
Streamlining Feature-Oriented Designs

Martin Kuhlemann, Sven Apel, and Thomas Leich

School of Computer Science, University of Magdeburg, Germany,
{kuhlemann,apel,leich}@iti.cs.uni-magdeburg.de

Abstract. Software development for embedded systems gains momen-
tum but faces many challenges. Especially the constraints of deeply em-
bedded systems, i.e., extreme resource and performance constraints, seem
to prohibit the successful application of modern and approved program-
ming and modularization techniques. In this paper we indicate that this
objection is not necessarily justified. We propose to use refinement chain
optimization to tailor and streamline feature-oriented designs to satisfy
the resource constraints of (deeply) embedded systems. By means of a
quantitative analysis of a case study we show that our proposal leads
to a performance and footprint improvement significant for (deeply) em-
bedded systems.

1 Introduction

Software engineering for embedded systems is an emerging but challenging area.
Embedded systems are characterized by strict resource constraints and a high
demand for variability and customizability. Since it is reasonable to expect that
embedded systems will gain further momentum, it is crucial to adopt modern
programming techniques that suffice in other domains. In this paper we focus
on the level of code synthesis to deal with the strict resource constraints of
deeply embedded systems and to enforce modularity at the same time. Previous
attempts failed with respect to the specific resource constraints of deeply embed-
ded systems [1, 2], e.g., micro-controlers in ubiquitous computing or cars [3, 4, 5].
Hence, low-level languages as C or assembly languages are still used to develop
embedded software [6].

To overcome this handicap we propose to use feature-oriented program-
ming (FOP) [7] to build modular system product lines. FOP decomposes software
into features that are increments in program functionality. Features are applied
to a program in an incremental fashion representing development steps. This
way, a conceptually layered design is created. FOP has the potential to improve
modularity and thus reusability and customizability of product lines [7, 8, 9, 10]
– both are important for the domain of embedded systems.

Unfortunately, an FOP design imposes an overhead in execution time and
code size due to its layered structure. That is, the control flow is passed from layer
to layer, which causes performance penalties. The layered structure demands
more program code, which results in larger binaries. Both – performance and
footprint penalties – are not acceptable for deeply embedded systems.

To be able to employ feature-oriented techniques without any penalties in
performance and footprint, we suggest to streamline feature-oriented designs, i.e.,
the layered structure to minimize runtime and footprint overhead. Specifically,
we show how refinement chain optimization of FOP designs (by super-imposing
refinements) leads in the best case to a performance improvement of 40% and a
footprint saving of 59%, compared to the unoptimized variants; the worst case
still results in 5% footprint reduction and acceptable performance characteris-
tics. Streamlining FOP designs makes them suitable for the specific constraints
of embedded systems, without sacrifying their benefits in modularity and struc-
turing.
Compared to inlining techniques, that have been used for years, we argue that
streamlining of feature-oriented designs does not rely on heuristics but it exploits
the stepwise development methodology of FOP.

2 Feature-Oriented Programming

setHead()

hasNext()
begin()
next()

class Iterator

previous()
insert()

DoubleLinked

TraceList

Iteration

Base

setTail()

refines class PtrList

head()
class PtrList

refines class PtrList

refines class Iterator

head()
setHead()

Fig. 1. A stack of feature modules
for a linked list product line.

FOP studies the modularity of features in
product lines, where a feature is an incre-
ment in program functionality [7]. Feature

modules realize features at design and im-
plementation levels. The idea of FOP is to
synthesize software (individual programs)
by composing feature modules developed
for a whole family of programs. Typi-
cally, features modules refine the content
of other features modules in an incremen-
tal fashion. Hence, the term refinement
refers to the set of changes a feature ap-
plies to others. Stepwise refinement leads
to conceptually layered software designs.

The key point of FOP is the observation that features are seldomly imple-
mented by single classes; often a whole set of collaborating classes defines and
contributes to a feature [7, 11, 12, 13, 14, 9, 10]. Classes play different roles in
different collaborations [14]. FOP aims at abstracting and explicitly representing
these collaborations.

A feature module is a static component encapsulating fragments (roles) of
multiple classes so that all related fragments are composed consistently. Figure 1
depicts a stack of four feature modules of a product line of linked lists (Base, Iter-
ation, TraceList, DoubleLinked) in top down order. Typically, a feature crosscuts
multiple classes (e.g., PtrList, Iterator). White boxes represent classes and their
refinements; on the code level refinements are prefixed by the refines keyword;
gray boxes denote feature modules; filled arrows refer to refinement.

3 Synthesizing Programs

In this section we explain two ways to synthesize programs out of a given FOP
design, mixin layers and jampacks.

Mixin Layers. Mixin layers transform refinement chains inside an FOP design
one-to-one to class hierarchies [13]. Each refinement is implemented as sub-class
to a base-class. Thus, for n features there are potentially n sub-classes for a given
class. For our list example, the mixin layer approach results in three generated
classes for PtrList and in two classes for Iterator (Fig. 2) – all named based on
the features they belong to and on their base-class.

Methods are extended by overriding. An extended method is invoked by an
explicit super -call. For example, the method setHead of class PtrList Base is
overridden by the method setHead of class PtrList Trace. The latter calls the
former by using super. This way, the base method is extended (refined) instead
of being replaced (Fig. 3).

Client code is aware only of the most specialized refinement, that is the
final class, which appears due to inheritance as super-imposition of the overall
refinement chain (e.g., PtrList in Fig. 2). It embodies all methods defined in its
super-classes.

setTail()

class PtrList

head()
setHead()

class PtrList_Base
hasNext()
begin()
next()

class Iterator_Iteration

previous()
insert()

head() class Iterator

setHead()

class PtrList_Trace

Fig. 2. Mixin layer implementation of
the linked list product line.

1 class PtrList_Base{
2 void set_head(ArgumentType& h){
3 TypeChecker ::check(h);
4 head_ = Copier::copy(h); }
5 };
6

7 class PtrList_Trace : PtrList_Base{
8 void setHead(ArgumentType& h){
9 stream()<<"setHead("<<h<<")"<<endl;

10 super:: setHead(h); }
11 };

Fig. 3. Method extension in mixin layers
through inheritance and overriding.

It is reasonable to expect that the high number of generated classes as well as
the additional level of indirection for all extended methods impose a performance
and footprint overhead, significant for embedded systems. Therefore, it seems
that mixin layers confirm the objections against modern software engineering
practices (cf. Sec. 4).

Jampacks. Jampacks are a generative programming technique, which flattens
the refinement chains of FOP architectures [7]. Classes are merged with all their
refinements. That is, all fields and methods of a class and its associated refine-
ments are merged into one final class. Fields with the same names are considered

errors; methods with the same name are merged preserving their overriding se-
mantics; the position of the super -call in the refining method defines how to
merge both method bodies.

Figure 4 shows the flattened refinement chains of our list example. The meth-
ods and fields of PtrList and Iterator and their refinements are merged into two
final classes. The body of the method setHead is a composition of the original
method of layer Base and a refining method of layer TraceList (Fig. 5).

begin()
next()
previous()
insert()

class Iterator
head()
setHead()
setTail()

class PtrList
hasNext()

Fig. 4. Jampack composition of a list.

1 class PtrList_Trace{
2 void setHead(ArgumentType& h){
3 stream()<<"setHead("<<h<<")"<<endl;
4 TypeChecker ::check(h);
5 head_ = Copier::copy(h); }
6 };

Fig. 5. Method extension in jampacks.

With respect to embedded systems it is reasonable to expect that jampacks
reduce the overhead of FOP’s layered designs. This conjecture has never been
examined since FOP was intended for large-scale program synthesis where the
assumed positive effects do not carry weight. Since jampacks decrease the number
of classes by factor n for n − 1 refinements (in our example, 2 instead of 5)
and avoid additional call indirections and virtual methods (since there is no
inheritance hierarchy and no method overriding), they may improve the runtime
and footprint characteristics significantly for deeply embedded systems.

4 Evaluation

4.1 Experimental Setup

We implemented and analyzed a product line of linked lists, borrowed from [15,
16]. The product line consists of 26 features (containing 12 classes and 27 refine-
ments), that can be combined in numerous ways.

For our experimental evaluation we used FeatureC++1 (v.0.3), a C++
language extension and a compiler for FOP [17]. FeatureC++ supports mixin
layer and jampack composition.2

FeatureC++ transforms FOP code into native C++ code. As underlying
C++ compiler we used the MicrosoftTMC/C++ compiler (13.10.3077 for 80x86)
with different optimization levels: no optimization (/Od), minimal space (/O1)
and maximum optimization (/Ox). The footprint measurements were obtained
from the object files to minimize side effects of wrapper and loader code. We
used strip to cut the symbol tables and size to determine the footprint (GNU
strip/size 2.17.50 20060817). As platform we used an AMD AthlonTM64x2 Dual

1 http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/
2 Merging method bodies automatically is under development.

Core Processor 3800+. The performance measurements were obtained using as-
sembler instrumentation code3 and a small application that instantiated and
used the generated lists. For each experiment we warmed up the cache by sev-
eral dummy runs preceding the actual measurement. The results are given in
averaged and rounded numbers over 100 runs each.

4.2 Mixin Layers vs. Jampacks
/Od /O1 /Ox

#
fe

a
t
u
r
e
s

m
ix

in

ja
m

p
a
c
k

m
ix

in

ja
m

p
a
c
k

m
ix

in

ja
m

p
a
c
k

3 1400 1336 563 517 1096 1016

4 1592 1464 667 584 1032 888

5 1704 1528 717 586 1176 920

13 2024 1560 1073 599 1800 936

14 2136 1608 1114 606 1864 952

15 2440 1752 1141 637 2168 984

16 2524 1788 1186 659 2252 1004

17 2588 1788 1223 659 2348 1004

18 2732 1852 1277 676 2492 1052

19 2860 1916 1337 673 2636 1068

Table 1. Footprints (byte) of ten
configurations using different opti-
mization levels.

The footprint and performance measure-
ments were performed for ten distinct list
configurations with different sets of features:
3, 4, 5, and 13 to 19 features. These ten con-
figurations were synthesized by mixin layer
and jampack composition.

Footprint Measurements. The results of
the footprint measurements are shown in Ta-
ble 1. The footprint is proportional to the
number of included features. Figure 6 depicts
the footprints for the ten configurations (ten
pairs of bars), each implemented by jampack
(respective left bar) and mixin layers (respec-
tive right bar). Each bar shows the results for three optimization levels (super-
imposed bars).

 500

 1000

 1500

 2000

 2500

 3000

19181716151413543

by
te

Count of features

Od-jampack
Ox-jampack
O1-jampack

Od-mixin
Ox-mixin
O1-mixin

Fig. 6. Footprints (# features).

It is remarkable that the
maximally optimized jampack
configuration (/Ox) with 19 fea-
tures has a smaller footprint
than the mixin-based configu-
ration with 3 features. In the
best case (19 features), jam-
packs achieve a footprint reduc-
tion of up to 59%; in the worst
case (3 features) of about 5% af-
ter all.

Figure 7 reveals that jam-
pack composition performs best
at optimization level /O1. The
overhead of adding individual features using jampacks is significantly smaller
than for mixin layers.

A dummy implementation that includes 100 features all forwarding a request
to its super layer induces a footprint benefit of 96% by using jampacks (not
depicted).

3 Basically, we read out the rdtsc register.

 500

 1000

 1500

 2000

 2500

 3000

Level /OxLevel /O1Level /Od

by
te

Optimization Level

19 Jampack
18 Jampack
17 Jampack
16 Jampack
15 Jampack
14 Jampack
13 Jampack
5 Jampack
4 Jampack
3 Jampack

19 Mixin
18 Mixin
17 Mixin
16 Mixin
15 Mixin
14 Mixin
13 Mixin

5 Mixin
4 Mixin
3 Mixin

Fig. 7. Footprints (optimization level).

Performance Measurements.

Figure 8 depicts the results of
the performance measurements
for three composed methods
(insert, setID, setTail). In all
but one case the mixin layer
variants are slower than their
jampack counterparts – once
they are equal. In the ideal
case jampacks reduce the ex-
ecution time by 40% (19 fea-
tures, method insert). Further-
more, the runtime overhead in-
creases as the number of fea-
tures increases. Figure 9 visualizes the data of Table 8. It bares the conjecture
that the difference between jampacks and mixin layers is proportional to the
number of features. The runtime overhead of mixin layers induced by additional
features is caused by indirections in the program control flow and newly intro-
duced members, such as constructors for every refined class. By using jampacks
we merged classes and their refinements and thus we removed several steps of
computation.

insert setID setTail

#
fe

a
t
u
r
e
s

m
ix

in

ja
m

p
a
c
k

m
ix

in

ja
m

p
a
c
k

m
ix

in

ja
m

p
a
c
k

3 396 381 91 91

4 495 448 118 111

5 495 463 145 119

13 664 487 140 122

14 703 536 139 119

15 809 590 187 149

16 827 570 97 91 185 148

17 859 571 102 91 185 146

18 925 571 144 126 185 146

19 945 561 165 139 189 146

Fig. 8. Average runtime measure-
ments (cpu-cycles) of three meth-
ods.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 4 6 8 10 12 14 16 18 20

cp
u-

cy
cl

es

Count of features

insert Jampack
setTail Jampack

setID Jampack
insert Mixin

setTail Mixin
setID Mixin

Fig. 9. Average execution time (cpu-cycles) of 100
iterations for jampack and mixin variants.

Our dummy implementation of 100 features performs with runtime benefits
of 95% by using jampacks (not depicted).

5 Related Work

Several studies have shown the penalties of advanced programming techniques
such as C++ [18, 19, 20]. Different approaches, e.g., Embedded C++, omit

expensive language features to cope with the extreme resource constraints of
deeply embedded systems. But this limits the programmer structuring software
appropriately.

Reducing the cost of indirect or virtual function calls generated by a C++
compiler is addressed in [18, 21, 22]. In [23] a source code transformation based on
aspect-oriented programming is proposed that uses domain-specific information
for optimizing object-oriented design patterns, e.g., the replacement of dynamic
casts by static code. Class hierarchy analysis and optimization of object-oriented
programs aim in eliminating dynamically-dispatched message sends automati-
cally [20].

Our approach of streamlining FOP designs does not limit the programmer in
modularizing software in terms of OOP. It introduces a domain-independent, au-
tomatic optimization step. This way, the programmer profits from the advanced
capabilities of FOP (cf. [9, 10]) without scarifying performance or a minimal
footprint.

Martin et al. and others aim to use a mapping to model constraint resources
in UML [24, 6]. This is orthogonal to our approach of optimizing code since it
is possible to model FOP using UML. Thus, their proposals can be integrated
into FOP implementations as well.

Lee et al. analyzed the OSGi framework to manage different software com-
ponents [25]. They propose to use an architecture based on services to compose
different embedded devices, i.e., software components, but do not focus mainly
on the development of the single embedded system.

6 Conclusion

By means of a case study, we have shown how FOP can be tailored to the domain
of embedded systems. While FOP is known to improve modularity, reusability,
and customizability of product lines, we demonstrate how to streamline FOP’s
layered designs to minimize footprint and maximize performance.

We observed that jampack composition outperforms mixin layers with regard
to performance (40%) and footprint (59%). The worst case still results in 5%
footprint improvement and does not burden the execution time. We believe that
the reduction of footprint and runtime overhead opens the door to adopt FOP
to the domain of embedded systems.

References

[1] Driesen, K., Hölzle, U.: The Direct Cost of Virtual Function Calls in C++. In:
OOPSLA. (1996)

[2] Calder, B., Grunwald, D., Zorn, B.: Quantifying Behavioral Differences Between
C and C++ Programs. Journal of Programming Languages 2(4) (1994)

[3] Lohmann, D., Schröder-Preikschat, W., Spinczyk, O.: On the Design and Devel-
opment of a Customizable Embedded Operating System. In: In Proceedings of
the International Workshop on Dependable Embedded Systems. (2004)

[4] Beuche, D., Guerrouat, A., Papajewski, H., Schröder-Preikschat, W., Spinczyk,
O., Spinczyk, U.: The PURE Family of Object-Oriented Operating Systems for
Deeply Embedded Systems. In: ISORC. (1999)

[5] Beuche, D., Meyer, R., Schröder-Preikschat, W., Spinczyk, O., Spinczyk, U.:
Streamlined PURE Systems. In: Proceedings of the Workshop on Object-
Orientation in Operating Systems (ECOOP-OOOSWS). (2000)

[6] Sangiovanni-Vincentelli, A., Martin, G.: Platform-Based Design and Software
Design Methodology for Embedded Systems. IEEE Design & Test of Computers
18(6) (2001) 23–33

[7] Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Stepwise Refinement. IEEE
Transactions on Software Engineering 30(6) (2004)

[8] Prehofer, C.: Feature-Oriented Programming: A Fresh Look at Objects. In:
ECOOP. (1997)

[9] Apel, S., Leich, T., Saake, G.: Aspectual Mixin Layers: Aspects and Features in
Concert. In: ICSE. (2006)

[10] Apel, S., Batory, D.: When to Use Features and Aspects? A Case Study. In:
GPCE. (2006)

[11] Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Pro-
gramming and Aspects. In: ACM SIGSOFT FSE. (2004)

[12] Lieberherr, K., Lorenz, D.H., Ovlinger, J.: Aspectual Collaborations: Combining
Modules and Aspects. The Computer Journal 46(5) (2003)

[13] Smaragdakis, Y., Batory, D.: Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM Transactions
on Software Engineering and Methodology 11(2) (2002)

[14] VanHilst, M., Notkin, D.: Using Role Components in Implement Collaboration-
based Designs. In: OOPSLA. (1996)

[15] Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

[16] Apel, S., Kuhlemann, M., Leich, T.: Generic Feature Modules: Two-Dimensional
Program Customization. In: ICSOFT. (2006)

[17] Apel, S., et al.: FeatureC++: On the Symbiosis of Feature-Oriented and Aspect-
Oriented Programming. In: GPCE. (2005)

[18] Calder, B., Grunwald, D.: Reducing Indirect Function Call Overhead in C++
Programs. In: POPL. (1994)

[19] Calder, B., Grunwald, D., Zorn, B.: Quantifying Behavioral Differences Between
C and C+ + Programs. Journal of Programming Languages 2(4) (1994)

[20] Dean, J., Grove, D., Chambers, C.: Optimization of Object-Oriented Programs
Using Static Class Hierarchy Analysis. In: ECOOP. (1995)

[21] Pande, H.D., Ryder, B.G.: Static Type Determination for C++. In: C++ Con-
ference. (1994)

[22] Aigner, G., Hölzle, U.: Eliminating Virtual Function Calls in C++ Programs. In:
ECCOP. (1996)

[23] Friedrich, M., et al.: Efficient Object-Oriented Software with Design Patterns. In:
GCSE. (2000)

[24] Martin, G., Lavagno, L., Louis-Guerin, J.: Embedded UML: a merger of real-time
UML and co-design. In: Proceedings of the ninth international symposium on
Hardware/software codesign (CODES). (2001)

[25] Lee, C., Nordstedt, D., Helal, S.: Enabling Smart Spaces with OSGi. IEEE
Pervasive Computing 02(3) (2003) 89–94

