
Implementing Bounded Aspect Quantification in AspectJ

Christian K̈astner
Department of Computer Science

University of Magdeburg, Germany
kaestner@iti.cs.uni-magdeburg.de

Sven Apel
Department of Computer Science

University of Magdeburg, Germany
apel@iti.cs.uni-magdeburg.de

Gunter Saake
Department of Computer Science

University of Magdeburg, Germany
saake@iti.cs.uni-magdeburg.de

Abstract
The integration of aspects into the methodology ofstepwise soft-
ware development and evolutionis still an open issue. This pa-
per focuses on the global quantification mechanism of nowadays
aspect-oriented languages that contradicts basic principles of this
methodology. One potential solution to this problem is toboundthe
potentiallyglobal effects of aspects to a set oflocal development
steps. We discuss several alternatives to implement such bounded
aspect quantification in AspectJ. Afterwards, we describe a con-
crete approach that relies on meta-data and pointcut restructuring
in order to control the quantification of aspects. Finally, we discuss
open issues and further work.

1. Introduction
Aspect-oriented programming (AOP)aims at localizing, separating,
and encapsulating crosscutting concerns [9]. Aspects, the main
abstraction mechanism of AOP, modularize those concerns that
otherwise would be tangled with and scattered over other concern
implementations. While some studies illustrate the success of AOP
in several domains, e.g. middleware [6, 18], database systems [16],
and operating systems [11], several issues remain controversial or
simply not addressed.

This paper aims at the connection of AOP and the methodology
of stepwise software development (SWD)[17, 15]. The idea behind
SWD is to evolve a program from a minimal base by successively
applying refinements that encapsulate different design decisions,
called development steps. This evolutionary process results in a
conceptually layered design; each layer implements one refinement
and is associated with one development step.

While SWD is fundamental to software development and evo-
lution, it has been shown that the current understanding of AOP
does not fit the practice of SWD. Traditionally, aspects affect all
elements of a program. This global quantification violates the prin-
ciple of SWD that refinements must not affect subsequently applied
refinements (local refinement). This is especially crucial for contin-
uously evolving software. Furthermore, it has been noticed that the
current precedence mechanisms of aspects, in particularAspectJ1,
are not flexible enough to express different orderings of aspects in
layered designs [12, 13].

In prior work we addressed some of these issues: We proposed
an architectural model to integrate aspects into layered designs [4];
we presented a concept for understanding aspects as refinements
that can be subject to refinement as well [2, 3]. Furthermore, we
proposed a mechanism for limiting the effects of aspects to previ-
ous development steps [2].

However, the integration of aspects into SWD entails some
deeper conceptual and technical issues that remain open. This paper
addresses issues regarding the quantification and composition of as-

1 http://www.eclipse.org/aspectj/

pects. Specifically, we present an approach to implement a mecha-
nism for bounding the quantification of aspects so that they fit the
practice of SWD. Whilebounded quantificationhas been discussed
theoretically [12, 13], we address several issues that arise from the
practical implementation, i.e. in AspectJ. We discuss several alter-
natives to realize such mechanism and present our experiences and
first results. Our work is based onARJ2, an extended compiler for
AspectJ on top of theAspectBench Compiler3 framework.

2. Bounded Aspect Quantification
Traditionally, aspects are quantified globally. That means they may
potentially affect all program elements. Unfortunately, this attitude
ignores the principle of SWD that refinements are permitted to af-
fect only those refinements that were applied in previous develop-
ment steps [17, 15]. Several studies have shown that this circum-
stance is directly responsible for inadvertent aspect interactions and
an unpredictable behavior in evolving software [13, 14, 8, 7]

In order to address this issue, Lopez-Herrejon et al. proposed
an approach to aspect composition [13]. They model aspects as
functions that operate on programs. Applying several aspects to a
program is modeled as function composition. In this way the scope
of aspects is restricted to a particular step in a program’s evolution.
Suchbounded quantificationof aspects follows principles of SWD.
It has been argued that current AOP languages do not respect this
principle because it is not possible to distinguish between different
development steps [13, 5].

Suppose the following example: In a first development step we
introduce an abstraction for two-dimensional points containing two
fields and two setter methods (Fig. 1).

1 c l a s s Point {
2 i n t x;
3 v o i d setX(i n t x){ t h i s .x=x;}
4 i n t y;
5 v o i d setY(i n t y){ t h i s .y=y;}
6 }

Figure 1. First step: Introduction of aPoint class.

In a second step we add an extension for three dimensions and
an aspect that counts the updates ofPoint objects (Fig. 2). For
that, we introduce a counter variable toPoint (Line 6) and we
intercept and advise executions of setter methods (Lines 7-11). In
the present configuration, theCounteraspect advises executions of
setX, setY, andsetZ. Now suppose we apply a further refinement in
a subsequent step that introduces a color feature (Fig. 3).

By adding this step, we also affect the counter feature. Although
the Counteraspect was applied by a previous development step,

2 http://wwwiti.cs.uni-magdeburg.de/itidb/arj/
3 http://abc.comlab.ox.ac.uk/

apel
Textfeld
Published in the Proceedings of the ECOOP Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE'06), Nantes, France, July 3rd, 2006.

1 c l a s s Point3d e x t e n d s Point {
2 i n t z=0;
3 v o i d setZ(i n t z){ t h i s .z=z;}
4 }
5 a s p e c t Counter {
6 i n t Point.cntr =0;
7 p o i n t c u t setCoordinates(Point p) :
8 e x e c u t i o n(* Point*.set *(..)) && t a r g e t (p);
9 a f t e r (Point p) : setCoordinates(p) {

10 p.cntr ++;
11 }
12 }

Figure 2. Second step: extending thePoint class and adding a
Counteraspect.

1 c l a s s Point3dColor e x t e n d s Point3d {
2 i n t Point.color;
3 v o i d setColor(i n t c){ t h i s .color=c;}
4 }

Figure 3. Third step: Introduction of a color feature.

it affects the color feature applied subsequently. It advises the
setColormethod and increments the counter of the enclosingPoint
object. But this may not be intended when applying theCounter
aspect in development step two.

Generally, patterns in pointcuts enable to match a whole bunch
of join points and to refine these using one coherent advice. While
this is a powerful encapsulation mechanism there are also cer-
tain pitfalls, e.g. when code evolves pointcuts may not match any-
more [1]. What is interesting for our discussion is that when adding
functionality subsequently, such patterns may inadvertently match
new join points, as the above example illustrates. Whether this is
desired or not in a particular case, it is undesirable for program-
mers to give up control over these interactions.

One may argue to do not use such fuzzy patterns. But we
counter that these mechanisms commonly are considered as an
(even though controversial) improvement over other refinement
mechanisms [10]. We believe programmers should be encouraged
to take advantage of these capabilities, but with certain guarantees,
e.g. to affect only things that are currently part of the program.
However, we are aware that some concerns are potentially global,
e.g. tracing, constraint enforcement, etc. But it has been shown
that in principle bounded quantification is able to handle also these
global concerns [13].

Our preliminary work on integrating aspects in SWD and lay-
ered designs allows for the first time to implementand experiment
with bounded aspect quantification. This paper presents our ongo-
ing work in this direction. Even if bounded quantification of aspects
may be still controversial, our approach may help to prove corre-
sponding arguments and reveal empirical evidence.

3. Preliminary Work
This section reviews our previous results on integrating AOP and
SWD that form the basis for this paper.

The idea of SWD is that software is developed and evolved in
multiple, sequential steps. Each step refines the program that was
developed in previous steps. Aspects are one mechanism to imple-
ment such refinements. As mentioned, current AOP languages do
not directly support the incremental methodology of SWD. Conse-
quently, we proposed an approach that achieves this: This key idea
is that aspects are associated with development steps. Each devel-
opment step may be associated with several aspects [4, 2, 3].

ARJ is a compiler on top of AspectJ that maintains meta-data
about the association of aspects and development steps [3]. One
beneficial use of these data is to exploit them for modifying the
quantification mechanism: aspects are only allowed to affect as-
pects of previous development steps. With ARJ, each development
step is represented by a distinct directory. A directory may contain
several classes and aspects. A configuration file with an ordered
list of directory names is used to specify the development steps to
be included into the compilation process. Figure 4 shows (a) the
directory structure and (b) the configuration file of our example.
By mapping steps to directories, the ARJ compiler associates each
code fragment with its development step and stores that as meta-
data.

base
thirdD im
color

thirdD im

program

color

Point.java

base

Point.javaPoint.java Counter.aj

(a) (b)

Figure 4. Program organization. (a) File system, and (b) configu-
ration file.

Having this, the idea of bounding aspect quantification can
seamlessly be integrated into ARJ: Since the compiler knows for
each aspect to which development step it belongs, it can determine
to which program elements the aspects are permitted to bind. It uses
the meta-data to influence the weaving process.

4. Implementation Alternatives
This section discusses three alternatives of implementing bounded
quantification in ARJ:incremental weaving, pointcut restructuring,
andcompiler annotations.

Incremental weaving. The first approach is to compile the pro-
gram incrementally. The compilation process starts by compiling
the first step and by weaving aspects that belong to this step only.
Afterwards, the second step is applied and compiled. Then, aspects
associated with that step are woven into the current program con-
sisting now of step oneandtwo. Thereby, aspects are automatically
limited to the first two steps. The refinements of the remaining steps
are applied incrementally in the same manner. Figure 5 illustrates
this approach for our example. TheCounteraspect is woven to the
program after the second step. Therefore it affects only the meth-
odssetX, setYandsetZthat were introduced in the first two steps.
Although the pointcut would also matchsetColor, it does not affect
the code associated with step three at all.

Point

Point3d

setX

Point3dColor

setZ

setColor

Counter

Step 1

Step 2

Step 3

setY

Figure 5. Incremental weaving approach.

Pointcut restructuring. The second approach enforces bounded
quantification by restructuring pointcut expressions. The original
aspects are modified, so that they do not match join points associ-
ated with subsequent steps. By restructuring pointcuts, aspects can
be woven into the program in one final step, using any standard
AspectJ compiler. As shown in Figure 6, theCounteraspect is wo-
ven at the end, but still affects only the methods associated with the
first two steps, and notsetColor that fits the pattern, too. This is
achieved by excluding those join points from pointcut expressions
that are associated with subsequent development steps.

Step 1

Step 2

Step 3

Counter

Point

Point3d

setX

Point3dColor

setZ

setColor

Counter

setY

Figure 6. Pointcut restructuring approach.

Compiler annotations. A third approach is to directly extend
the AspectJ compiler to bound the quantification of aspects using
internal annotations. The compiler’s frontend annotates all classes
and aspects with information about the associated development
steps. During the weaving process the compiler’s backend uses
these annotations to match permitted join points only. For this
approach the compiler’s frontend and the pointcut matcher must be
adapted. This approach does not produce source code as a separate
step but directly weaves the aspects into the program. The aspect
quantification is bounded directly during the weaving process.

Discussion. All of the considered approaches have advantages
and disadvantages. The incremental weaving approach is very com-
plex. It changes the whole compilation process, so that the program
is compiled in multiple steps. It also requires major changes to the
AspectJ compiler to disable the existing support for advice prece-
dence and to cope with semi-woven classes. It technically enforces
bounded quantification very directly and consequently and without
the need of source code analysis. All in all this approach is solid
but requires major compiler changes and makes the compilation
process very complex.

The pointcut restructuring approach is not trivial either. To re-
structure an aspect’s pointcuts, it is necessary to analyze all po-
tential target join points (its shadows) in each development step to
determine their scope. This presumably requires to modify parts of
the compiler’s frontend and the pointcut matcher. The benefit of
this approach is that a source-to-source conversion is possible. The
resulting source code can be compiled with any AspectJ compiler.
This helps the programmer to get insight into the restructured code.
In contrast to the incremental weaving approach, it is not necessary
to change the compilation process or to work with semi-woven
class files. Additionally this approach is more flexible since it is
possible to implement transformations that allow defined excep-
tions from the bounded quantification (cf. Sec. 6). Such exceptions
cannot be implemented with the incremental weaving approach be-
cause the strict bounding is enforced technically by the weaving
process.

The third approach annotates the code and extends the com-
piler with an altered pointcut matcher. The approach is similar to
pointcut restructuring, but bounded quantification is enforced in the

compiler’s backend, instead of the frontend. Therefore, a source-
to-source transformation is not possible. Furthermore, also a static
program analysis for annotation is requited. The approach offers a
similar flexibility as pointcut restructuring. However, it lacks trans-
parency for the programmer.

We choose to implement the pointcut restructuring approach
in ARJ because its flexibility and transparency are vital for the
programmer and for further language extensions. This allows us to
experiment with exceptions from the strict bounded quantification
approach and to quickly change the restructuring algorithm. In
ongoing work, we will consider also the alternative approaches. For
now, we limit our considerations to pointcut restructuring.

5. Bounded Aspect Quantification in ARJ via
Pointcut Restructuring

Pointcut restructuring can be implemented completely in the fron-
tend of the ARJ compiler. It uses the available meta-data that map
code fragments to development steps.

5.1 Mechanisms for Pointcut Restructuring

We use two principle mechanisms to restrict pointcuts. The first
replaces pointcut patterns by method signatures (wildcard replace-
ment). This way, it can be ensured that a pointcut cannot acciden-
tally match fitting methods introduced in later development steps.
This requires a complete static program analysis for each step.
However, every step reuses that information from previous steps.

Figure 7 shows one possible version of a restructuredCounter
aspect. In this transformed version all pattern expressions have
been replaced by fully qualified method signatures (“Point*.set*(..)”
was replaced withPoint.setX, Point.setYandPoint3d.setZ). Thus,
it matches onlysetX, setYandsetZthat were introduced in the first
two development steps, and notsetColor introduced in the third
step.

1 a s p e c t Counter {
2 p o i n t c u t setCoordinates(Point p):
3 (e x e c u t i o n(v o i d Point.setX(i n t))
4 || e x e c u t i o n(v o i d Point.setY(i n t))
5 || e x e c u t i o n(v o i d Point3d.setZ(i n t)))
6 && t a r g e t (p);
7 ...
8 }

Figure 7. Restructured Counter aspect.

The second mechanism useswithin pointcuts to restrict the
pointcut matcher to classes associated with certain steps (within
constraints). The within pointcut matches classes with a certain
type pattern. It can be used to restrict an existing pointcut with
pattern expressions to one or more specific classes.

Figure 8 shows the restructuredCounter aspect when using
this mechanism. In this example, twowithin pointcuts have been
added to restrict the pattern expression of theexecutionpointcut
to Point and Point3d. It is not necessary to modify the original
pointcut pattern (Line 3). Thewithin pointcut can also be used to
restrict pointcuts that match the client side. i.e.get, set, andcall. In
this case, pointcuts were restricted to all possible, permitted client
classes.

We believe that by combining wildcard replacement and within
constraints it is possible to cover a wide range of transformations
necessary to enforce bounded aspect quantification.

After the process of pointcut restructuring, the compiler can
proceed in two ways (Fig. 9). Either (a) weaves the transformed
aspects directly to the target classes or (b) it writes the modified
aspect sources out. The sources can be used to compile the program
with an external AspectJ compiler or just for debugging purposes.

1 a s p e c t Counter {
2 p o i n t c u t setCoordinates(Point p):
3 e x e c u t i o n(* Point*.set *(..)) && t a r g e t (p)
4 && (w i t h i n (Point) || w i t h i n (Point3d));
5 ...
6 }

Figure 8. Restructured aspect using thewithin pointcut.

ARJ

Java classes
and aspects

restructured
aspect file

alternative
AspectJ
compiler

Develop. Step
Meta Data

Compiled
Program

(a)

(b)

Figure 9. ARJ compilation process.

5.2 Pointcut Semantics in AspectJ

In the following, we examine some selected pointcuts in the light
of pointcut restructuring for implementing bounded quantification.

During our attempts to implement bounded quantification in
ARJ we realized that the semantics of pointcuts in AspectJ are not
really defined precisely. Moreover, even between different compiler
versions (ajc version 1.2 vs. 1.5) and different vendors (ajc vs. abc),
we found minor variations in the semantics. For our analysis we
refer to the semantics that can be experimentally determined from
the ajc compiler version 1.5.

We limit our discussion toexecution, call, set, andgetbecause
they are the most commonly used ones and they reveal some open
issues. To illustrate the problems, we modify our running example
as shown in Figure 10. We add aDraw3D class to the second step
that instantiates and uses thePoint3dclass and that is extended in
the third step byDraw3dColor. Additionally, the methodsetY is
extended byPoint3dColorin the third step.

Point

Point3d

setX

Point3dColor

setY

setZ

setColor

Counter

Step 1

Step 2

Step 3 setY

Draw3D

Draw3DColor

Figure 10. Extended Example.

Executionpointcuts match method executions depending on the
type of the target class. Therefore, it is necessary to specify the
exact target type in which the method is defined. It is not possible
to define anexecutionpointcut matching a method inherited from
a super class. Instead the method must be literally defined in the
target class. In our initial example in Figures 1, 2, and 3 the pointcut
“execution(* Point3d.setX(..))” would not match because thesetX
method is not defined or extended in thePoint3dclass. In contrast,
call, getandsetpointcuts match the client side that calls the method
or accesses the field. They match methods and fields either defined
in the target class or inherited from super classes. Therefore the
pointcuts “call(* Point.setX(..))” and “call(* Point3d.setX(..))” both
match the calls fromDraw3d to this method.

5.3 Semantics of Bounded Quantification

Execution pointcuts. Executionpointcuts are least problematic
with regard to bounded quantification. Anexecutionpointcut is al-
ready bounded to the target class and thereby to a single develop-
ment step. Hence,executionpointcuts bear no potential for unex-
pected effects on subsequent development steps, unless the target
class is specified with a pattern expression. In such cases, as shown
in our example in Figure 7, the pattern expression is reduced to
match target classes from early development steps only. For the de-
veloper the reduced scope of target class pattern expressions is the
only change to the semantics ofexecutionpointcuts. This change is
intuitive and follows the semantics of bounded quantification.

Call pointcuts. In contrast toexecutionpointcuts,call pointcuts
match the client side of a method invocation, i.e. the caller. The
target object is not directly affected. In our example, the advice
code would be woven into theDraw3D class. This causes two
problems that might result in unexpected effects:

First, thecall pointcut has to match only calls to methods that
already were introduced in the development step that the aspect
belongs to. In our example theCounteraspect – with acall instead
of an executionpointcut – would only match calls to thesetX
method that were invoked from the initial version of theDraw3D
class. Calls from the subclassDraw3dColor (third step) are not
advised because this extension has been added in a subsequent step.
This might surprise developers at first, but is explained with the
basic principle of bounded quantification. To match all calls to a
method independently of the step where the call originates from an
executionpointcut may be used.

The second effect occurs when the target method itself is ex-
tended. The advice is woven into the caller, independently whether
the target is extended or overridden in a subsequent step. In our
example, theCounter aspect – with acall instead of anexecu-
tion pointcut – matches thesetYcalls from theDraw3Dclass, even
though thesetYmethod is extended later in the third step. Depend-
ing on the extension this may again lead to unforeseen behavior
in some rare cases, namely when the pointcut matches a call to a
method changed in later steps. However, this is not a specific prob-
lem of AspectJ in the context of SWD, but a general issue about
virtual methods calls. Nevertheless, due to the pointcut restructur-
ing approach the ARJ compiler is aware of those situations and may
issue warnings or even limit or change the strict requirements for
bounded quantification.

We propose not to modify thecall pointcut semantics but to ex-
plicitly document these possible effects. Furthermore, we suggest
to evaluate in detail the cases wherecall pointcuts can be used in
SWD and to adapt the pointcut restructuring process accordingly.

Get and set pointcuts. The get andsetpointcuts are woven into
the program at the caller side, similar tocall pointcuts. Therefore
the same problem occurs as described forcall pointcuts: The client
that accesses a field value must already exist in the development
step where the aspect is added. In contrast tocall pointcuts, where
it is possible to switch toexecutionpointcuts, there is no equivalent
alternative that matches the access to a field at the receiver.

Therefore, we argue that strict bounded quantification limits the
usability ofgetandsetpointcuts. It could be useful to introduce a
pointcut type to AspectJ that matches field access join points on the
target side, similar to theexecutionpointcut for methods, e.g., by
treating field accesses and assignments as functions. An alternative
approach is the introduction of a controlled possibility to specify
unbounded aspects, as suggested in Section 6.

Other Pointcuts. Now, we give an overview over further selected
pointcuts. Thewithin pointcut matches one target class. Similar
to executionpointcuts,within pointcuts are modified only when

pattern expressions are used; other bounding mechanisms are not
necessary. Theinitialization pointcut is woven into the target class
similar toexecutionpointcuts and therefore can be handled equally.
The this, target andargs pointcuts do not need any change. They
bear no possible side effects for SWD. These pointcuts only match
the type of the caller, the target, or the arguments. Pattern expres-
sions are not allowed.

Thehandlerpointcut is woven in all exception handlers match-
ing a given type pattern. Pattern expressions must be reduced as
described forexecutionpointcuts to not match new exception types
added in subsequent development steps. As withgetandsetpoint-
cuts,handlerpointcuts are woven only into exception handlers that
already existed in the development step where the aspect is defined.
Still a typical use case forhandlerpointcuts is to globally modify
the handling of a certain exception type. We therefore again suggest
the introduction of global pointcuts (see Sec. 6).

The pointcutcflowand related pointcuts do not match any basic
join points themselves, but are used to further specify other point-
cuts. It therefore does not introduce any new problems. Still, when
usingcflowpointcuts the developer must keep in mind the semantic
changes of the other pointcut types.

6. Discussion and Conclusion
The integration of AOP into the methodology of stepwise software
development and evolution promises various benefits, but also re-
quires bounding the quantification of aspects. Aspects are not al-
lowed to influence join points associated with subsequent develop-
ment steps.

In this paper, we presented a mechanism to implement bounded
aspect quantification in ARJ by restructuring pointcut expressions
to match only join points that are permitted to advise. Pointcut re-
structuring promised higher flexibility and transparency than alter-
native approaches, i.e. incremental weaving or annotations.

Bounded aspect quantification is supposed to avoid inadvertent
effects by reducing the number of possible interactions between
development steps [12, 13, 5]. However, the developer might want
to add global, unbounded aspects to the program. Examples are
global constraint enforcement, tracing, profiling, etc. As illustrated
in Section 5.3,setandgetpointcuts would benefit from a less strict
bounded quantification. We suggest to evaluate the necessity for
global aspects and possible language mechanisms that integrate
bounded and unbounded aspects, e.g. via aglobal keyword for
aspects, pointcuts, or advice.

For the ARJ project the integration of single aspects with boun-
ded quantification into incrementally developed classes is only a
first step. ARJ supportsmixin-based inheritancefor classes and
aspects themselves, as well asaspect refinement, pointcut refine-
mentandadvice refinement[3]. Bounding the quantification when
working with refined classes and refined aspects induces new is-
sues: A composite aspect, evolved over several development steps,
is associated with these multiple steps. This makes it necessary to
determine which parts of the aspect are bound to which step.

Furthermore, mixin-based inheritance introduces a new prob-
lem to determine the pointcut’s actual target, especially forexecu-
tion pointcuts, because a target class may consist of multiple re-
finements associated to multiple development steps. Finally, the se-
mantics of pointcut refinement and advice refinement themselves
require deeper evaluation. They enable advanced opportunities to
restrict or extend aspects in later development steps. Discussions
must emphasize usability and comprehensibility from the develop-
ers point of view, to make the effects of refined aspects predictable
and avoid inadvertent effects. For these extensions the high flexibil-
ity and transparency of the pointcut restructuring approach is vital.
Our long term goal is to fully integrate aspects into the methodol-
ogy of SWD and layered designs.

Acknowledgments. This work was done while Sven Apel was
visiting the group of Don Batory at the University of Texas at
Austin. It is is sponsored in parts by the German Research Founda-
tion (DFG), project number SA 465/31-1, as well as by the German
Academic Exchange Service (DAAD), PKZ D/05/44809.

References
[1] T. Tourwe abd J. Brichau and K. Gybels. On the Existence of

the AOSD-Evolution Paradox. InAOSD Workshop on Software
Engineering Properties of Languages for Aspect Technologies, 2003.

[2] S. Apel, T. Leich, and G. Saake. Aspect Refinement and Bounding
Quantification in Incremental Designs. InProceedings of Asia-Pacific
Software Engineering Conference, 2005.

[3] S. Apel, T. Leich, and G. Saake. Mixin-Based Aspect Inheritance.
Technical Report 10, Department of Computer Science, University of
Magdeburg, Germany, 2005.

[4] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers: Aspects
and Features in Concert. InProceedings of International Conference
on Software Engineering, 2006.

[5] S. Apel and J. Liu. On the Notion of Functional Aspects in Aspect-
Oriented Refactoring. InProceedings of ECOOP Workshop on
Aspects, Dependencies, and Interactions, 2006.

[6] A. Colyer and A. Clement. Large-Scale AOSD for Middleware.
In Proceedings of International Conference on Aspect-Oriented
Software Development, 2004.

[7] R. Douence, P. Fradet, and M. Südholt. A Framework for the
Detection and Resolution of Aspect Interactions. InProceedings
of Generative Programming and Component Engineering, 2002.

[8] R. Douence, P. Fradet, and M. Südholt. Composition, Reuse
and Interaction Analysis of Stateful Aspects. InProceedings of
International Conference on Aspect-Oriented Software Development,
2004.

[9] G. Kiczales et al. Aspect-Oriented Programming. InProceedings of
European Conference on Object-Oriented Programming, 1997.

[10] R. Laddad.AspectJ in Action: Practical Aspect-Oriented Program-
ming. Manning Publications Co., Greenwich, CT, USA, 2003.

[11] D. Lohmann et al. A Quantitative Analysis of Aspects in the OS
Kernel. InProceedings of ACM SIGOPS EuroSys Conference, 2006.

[12] R. Lopez-Herrejon and D. Batory. Improving Incremental Develop-
ment in AspectJ by Bounding Quantification. InAOSD Workshop
on Software Engineering Properties and Languages for Aspect Tech-
nologies, 2005.

[13] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined
Approach to Aspect Composition. InProceedings of ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program
Manipulation, 2006.

[14] N. McEachen and R. T. Alexander. Distributing Classes with
Woven Concerns: An Exploration of Potential Fault Scenarios.
In Proceedings of International Conference on Aspect-Oriented
Software Development, 2005.

[15] D. L. Parnas. Designing Software for Ease of Extension and
Contraction.IEEE Transactions on Software Engineering, SE-5(2),
1979.

[16] A. Tesanovic et al. Aspects and Components in Real-Time System
Development: Towards Reconfigurable and Reusable Software.
Journal of Embedded Computing, October 2004.

[17] N. Wirth. Program Development by Stepwise Refinement.Commu-
nications of the ACM, 14(4), 1971.

[18] C. Zhang and H.-A. Jacobsen. Resolving Feature Convolution in
Middleware Systems. InProceedings of International Conference on
Object-Oriented Programming Systems, Languages and Applications,
2004.

