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Abstract

Software model checking is an automatic method for formal verification of soft-
ware programs, that can construct a certificate of correctness or an error path as
witness for a bug. Because of the dramatical growth of size and complexity of soft-
ware programs and the growing dependency on software products, it is especially
important to ensure reliability of these products. While software model checking
has been successful in discovering subtle bugs in code, it is still quite cumbersome
to use. This work introduces the concept of Verification Tasks to simplify and
organize the user interface. Furthermore we develop a new specification language
and a new graphical user interface for the verification tool CPAchecker. The
user interface is implemented as the Eclipse-plugin CPAclipse, which is publicly
available.
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Chapter 1
Introduction

Software is probably the most omnipresent human-made material in our modern
society. It has become a mission-critical part in many aspects of daily life like
telecommunications, airplanes, automobiles, entertainment and so on. There are
technologies that are extremely expensive (space travel) or dangerous for human
life (transportation safety, medicine). Especially these technologies demand high-
quality software to ensure reliability. Previous software disasters have endangered
human life or lead to severe loss of reputation and money [Neu09].
The ever-growing size and complexity of computer programs makes the task of

ensuring the quality and reliability of software dramatically difficult. This lead to
the research field of software reliability engineering [Lyu07] which has identified
Fault removal as one major technique to achieve reliable software systems. Fault
removal uses verification to detect the existence of faults and eliminate them.
This thesis concentrates on one approach to verification called software model

checking. Model checking uses algorithmic analyses to prove properties of the
program. The user has to formalize the properties in a formal language given by
the model checking tool. The tool then proves whether the properties are fulfilled
by the program. This is a rather costly approach to ensure reliability because it
requires exhaustive exploration of all possible program behaviors. If the relatively
high cost is invested and the analysis terminates with a positive result the user
receives the ultimate certificate of correctness. The tool has proved that every
possible program behavior fulfills the specification.
One of the remaining problems is that the user has to provide the specification.

If this specification does contain errors the model checking result leads to wrong
results and the error might only be detected in later steps of the software engi-
neering process which leads to significant cost increases. This thesis introduces
a new language for specification of program properties and a user interface for a
software model checking tool. The user interface is developed as the plugin CPA-
clipse for the integrated development environment Eclipse1 which is available
on an eclipse update site2. The plugin is developed for the Eclipse version 3.5.2
using Java version 1.6 but it should run on later versions as well. In addition to
this the verification task is introduced. A verification task contains any informa-
tion needed to start a verification process and the information produced by this
process. Verification tasks provide a simple interface to the programmer. The

1 www.eclipse.org
2 http://www.sosy-lab.org/~dbeyer/eclipse-download/
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1.1 Outline of the Thesis

verification is executed completely automatic and requires no further knowledge
of model checking or formal notation.
In verification tasks, the different concerns of implementation and specification

are separated. This allows separating the development of these concerns on dif-
ferent development teams. Because of psychological reasons this separation can
result in more exact specifications and in more reliable programs.
The software model checking tool CPAchecker that is extended during the

work for this thesis is a flexible, extensible tool for verification of C-programs.
CPAchecker is based on the formal framework described in [BHT07] and
[BHT08]. The CPAchecker distribution contains pre-written specifications for
simple, generic specification cases like the reachability of null pointer derefer-
ences. More complex, domain-specific specifications can easily be developed with
the support of CPAclipse.

1.1 Outline of the Thesis
This thesis consists of three main chapters and a background chapter. In the
background chapter (Chapter 2) we describe various topics that are needed in the
other chapters. The topics are Software Model Checking in general, the Software
Model Checking tool CPAchecker, a method to specify program paths and
a short introduction to incremental software verification. Chapter 3 introduces
the new concept of Verification Tasks for Software Model Checking. A part of
each Verification Task is the set of input components like the program source
and the specification of what is to be verified. In Chapter 4 a new language for
definition of these specifications is developed. This language is also integrated
into the existing tool CPAchecker. Chapter 5 describes how the Concept of
Verification Tasks is integrated into the user interface of CPAchecker. This
user interface is implemented in the practical work for this thesis as an Eclipse-
plugin.

6



Chapter 2
Background

2.1 Software Model Checking
Software model checking is the algorithmic analysis of programs to prove prop-
erties of their executions [JM09]. In model checking, models of the program are
verified according to a given specification. Both, the model and the specifica-
tion are formulated in precise formal languages. Formally the problem of model
checking can be expressed as follows. Given a desired specification S and a model
M decide if M |= S. Because the decision process involves checking all possible
behaviors (that affect the specification) of the model, it is normally executed by
a model checking tool (model checker).
Compared with other methods of finding errors, software model checking has

some distinct advantages. The principal validation methods for complex soft-
ware systems are simulation, testing, deductive verification and model checking
[CGP99]. Testing and simulation are conducted by performing experiments on
the actual product (testing) or a model of the product (simulation). In both cases
the test subject is controlled by the test specification and the resulting behavior
is audited. Deductive verification uses axioms and proof rules to prove the cor-
rectness of systems. As this involves manual construction of proofs, the method
is time intensive and error prone. Testing and simulation are cost-effective ways
to find errors fast when the code still contains many errors. This is normally the
case in earlier phases of a software project. But when the development process
advances and only few errors remain the efficiency of this method decreases. The
problem of testing and simulation is that one test can only verify one execution
path.

Program testing can be used to show the presence of bugs, but never
to show their absence! [DDH72]

The advantages of model checking are:

• Model checking conducts an exhaustive exploration of all possible behaviors
of the model. In contrast to testing and simulation all cases are considered
and not just one.

• It is fully automatic and its execution requires no user interaction or super-
vision during the execution process.

7



2.2 CPAchecker

• If the verification fails the model checking tool produces a counterexample
that shows which erroneous behavior caused the failure. This faulty trace
provides a priceless insight to understanding the real reason for the failure
as well as important clues for fixing the problem [CGP99].

Disadvantages of model checking are that it is generally more complex to define a
specification for model checking than defining a test case (for similar problems).
This is because specification languages must provide an ability to define expected
results for different program execution paths. In contrast to this a test case must
only consider one program execution path. The main disadvantage of model
checking is the state explosion that can occur if the system being verified has
statements which cannot be evaluated by the model checker. These statements
might depend on source code that is not available or on user input. The model
checker has to generate states for every possible outcome of the statement and
continue with these states.
Model checking consists of several tasks which are explained in the following

listing [CGP99]:

1. Modeling: In the first task the subject of the test (typically a source code)
is converted into a formal model that is accepted by the model checker. If
the model checker accepts the source code language as it is, no conversion
is necessary.

2. Specification: Before the verification can start the specification must be
defined. A possible though complex specification language is temporal logic.
An important issue in specification is completeness [CGP99]. Model check-
ers can prove that a model satisfies the specification. But it is impossible
to determine whether all requirements are covered by the specification.

3. Verification: The verification process itself is executed completely auto-
matic. However human assistance is needed to analyze the result of the
verification. If the verification fails it produces an error trace that helps the
designer in tracking down where the error occurred. Error traces might also
result from incorrect modeling, incorrect specification or an incorrect im-
plementation of the verification algorithm. In each of these cases the error
trace will be a false negative result and human interaction will be necessary
to detect these cases.

2.2 CPAchecker
CPAchecker is a tool and a framework that aims at easy integration of new
software verification components [BK09]. CPAchecker uses the concept of
configurable program analysis (CPA) which is explained in Subsection 2.2.2. This
framework allows CPAchecker to be used as a precise model checker (Section
2.1) as well as an efficient program analyzer [BHT07]. The central data structure

8



Chapter 2.2 CPAchecker

in CPAchecker is the control-flow automaton which is defined in Subsection
2.2.1.
The input language of CPAchecker is the “C Intermediate Language” (CIL)

[NMRW02]. This language allows a subset of the constructs of C and comes
with a tool that translates all possible C-programs into CIL-programs. The tool
breaks down certain complicated C constructs into simpler ones. The conver-
sion from source programs written in C to CIL is the first step in the modeling
task as described above. The simplified language allows the developers of config-
urable program analyses to concentrate on a relatively small number of language
constructs.
The specification defines which program behaviors have to be found and iden-

tified as errors. In CPAchecker this can be expressed in the CPAchecker
specification language (Chapter 4). It allows defining automata which analyze
the program and can signal when an unwanted behavior is detected.
An interesting aspect in the concept of CPAchecker is that users can define

new configurable program analyses and use them in combination with the existing
predefined analyses. To define a new analysis the user must implement a CPA as
defined by Beyer [BHT07] and described in Section 2.2.2.
In this master thesis we developed an Eclipse 1 plugin that provides a conve-

nient user interface for CPAchecker. The plugin is described in Chapter 5. It
is provided in addition to the already existing command line user-interface.

2.2.1 Programs and Control-Flow Automata
The internal representation of the model (the program to be verified) in CPA-
checker is a control-flow automaton (CFA). This definition of control-flow au-
tomata is taken from Beyer [BCG+09] to be consistent with the definition in
CPAchecker.
A CFA A = (L,G) consists of a set L of program locations, which model the

program counter l, and a set G ⊆ L × Ops × L of control flow edges, which
model the operations that are executed when the control flows from one program
location to another. The set of variables that occur in operations from Ops is
denoted by X. A program P = (A, l0, lE) consists of a CFA A = (L,G) (which
models the control flow of the program), an initial program location l0 ∈ L (which
models the program entry) such that G does not contain any edge (·, ·, l0), and
a target program location lE ∈ L (which models the error location). Further
definitions that are used in this thesis will only be given informally here. A
program path is a sequence of pairs of operations and locations that represents
a syntactical walk through the CFA. A feasible program path is a path that
is not only syntactically but also semantically correct. Informally described a
feasible program path is a path where each state on the path is produced from
its predecessor by modifying it according to the operation on the edge between
them. So a feasible path is a path that could be followed by the program when
it is executed. The CPA algorithm computes abstractions during the analysis

1 www.eclipse.org
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2.2 CPAchecker

1 int main() {
2 i = 0;
3 if(i == 20){
4 i = 30;
5 } else {
6 goto ERROR;
7 }
8 return (0);
9 ERROR:

10 return (-1);
11 }

Source Code A Control-Flow Automaton for A

Figure 2.1: Example for a Control-Flow Automaton

which allows for a more efficient verification run but introduce false negatives.
These false errors are program paths that are not feasible.

CPAchecker uses the parser from the Eclipse CDT plugin to generate
CFAs. An example of a generated CFA is displayed in Figure 2.1. Due to the size
of the graph that is generated from such a small example we could not include
larger examples.

2.2.2 Configurable Program Analysis
This section describes the concept of configurable program analysis (CPA) [BHT07]
and configurable program analysis with precision adjustment (CPA+) [BHT08]
and an algorithm that uses the CPA+ for reachability analyses. Parts of this
section are cited from these sources. In most parts of the thesis the additional
features of the CPA+ are not needed, so in most cases the simpler CPA from
[BHT07] will be used. This is valid because every CPA can be used as CPA+
with a default implementation of the additional features.

10



Chapter 2.2 CPAchecker

Automatic program verification requires a choice between precision and effi-
ciency. The more precise a method, the fewer false positives it will produce, but
also the more expensive it is, and thus applicable to fewer programs. Historically,
this trade-off was reflected in two major approaches to static verification: pro-
gram analysis and model checking. Program analysis makes efficient but more
inaccurate analyses that might for example lose precision at the join points of
program paths. Model checking explores an abstract reachability tree that keeps
separate program paths separate and thus makes the analysis expensive. The
concept of CPA+ covers both approaches and thus can be used by either of the
two analysis approaches.
A configurable program analysis with precision adjustment

D = (D,Π, ,merge, stop, prec)
consists of an abstract domain D, a set Π of precisions, a transfer relation  , a
merge operator merge, a termination check stop and a precision adjustment func-
tion prec. These six components define the behavior of the CPA+ and therefore
the precision and cost of the verification. Most operators in the concept are para-
metric to an abstract state with the precision that was used to compute this state.
We call this an abstract state with precision. The abstract domain D = (C, ε, J·K)
models the abstraction of the source code program that this CPA maintains. D
consists of a set of concrete states C, a semi-lattice ε = (E,>,⊥,v,t) and a
concretization function J·K. The semi-lattice contains the set of abstract domain
elements E, the top and bottom elements > ∈ E and ⊥ ∈ E, the partial order
v ⊆ E × E and the join function t ⊆ E × E → E. The set of precisions Π
determines the possible precisions of the abstract domain. The transfer relation
 ⊆ E × G × E × Π (where G is the set of control flow edges) assigns to each
abstract state e of the lattice and each control flow edge g a set of abstract states
with precision that are successors of the state e if the g is taken. The merge
operator merge : E × E × Π → E combines the information of two abstract
states with precision. This operator can be used to reduce the number of ab-
stract states and thereby the complexity of the analysis. If the operator is used
it might also decrease the precision of the analysis because some information is
lost. The termination check stop : E × 2E × Π → B checks if a given abstract
state with the given precision is already in the reached set of abstract states. If
the state is already in the reached set, it is already explored and the current path
needs not be explored further. The precision adjustment function computes a
new abstract state e′ with precision p′ from an abstract state e with precision
p using the information of all abstract states with precision that are currently
stored in the reached set. For this thesis the precision adjustment function has
to be extended to the following signature: prec : E × Π × 2E×Π → E × Π × B
where the elements of the set B = {break, continue} determine the further pro-
cess of the analysis. For example if an CPA+ has found an error its precision
adjustment function would signal break and the algorithm would terminate. Any
further details on the formal background of CPAs can be found in [BHT08].
Configurable program analyses can be used separately but most of the time

several CPAs are combined in one verification process. This combination can

11



2.2 CPAchecker

Algorithm 2.2.1 CPA+(D, R0,W0)
Input: a configurable program analysis with dynamic precision

adjustment D = (D,Π, ,merge, stop, prec),
a set of reachable abstract states with precisions R0 ⊆ E ×Π,
a subset W0 ⊆ R0 of frontier abstract states,
where E denotes the set of elements of the semi-lattice D

Output: a set of reachable abstract states with precision,
a subset of frontier abstract states with precision

Variables: a set reached of elements of E ×Π,
a set wait of elements of E ×Π

reached := R0;
wait := W0;
while wait 6= ∅ do

pop (e, π) from wait;
for each ê with e (ê, π) do
// Adjust the precision.
(e′, π′, s) = prec(ê, π, reached);
for each (e′′, π′′) ∈ reached do
// Combine with existing abstract state.
enew := merge(e′, e′′, π′);
if enew 6= e′′ then
wait :=

(
wait ∪ {(enew, π

′)}
)
\ {(e′′, π′′)};

reached :=
(
reached ∪ {(enew, π

′)}
)
\ {(e′′, π′′)};

// Add new abstract state?
if ¬ stop(e′, {e | (e, ·) ∈ reached}, π′) then
wait := wait ∪ {(e′, π′)};
reached := reached ∪ {(e′, π′)};
if s = break then
wait := wait ∪ {(e, π)};
reached := reached ∪ {(e, π)};
return (reached,wait)

return (reached, ∅)

be accomplished with the composite program analysis. The composite program
analysis is a CPA that can be composed of several CPAs. CPAs used in the same
CompositeCPA can even interact and share information. A formal definition of
this CPA was give by Beyer [BHT08]. We call CPAs that can contain other CPAs
Wrapper CPA.
Because Wrapper CPAs implement the CPA interface themselves, Wrapper

CPAs can be nested. Therefore the user can create tree-structures where the
inner nodes are Wrapper CPAs and the leaves are normal CPAs. This possibility
has to be considered when working with user defined CPA-configurations.
The concept of configurable program analysis with precision adjustment is now

used in an algorithm to perform reachability analyses. The Algorithm 2.2.1 takes
as input a CPA+, a set of abstract states with precision that are already marked
as reached and a list of abstract states with precision which successors are still

12



Chapter 2.3 Identification of Program Paths using Automata

to be explored. The algorithm returns if either no more states can be explored
or a state with the precision break is found. The return values of the algorithm
are the two sets of abstract states (which are modified). The algorithm shall be
started with the initial sets reached0 = wait0 = (e0, π0) where e0 is the initial
abstract state of the analysis and π0 is the initial precision. The algorithm keeps
updating two sets of abstract states with precision: a list reached to store all
abstract states with precision that are found to be reachable, and a set wait to
store the reachable states which successors were not yet processed.
The state exploration starts from the initial state e0 with initial precision π0.

For a current abstract state e with precision π the algorithm first considers each
successor e′ with the new precision π′, according to the transfer relation. For
every successor with precision the prec function is used to adjust the precision of
the algorithm and to determine if the algorithm should stop after exploring this
state. Now, using the merge operator, the abstract successor state is combined
with each state in the reached set. If the stop operator determines that the
abstract element e′ with precision π′ is already contained in the reached set the
analysis of this element the current path needs not be explored further. Otherwise
it is added to the sets reached and wait. If the precision adjustment function
stated that the algorithm should terminate after exploring the current successor
state (s = break), the original state is added to the waitlist and the reached set.
Then both sets are returned to the caller for further processing. It is necessary to
re-add the original state to the waitlist because there might still be unexplored
successors of this state that have to be considered in further analyses. When
the waitlist is empty all reachable abstract states have been explored and the
algorithm terminates.

2.3 Identification of Program Paths using Automata
This section describes how automata can be used to identify program paths. We
develop a language for the definition of these automata in Chapter 4 Specification
Language. The automata can be used to specify a set of program paths (as errors)
and let the model-checking tool determine if these paths occur in the concrete
program.
The representation of the program is given by a control-flow automaton C =

(L,G, l0) where L is the set of program locations, G ⊆ L × Ops × L is the set
of transitions between program locations, Ops is the set of operations and l0 is
the initial program location. The set Ops includes a special operation end which
represents the last operation of a program run. A program path is an ordered list
of tupels of program locations and operations (i.e., path0 = ((l0, op1), (l1, op2), ...)
where L0 ∈ L and op1 ∈ Ops). The length of the path might be infinite, e.g due
to loops or non-terminating recursion (halting-problem).
An automaton A = (Q,Σ, q0, qt,→) consists of the set of states Q, the set of

input symbols Σ ⊆ G, the initial state q0, a special state qt and the relation
→⊆ Q × Σ × Q which determines the successor states. The automata are used
to specify paths to target states so the only accepting state of the automata is qt

13
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l0

qtl1 l2

l3

op1 op2

op2

q0

q1

g1=(l0, op1, l1) g3=(l2, op2, l3)

CFA Automaton

Figure 2.2: Abstract Automaton Example

(this is the only target state). Once this accepting state is reached, the analysis
is terminated.
During the exploration of the CFA the automaton is evaluated in parallel. This

means they both start in their initial states and for each transition taken by the
CFA, the automaton takes one transition if the CFA-transition is a valid input
symbol for the current automaton state.
The usage of the automata is shown in the following simple example (see Figure

2.2). Consider the following example CFA C = (LC , GC , l0) with the set of oper-
ations Ops = {op1, op2}, the set of program locations LC = {l0, l1, l2, l3} and the
set of transitions GC = {g1, g2, g3} with g1 = (l0, op1, l1), g2 = (l0, op2, l2) and g3 =
(l2, op2, l3). This CFA C is verified with the automaton A = (QA,ΣA, q0, qt,→A)
with QA = {q0, q1, qt}, ΣA = {g1, g3} and →A= {(q0, g1, q1), (q0, g3, qt)}. The
concrete CFA yields the two program paths p1 = ((l0, op1), (l1, end)) and p2 =
((l0, op2), (l2, op2), (l3, end)).
During the analysis of the program path p1 the automaton reaches the automa-

ton state q1 after the first step. Because no further transition is taken the path
p1 is not identified as error. In the program path p2, the first element of the
path is (l0, op2). The relation → does not contain a tuple for this input symbol
so the automaton stays in the current state2. The next element of the path is
(l2, op2) and the current state of the automaton is still q0. The relation → does
contain a tuple for this combination: (q0, g3, qt). Therefore the successor state of
the automaton is qt and the program path p2 is accepted by the automaton. This

2 This is a derivation from the normal automaton definition.
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Chapter 2.4 Incremental Software Verification

marks the path as a path to a state of interest in the program (in most cases this
will be an error).

2.4 Incremental Software Verification
There are several interpretations of what incremental software verification means.
This section presents three approaches that aim to reduce the complexity of the
verification task by reusing results of previous tasks. The difference between the
approaches is what is seen as an increment.
In feature-oriented product lines a software product consists of a set of features

F . Developers build programs by incrementally linking features. In incremental
aspect model checking [KF07] an increment is a feature. When a product is veri-
fied, information that has been gathered during previous verifications of subsets
of F can be reused.
Another approach is to use the traditional decomposition of software programs

into modular components and verify components independently. In modular ver-
ification [GL94] the model checker verifies components. Because at each time
only some modules are considered, this reduces the complexity of the analysis.
Relations between the component and the system containing the component are
used during the verification process.
In incremental software development code is developed and evolves over time.

During development of the application test cases and specifications are written
and verified. Because the same code is rewritten and extended old specifications
have to be re-verified when they might be affected by code changes. The idea
behind the approach of incremental software verification [BHJM04] is that com-
putational effort should only be spent for changed parts of the program. This
requires an analysis of the changed program parts and of the specifications. If
the CPA interface as described in Section 2.2.2 is used, this analysis also depends
on which CPAs are used in the current configuration and which CPAs were used
previously to compute the known information.
Common to all these approaches is that information computed in previous

iterations is saved for future reuse. When the verification tool is run again it
has to consider which of the saved information can be reused and which must be
recomputed.
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Chapter 3
Verification Tasks

This chapter introduces the concept of verification tasks. The introduction is
given on the basis of general software verification tools. If suitable, examples
from the concrete tool CPAchecker are given as illustration. Most of the
aspects of verification tasks described in this section have been implemented in
CPAchecker.
Verification tasks are designed to contain all information that is needed for the

verification process. This avoids dependencies between the tasks and helps to
provide better usability.
The Section 3.1 describes which elements compose a verification task. In the

following Sections (3.2 to 3.6) each of the components are described more de-
tailed. The section about verification task collections (Section 3.7) describes an
approach to structure verification tasks. Section 3.8 describes how the concept
of verification tasks is integrated into CPAchecker.

3.1 Components
Every software model verification tool has a defined set of input and output
information. A verification task encapsulates the input information and the cor-
responding output information. The input information configures the tool and
states which file is to be verified on which specification. As software model verifi-
cation tools are defined to be non-interactive, all input information is known when
the tool is started. Typically this information is passed on the command-line or
in a file that is referenced in a command-line option. The output information
contains the primary verification result and other information like details of en-
countered errors. The primary verification result states if the verified file was
found to be fulfilling the specification or not. This leads to a three-state type for
the primary verification result: {Error_Found,No_Error_Found, Unknown}.
The Unknown state would be used if the tool cannot determine the result. This
might be the case if an internal error occurs or invalid input information is given.
The input information consists of four different parts:

1. The source code that is to be verified

2. The specification defining the behavior that is to be verified

3. An optional set of configuration options
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4. A set of results (parts of the output information) from previous analyses
that can be reused

Informally a specification defines which program behavior is considered an er-
ror. A configuration contains any other settings used by the verification tool. To
provide a convenient user interface it is necessary that the three input components
of a verification task are stored and edited separately. This makes the verification
tool easier to use for non-experts and supports reuse of the components for other
verification tasks and further code development. The approach keeps program
properties separate from the source code and makes it easier to maintain both
the specification and the source code [KLM+97].
Each part of verification tasks will be discussed in the following sections.

3.2 Source code
The source code input of software verification tools can be basically in any lan-
guage and any level of abstraction. Of course typical software verification tools
allow only a certain programming language or a small set of programming lan-
guages as input. The level of abstraction needs to be as low (as near to the actual
programming language) as it is necessary to make meaningful specification state-
ments about code elements. During abstraction the source code representation
loses information. If this information is needed to declare what the tool should
verify, the abstraction level is too high. Consequently the source code input lan-
guage of most software verification tools is the programming language itself or a
simplified version of the language.
For example CPAchecker accepts only C-programs in “C Intermediate Lan-

guage” (CIL) [NMRW02] as described in Section 2.2. Because CPAchecker
allows only CIL-preprocessed source code it is able to concentrate on fewer source
language constructs. But using preprocessed source code has some disadvantages
concerning the user interaction. Firstly, the user has to do the preprocessing man-
ually if the tool does not support this in a step before starting the verification.
Secondly, it introduces a dependency from the verification tool to the preproces-
sor. If a user wants to use the verification tool he must install the preprocessor
which might introduce portability problems. Thirdly, preprocessors change the
code and line numbering. So when the tool issues a message concerning a certain
statement or code line it always references the preprocessed code. The statement
might look totally different or might be in another line in the original source code.
For a research project it is totally fine to use a preprocessor like CIL because the
research to be performed is more important than the ease of installation or the
accuracy of user messages.

3.3 Specification
The specification allows the user to define what behavior should be considered er-
roneous during the verification run. Informal specifications might be very simple
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like “The program must not dereference null pointers.” But there are also more
complex specifications. For example a lock manager that allows only alternating
calls to the functions lock() and unlock() requires a specification-automaton
that simulates this behavior. An example for such an automaton in the CPA-
checker specification language is given in Section 4.3.2. There are some spec-
ifications that can be pre-defined by the tool developers (like “no null pointer
dereferencing”) because probably every user will want to detect these common
errors. Some specifications (like the locking example) are so domain specific that
they can only be written by a domain expert. The domain expert would prob-
ably like to merge the complex domain-specific specifications with the simple
pre-defined specifications.
This examples leads to two requirements for specifications:

1. The specification must allow multiple levels of detail. Simple specifications
must be simple to define. There must be a way to define more complex
specifications (like automata).

2. The user must be able to merge specifications into specification bundles.

To distinguish specifications from other user defined options this work uses the
following definition.

Definition 3.1 (Specification) A specification defines a (possibly infinite) set
of program execution paths that are considered to be errors. The verification has to
terminate with an Error_Found or an Unknown result if an error is reachable.

This definition is problematic when the evaluation of a specification depends
on certain configuration options, or if configuration options influence the tool’s
capability to evaluate a specification. The configuration option might be seen as a
specification option in this case. More discussion on the problem of distinguishing
specification options from configuration options is given in Section 3.4.
The definition also introduces a new aspect that errors are program paths. In

previous works the error in a program was defined by an error location, that
is by one statement or label in the code. In this definition an error is a whole
program path (or a set of similar program paths). The difference is that, in the
new definition, a program path (l1, l2, ..., ln) might be identified as error, but the
program path (l′1, l′2, ..., ln) which ends in the same location might be no error.
This means the new error depends not only on the current location (whether this
is an error location or not) but on arbitrary properties of the current program
path. These properties can be expressed by the use of automata that observe the
program path.

CPAchecker provides a language to define specifications according to the
requirements developed above. This specification language of CPAchecker is
described in Chapter 4.
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3.4 Configuration
In order to separate the concerns of specification and configuration we define
a separate language for each concern. However it turned out that there is no
clear classification between the concepts of specification and configuration. In
our opinion the specification is a special configuration option that configures the
analysis algorithm. Depending on this configuration option the algorithm de-
cides which program paths are considered errors. Furthermore in CPAchecker
there are dependencies from the specification on other configuration options. Es-
pecially important is the option “cpas” of CPAchecker that configures which
analyses are used by the tool. Certain specifications can only be evaluated if a
special analysis is used. So the specification depends on the correct setting of
this configuration option. One might say that the option itself is a part of the
specification because of this dependency. On the other hand the option definitely
configures the tool’s algorithm and does not define program execution paths that
are considered to be errors. Therefore we consider the “cpas” option and the
specification to be separate configuration aspects.
It is desirable that the user does not need to write a configuration file for simple,

common verification scenarios. CPAchecker uses two methods to accomplish
this:

1. Default specifications for simple or common tasks are provided with corre-
sponding configurations

2. For all configuration options CPAchecker assumes default values

The most basic verification scenarios are covered by specifications that are
provided with the CPAchecker implementation. These simple specifications
come with configuration files that contain options required by the specification.
This aspect primarily concerns the “cpas” option mentioned above. For example
the informal specification “No null pointer dereferences” depends on the analysis
of pointers. If this specification is used, the configuration file must contain the
information that the pointer analysis must be used.
In CPAchecker the configuration options are set as key-value pairs in a Java

Properties File1.

3.5 Output information
Each run of the verification task produces a set of output information. Some of
this information is directly displayed to the user and some is saved to files for
later inspection. Which output information is generated depends on the used
analyses and on the verification result. In the following paragraphs some types
of output information are described.

1 The Properties File format is defined in the Javadoc of the Java Properties class.
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Verification Result

The most important result is whether the verification has been completed and if
it has found an error or not. This information is encoded in the three states
{Error_Found,No_Error_Found, Unknown}. In the CPAchecker com-
mand line interface this information is displayed on the terminal together with
statistical information like timing and the size of the set of reachable locations.
In the Eclipse-Plugin the information is displayed as icons in front of the name
of the task. More information on the Eclipse-Plugin is given in Chapter 5.

Log

Another important result is the log, where messages on the process of the analysis
are accumulated. CPAchecker generates two versions of the log. The levels of
detail of these logs can be configured separately. The first version is printed on
the terminal and the second version is saved to a file. As described in Section
4.3.6 the automata can print user defined messages to the log. In addition to
that the log contains debugging information from the used CPAs and general
information on the verification progress. This makes the log one of the most
information intensive and certainly the most user configurable output medium.
But for most users the log will contain too much information, and it is not easy
to extract the relevant information due to missing structures. Users that are not
using CPAchecker on a regular basis, or that use only simple specifications
probably want an easier log representation.
In a graphical user interface environment this could be a log with the ability

to set a filter. The user could filter information that he is not interested in and
would see only the important results. Single log messages could be highlighted
according to their importance. The log messages could contain meta-information
like (if applicable) which source code element the message is about. If this meta-
information is present the user interface can provide a link to the source code and
thereby improve the usability of verification results.
However some output information is too large to be encoded in a single log

message, or contains inherent structure (like graphs). This information must be
provided by other means.

Control-Flow Automaton

CPAchecker automatically computes a control-flow automaton (CFA) of the
verified program. This CFA can be saved in a file to support understanding of
the verification results or simply to examine the control-flow structure of the
program. The information is stored in DOT-format2. DOT is the input format
for the graph visualization software Graphviz3.
The DOT format is human-readable because it is encoded in the UTF-8 char-

acter encoding rather than in binary encoding. But even small example programs

2 Definition of DOT-format at http://www.graphviz.org/doc/info/lang.html
3 http://www.graphviz.org/
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generate graphs that cannot be easily interpreted by humans in DOT representa-
tion. For this reason output information in DOT-format should be presented as
graph in a graphical user interface context. In this case the DOT file could con-
tain meta information for vertices and edges like links to the corresponding part
in the source file. This information would be used in the graphical representation
to enhance the usability.

Abstract Reachability Tree

The abstract reachability tree (ART) is a graph that shows all program exe-
cution paths that were checked by the verification tool. If the CPAchecker
analysis has terminated with No_Error_Found result the ART is regarded as
a proof of this result. The ART is saved in DOT-format like the CFA and similar
considerations apply to its presentation.

Error Path

An error path is a program execution path that results in an error as defined in
the specification. If CPAchecker finds an error during the verification process
it generates the program execution path that lead to this error. This error path
can be saved in a text format. It is important that a user can easily understand
an occurred error path because it represents either an error in the program or
an error in the specification. Either way it should be easy for the user to decide
which document is not defined correctly and why the error occurs.
There are several possibilities to support the user in this task. The first and

most simple possibility is to provide a link from every node in the error path
to the corresponding source file. This helps the user to discover the context of
the error. A more sophisticated possibility is to add the error path information
to the ART. As further enhancement the error path nodes in the ART could be
extended with additional meta information. This meta information could be the
value of variables in the program state or predicates that are fulfilled in the state.
In a graphical representation of the ART these information can for example be
shown in a tool tip.
The configuration option “analysis.stopAfterError” can be used to find more

than one error. If the default configuration value is used the analysis stops when
the first error path is found but the program might contain more errors. To find
these further errors the analysis has to be run again when the error is fixed. If the
user configures the option to find all reachable errors at once the analysis might
find more than one error path. To display more than one error paths in the ART
will probably confuse the user. Instead of displaying multiple error paths at once
the user interface could provide a way to switch between error paths. This would
result in a user interface that is always centered on one error and allows the user
to concentrate on this single error without being influenced by other annotations.
This way of cycling through error paths can only be effective if the number of
reachable errors is small and the verification tool generates only few false positive
results. If the tool should support the handling of a bigger number of error paths
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at once this would require an error management interface that shows the user
which error is displayed and which other errors are available.
To reproduce the found error path and test the program after the error has been

fixed the user needs a test configuration. This configuration contains the program
parameters for executing it along a given error path. This test configuration would
allow ensuring that this particular error path has been fixed without running the
(possibly expensive) verification process again. In principle this test configuration
can be generated from an error path by following the path from end to beginning.
While following the path all program variables would be monitored and set so
that the program execution path represented by the error path can be recreated.
When the beginning of the error path is reached this method will result in a set
of variables. Some of these variables might not have values attached because the
variable was not used on the error path. To get a test configuration all program
parameters have to be assigned the value of the corresponding variable. If no
value is assigned to the variable a default value may be assigned.
Generating this test configuration from the text based error path would be

complicated because the code at each node along the path has to be parsed and
interpreted. It would be more appropriate to use the error path representation
held by the verification tool in memory. For the tool BLAST this is described in
[BCH+04a].

3.6 Reusable information
Because the verification process can take a significant amount of time, the verifi-
cation tool should provide means to reuse as much work as feasible. Possible ap-
proaches have been described in the background Chapter 2.4. As CPAchecker
has a modular architecture it must be left to the individual analysis to decide
what information can be reused and what must be recomputed. The decision
whether an information that is computed should be stored for reuse in a later
verification run should be made considering the following aspects:

1. time invested to compute the information,

2. time that needs to be invested to save and restore the information, and

3. how likely is it that the information can be reused if the source file or the
specification is slightly changed

One way of allowing analyses in the modular CPAchecker architecture to reuse
information is to provide a verification task specific output directory where the
analyses can save computed information. When the verification task is run again
this directory can be provided as input directory so the analyses can reload the
saved information files. This method allows a flexible implementation of the
reusable information feature. The developers of analyses that use this feature can
decide independently if they reuse parts of the saved information and how they
save the information in files. Because these files are designated for reuse by the
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verification tool and not by the user they do not need to be encoded in a text based
file format. It might be more efficient to use a binary encoding in this case. The
configuration and specification that was used to compute the information must
be saved with the reusable information. This way future analyses that want to
reuse this information can determine under which configuration it was computed.
If the configuration was changed in the meantime, parts of the information might
not be reusable.

3.7 Verification-Task Collection
In this section we introduce the concept of verification task collections. A col-
lection is a simple set of verification tasks and can be the element of another
collection. This results in a tree-structure where the inner nodes are collections
and the leaves are verification tasks.
These collections can be used to add additional structure to the verification

process. The tasks of one verification project can be separated by an aspect like
which source code module is tested or which type of specification is verified. Con-
crete aspects to separate verification tasks are project specific and perhaps even
dependent on structure of documents like the functional specification document
which is drafted in the requirements engineering.
The additional structure of verification task collections can be used to improve

the user interface. A complete task collection can be verified with one user inter-
action and run without further interaction. Because there are no dependencies
between verification tasks they could be run in different threads in parallel. This
would improve the overall runtime of verification task collections. Users should
also be able to verify a selected subset of a task collection. This way the user
could avoid running verifications that are not interesting at the moment but
would consume considerable amounts of time.

3.8 Verification Tasks in CPAchecker
This section describes how verification tasks are integrated into the CPA frame-
work [BHT07]. The implementation of verification tasks in CPAchecker and in
the Eclipse-Plugin of CPAchecker corresponds to this description. We take
for granted that the specification is translated into a set of CPAs. This will be
explained in Chapter 4.
At the beginning of a verification run CPAchecker generates a tree of con-

figurable program analyses from the configuration file. The inner nodes of this
tree are analyses that wrap other analyses and process the intermediate results
of the wrapped CPAs.
When the specification is parsed it generates a set of CPAs. Each element of

this set represents one automaton as defined in the specification. These CPAs
are then injected into the wrapper CPA4 at the root of the tree of CPAs. If the
4 A CPA that can contain other CPAs
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tree root is no wrapper CPA an error is issued and the analysis stops. Another
possibility to handle this issue would be to replace the root of the tree with a
new wrapper CPA that wraps the previous root and all CPAs generated from the
specification. However having no wrapper CPA as root is an unusual case because
some simple analyses5 are required in almost any use case. If one of the simple
analyses is used with a more complex analysis the root of the CPA tree has to
be a wrapper CPA. The specification CPAs are then injected into this wrapper
CPA.
Because the specification is implemented as a set of CPAs there is no need

for further special treatment of the specification. For the rest of the verification
process the specification CPAs can be handled just like any other CPA.

5 like the LocationCPA or the TypesCPA

25





Chapter 4
Specification Language

4.1 Overview
The specification language for CPAchecker was developed in this thesis. CPA-
checker had already a language for specification of automata1 that was ex-
tended and included in the specification language.
The CPAchecker specification language is defined by the “Specification Lan-

guage Grammar” in Appendix 7.1. The top level elements of the grammar are
include statements and specification-statements. “Include” statements are used
to include other specification files in a syntax that is similar to the #include

preprocessing directive of c. Further discussion of include statements is given in
Section 4.2.
Specification statements are used to define which program paths must be con-

sidered errors. In the CPAchecker specification language automata are used to
define these program paths. To fulfill the Requirement 1 as defined in Section 3.3,
the language provides an easier way to write certain simple specifications. This
abbreviated automata notations are described in Section 4.4. The discussion of
the automata definition language is in an extra Section 4.3.
The CPAchecker specification language is designed to be an extensible lan-

guage for research purposes. When the need for new language constructs becomes
apparent these constructs can be easily integrated. At this point the specification
language allows the three discussed top-level statements. It could be extended
by adding more top-level statements that would allow easier expression of certain
specifications. For example relational specifications like in BLAST [BCH+04b]
could be added here.
Other verification tools like SLAM [BR02] allow the user to specify properties

using C code. This is problematic for CPAchecker because the specification
is interpreted by the tool. SLAM and BLAST use source code annotation to
verify the specification. So the specification parts that allow C-statements can
be copied into the source file and are handled by the C-compiler. CPAchecker
does not have this option because source code and specification are kept separate.
Allowing C as language for parts of the specification has the advantage that

the users (which are probably C programmers) can easily write the specifica-
tion without learning new syntax and semantics. On the other side we see the
disadvantage that code might be copied from the source program code into the
1 The original automaton language was developed in a term paper.
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specification. If this happens, errors in the source code might be copied into the
specification. The specification would be faulty from the very beginning on. The
verification would never find the error in the source code because according to the
(faulty) specification the source code is correct. Experiments and user feedback
have to show if this theoretic consideration holds in the real world.
Following this argumentation the CPAchecker specification language has an

expression definition language that is similar to a simplified C language. To keep
the language as simple as possible we did not include control flow constructs
like if-branches or loops. As the specification language is similar to existing
programming languages it should be easy to learn for program developers.

4.2 Include
Include statements allow the inclusion of other specification files. To provide a
convenient user interface, the syntax of C include directives was reused for the
CPAchecker specification language. As CPAchecker is a tool for verification
of C programs the syntax should be intuitive for users.

1 #include sub_specification.spc

Listing 4.1: Example: Include

With this statement the user is able to use pre-defined specifications and to avoid
duplication of specification code. Therefore the language fulfills the Requirement
2 (defined in Section 3.3) for specifications. One problem with this include state-
ment is, that the user is allowed to write cyclic inclusion references like in the
example below. In this example the specification file “cyclic1.spc” contains an
include statement that references the same file. This creates a very simple cycle
because “cyclic1.spc” references itself.

1 #include cyclic1.spc

Listing 4.2: cyclic1.spc

If the specification would be more complex and the cycle would contain more than
one specification file it might be hard to detect for the user. The specification
language parser avoids cycles by detecting multiple references to specification
files. An example for a problematic specification file with include statements is
given in Figure 4.1. In the example a specification file A includes the specification
files B and D. D includes B and E and the file E includes D again. This example
contains a multiple reference to B and a cycle consisting of the files D and E.

CPAchecker avoids multiple references (which includes cycles because D is
referenced twice) by evaluating only the first reference to a file. Every further
reference generates a warning message and is not evaluated. Generally it might be
useful for a user to reference files multiple times, but in the current specification
language multiple references can be ignored. This is because the specification
language contains only elements that cannot reasonably be declared more than
once. Automata (which are so far the only other elements of the language) can
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A

B

D E

Figure 4.1: Example for a Cyclic Specification

in theory be run in parallel but if they are defined identically they would always
take the same actions and always be in the same state. So it does not make
sense to declare automata twice and therefore it does not make sense to include
completely identical files more than once. When the specification language is
extended with more elements it must be determined whether this condition still
holds.

4.3 Automata
4.3.1 Automata as CPA
The automata that are defined in the specification language are integrated as a
CPA+ into CPAchecker. This subsection defines how automata are integrated
into the formal CPA framework [BHT08] as described in Subsection 2.2.2.
The AutomatonCPA A = (DA,ΠA, A,mergeA, stopA, precA) consists of an

abstract domain DA, the set of precisions ΠA, a transfer relation  A, a merge
operator mergeA, a termination check stopA and the precision adjustment func-
tion precA. The automaton2 for this CPA is A = (S, s0, I, T ) with the set S of
automaton states, the initial automaton state s0 ∈ S ′, the set of integer variables
I and the set of transitions T . Each of the automaton components is described
in the following section. The components of A are:

1. The abstract domain DA = (C, ε, J·K) where ε = (EA,>,⊥,v,t) is a semi-
lattice.
The abstract states of the domain are EA : (V → R, {OK, incomplete})
with V = (state, i0, . . . , i|I|) and R = S×N|I|. The set V consists of a vari-
able ’state’ for the current observer state and an integer variable for each
observer variable. E assigns an observer state to the ’state’ variable and an
integer value to each of the integer variables. The second component of the
abstract state contains information on the processing of the state by the

2 As introduced in Section 2.3.
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T

┴

(e1, OK)

(e1 , incomplete)

(en, OK)

(en , incomplete)

. . .

Figure 4.2: Lattice for AutomatonCPA

verification algorithm. The value incomplete means that more information
is needed to compute the successor state (this computation can be done
by the strengthen operator ↓). It means that the following abstract states
can only be computed with additional information from other CPAs. This
information will be processed by the strengthening operator ↓.
The top and bottom elements of the lattice are denoted by > and ⊥, re-
spectively.
A tuple ((s, p), (s′, p′) ∈ E2

A) is element of the relation v if ((s′, p′) = ⊥ or
(s′, p′) = > or (e.state = e′.state ∧ (p = p′ ∨ p = OK))). The join function
t is defined as t = {(e, e′) ∈ E2

A|e′ = > ∨ e = e′}. The concretization
function assigns a subset of the set of concrete states C to each abstract
state. The semi-lattice ε is illustrated in Figure 4.2.

2. The set of precisions ΠA = {default} contains only a default precision.
The AutomatonCPA does never alter its precision and uses the precision
adjustment feature only to signal the termination of the analysis with the
precision adjustment operator precA.

3. The transfer relation  A⊆ EA × G × EA where G is the set of transitions
of the CFG. A tuple ((s, p), (s′, p′)) is in  A iff all transitions of s can be
evaluated and s′ is the resulting state of one of these transitions or if at
least one transition of s could not be evaluated and p′ = incomplete. This
result can be resolved by the ↓ operator which has additional information.

4. The operator mergeA : E2
A → EA is defined as mergeA(e, e′) → e′ and the

operator stopA : EA → B is defined as stopA(e)→ (∃e′ ∈ R : e v e′).

5. The precision adjustment function precA : EA×ΠA× 2E×Π → EA×ΠA×B
where B = {break, continue} (see Section 2.2.2) determines if the automa-
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ton has reached a state where the analysis should terminate (the automaton
has detected an error). The function is defined by precA(e, π, reached) →
(e, π, b) where b = break if e is an error state and b = continue otherwise.

The enclosing CPA should use a strengthening operator as follows: ↓: EA ×
P(E) → EA. The operator strengthens the abstract state (s, p) by using addi-
tional information in form of abstract states of the other used CPAs. The operator
meets the requirement (p = OK)⇒ (e, p) = (e′, p′). This strengthening operator
is used by the composite analysis [BHT07].

4.3.2 A Simple Example Automaton
This section illustrates the use of automatons on a simple example. This example
contains the three observer states Init, Locked and Unlocked. The transitions
between these states are triggered by occurrences of “init()” and “unlock()” on
transitions of the CFA. This example automaton expects to see an “init()” and
alternating “lock()” and “unlock()”. If any of these expressions occur out of order
the automaton reaches an error.

1 OBSERVER AUTOMATON LockingAutomaton
2 LOCAL int counter = 0;
3 INITIAL STATE Init;
4 STATE Init :
5 MATCH "init()" -> GOTO Unlocked;
6 MATCH "lock()" -> ERROR;
7 MATCH "unlock()" -> ERROR;
8 STATE Locked :
9 MATCH "init()" -> ERROR;

10 MATCH "lock()" -> ERROR;
11 MATCH "unlock()" ->
12 ASSERT counter != 0 GOTO Unlocked;
13 STATE Unlocked :
14 MATCH "init()" -> ERROR;
15 MATCH "lock()" ->
16 DO counter = counter+1 GOTO Locked;
17 MATCH "unlock()" -> ERROR;
18 END AUTOMATON

Listing 4.3: Definition of the Locking Automaton

1 int locked;
2 int lock() {...}
3 int unlock() {...}
4 int init() {...}
5

6 int main() {
7 init();
8 lock();
9 unlock();

10 return 0;
11 }

Listing 4.4: Correct C-Program for the locking automaton
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unlocked locked

lock () : counter++;

ERROR

unlock ()

lock()unlock ()

Variables:

int counter = 0

init()

init()

init

init()

unlock ()

lock()

Figure 4.3: Locking Automaton as Graph

This program is considered correct because the locking automaton does not reach
the error during analysis of the program. To further illustrate the example au-
tomaton we present it in a graph layout in Figure 4.3.

4.3.3 Automata Architecture
The components of an automaton are described in the following:

1. The name of the automaton. This should be a globally unique identifier
because only one automaton per identifier is permitted.

2. The type of the automaton. This can be either OBSERVER or CONTROL.
Observer-Automata are not permitted to perform certain actions like mod-
ifying other CPAs.

3. Integer variables that can be used to store state-independent information.

4. States that make up the finite part of the AutomatonCPA states (in theory
the variables are infinite).

5. Transitions that control the change of the AutomatonCPA states.

The complete grammar for the automaton language is given in the appendix
(Section 7.1). The discrimination of observer and control automata gives the
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user additional control on what the used automata are capable of. The verifi-
cation result is always heavily dependent on which automata are used, because
the automata define what is considered an error in the program. But if the user
includes control automata, that might modify or disable other analyses. If anal-
yses are disabled some errors might not be detected even if they are specified in
OBSERVER automata. Therefore such possibly problematic automata have to be
marked with the keyword CONTROL.
Concretely, in OBSERVER automata the commands MODIFY and STOP must not be

used because they manipulate the behavior of the other CPAs. These keywords
are both described in Section 4.3.6. The listing 4.5 presents the general layout
of automata. Keywords are printed bold. Further details will be given in the
respective sections.

1 OBSERVER AUTOMATON name
2 LOCAL int var_name_1;
3 INITIAL STATE state_name_1;
4 STATE state_name_1 :
5 matching_statements -> actions;
6 matching_statements -> actions;
7 STATE state_name_2 :
8 matching_statements -> actions;
9 matching_statements -> actions;

10 END AUTOMATON

Listing 4.5: General layout of automata

The question whether the declared automaton is finite (the automaton has
only a finite number of states) or infinite requires some more detailed discussion.
As the user can only write a finite number of STATE declarations their number
is definitely limited. This automaton has the set of states S1 with one element
per STATE declaration and is finite. However when we take into consideration
the local variables I1, ...In ∈ Z(which are theoretically infinite) a new automaton
emerges. This new automaton has a set of states S2 ⊆ (S1 × Zn). The elements
of S2 consist of an automaton state (as declared with STATE) and a value for
each automaton variable. This means even when the automaton declares only
one variable the state space is infinite. Of course CPAchecker simulates this
second automaton. The first, finite automaton can be saved as a DOT-file for
debugging or documentation purposes.

4.3.4 States, Variables and Transitions
The main components of an automaton are states and transitions. An automaton
consists of a set of states S and a set of transitions T. One of the states is identified
as the initial state. The initial abstract state of the AutomatonCPA consists
of this initial state and initial values for all automaton variables. Automaton
variables are declared with the keyword LOCAL. They can be assigned an initial
value in standard C-Syntax. If this assignment is omitted, the initial value is 0.
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The transitions consist of a matching function and actions. These components
are separated by the keyword ->.
When the verification algorithm processes a CFA edge the AutomatonCPA an-

alyzes this edge and determines whether any of the transitions, which are starting
in the current state, fire. If any of the transitions fire (if the matching function
of the transition evaluate to true), the AutomatonCPA executes the actions on
this edge. One of the actions will always be either the declaration that an error
is reached (keyword ERROR), the termination of the analysis path (keyword STOP)
or the selection of the next automaton state (keyword GOTO).

Exchangeability of Variables and States

The AutomatonCPA stores the state of the analysis by remembering the au-
tomaton state (a state defined with the STATE) and the values of the automaton
variables. Normally a user would use both constructs in combination, because
each has strengths and weaknesses. However it is possible to replace almost all
states by encoding in variables and almost all variables by encoding them into
states. One limitation is that at least one state is needed as initial automaton
state. Every other state can be encoded as value of an additional integer vari-
able. This would result in a single-state automaton with very many transitions
that would mainly test which value the state-variable currently has. This kind of
automaton would be cluttered because of the loss of structure.
The other extreme is using no variables and encoding every possible combina-

tion of variable values as states. Even in theory this is impossible because the
integer variables can have infinite values and we can not encode these values in a
finite set of automaton states. So the resulting automaton would not be a finite
automaton. In our implementation the automaton variables are Java [GJSB05]
integer variables that have a finite state space. So this approach would be feasible
in practice. The resulting automaton would contain very many states and the
same transitions would have to be duplicated in different states.
To optimize usability we let the user decide how many states and how many

variables should be used for concrete problems.

Transition Evaluation Strategies

The CPAchecker specification language allows two strategies for firing of tran-
sitions.

1. USE_ALL All transitions of the current state are evaluated. If the matching
functions of multiple transitions evaluate to true a new abstract state for
each of these transitions is generated. If no transition matches no abstract
state is generated and the analysis path terminates.

2. USE_FIRST The transitions are evaluated in the sequential order in which
they were declared in the specification. If one transition matches its ac-
tions are executed and the following abstract state is generated. The other
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transitions are not evaluated. If no transition matches the AutomatonCPA
stays in the current state.

Which strategy should be used can be declared for each state separately by using
the keywords USE_ALL or USE_FIRST. If no strategy is declared USE_ALL is used.

4.3.5 Functions
This section describes the functions of the automaton definition language that do
return values.
During the evaluation of the AutomatonCPA the automaton is in a certain

automaton state s. When the CFA takes a transition the AutomatonCPA has to
decide, if this transition in the CFA triggers a transition in the automaton. This
decision is taken by evaluating the matching functions of the transitions of s.
Matching functions are boolean functions. If the function evaluates to true, the

transition is taken as described in the paragraph “Transition Evaluation Strate-
gies” in Section 4.3.4.
The boolean functions described in this section can generally also be used

in the “action” part of the transition definition. The matching functions exact
matching, AST comparison matching and regular expression matching are meant
primarily to be used in the matching function part of the transition declaration.
They can also be used as boolean functions in the action part of the transition.
To provide a better layout for the reader of this document we will make some
notational statements here. We will use the types boolean and integer in the
following sections. They will appear in bold typesetting (bool and int) in the
text.

Basic Operations

The CPAchecker implements the basic operation of the boolean algebra and
basic arithmetic operators. Constant boolean values are TRUE and FALSE. Con-
stant numeric values can be used by simply writing them in the specification
document. The automaton variables can be used by writing their identifier in
any place where an int type can be used. The binary operators AND and OR and
the unary operator ! (which is the negation) can be used to combine other boolean
functions. The parameter type and the result type of these functions is bool.
For algebraic operations we only implement the binary operators + and - with
argument and result type int. All binary operators described in this paragraph
are written in infix notation.

Exact Matching

bool MATCH "pattern"

The string pattern following the MATCH keyword is considered an exact match
iff it is exactly the same as the sourcecode associated with the CFA edge. The
automaton in Section 4.3.2 contains examples of this matching method. If the
pattern is matched exactly the function returns true, otherwise it returns false.
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AST Comparison Matching

bool MATCH {pattern}

For an AST comparison matching the automaton generates an abstract syntax
tree (AST) from the string pattern between the curly brackets in the definition.
The AST-generation is delegated to the CDT C/C++ IDE for Eclipse that is
already used in the CPAchecker framework. The generated AST is compared
to the AST associated with the CFA transition and the comparison result is
returned by the function. To allow more flexibility in defining transitions the
comparison allows wildcards and capturing of parts of the source code. For every
occurrence of $? any identifier or literal in the sourcecode (which is situated
in the same position in the AST) will be considered equal. If $1 (or any other
number instead of 1) is used the identifier or literal is not ignored but captured for
later reference by other functions in the same transition. The following examples
illustrate the use of an AST comparison transition:

• The pattern x = 5; matches on x=5; and x= 5; but does not match on
x=10; or y=5;.

• The pattern $? = 5; matches on x=5; and y=5; but does not match on
x=10;.

• The pattern $? = $?; matches on x=5;, x=y;, x=funct();.

• The pattern $1 = $2; matches on the same statements as the example
above. As it matches on x=5; the transition variable $2 will contain the
string “5”. If a transition variable is used in a position where an int is
expected it will be converted to an int. If the conversion fails the user is
informed.

• The pattern init(argA, $?); matches on init(argA, xy); but not on
init(x,y);.

Regular Expression Matching

bool MATCH [pattern]

For even more flexibility the regular expression matching function allows to match
on any Java regular expression 3. The use of this method results in relatively ugly
code because many C-tokens like “(“ must be escaped. The result of the Java
regex matching is returned as result of the function.

Label Matching

bool MATCH LABEL [pattern]

This function can be used to match on a label in the C-source code. Iff the
current CFA-edge is annotated with a label L and L is matched by the regular
expression pattern, this function returns true. The use of regular expressions is
3 The syntax of Java regular expression is defined in the Javadoc of the Java Pattern class.
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not problematic in this context because label identifiers normally do not contain
characters that would have to be escaped in regular expressions.

Matching of the Program Exit

bool MATCH EXIT

This function determines if the currently processed part of the CFA is terminating
the program. In more formal terms the function tests whether the node that the
current CFA edge leads to has any outgoing edges. If the node has no outgoing
edges the current edge is the last edge of a program path. This function can
be used to express that the automaton must not be in a certain state when the
program terminates. For example it is used in the Locking automaton in Section
4.5.1. In that example it is used to ensure that the lock is not engaged (that the
automaton state is not “Locked”) when the program terminates.

CPA querying

bool CHECK(cpa_name, "Query-String")

The CPA querying function allows to query any other CPA that is evaluated in
the same CompositeCPA as the AutomatonCPA. When the function is evaluated
it searches for a state of the identified CPA and sends the query string. The
answer (which must be of bool type) is returned as function result. If the AST
comparison matching (Section 4.3.5) is used and a part of the match was captured
as $1 in the same matching function as $1 this part will replace $1 in the query-
string. Each other CPA can define an own syntax that is accepted as query string.
An example querying of the CPA “Explicit CPA” is given in the following listing:

1 CHECK(ExplicitAnalysis, "main::st==1")

Listing 4.6: Example for CPA querying

The example queries the “ExplicitAnalysis” whether the variable “st” in function
“main” has the value 1. Because the function requires additional information (the
abstract element of the other CPA) it cannot be evaluated in the transfer relation
and the evaluation must be carried out in the strengthening operator (described
in Subsection 4.3.1).

var EVAL(cpa_name, "Query-String")

The EVAL function can be used just like the CHECK function. In contrast to
the CHECK function EVAL allows an arbitrary return value. The return value
is cast depending on which other function or action uses the result of the EVAL
statement. It can for example be used to query other CPAs for string messages
and print them to the log with a PRINT statement.

4.3.6 Actions
This section describes statements without return value in the automaton specifi-
cation language. These statements are used as top-level statements in the actions
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part of the automaton specification. The actions part consists of a list of action
statements.

Print Statement

PRINT <arguments>

The print statement prints a message to the user on the log. The <arguments>

are a list which elements can be strings (surrounded by quotes), int functions or
bool functions. The elements of the list will be evaluated in the order in which
they occur in the list and the results will be printed on the log. There are some
special commands that can be used inside string elements:

• $rawstatement The string $rawstatement is replaced by the source code
string that is associated with the current CFA edge.

• $line The string $line is replaced by the number of the source code line
associated with the current CFA edge.

• $1 If the AST comparison matching (see Section 4.3.5) is used and a part
of the match was captured as $1 this part will replace $1 in the message.

• $$varname This command will be replaced with the current value of the
automaton variable “varname”.

Assignment

variable = value

The assignment statement assigns the value of an int function to the identified
automaton variable.

Modification Statement

MODIFY (cpa_name, "Modification-String")

This MODIFY statement is similar to the CHECK function described in Section 4.3.5.
The difference is that the CPAs accept other strings if MODIFY is used and MODIFY

does not have a return value. MODIFY is used to change internal information in
the abstract state of other CPAs. In contrast to this, CHECK is used to query
abstract states of other CPAs and get a boolean result. Because the command
allows the modification of other analyses it is only permitted in control automata.
An example for a modification is given in the following listing.

1 MODIFY(ExplicitAnalysis, "deletevalues($2);setvalue($2:=0)")

Listing 4.7: Example for CPA modification

In this listing a program variable name was captured in an AST comparison
matching in $2. Then all values for the program variable are deleted from the
abstract state and 0 is set as new value. In the end the abstract state for the
explicit analysis has only one value (0) for the variable.
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Assertion Statement

ASSERT condition

The assertion statement is used to ensure that a given condition is true. If the
statement is run it evaluates the given condition (which must be of type bool).
If the result of this evaluation is true the statement does nothing more. If the
result is false the automaton declares that an error is reached. The statement
ASSERT FALSE is equal to the statement ERROR.

Goto Statement

GOTO nextState

This statement declares which state the automaton should be in after the tran-
sition is taken (and no ASSERT statements failed). The abstract state that is
generated from this transition has “nextState” as automaton state. The argu-
ment “nextState” must be the name of a state declared in the same automaton.

Stop

STOP

The stop statement declares that this transition generates no following abstract
state. If no other transition generates an abstract state the analysis for this
program path is terminated without reaching an error. The other analyses that
are investigating the same program path are also terminated. Therefore this
command heavily influences other analyses (without declaring an error) and is
only allowed in control automata.

Error

ERROR

The error statement declares that the automaton has identified the program path
leading to the current state as an error. If this happens, the analysis terminates4

with Error_Found as primary verification result (see Section 3.5).

4.4 Abbreviated Automaton Notation
As stated in Section 3.3 simple requirements should be simple to be declared in a
specification. The automaton definition language described in the previous sec-
tion allows the declaration of complex automata. So there is still the need for a
simplified statement to be used for simple specifications. One example for such a
statement is that the verification tool should test, if the source program uses the
function free() on a pointer that is potentially already freed. CPAchecker
comes with a CPA that already detects this situation (the PointerAnalysisCPA).
But the PointerAnalysisCPA does not report this situation in the default configu-
ration because this program behavior might be the user’s intention. The fact that
4 The analysis terminates only if the current program path is found to be feasible.
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the situation occurred can be queried with a CHECK statement. So the statement
ASSERT ! CHECK(PointerAnalysis, "DOUBLE_FREE") would do the right thing
if it was embodied in a transition in an automaton. Unfortunately the work re-
quired for defining the automaton would be quite much in relation to writing this
assertion statement.
This is why the CPAchecker specification language allows writing single

assertion statements as third 5 top-level statement. The assertion statement is
embodied in a skeleton automaton during the parse process. In the following
listings an example assertion and the finished automaton are shown.

1 ASSERT ! CHECK(PointerAnalysis, "DOUBLE_FREE")

Listing 4.8: Example for a Simple Assertion Statement

1 CONTROL AUTOMATON AnonymousAutomaton1
2 INITIAL STATE OK;
3 STATE OK :
4 TRUE -> ´
5 ASSERT ! CHECK(PointerAnalysis, "DOUBLE_FREE")
6 GOTO OK;
7 END AUTOMATON

Listing 4.9: Skeleton Automaton with the Simple Statement Inserted

4.5 Specification Examples
This section presents examples specifications with source code programs. A step-
by step description of the verification process is given to further illustrate the
usage of the specification language.
We describe the two principal methods for notation of specifications for software

verification. In the source code annotation approach the specification is written
in the source code file. This might be as distinct annotations in non-code parts
like comments (an example for this are Java annotations) or as statements in the
source code language. In our approach the specification is written in an extra
file to support the separation of concerns. This section will compare the two
approaches using a concrete example.

4.5.1 Locking Example
This example is similar to the simple locking example given in Section 4.3.2. In
fact this example uses a simplified version of the automaton from the previous
example. The only addition is the last transition in state “Locked”, which will
be explained in this section. In contrast to Section 4.3.2 this section focuses on
the description of the verification process.
The last transition of the automaton state “Locked” ensures that the analysis

finds an error if the program terminates while the automaton is in the state
5 The other top-level statements are include statement and automaton definitions.
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1 OBSERVER AUTOMATON LockingAutomaton
2 INITIAL STATE Init;
3 STATE Init :
4 MATCH "init()"-> GOTO Unlocked;
5 MATCH "lock()" OR MATCH "unlock()" -> ERROR;
6 STATE Locked :
7 MATCH "unlock()" -> GOTO Unlocked;
8 MATCH "init()" OR MATCH "lock()" -> ERROR;
9 MATCH EXIT AND (! MATCH "unlock()") -> ERROR;

10 STATE Unlocked :
11 MATCH "lock()" -> GOTO Locked;
12 MATCH "init()" OR MATCH "unlock()" -> ERROR;
13 END AUTOMATON

LockingAutomaton

1 if (a) {
2 init();
3 lock();
4 // ...
5 unlock();
6 }
7 if (b || c) {
8 lock();
9 // ...

10 unlock();
11 }

Source Code for the
Locking Example

Loc:1

State: init

a

Loc:7

State: init

Loc:2

State: init

¬a

Loc:8

State: unl.

Loc:7

State: unl.

Loc:7

State: unl.

Loc:8

State: init

…

¬bb

Loc:7

State: init

Loc:8

State: unl.

Loc:12

State: unl.

Loc:8

State: init

Loc:12

State: init

¬cc

…

b ¬b

c ¬c

ERROR

ERROR

… …

…

Diagram for the Locking Example

Figure 4.4: Locking Example
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“Locked”. Because the functions MATCH EXIT and MATCH "unlock()" could be
true on the same edge this case has to be considered. If the last statement of
the program is unlock(); the analysis should not find an error, so this case is
excluded from the MATCH EXIT transition.
Figure 4.4 shows the source code fragment of the locking example and a dia-

gram illustrating the verification process. The diagram is given only informally,
some nodes are omitted. Each node is annotated with the corresponding state
information computed by the verification algorithm. The diagram is almost an
AST for the source code fragment. The difference is that in an AST nodes with
equal information would be identical. That means for example the two nodes
with information “loc:8 State:init” would be identical and there would only be
one circle to represent this node.
The annotation of each node has two values. The property “loc” identifies

the number of the source code line that is currently processed. The property
“State” marks which state the locking automaton is currently in. The two nodes
marked with “ERROR” state that the automaton has detected an error and the
verification terminates.
At the beginning of the verification of the code fragment the current state

consists of the program location 1 (which stands for source code line 1) and
the automaton state “init”. The first code statement is a conditional branch
with condition “a”. Therefore the initial node in the diagram has two successor
states. Depending on the value of “a” one of these states must be the next state.
Because the variable is not initialized the verification algorithm has to explore
both possible paths. First the algorithm assumes that the value of “a” is true
and therefore the left successor node is generated. Later the algorithm will return
here, assume that “a” is false and generate the right successor node. The complete
tree is explored in this fashion until one of the “ERROR” nodes is reached. When
this happens the algorithm terminates and gives the path to this error to the user.
The specification of this example has been used to identify two paths in the

control flow automaton as errors. If source code annotation was used to accom-
plish this, it would have been necessary to add a assert statement before every
call of the library functions.
There are two basic parts of code when a program uses a library, the library

source code itself and the calling code which is using the library. In this example
only the calling code is given. The library source code is not necessary to verify
the calling code. To write the specification the user only needs to know the
preconditions assumed by the library functions. This independency on the source
code is helpful, because when using the proprietary libraries the source code is
normally not available.

4.5.2 Clock Example
This example shows a small function for setting the hour value of a clock (this is
an example for a library). The function takes a parameter p_hour and assigns its
value to the private variable hour. To work correctly the function assumes that
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the value of p_hour is between 0 and 23. This is the specification that has to be
verified.

1 OBSERVER AUTOMATON clock_automaton;
2

3 INITIAL STATE init;
4

5 STATE init :
6 MATCH{hour = $1} ->
7 ASSERT (%1 < 24)
8 ASSERT (%1 > -1)
9 GOTO init;

10

11 END AUTOMATON

Specification for the Clock Example

1 int hour = 0;
2

3 int set_hour(int p_hour) {
4 hour = p_hour;
5 }

Source code without annotation

Figure 4.5: Clock Example with separate Specification

1 int hour = 0;
2

3 int set_hour(int p_hour) {
4 if (p_hour > 23 || p_hour < 0) {
5 printError("Internal Program error");
6 } else {
7 hour = p_hour;
8 }
9 }

Source code without annotation

Figure 4.6: Clock Example with in-code Specification

This specification implies certain behavior of the calling code (the calling code
has to provide parameters in the correct range). Therefore a verification of this
specification would verify the calling code rather than the library code. The
specification can only be violated by the calling code. But the specification can be
written without knowledge of the calling code. If this library would be proprietary
the developer could write the specification and provide it with the binary release
of the library. Then it could be verified with the calling code without having the
library source code. This is equivalent to the situation of the example in Section
4.5.1.
This example shows a version of the specification written in source code (Figure

4.6) and a version using our specification language (Figure 4.5). As we already
emphasized the source code annotation approach does not support the separation
of the concerns of specification and code. Therefore it does not enable the delivery
of a formal specification with the binary release of the library as explained above.
The specification would have to be provided in another text document. The
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developer of the calling code would have to insert the assertion of the library
preconditions whenever he calls the library functions.
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Chapter 5
Presentation of Verification Tasks

The CPAclipse plugin for the Eclipse integrated development environment was
developed in this thesis. CPAclipse provides a convenient way of access to the
features of CPAchecker. CPAclipse allows defining and modifying verification
tasks (definded in Chapter 3). The user can invoke the verification of tasks with
a single command. Results are displayed in a clear manner and can be accessed
depending on which detail of information is needed.
CPAclipse is generally platform independent although individual CPAs might

require a specific operating system or system configuration. For example some
CPAs are dependent on the MathSAT1 libraries which can only be supplied for
Linux. The development team is currently trying to replace this dependency.
The following sections describe the main components of CPAclipse in the order

they occur in the lifecycle of a verification task.

5.1 Generation and Presentation of Verification
Tasks

As described in the Chapter Verification Tasks (Chapter 3) the input information
of a verification task consists of four different parts:

1. The source code that is to be verified

2. The specification defining the behavior that is to be verified

3. An optional set of configuration options

4. A set of results (parts of the output information) from previous analyses
that can be reused

Each of the first three parts is represented by one file in CPAchecker. This file
might have references to other files (see Section 4.2) but there is one main file.
In CPAclipse these files are distinguished by their file extension. Configuration
files have the extension “.properties” because they are Java property files. Speci-
fication files have the extension “.spc” and are given in the specification language
described in Chapter 4 Specification Language. The source code files can have

1 http://mathsat4.disi.unitn.it
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Figure 5.1: Generation of a Verification Task in CPAclipse

Figure 5.2: Editors and Verification Invocation in CPAclipse
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any extension that is accepted by the Eclipse CDT plugin. The fourth input
information component will be discussed in Section 5.3.
CPAclipse provides two ways to generate a verification task. The traditional

way is to use the “new CPAchecker Task” wizard. This wizard allows stating
the name, the configuration file, the source file and the specification file of the
task. If all properties are valid the task can be generated. Because this is a quite
cumbersome way of generation, CPAclipse provides a more elegant generation
function. If the user selects any one or a combination of the files described
above he can select the action “create new task” in the context menu. The action
creates a new verification task with the selected files. An example of this function
is shown in Figure 5.1.

5.2 Modification and Invocation of Verification
Tasks

Verification tasks need to be modified on two levels. The high level modification
is used to set components of the task and delete tasks. It is also necessary to save
tasks for reuse in later Eclipse sessions. The ability to set for example specifica-
tion files in tasks is important because of the nature of the generation function
explained above. The generation function allows generating a Verification task
that is not fully specified. That means the task is still missing one of the three
files that is necessary for verification. CPAclipse provides this functions (setting
of components and task deletion) via context menus in the “CPAclipse Tasks
View”. A screenshot of this view is given in Figure 5.2.
The other level of modification concerns the specification and configuration

files. For these files CPAclipse provides editors with syntax-highlighting and in
case of the “Properties Table Editor” shows a description of the configuration
options. Figure 5.2 shows these editors and the “CPAclipse Tasks View”.
The Figure also shows how the verification of a set of selected tasks can be

invoked. The command to invoke the verification of multiple tasks at once can be
found in the context menu of the tree root “CPAclipse Tasks” in the “CPAclipse
Tasks View”. This command invokes all tasks in strict sequential order. It is
planned to introduce parallelism for this command but so far CPAchecker does
not support this. As software model checking is potentially time intensive, it is
attractive to use the advantages of parallel computing. Because the Verification
tasks do not have any dependencies on each other (other than reading from the
same files) the introduction of parallelism would be quite easy.

5.3 Presentation of Results
CPAchecker produces four principal kinds of results.

1. The Verification Result as described in Section 3.5

2. The log containing messages that describe the verification process
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3. An error path file containing the CFA edges that lead to the error

4. DOT-based graph information files

Each of the files is saved in a Task-specific folder. A link to this folder is displayed
with the verification task in the “CPAclipse Tasks View”.
The Verification Result has one of the states that were defined in Section 3.5

(Error_Found, No_Error_Found and Unknown). As soon as the verification
is finished the “CPAclipse Tasks View” shows the Verification Result with an
appropriate symbol in front of the Task name. The three symbols can be seen in
Figure 5.2.
The log of each verification task is displayed in a separate console view which

can also be seen in Figure 5.2. The log contains statistical information and
information on the running time of the verification. If the user does not want
this information it can be switched off in the CPAclipse preferences dialog.
If the verification finds an error the error path is saved in a text-based file. This

file contains textual representations of CFA edges. Each CFA edge has a reference
to the source code location that it was generated from. CPAclipse provides an
editor to view the error path files and follow the references to the source code
locations via hyperlinks. This helps greatly in the task of interpreting and using
the information given by the error path.
The fourth kind of output information is DOT-based graph files. These graphs

can contain various types of information. For example the generated CFA can
be saved in DOT-format. CPAclipse does currently not provide a good means to
display this information. It would be desirable to have a function that displays
a graphical representation of the DOT-file when the user opens the file. Such a
function is in development as Eclipse feature in the dot4zest project2. Once this
project reaches a stable phase it can be incorporated into CPAclipse to provide
better presentation capabilities for graph based results. Then the various possi-
bilities for displaying meta-information with the graphs (as described in Section
3.5) can be implemented easily.

2 http://wiki.eclipse.org/Graphviz_DOT_as_a_DSL_for_Zest
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Chapter 6
Conclusion and Further Work

The concept of Verification Tasks and the specification language for software
model checking that was developed in this thesis provide intuitive, scalable means
to specify the desired behavior of a program. This specification can be used by
a model checker to verify the program and to provide helpful information if the
program does not fulfill the requirements. The concept of Verification Tasks and
the specification language can in principle be used in any model checking tool,
or even in other software analysis tools. However especially the specification
language has been tailored for the CPAchecker and is deeply integrated into
this tool.
One of the main results of this thesis is the insight that errors should not be

defined as property of a program location but as property of a program path.
Therefore different paths leading to the same location can be distinguished and
treated separately in the specification. Previously this was only possible by modi-
fying the source code and introducing a new program location that is only reached
by one of the paths. When using the specification language this is not necessary
and the concerns of program source code and behavior specification can be sep-
arated.
In contrast to specification languages used in other model checkers like SLAM

[BR02] our specification language allows to match on any source code element
(except comments). The SLAM language concentrates on the calls of API func-
tions. However the SLAM language provides the possibility of executing actions
before or after the analysis has processed a function call node in the CFA. In
SLAM the code can be executed before a function is called (in the context of the
caller) or in the function call (in the context of the callee). In CPAchecker
this can only be simulated by using labels in the source code. This feature could
be implemented in the specification language in a future project.
Another possibility for future works on the specification language is the inclu-

sion of multiple termination states. At the moment the only automaton state
that terminates the analysis is the error state. The specification language could
be extended to allow multiple states with this behavior. These could be used to
distinguish multiple reasons for termination. This is interesting if the reason for
termination is not the finding of an error in the program but some other domain-
specific reason. For example the extended language could be used to specify
reachability queries.
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The Eclipse plugin for CPAchecker that was developed in this thesis allows
easy, user-friendly access to the functionality of the model checker. Because CPA-
checker is a project under constant development the plugin was designed for
flexibility and can be easily readjusted to changes in the model checker.
The possibilities for future work in the plugin are divided in two areas, ver-

ification time optimization and user interface improvements. To optimize the
execution time of a group of verification tasks they could be executed in parallel
threads. As it has been mentioned in Section 3.7 there are no dependencies be-
tween different Verification Tasks and therefore their execution can be trivially
scheduled in parallel. At the moment this is not possible due to implementation
issues in the CPAchecker but it could be optimized in the future.
For improvement of the user interface it would be helpful to have a graphical

display module for DOT-files. For example the abstract reachability tree and the
control flow automaton are saved as DOT-files by CPAchecker. With a display
module for DOT-files the plugin could provide graphic support for analysis of the
error path (if one was found) or the abstract reachability tree. These graphs could
be annotated with interactive information and hyperlinks. There is a current
development project1 for such a module in the Eclipse community. Once this
project reaches a stable result it could be integrated into the plugin.

1 http://wiki.eclipse.org/Graphviz_DOT_as_a_DSL_for_Zest
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Chapter 7
Appendix

7.1 Grammar of the CPAchecker Specification
Language

The grammar of the CPAchecker Specification Language is given as an excerpt
from the CUP1 grammar that is actually used by CPAchecker. To avoid
misunderstandings simple symbols like commas and semicolons are written out.
The relation between symbols and terminals is explained in the list of terminals.
In the grammar all terminals are written in bold type.

1 // Terminal Symbols:
2 AND, OR, AUTOMATON, OBSERVER, CONTROL, END, LOCAL,
3 INITIAL, STATE, ERROR, STOP, EXIT, ASSERT, MATCH,
4 LABEL, CHECK, EVAL, MODIFY, DO, PRINT, GOTO,
5 TRUE, FALSE, USE_ALL, USE_FIRST,
6 EXCLAMATION, // !
7 ARROW, // ->
8 SEMICOLON, // ;
9 COMMA, // ,

10 COLON, // :
11 OPEN, // (
12 CLOSE, // )
13 NEQ, // !=
14 EQ, // =
15 EQEQ, // ==
16 PLUS, // +
17 MINUS, // -
18 IDENTIFIER, // any c-style identifier
19 INTEGER_LITERAL, // an integer (may be negative)
20 STRING_LITERAL, // a string enclosed in quotes
21 CURLYEXPR, // a string enclosed in curly brackets
22 SQUAREEXPR, // a string enclosed in square brackets
23 INCLUDE; // #include
24
25 // Non Terminal Symbols:
26 initial, automaton, InitDef, Body, LocalDefs,
27 StateDefs,Transitions, Assertions, Actions,
28 LocalDef, StateDef, Transition, Assertion,
29 Action, PrintArguments, ConstantInt, Int,
30 InnerInt, Bool, Expression
31
32 // Operator precedences:
33 precedence left PLUS, MINUS;
34 precedence left AND, OR;
35 precedence left EQEQ, NEQ;
36 precedence left EXCLAMATION;
37
38 initial ::= automaton initial

1 http://www2.cs.tum.edu/projects/cup/
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7.1 Grammar of the CPAchecker Specification Language

39 | /* empty */
40 ;
41
42 automaton ::= OBSERVER AUTOMATON IDENTIFIER Body END AUTOMATON
43 | CONTROL AUTOMATON IDENTIFIER Body END AUTOMATON
44 | AUTOMATON IDENTIFIER Body END AUTOMATON
45 // the CONTROL keyword is optional
46 | Assertion SEMICOLON // abbreviated notation
47 | INCLUDE IDENTIFIER
48 // IDENTIFIER must be a valid filename
49 ;
50
51 Body ::= LocalDefs InitDef StateDefs
52 ;
53
54 InitDef ::= INITIAL STATE IDENTIFIER SEMICOLON ;
55
56 LocalDefs ::= LocalDef LocalDefs
57 | /* empty */
58 ;
59
60 LocalDef ::= LOCAL IDENTIFIER IDENTIFIER SEMICOLON
61 | LOCAL IDENTIFIER IDENTIFIER EQ ConstantInt SEMICOLON
62 ;
63
64 StateDefs ::= StateDef StateDefs
65 | /* empty */
66 ;
67
68 StateDef ::= STATE IDENTIFIER COLON Transitions
69 | STATE USE_ALL IDENTIFIER COLON Transitions
70 | STATE USE_FIRST IDENTIFIER COLON Transitions
71 ;
72
73 Transitions ::= Transition Transitions
74 | /* empty */
75 ;
76
77 Transition ::= Bool ARROW Assertions Actions GOTO IDENTIFIER SEMICOLON
78 | Bool ARROW Assertions Actions ERROR SEMICOLON
79 | Bool ARROW Assertions Actions STOP SEMICOLON
80 ;
81
82 Assertions ::= Assertion Assertions
83 | /* empty */
84 ;
85 Assertion ::= ASSERT Bool
86
87 Actions ::= Action Actions
88 | /* empty */
89 ;
90 Action ::= DO IDENTIFIER EQ InnerInt
91 | PRINT PrintArguments
92 | MODIFY OPEN IDENTIFIER COMMA STRING_LITERAL CLOSE
93 ;
94
95 PrintArguments ::= Expression PrintArguments
96 | /* empty */
97 ;
98
99 Int ::= ConstantInt

100 | OPEN Int CLOSE
101 | IDENTIFIER
102 | InnerInt PLUS InnerInt
103 | InnerInt MINUS InnerInt
104 ;
105
106 InnerInt ::= Int
107 | EVAL OPEN IDENTIFIER COMMA STRING_LITERAL CLOSE
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108 ;
109
110 ConstantInt ::= INTEGER_LITERAL
111 ;
112
113 Bool ::= TRUE
114 | FALSE
115 | EXCLAMATION Bool
116 | OPEN Bool CLOSE
117 | InnerInt EQEQ InnerInt
118 | InnerInt NEQ InnerInt
119 | Bool EQEQ Bool
120 | Bool NEQ Bool
121 | Bool AND Bool
122 | Bool OR Bool
123 | MATCH STRING_LITERAL
124 | MATCH CURLYEXPR
125 | MATCH SQUAREEXPR
126 | MATCH LABEL SQUAREEXPR
127 | MATCH EXIT
128 | CHECK OPEN IDENTIFIER COMMA STRING_LITERAL CLOSE
129 | CHECK OPEN STRING_LITERAL CLOSE
130 ;
131
132 Expression ::= Int
133 | Bool
134 | STRING_LITERAL
135 | EVAL OPEN IDENTIFIER COMMA STRING_LITERAL CLOSE
136 ;
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