimum
for every value of x. But, since loop bounds are usually only evaluated rarely
compared to the number of executions of the loop body, the polyhedral code is
to be considered superior, because it does not duplicate the loop body.

x

y

0 1

1

0

5

8
(a) depiction for p = 9

if (p == 2) {
for (x=1; x<=1; x++) {
for (y=1; y<=1; y++)

T1(x,y);

}
}
if (2+1 <= p) {
for (x=1; x<=⌊ p

2
⌋; x++) {

for (y=1; y<=x; y++)

T1(x,y);

}
for (x=⌊ p

2
⌋+1; x<=p-1; x++) {

for (y=1; y<=-x+p; y++)

T1(x,y);

}
}

(b) our code

for (x=1; x<=p-1; x++) {
for (y=1; y<=min(-x+p,x); y++)

T1(x,y);

}
(c) code generated by CLooG

Fig. 6. Example: domain D = {(x, y) | y ≥ 1, y ≤ x, y ≤ −x + p}

Quilleré’s example As a second example, we consider the problem given (and
solved) by Quilleré et al. [QRW00] with

D1(m,n) = {(x, y) | 1 ≤ x ≤ n, 1 ≤ y ≤ m}
D2(m,n) = {(x, y) |x = y, 3 ≤ x ≤ n}

shown in Figure 7. The codes were generated assuming that m,n ≥ 4. Again, the
polyhedral code is shorter. The reason here is that our algorithm only generates
loops which are non-empty in the reals (a proper R-scan does not guarantee
non-emptiness in the integers, though), but CLooG’s code can contain empty

16

loops for certain parameter constellations. For example, the last loop on x in
CLooG’s code is empty for m ≥ n.

5.2 Non-polyhedral Examples

A Non-linear Schedule In automatic loop parallelisation in the polyhedron
model, each operation of a given program is assigned a time to execute (the so-
called schedule) and a processor to execute on (the so-called allocation). Both
schedules and allocations are usually chosen as (stepwise) affine functions, be-
cause polyhedral code generation requires them to be affine functions. It has
been argued [AZ00] that non-linear schedules found by quadratic programming
can provide substantially shorter overall execution times. An example used by
Achtziger et al. [AZ00, Example 2.2] is a recurrence equation with the index set
D(n) defined by

2 ≤x ≤ n

4 ≤ y ≤ n

n − x ≤ y

for n ≥ 7 and dependences

(x, y − 1) → (x, y)

(x − 1, x) → (x, y).

Achtziger et al. compute t = (n−3) ·x+y as a non-linear, nearly optimal sched-
ule. To generate code for a parallel execution, we use the equation defining the
schedule and the original index set to define the domain of the statement and
generate code for the variable ordering (t, x, y). We can compare the code gener-
ated by our algorithm with code generated by applying (a generalised version of)
Fourier-Motzkin elimination [GGL04]. Fourier-Motzkin elimination can be used
to generate code here, since there is only one index set which is, in addition, a
conjunction of formulas linear in the variables. Both codes are shown in Figures
8(a) and 8(b). As Fourier-Motzkin elimination (or an equivalent algorithm) is at
the heart of polyhedral code generation, the code generated by Fourier-Motzkin
elimination is shorter, because it generates several lower and upper bounds for
each loop, if required. Our CAD based code is longer, but incurs less overhead
in the loop bounds.

Sieve of Eratosthenes The sieve of Eratosthenes is a well-known algorithm
for computing the prime numbers in 2, . . . , n. A related, but slightly different,
problem is to compute the number of factorisations of the numbers 2, . . . , n
into two factors (excluding 1) not considering the ordering of the factors. For
example, 96 can be factored as 2 ·48, 4 ·24, 6 ·16, and 8 ·12. The sequential code
for computing the number of factorisations into two factors is given in Figure
9(a). At the end of the program, A[j] will contain the number of factorisations

17

x

y

0 1

1

0

5

8

8 T

T

2

1

(a) depiction for m = 5, n = 8

for (x=1; x<=2; x++) {
for (y=1; y<=m; y++) T1(x,y);

}
for (x=3; x<=min(m-1,n); x++) {
for (y=1; y<=x-1; y++) T1(x,y);

T1(x,x); T2(x,x);

for (y=x+1; y<=m; y++) T1(x,y);

}
if (m <= n) {
for (y=1; y<=m-1; y++) T1(m,y);

T1(m,m); T2(m,m);

}
for (x=m+1; x<=n; x++) {
for (y=1; y<=m; y++) T1(x,y);

T2(x,x);

}
(b) CLooG code

if (n <= m-1) {
for (x=1; x<=3-1; x++) { for (y=1; y<=m; y++) T1(x,y); }
for (x=3; x<=n; x++) {
for (y=1; y<=x-1; y++) T1(x,y);

for (y=x; y<=x; y++) { T1(x,y); T2(x,y); }
for (y=x+1; y<=m; y++) T1(x,y); }

} else if (n == m) {
for (x=1; x<=3-1; x++) { for (y=1; y<=OneOf(m,n); y++) T1(x,y); }
for (x=3; x<=OneOf(n,m)-1; x++) {
for (y=1; y<=x-1; y++) T1(x,y);

for (y=x; y<=x; y++) { T1(x,y); T2(x,y); }
for (y=x+1; y<=OneOf(m,n); y++) T1(x,y); }

for (x=OneOf(n,m); x<=OneOf(n,m); x++) {
for (y=1; y<=OneOf(m,x,n)-1; y++) T1(x,y);

for (y=OneOf(m,x,n); y<=OneOf(m,x,n); y++) { T1(x,y); T2(x,y); } }
} else if (m+1 <= n) {
for (x=1; x<=3-1; x++) { for (y=1; y<=m; y++) T1(x,y); }
for (x=3; x<=m-1; x++) {
for (y=1; y<=x-1; y++) T1(x,y);

for (y=x; y<=x; y++) { T1(x,y); T2(x,y); }
for (y=x+1; y<=m; y++) T1(x,y); }

for (x=m; x<=m; x++) {
for (y=1; y<=OneOf(m,x)-1; y++) T1(x,y);

for (y=OneOf(m,x); y<=OneOf(m,x); y++) { T1(x,y); T2(x,y); } }
for (x=m+1; x<=n; x++) {
for (y=1; y<=m; y++) T1(x,y);

for (y=x; y<=x; y++) T2(x,y); }
}

(c) our code

Fig. 7. Example from [QRW00] (under the assumption m, n ≥ 4)

18

for (t=3*n-8+1; t<=3*n-6; t++)

parfor (x=2; x<=⌊ t−n
n−4

⌋; x++)

for (y=(-n+3)*x+t; y<=(-n+3)*x+t; y++)

T1(x,y);

for (t=3*n-6+1; t<=n*n-7*n+16; t++)

parfor (x=⌈ t−n
n−3

⌉; x<=⌊ t−n
n−4

⌋; x++)

for (y=(-n+3)*x+t; y<=(-n+3)*x+t; y++)

T1(x,y);

for (t=n*n-7*n+16+1; t<=n*n-3*n+4; t++)

parfor (x=⌈ t−n

n−3
⌉; x<=⌊ t−4

n−3
⌋; x++)

for (y=(-n+3)*x+t; y<=(-n+3)*x+t; y++)

T1(x,y);

for (t=n*n-3*n+4+1; t<=n*n-2*n; t++)

parfor (x=⌈ t−n
n−3

⌉; x<=n; x++)

for (y=(-n+3)*x+t; y<=(-n+3)*x+t; y++)

T1(x,y);

(a) code generated by CAD for n ≥ 7

for (t=3*n-8; t<=n*n-2*n; t++)

parfor (x=max(2,⌈ t−n
n−3

⌉); x<=min(min(n,⌊ t−4

n−3
⌋),⌊ t−n

n−4
⌋); x++)

for (y=max(max(-4,-x+n),t+(-n+3)*x); y<=min(n,t+(-n+3)*x); y++)

T1(x,y);

(b) code generated by Fourier-Motzkin elimination for n ≥ 7

Fig. 8. Example from [AZ00] with schedule t = (n − 3) · x + y

for (i=2; i*i<=n; i++) {
for (j=i*i; j<=n; j+=i)

A[j]++;

}
(a) sequential code

for (i=2; i*i<=n; i++) {
for (k=i; k*i<=n; k++) {

j=k*i;

A[j]++;

}
}
(b) normalised sequential code

parfor (j=4; j<=n; j++) {
for (i=2; i<=⌊√j⌋; i++) {
for (k=⌈ j

i
⌉; k<=⌊ j

i
⌋; k++)

A[j]++;

}
}

(c) parallel code

Fig. 9. Example: computing the number of 2-factorisations

19

of j (assuming that A is initialised with all zeros). Obviously, the loop on j can
be executed in parallel for a given i, since different j iterations access different
elements of A. But such a parallel execution requires to setup a parallel execution
and synchronise after the j loop for every iteration of i. It is desirable to exchange
the loops on i and j in order to make the outer loop the parallel loop. To do
so, we first have to normalise the program such that all loops have unit stride.
This is achieved by applying the substitution j := k · i on the loop on j. The
resulting normalised program is shown in Figure 9(b). Now, code generation for
the domain defined by

2 ≤ i∧ i2 ≤ n

i ≤ k∧ k · i ≤ n

j = k · i

with the variable ordering (j, i, k) can be applied. This yields the code shown
in Figure 9(c). The loop on j, which is now the outermost loop, is marked as
parallel. We have to point out that the transformed code is less efficient than the
original code because, by exchanging the loops on i and j, it is not guaranteed
(by the construction of the loops) that j is a multiple of i. That is why the loop
on k, whose only function is to check whether i divides j, has to be present
in the code, and it has many iterations which are empty in the integers. So a
substantial number of processors is required to achieve a speedup.

6 Future Improvements

Our algorithm produces code which has the properties that it is a proper R-scan
and that every loop generated has exactly one lower and one upper bound. Both
properties offer room for improvement. Since the theory of integers with addition
and multiplication is undecidable, there cannot be a general improvement over
proper R-scans. But there are many special cases in practical code generation.
Therefore, it is worthwhile to invest in integral non-emptiness tests for common
cases, e.g., linear formulas. If a region (section or sector) is bounded by linear
formulas only, its integral feasibility can be tested.

The other direction for improvement is to reduce the code size by combining
inner loops with different upper and/or lower bounds by using minima and
maxima in the bounds. For example, in the triangular index set example (cf.
Figure 6), the two loops on x cannot be combined because of the different inner
loops on y. But the upper bounds of the loops on y are compatible in the sense
that each bound is stricter than the other bound in its respective x-region, i.e.,
because the implications

1 ≤ x ≤ p

2
⇒ x ≤ −x + p

p

2
< x ≤ p ⇒ −x + p ≤ x

20

hold, it could be detected that the loops on y can be combined into the loop
nest generated by polyhedral code generation. This is a semantic test that goes
beyond the syntactic test we perform on the roots defining the sections of two
neighbouring stacks when deciding whether the codes for the two stacks can be
merged into a single code.

7 Conclusions

Cylindrical algebraic decomposition enables the generation of target loop code
for index sets with arbitrary polynomial bounds. We have presented a basic
algorithm, which we have implemented as a prototype. The algorithm relies on
the computation of a cylindrical algebraic decomposition (CAD) of R

n (for n-
dimensional index sets). The requirement of the decomposition to be algebraic
causes the generated code to be quite lengthy. But we have shown that loops can
be combined by syntactic reasoning (provided that the CAD procedure emits all
polynomials whose roots coincide over a region). Each loop generated has exactly
one lower and one upper bound and, when a loop is reached, the lower bound is
less than or equal to the upper bound, i.e., the loop is non-empty in the reals,
but there is no guarantee of integral non-emptiness. Integral non-emptiness is
undecidable in the general case but may be checked for common cases like linear
bounds in a future version of the algorithm. Further reduction of the code size
is another goal which may be achieved by combining suitable loops and thereby
introducing minima and maxima of bounds in the new loop bounds.

At the moment, the practical applicability of the presented algorithm is lim-
ited. We are hoping for more research in this area, now that a code generation
procedure available.

References

[ACM98] Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical Al-
gebraic Decompositions I: The Basic Alogrithm. In Bob F. Caviness and
Jeremy R. Johnson, editors, Quantifier Elimination and Cylindrical Alge-
braic Decomposition, pages 136–151. Springer-Verlag, 1998.

[AI91] Corinne Ancourt and François Irigoin. Scanning Polyhedra with DO Loops.
Third ACM SIGPLAN Symposium on Priciples & Practice of Parallel Pro-
gramming, 26(7):39–50, July 1991.

[AZ00] Wolfgang Achtziger and Karl-Heinz Zimmermann. Finding quadratic sched-
ules for affine recurrence equations via nonsmooth optimization. J. VLSI
Signal Process. Syst., 25(3):235–260, 2000.

[Bas04] Cedric Bastoul. Code generation in the polyhedral model is easier than you
think. In PACT ’04: Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques, pages 7–16, Washington,
DC, USA, 2004. IEEE Computer Society.

[CF93] Jean-François Collard and Paul Feautrier. Automatic generation of data
parallel code. In H.J. Sips, editor, Proc. of the Fourth International Work-
shop on Compilers for Parallel Computers, pages 321–332, December 1993.

21

[GGL04] Armin Größlinger, Martin Griebl, and Christian Lengauer. Introducing non-
linear parameters to the polyhedron model. In Michael Gerndt and Edmond
Kereku, editors, Proc. 11th Workshop on Compilers for Parallel Computers
(CPC 2004), Research Report Series, pages 1–12. LRR-TUM, Technische
Universität München, jul 2004.

[Iri88] François Irigoin. Code generation for the hyperplane method and for loop
interchange. Technical Report ENSMP-CAI-88-E102/CAI/I, Ecole Normale
Supérieure des Mines de Paris, October 1988.

[KPR95] Wayne Kelly, William Pugh, and Evan Rosser. Code generation for multiple
mappings. In FRONTIERS ’95: Proceedings of the Fifth Symposium on the
Frontiers of Massively Parallel Computation, pages 321–332, Washington,
DC, USA, 1995. IEEE Computer Society.

[Len93] Christian Lengauer. Loop parallelization in the polytope model. In Eike
Best, editor, CONCUR’93, LNCS 715, pages 398–416. Springer-Verlag, 1993.

[QRW00] Fabien Quilleré, Sanjay Rajopadhye, and Doran Wilde. Generation of effi-
cient nested loops from polyhedra. Int. J. Parallel Programming, 28(5):469–
498, October 2000.

[RKRS07] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay Rajopadhye,
and Michelle Mills Strout. Parameterized tiled loops for free. SIGPLAN
Not., 42(6):405–414, 2007.

[Wet95] Sabine Wetzel. Automatic code generation in the polyhedron model. Mas-
ter’s thesis, Fakultät für Mathematik und Informatik, Universität Passau,
November 1995. http://www.fmi.uni-passau.de/loopo/doc/wetzel-d.ps.gz.

22

