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ABSTRACT
The aim of this article is to examine the relationship of large-
scale Peer-to-Peer (P2P) overlay networks and certain bi-
ological systems. In particular, we focus on organization
mechanisms that are crucial to adjust and optimize the be-
havior of large-scale P2P systems in the face of a dynamic en-
vironment. We propose to adopt concepts and mechanisms
of biological systems in order to extend their capabilities to
cope with environmental changes, e.g. a highly dynamic net-
work topology. We introduce the notion of organic P2P over-
lay networks that adopt behavioral and structural charac-
teristics of biological systems. We present a framework that
poses as a basis for understanding, investigating, and imple-
menting organic P2P overlay networks. Using a case study
we analyze an organic P2P overlay network, AntCAN, that
utilizes ant colony optimization to improve the query pro-
cessing in the face of varying query distribution patterns.
Experiments confirm the functional efficiency of this self-
organization mechanisms as well as the applicability of our
proposed framework.

1. INTRODUCTION
Peer-to-peer (P2P) overlay networks will gain momentum

in the near future. This is because of beneficial properties
as scalability, reliability, and (economic) efficiency. A ma-
jor characteristic of P2P overlay networks is the absence of
a central coordinator and no global view. Peers are indi-
vidual entities that act autonomously based on behavioral
rules which are predefined by a communication protocol.

Promising application scenarios of P2P overlay networks
can be found in the domain of cooperative information sys-
tems, networked embedded systems, and Internet comput-
ing. These scenarios have in common that the environment
is highly dynamic and subject to frequent fluctuations. This
does not only concern the network characteristics, e.g. topo-
logy, latency, throughput, but merely the whole underlying
infrastructure, e.g. available resources, the formation of the
particpants, the configuration of peers, etc. Furthermore,
the user requirements may evolve over time, especially as
with reactive systems that run contineously without shut-
ting down. Software for such scenarios have to adapt to
these dynamic changes and evolving requirements in order
to work efficiently [19].

Due to their technical and geographical size as well as
their high degree of distribution these scenarios require an
underlying P2P infrastructure. However, the absence of a
central instance demands for coordination and adaptation
mechanisms different from the ones used in common dis-
tributed systems. The high degree of distribution and the
autonomous behavior of the individual peers yield a lot of po-
tentials to achieve self-organization. Leading researchers in

robotics, artificial intelligence, cybernetics, and organic/au-
tonomic computing proclaim a new kind of self-organizing
systems: organic systems [9, 22, 19]. Such systems consist
of myriads of individual entities that form with their local
behavior and activities the overall system. The behavior of
the entities is a result of a small, simple set of rules and their
limited view of the world. Several researchers see analogies
to biological systems, e.g. bee hives, swarms, flocks, ant
colonies, the structure of the human brain, etc.

For our part we see analogies between the vision of dy-
namic self-organizing large-scale P2P overlay networks and
biological organic systems, e.g. cells or ant colonies. In this
contribution we examine this analogy in order to (1) open a
new direction to understand large-scale distributed systems
as organic systems, (2) to learn from organic systems, e.g.
the organization, adaptation, and healing mechanisms, and
(3) to improve the capabilities of large-scale P2P overlay
networks in adapting to a highly dynamic environment and
evolving requirements.

To address these issues, we introduce a general framework
that describes self-organizing P2P overlay networks. We in-
troduce the notion of organic P2P overlay networks, general
definitions, their analogies to biological systems, their poten-
tial benefits, and the challenges to implement organic P2P
overlay networks. Furthermore, we present a case study,
AntCAN, a Content-Addressable Network (CAN) [26] en-
hanced by a self-organization mechanism based on our view
and our framework of organic P2P overlay networks. In this
study we focus on the optimization of CAN query process-
ing in order to cope with changing and fluctuating query
patterns. We present a mechanism that borrows ideas from
ant colonies and swarms to minimize the average query path
length. Our experiments confirm that this mechanism im-
proves the overall performance of the CAN. It serves as an
example of an organic P2P overlay network that is based on
our introduced notion and framework.

2. TECHNICAL BACKGROUND
P2P overlay networks (a.k.a. P2P data structures, dis-

tributed hash tables, structured P2P overlay networks, cf. [3])
are a prominent example of P2P systems. They address a
core issue of data management research. In particular, P2P
overlay networks promise Internet-scale data management:
they cope with huge sets of (key,value)-pairs, high numbers
of parallel transactions, and scores of users. Due to their
consequent decentralized organization P2P overlay networks
are a promising experimental ground for self-organization
mechanisms.

In contrast to popular filesharing systems that use flooded
requests, P2P overlay networks are based on a document
routing model. Here, a query is a point in a key space and the
query result is the value corresponding to the query point.



The global key space is partitioned in zones, and each zone
is assigned to a certain peer. A peer that obtains a query
first checks if it can answer it from its own zone. Otherwise,
it forwards the query to a peer whose distance to the query
point is minimal. This reiterates until the query arrives at
the peer that can answer it.

Variants of P2P overlay networks mainly differ in the to-
pology of the key space, contact selection, and routing path
selection, i.e., the metric used to find the peer with the min-
imal distance to the query point.

In Content-Addressable Networks (CAN) [26] the key space
is a torus of d dimensions. Each peer maintains a contact
cache containing at least 2ḋ neighbors of its zone in the key
space. CAN uses the Chessboard distance to determine the
peer a query is forwarded to. CHORD [34] organizes the data
in a circular one-dimensional key space. Messages are for-
warded from peer to peer in one direction through the cycle
until the peer whose ID is closest to the query key is reached.
The contacts are chosen according to its distance, i.e., in a
system containing n peers, each peer maintains log(n) con-
tacts in the distance 2k−1 with 1 ≤ k ≤ log(n). Pastry [28]
manages its data in a Plaxton Mesh. The forwarding algo-
rithm is similar to the one of Chord: each peer keeps a table
containing log2b(n) · (2b − 1) contacts determined by com-
mon prefixes of the peer-IDs, while b is an exogenous tuning
parameter. P-Grid [2] is based on a distributed search tree.
Each peer is addressed with a binary string representation of
the path from the root to the peer on the leaf of the virtual
tree. For each level of the tree, each peer maintains a refer-
ence to another peer in the same subtree that branches to a
different subtree in the deeper levels. [3] features a detailed
survey of these and further approaches.

All of these approaches focus on data management issues.
Optimizations are always specific to the certain approaches
and are not connected to a broader unifying framework. This
complicates the general understanding of optimizing large-
scale decentralized distributed systems. Thus, programmers
run the risk of reinventing the wheel, again and again. How-
ever, current approaches are based on recurring concepts and
building blocks, e.g., contact caches and forwarding rules.
This allows us to develop a generic framework that connects
them to other domains, e.g. biological systems.

3. THE NOTION AND FRAMEWORK OF
ORGANIC P2P OVERLAY NETWORKS

This section introduces our notion of self-organizing / or-
ganic P2P overlay networks. ”Self-organization” refers to
the organization concern whereas ”organic” expresses the
relation to biological systems. We present a framework that
describes self-organization in the context of P2P overlay net-
works. Then, we compare P2P overlay networks to biolog-
ical systems and explain their potential benefits. The goal
of this convergence is to exploit useful characteristics, ideas,
and mechanisms of biological systems to improve large-scale
P2P overlay networks in optimizing themselves, e.g. coping
with a huge number of parallel transactions. The analogy to
biological systems can help to understand the decentralized
organization and the absence of direct control [21]. Finally,
this section discusses design and implementation issues.

3.1 Self-Organization in P2P Overlay Networks
Since P2P overlay networks have no global view or cen-

tral coordinator, but instead consist of autonomously act-
ing peers, the notion of self-organization must be defined in
terms of the participating peers. Thus, we perceive the self-
organization of the overall P2P system as the self-adaptation

of the individual peers.
Besides the basic data management capabilities of a peer,

we introduce the following new properties: Each peer intro-
spects its environment. For introspection a peers uses sen-
sors to observe external characteristics and uses monitors to
observe its own behavior and state (see Figure 1). External
characteristics are for instance the network latency, topo-
logy, and available primary and secondary memory. Internal
characteristics are, among others, the number of unanswered
queries, frequently used contacts, or the number of incoming
messages per time interval. In [4] we give a comprehensive
list of internal and external characteristics and discuss the
role of their indicators inside a peer.

Sensors

Monitors

Peer

Structure

Behavior

Environment

Figure 1: Using monitors and sensors to introspect
internal and external characteristics.

Introspecting these characteristics, a peer waits for pre-
defined events. Such events could be simple changes of pa-
rameters, the exceeding of a threshold, or more complex con-
text changes, e.g. the connectivity degree, which can also
be expressed in terms of parameters and thresholds. When
such events occur a peer reacts by adapting its behavior and
internal state. This process of introspection and adaptation
can be expressed by event-condition-action rules or state ma-
chines [4].

In addition to thie simple introspection and adaptation
scheme, peers have to coordinate themeselves in a decen-
tralized way by exchanging information. Such pieces of in-
formation are load information, security certificates, content
replicas, contacts, reputation information, etc. (see [10] for
further scenarios). In order to realize such coordination we
propose a swarm-like meta-data dissemination to deliver co-
ordination information from peer to peer (see Figure 2).

Each peer emits coordination information by attaching
meta-data items to messages that are sent out anyway, e.g.
forwarded query requests. Thus, with each incoming mes-
sage each peer receives a set of meta-data items. The peers
cache these items temporarily. When a peer sends a mes-
sage it selects a set of cached meta-data items and attaches
them to the outgoing message. The policies which items
are cached and which ones are selected for a certain outgo-
ing message are powerful tuning parameters for organic P2P
overlay networks [10].

In [10] we explain that such decentralized dissemination

Originating Peer

Immediate Neighbors

Neighbors of Neighbors

Flow of Meta−Data Items

Figure 2: Swarm-like meta-data dissemination.



mechanisms are more efficient than common mechanisms
(e.g. peers send dedicated messages to well known sets of
addressees) with regard to resource consumption, network
traffic, time to delivering information, etc. In [4] we show
that a coordination mechanism is essential for certain kinds
of self-organization mechanisms, e.g. load balancing, repu-
tation mechanisms, healing mechanisms, etc.

In a nutshell, we perceive self-organization in P2P overlay
networks as self-adaptation (introspection and adaptation)
of the individual peers, but all peers in concert (coordina-
tion).

3.2 Relationship to Biological Systems
Our investigations in optimizing large-scale P2P overlay

networks have revealed that there are several similarities be-
tween organic systems, known from life sciences and self-
organizing P2P overlay networks. The definition of Kelly
regarding mandatory characteristics of organic systems [21]
can be applied one-to-one to self-organizing P2P overlay net-
works, i.e. they hold for both, biological organic systems and
organic P2P overlay networks:

• There is no central coordinator or global view.
• The individual entities that constitute the global sys-

tem act autonomously.
• The individual entities are highly connected.
• The causal relations and dependencies between the in-

dividual entities are of a complex nature.
Organic systems have several benefits compared to com-

mon centralized engineer or computer systems: They are
adaptive, evolve over time, are fault-tolerant and reliable,
and have no limited pre-defined behavioral patterns that de-
grade their flexibility.

Since our notion of self-organizing P2P overlay networks
has these commonalities with biological systems, we should
learn from biological systems in order to exploit their capa-
bilities. Several studies have revealed that a lot of mecha-
nisms of P2P overlay networks directly correspond to mecha-
nisms of biological systems [6, 7, 4]. So, the mentioned mech-
anism for disseminating coordination information in form of
meta-data through the P2P network is similar to march-
ing ants that emit pheromones or cells that emit enzymes
to notify their immediate environment. The mechanisms
to constrain the life time and the scope of meta-data items
correspond to biological mechanisms where the cells destroy
unused enzymes and ant pheromones evaporate over time.

Another example is a load balancing mechanism, e.g. [16]:
A peer observes its own load and the load of its immediate
neighbors. In the case of an overload-state it moves its data
to its under-loaded neighbors. The load information is dis-
tributed – as with pheromones and enzymes – in a swarm-like
manner. Each peer acts according to a simple set of rules
that defines which reactions take place in the case of which
events occur. The global order – a balanced load – emerges
from the individual rule-based behavior of the participating
peers. However, a prerequisite is an adequate set of rules
and well-adjusted parameters settings, e.g. cache size, load
threshold, number of neighbors, etc. The emergence of order
is a major characteristic of organic systems [21].

A main goal of engineering organic systems is to find a
set of rules and a set of parameter settings to switch be-
tween order and disorder, e.g. a balanced and an unbalanced
load, under certain conditions. A small modification in these
sets of rules and parameters can lead to massive behavioral
changes of the overall system. We understand this switch-
ing as phase transition: Phase transition phenomena are de-
fined as phenomena where a macroscopic parameter (global
parameter) of the system changes significantly when a micro-

scopic parameter (local parameter) approaches an uncertain
critical point [33]. We argue that finding appropriate rules,
parameters, and phase transitions is a main task of design-
ing, engineering, and tuning organic P2P overlay networks.

3.3 Potential Benefits and Limitations
The goal of our work is to improve the self-organization

capabilities of P2P overlay networks. Common P2P overlay
networks have several drawbacks when coping with highly
dynamic environments, e.g. the Internet:
Static structure: Overlay networks use key spaces with

predefined properties, e.g. number of dimensions, dis-
tance function, topology (hyper cube, tree, ring, etc.)
Furthermore, the partition of the key space is fixed dur-
ing runtime, except in the case of leaving and joining
peers. It would be better to be flexible: Rearranging
the key space partitioning at runtime would allow to
cope with load fluctuations or unreliable peers.

Predefined behavior: With common approaches, the be-
havior of peers is based on a simple but static protocol
that concerns only the main data management tasks.
It does not take other dynamic properties into account.
Examples for that kind of properties are load distribu-
tion, overlay/physical network topology, or the average
query response time. Several studies (e.g. [13, 7, 11])
indicate that altering the behavior based on the envi-
ronment would be effective, e.g. adapting the forward-
ing policy, the neighbor and contact selection, or the
replication degree, etc.

The advantages of exploiting mechanisms and borrowing
ideas from biological systems are straightforward. Biolog-
ical systems are extremely successful in coping with scal-
ing volumes of information, load, or participants. Reynolds
states: ”There is no evidence that the complexity of natural
flocks is bounded in any way. Flocks do not become ’full’ or
’overloaded’ as a new bird joins. When herring migrate to-
ward their spawning grounds, they run in schools extending
as long as 17 miles and containing millions of fish [27].” We
perceive these circumstance and the close relation of organic
P2P overlay networks to biological systems as a chance to
improve the capabilities of P2P overlay networks in man-
aging frequent fluctuations of the environment and evolving
requirements.

Besides these potential advantages also some drawbacks
arise: Organic systems cannot be fully controlled, their be-
havior is not really predictable, and their adaptation and
evolution cannot be completely formally specified, verified,
and validated (in a usable and practicable way). This is
because the interaction pattern between the individual enti-
ties becomes by orders of magnitude more complex than the
behavior and structure of these entities stand-alone. The
overall global behavior emerges from the simple individual
behaviors and their complex interactions.

It is well known that an important indicator for organic
systems is the circumstance that the prediction of their be-
havior is more time-consuming and complex than running
the systems themselves [21]. This is a clear limitation of our
view on organic P2P overlay networks. However, we argue
that current approaches to manage and specify large-scale
distributed are very limited. In our opinion it is an inherent
property of organic P2P overlay networks to be less pre-
dictable. That means it is not a matter of the view but of
the complexity of the application scenario.

Mary Shaw argues that thinking in specifyable programs
is nowadays – in the time of heterogeneous distributed sys-
tems consisting of myriads of components – not the right
direction [31]. Practical systems would be better served by



development models that recognize the variability and un-
predictability of the environment.

Our goal is to tame the low predictability by defining lower
and upper bounds, working with statistical models and guar-
antees, and exploiting emergent behavior in defined bound-
aries and under certain circumstances.

3.4 Design and Implementation Issues
Developing organic P2P overlay networks is challenging.

During the development process the programmer has to do
several tasks concerning different fields. Our framework for
describing organic P2P overlay networks helps to order the
tasks:

1. The programmer analyses potential application scenar-
ios in order to determine which kind and degree of self-
organization is needed. This includes the specification
of observed characteristics and triggered reactions.

2. The programmer specifies a set of rules for adapting
the behavior of the individual peers.

3. Furthermore, the programmer chooses a coordination
mechanism to disseminate meta-data over the network
(see [10]).

4. Afterwards follows the implementation of rules by adding
introspection, adaptation, and coordination code. [10,
4] propose several techniques to ease this step.

5. After the implementation the programmer experiments
to get feedback for adjusting rules and parameters (to
find potential phase transitions) in order to achieve the
desired global behavior.

The remaining article applies our framework and these
steps to a case study, an ant colony optimization mecha-
nism to improve the query processing of CAN in dynamic
environments.

4. CASE STUDY: ANTCAN
In their original proposals the P2P overlay networks re-

viewed in Section 2 use a deterministic ruleset to choose its
contacts. This leads to a scalability of typically log(n), i.e.,
obtaining an arbitrary query result invokes log(n) peers on
average, while the system contains n peers.1

However, deterministic rules leave aside that
• peers want to obtain queries at different rates,
• some keys are more popular than others and
• peers can be less reliable.

In the following we want to show that extending a CAN by
a self-organization mechanism for contact selection reduces
the number of peers invoked for each query. The envisioned
mechanism is supposed to optimize the query processing in
face of a highly dynamic environment, e.g. with unreliable
peers or with limited connectivity.

We call our CAN enhanced by this mechanism AntCAN.
Its core idea is to adopt the path selection strategy from
ant colonies for CANs. Basically, each ant marks its way to
a food source with pheromones. After some time, efficient
paths, e.g., routes with shortcuts, ’smell’ more than ineffi-
cient ones. Since ants tend to follow those routes that have
the strongest odor, they usually find the most efficient paths.
Pheromones disappear over time, thus unneeded paths lose
their marking.

The ’ant routing algorithm’ (a.k.a. Ant Colony Optimiza-
tion [14]) is very similar to the forwarding problem in P2P
overlay networks: in both cases we have small entities that
are fully autonomous. Each ant as well as each peer has a

1For CAN with d dimensions and n peers the average path

length is d
4

d
√

n. With d = log2(n)
2

CAN have also a scalability
of log(n) [26].

very limited point of view, i.e., a global view to the world is
not available. And the problem is beyond the horizon of a
single entity, but it can be solved cooperatively !

In order to adopt the ant system to a CAN, we require
additional data structures (see Figure 3). In the original
proposal, each peer knows its immediate neighbors in the key
space only. Now the peers have the following new properties:

• Peers are able to keep a limited number of other con-
tacts in addition to its neighbors in their contact caches.

• Each contact is assigned with a pheromone value.
• In addition, each query result contains the list of peers

which have forwarded the query.

Peer B Peer C

... ...

Contact Cache

Contacts

Pheromone Value

Contact Cache

Attached Contacts

Message

Figure 3: CAN with contact cache.

Thus, the query forwarding algorithm considers not only
the neighbors, but the set of additional contacts as well. The
crucial question that arises now is: how obtains each peer
an optimal set of contacts? Here, ant colony optimization
comes into play as follows:

The query answer carries not only the answer itself, but
also information about all peers that have forwarded the
query message before. A peer that obtains information about
the path on that way now updates its contact cache: If a con-
tact is already present in the cache, its pheromone value is
increased. Previously unknown peers are added and marked
with a base pheromone value. If the number of peers in the
contact cache exceeds a certain limit, the contact with the
least pheromone value is removed. Finally, the pheromone
values of all contacts are decreased by a small amount, as
with biological systems. The peers remove contacts with a
pheromone value below zero.

From a different point of view, the messages containing
queries and query answers are our ’ants’. They mark their
ways with pheromones, which disappear over time. The ma-
jor difference to the behavior of ant colonies in the nature
is that here the ants carry information about the path trav-
elled. This is why we want the ants to make ’jumps’ over
longer distances. In other words, in certain situations our
messages shall be forwarded directly to remote peers instead
of being handed over from neighbor to neighbor.

4.1 Connection to the Framework
This simple self-organization mechanism can be classified

into our framework as follows:
Introspection: Each peer observes incoming messages. With

our algorithm, the messages contain contact informa-
tion of other peers. In this way each peer becomes
aware of its environment.

Adaptation: By observing the message traffic each peer
builds up a contact cache. A peer uses this cache to
adapt its behavior, in particular to modify the forward-
ing policy. Each outgoing message is passed not to the
nearest neighbor, but to the nearest peer in general.

Coordination: The attached contact information corres-
ponds to the swarm-like coordination concern. Peers
may use different policies for selecting and attaching
their contacts to messages.

To realize the pheromone-based forwarding each contact
is marked with a pheromone value. Pheromone values are a
second characteristic that is introspected by the peers. They



change over time and lead on the one hand to preferences in
choosing paths through the P2P network and on the other
hand to the automatic removal of less used contacts.

A further improvement of this mechanism would be the
introspection of other characteristics, e.g. avergage query re-
sults per time unit, average query response time. This infor-
mation can be used to adjust the cache size, the pheromone
life time, etc., which are free parameters. A limited cache
size saves resources; but an undersized cache reduces the pos-
itive effect on the query path length. However, in our first
experiments we focus on the simple variant of the AntCAN,
i.e. without additional introspection of such characteristics.

4.2 Evaluation
Our AntCAN forwarding algorithm offers three optimiza-

tion parameters:
1. the number of additional contacts (c),
2. the increment of the pheromone values for the contacts

already present in the contact cache (i), and
3. the decrement value that makes the pheromones dis-

appear (j).
To simplify the experimental setup we use the increment

parameter also as base for initial pheromone values.
We now determine the extent for these parameters by

means of experiments. We use a Java-based CAN imple-
mentation of our own that is fully operational and allows us
to run experiments with a large number of peers on a Linux
cluster consisting of 32 hosts equipped with 2 GHz CPUs,
2 GBytes RAM and 100 MBit Ethernet each. [12] gives a
detailed description of our experimental setup.

Given this runtime environment, we ran a four-dimensional
CAN consisting of 100,000 peers. In order to have mean-
ingful results we experimented with 5,000,000 queries. One
setup simulates the worst case. Here, the query keys are
equally distributed over the key space, i.e., there is no key
that is more popular than others. Two setups with Gaussian-
distributed query keys cover more realistic cases. The mean
value in both Gaussian setups is the center of the 4d-hyper-
cube of the key space, i.e., more queries go to the nodes in the
center than the peers at the ’sides’2. Examples for this set-
ting come from the WWW. Here, www.google.com and URLs
nearby (e.g., www.google.com/search?q=something) are much
more popular than, for example, www.dogbreed.com. The
variances of the Gaussian setups are the diameter of the
key space divided by 3 and 100, simulating an environment
containing a moderate and an extreme hot spot. Figure 4
illustrates the key distribution for one dimension of the key
space.
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Figure 4: Distribution of query keys used in the ex-
periments.

2The key space is a torus, thus ’sides’ means the ranges in
the key space where the keys wrap between 0 and 1.

Additional Contacts. First we want to examine the num-
ber of additional contacts. We anticipate that even a small
number of additional contacts decreases the average path
lengths, and the ant algorithm performs better in the set-
ting with the gaussian-distributed query keys. We set i = 1
and d = 0.1 arbitrarily, and ran a series of experiments with
different sizes for the contact cache. Figure 5 now graphs the
results of these experiments. The x-axis shows the number
of additional contacts, i.e., 0 stands for the original CAN
proposal where only the neighbors are kept in the contact
cache3. The y-axis is the average path length.
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Figure 5: How does the number of additional con-
tacts affect the average path length?

The experiments confirm our expectations. Obviously,
having no additional contacts in the cache leads to the av-
erage path length given by the original CAN proposal (d/4 ·
n1/d). But having 8 additional contacts reduces the path
length by 1/3 in the worst-case setting with equally dis-
tributed queries! In settings with gaussian distributed query
keys, the path length is reduced further. In addition, Fig-
ure 5 tells us that a very large cache size does not help very
much, i.e., the marginal utility falls with increased cache size.
A contact cache containing 8 neighbors plus 20 additional
contacts seems to be viable for our settings. A dynamic
cache size that adapts to the current workload in order to
find a trade-off between minimal average path length and
contact cache size is part of further work.

Increment/Decrement for the Pheromone Value. We now
determine the extent of the increment i and decrement j for
the pheromone values. Clearly, the values depend on each
other, e.g., an increment of 5 and a decrement of 1 yields
the same result as an increment of 0.5 and a decrement of
0.1. Therefore, we set the decrement to the arbitrary value
j = 0.1, and vary the increment. The number of additional
contacts is set to s = 50.

Figure 6 shows the results of our experiments. Again, the
y-axis graphs the average path lengths. The x-axis is the ex-
tent of the increment i for the pheromone value. It is obvious
that i < j leads to a setting where any additional contact
is immediately removed. Therefore, all three graphs start at
an average path length comparable to the case without ad-
ditional contacts. The figure tells us that peers can always
better off by using increments substantially larger than the
decrement value. In particular, our observations have shown
that the average path length is minimal if the ratio of incre-
ment / decrement meets the number of additional contacts,
i.e., i/j = s. In our experiment, iopt = s · j = 50 ·0.1. Larger
ratios yield no effect.

3Basically, each peer in a 4-dimensional key space keeps
track of at least 8 neighbors.
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Figure 6: Relation between the increment of the
pheromone value and the average path length.

5. RELATED WORK
Several work tries to adopt concepts and mechanisms of

biological systems, e.g. swarm-intelligence, ant colony opti-
mization, etc. Since this field of research has an interdisci-
plinary touch we review only close related and representative
work. We distinguish between mechanisms adopted from bi-
ological systems and programming models to develop organic
computing systems.

Biological Mechanisms. The BISON project [20] explores
biology-inspired techniques for self-organization in dynamic
networks. Their results and findings are an important basis
for our project to provide a general framework for modular
self-organization mechanisms for P2P overlay networks. The
AntHill project [7] has a similar focus. It aims on design,
implementation, and evaluation of P2P applications based
on ideas such as multi-agent and evolutionary programming,
however, without considering overlay structures.

Kulendik et al. proposes a distributed control and syn-
chronization mechanism that exploits collective coordination
and decision making [24]. Furthermore they propose to uti-
lize available processes inside a target system to coordinate
the behavior. Although they focus on chemical and phys-
ical effects this idea is related to our coordination concern
that exploits in the case of AntCAN the existent message
delivering mechanism of CAN.

Arabshahi et al. present an adaptive routing mechanism
for wireless ad-hoc networks that uses swarm intelligence [5].
They discuss two specific algorithms that show promising
results in this respect [8].

Di Caro et al. present AntNet, an adaptive approach to
routing tables learning in packet-switched communication
networks [15]. They show that their algorithm based ant
colony optimization outperforms common internet routing
algorithms.

Schoonderwoerd et al. apply ant colony optimization to
improve load balancing in telecomunication networks [29].

However, all these approaches propose algorithms for spe-
cific problems in different fields. We have introduced a gen-
eral framework for understanding, investigating, and imple-
menting organic P2P overlay networks. Future algorithms
can profit from this basis.

Programming and Architectural Models. Shaw proposes
a new kind of programming model that takes dynamic be-
havior of nowadays software systems into account [30]. The
model is based on a process-oriented view and feedback loops
that reflect temporal concerns. Our proposal of introspec-
tion, adaptation, and coordination goes one step beyond to-

wards massive distributed systems, but not as deep into the
field of programming paradigms.

Furthermore, Shaw states that engineering nowadays and
future complex systems requires a different view on soft-
ware [31]. She proposes to softening precision in order to
avoid brittleness.

George et al. present a novel programming model that is
inspired by biological cell systems [18]. Basically, they utilize
a state machine approach to describe local actions in case of
errornous system behavior. Our approach of introspection
and adaptation has a similar model based on events, states,
and actions.

The early pioneer work on reflection and reflective software
architecture is a basis for our view on introspection and self-
adapting peers [25, 32, 23].

In [4] we have shown how novel design and implementation
techniques can help to build flexible self-organizing overlay
networks. In [10] we discuss the importance of meta-data
dissemination as decentralized coordination mechanism and
its efficient modular implementation.

Last but not least the great visions of autonomic [17],
proactive [35], and organic computing [1] signpost to a new
understanding of software systems. With our approach re-
garding P2P overlay networks, we go one step into this di-
rection.

6. CONCLUSION
The AntCAN study shows that ideas from biological sys-

tems can be exploited to optimize the behavior of large-
scale P2P overlay networks in the face of a dynamic envi-
ronment. Our framework poses as a basis for describing the
function, the architecture, and the implementation of self-
organization mechanisms on top of P2P overlay networks.
We argue that a significant part of self-organization mecha-
nisms for P2P overlay networks can be expressed using three
standard concerns: introspection, adaptation, and coordina-
tion. The strict decentralized architecture and the swarm-
like information distribution opens the door to adopt mech-
anisms and algorithms of biological systems. In the case of
AntCAN, we borrowed ideas from ant colonies, in particular
the mechanism of dispersing pheromones to signpost paths.
Indeed, one can say that another synthetic algorithm could
achieve the same results; but we argue that the strict ad-
herence to the decentralized organization paradigm and the
biology-inspired view of autonomous rule-based peers leads
to a deeper comprehension of organic P2P overlay networks.

We argue that our framework in general as well as the opti-
mization of the query processing are applicable to other P2P
overlay networks because they do not depend on proprietary
mechanisms but on general concepts of overlay networks.

Experiments have shown that an implementation of a bio-
logy-inspired algorithm optimizes the behavior of a P2P over-
lay network, especially under real-world circumstances. Fur-
thermore, the results show that even in this simple case study
several parameters decide over the overall system behavior,
in particular the contact cache size and the pheromone in-
crement/decrement values. We perceive these parameters as
tuning leverages to adapt a P2P overlay network to a specific
application scenario. In future work we want to investigate a
mathematical analysis and the runtime adaptation of these
tuning-parameters.
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