
Language-Independent Quantification and Weaving for
Feature Composition

Stefan Boxleitner†, Sven Apel†, and Christian Kästner‡

† Department of Informatics and Mathematics, University of Passau, Germany
{apel,boxleitn}@fim.uni-passau.de

‡ School of Computer Science, University of Magdeburg, Germany
kaestner@iti.cs.uni-magdeburg.de

Abstract. Based on a general model of feature composition, we present a compo-
sition language that enables programmers by means of quantification and weaving
to formulate extensions to programs written in different languages. We explore
the design space of composition languages that rely on quantification and weaving
and discuss our choices. We outline a tool that extends an existing infrastruc-
ture for feature composition and discuss results of three initial case studies. We
found that, due to its language independence, our approach is less powerful than
aspect-oriented languages but still usable for many implementation problems.

1 Introduction

A software product line (SPL) is a set of related programs tailored for a specific domain
or market segment [1]. The programs of an SPL are distinguished in terms of features.
A feature represents the realization of a requirement and its implementation involves
the extension and modification of the program that shall provide the feature. Feature
composition is the process of merging the code of different features.

Recently, we have proposed a language-independent model of feature composition [2,
3,4]. In the model, the structure of a feature’s implementation is represented as a tree,
called feature structure tree (FST), and the process of feature composition is represented
as FST superimposition. An FST captures the essential, hierarchical module structure
of a given program or feature; superimposition merges two FSTs by merging their
corresponding substructures based on nominal and structural similarities.

While superimposition works well in many situations [5, 6, 7, 8], there are certain
situations where a different kind of composition is more appropriate [9, 10]. In such
situations, an extension a feature applies to a program is expressed more generically
and declaratively than possible with superimposition. Generic means that an extension
should be applicable to (i.e., reusable with) different programs, and declarative means
that the extension is specified in terms of where and what to change instead of how.

Work on adaptive programming (AP) [11], strategic programming (SP) [12], aspect-
oriented programming (AOP) [13], and subject-oriented programming (SOP) [14] incor-
porates and favors a style of composition that determines first which points (join points)
in the structure and computation of a program are being extended (quantification) and
that specifies what extensions are being applied to these points (weaving). This style has
its roots in term rewriting [15], traversals and visitors [16], and meta-programming [17].



Interestingly, composition by quantification and weaving can be described using the
FST model. The nodes of an FST are the join points available for being extended by
weaving.1 In the FST model, the process of quantification is represented by a tree traversal
that visits each node in a given FST and that decides which nodes are selected for further
processing. Then, in a subsequent weaving phase a rewrite (a.k.a. transformation or
advice [13]) is applied to all selected nodes. The kind of rewrite depends on the language
and may differ, e.g., adding new structural elements, renaming elements, merging or
overriding elements’ content. Henceforth, we call a program extension that is applied
by a feature via quantification and weaving a modification; it is a pair of a traversal
specification and a rewrite specification.

While the relationship between superimposition and quantification and weaving has
been explored using a feature algebra [3] (see Sec. 5), the question for the concrete
syntax and semantics of a modification language for feature composition based on the
FST model is unanswered. This question is especially interesting as FSTs are language-
independent and the envisioned language should take this into account. Previous work
either concentrated on specific target languages or on general issues of traversal and
rewrite specifications (see Sec. 5).

We would like to know how far we can go with a language-independent model of
modifications. Starting from the FST model, we explore the design space for expressing
modifications language-independently. This is an improvement over previous work and
allows us to understand and model the essence of composition by quantification and
weaving. We present a concrete syntax and semantics by means of examples, we outline
a tool that integrates well into an existing infrastructure for feature composition, and
we discuss results of three initial case studies. The case studies indicate that, due to its
language independence, our approach is less powerful than AOP but still usable enough
for a significant body of implementation problems.

2 The FST Model

A feature is implemented by one or more software artifacts, each of which can have
an internal structure. We model the structure of a feature as a tree, called feature
structure tree (FST), that organizes the feature’s structural elements, e.g., classes, fields,
or methods, hierarchically. Figure 1 depicts an excerpt of the Java implementation of a
simple graph structure and its representation in the form of an FST. One can think of an
FST as a stripped-down abstract syntax tree that contains only the information that is
necessary for feature composition.

For example, the FST we use to represent Java code contains nodes that denote
packages, classes, interfaces, fields, and methods. It does not contain information about
the body of methods, etc. A different granularity would be to represent only packages
and classes but not methods or fields as FST nodes.

A name and a type are assigned to each FST node. This prevents the composition of
incompatible nodes, e.g., the composition of two classes with different names, or of a
field with a method of the same name.

1 Note that, in AOP, join points include events in the computation of a program; as an FST
represents the static program structure, join points are of purely static and structural nature.



1 package gl;
2 c l a s s Edge { Node a, b; ... }
3 c l a s s Node { ... }
4 c l a s s Graph {
5 Vector<Node> nodes = new Vector<Node();
6 Vector<Edge> edges = new Vector<Edge>();
7 i n t count() { ... }
8 }
9 c l a s s ColoredGraph ex tends Graph { ... }

count edges nodes

Graph Node Edge...

gl

b a

method field

classpackage

Fig. 1. Implementation and FST of the basic graph library.

Our initial concentration has been on Java artifacts. However, the FST model is
applicable to any target language that satisfies two properties [3]: (1) each element of
an artifact must provide a name that becomes the node’s name and must belong to a
syntactical category that becomes the node’s type; (2) an element must not contain two
or more direct child elements with the same name and type. Many languages have these
properties or little effort is necessary to prepare them, e.g., Java, C#, C++, C, JavaCC,
Haskell, and UML [5, 3, 4, 7, 18, 19].

Independently of any particular language, an FST is made up of two different kinds
of nodes: non-terminal nodes and terminal nodes. Non-terminal nodes are typically the
inner nodes of an FST. The sub-tree rooted at a non-terminal reflects the structure of
some implementation artifact. The artifact structure is regarded as transparent (sub-
structures are represented by child nodes). A non-terminal node has only a name and
a type. Examples for non-terminals are packages, namespaces, records, classes, XML
elements, lists, and sections.

Terminal nodes are always the leaves of an FST. Conceptually, a terminal node
may also be the root of some structure, but this structure is regarded as opaque in our
model (sub-structures are not represented by child nodes). The content of a terminal is
not shown in the FST. A terminal node has a name, a type, and usually some content.
Examples for terminals are methods, fields, attributes, properties, initializers, production
rules. In order to alter their contents, language-specific rewrites are necessary [2,4]. Here
are three examples for Java and similar languages:

– A method can be extended by overriding and calling the original method using the
keywords original [6] or Super [5] inside the overriding method body.

– A field declaration can be extended by supplying an initial value and by substituting
the field’s type with a subtype.

– The list of implemented interfaces of a class can be extended with additional types.
In other languages, such as XML or BNF grammars, similar rules based on overriding,
replacement, or concatenation, are useful [5, 2, 4].

3 Modifications

Conceptually, a modification is a tree traversal that determines a subset of nodes of
a given FST and applies rewrites to them. That is, a specification of a modification
consists of a traversal specification and a rewrite specification. In the AOP community,



the traversal and rewrite processes are called quantification and weaving [20]. Since
our approach differs in some respects, we chose more general names that match the
semantics of the FST model. Modifications are generic in that they can be applied flexibly
to different programs resulting in different outcomes. For example, a modification could
be used to add a new field to every class of a program.

Design Space. What would a language for modifications look like? What properties
are mandatory and desirable? First, we have to decide whether the traversal and rewrite
specifications are intermixed with code of the target language or whether they are
separated from the remaining code. For example, Hyper/J2 favors a stricter separation
than AspectJ3 or DemeterJ4 in that there are separate files with composition rules;
AspectJ and DemeterJ use first-class language constructs, annotations, or framework
code to express the traversal and rewrite specifications. Since we aim at language
independence, we separate traversal and rewrite specifications from the target code.

A mandatory property of a traversal specification is that it must be able to select nodes
by name and type. Otherwise, a programmer is not able to select anything in the first
place, or there is a the risk of ambiguity. Optionally, a traversal language could select a
node based on an expression containing patterns and on logical or set-theoretic operators,
which increases the expressibility and genericity. This would allow a modification to
select multiple nodes at a time, as is possible in languages like AspectJ and Hyper/J.

A rewrite specification either contains the additional code that is injected or added to
a target program or it refers to an extra file that contains the code. As in the above case,
we choose a strict separation in order to attain language independence. Hence, in our
case, a rewrite specification states where the elements/nodes are defined that are being
added to or merged with the nodes selected by a traversal. In the case a traversal selects
more than one node to be modified, the corresponding rewrite is applied to all target
nodes, which is considered a useful mechanism in AspectJ and Hyper/J.

Conceptually, a rewrite may apply any kind of change from adding to deleting and
renaming nodes. However, it is reasonable to limit the capabilities for simplicity of the
rewrites. For example, a modification that deletes FST nodes or alters node types would
be a powerful mechanism – perhaps too powerful. So, for now, we limit the abilities of a
rewrite to adding new child nodes and altering the content of nodes via language-specific
rewrites. Our algebraic model of features suggests that such a limitation is necessary in
order to attain certain desired properties of feature composition, such as associativity [3].

Finally, traversal specifications and rewrite specifications have to be related in order
to declare which pairs of them represent modifications. The two specifications could be
stored separately, like in Hyper/J, and refer to each other or they could be stored together
in a single artifact, like in AspectJ. While the former approach would allow a programmer
to combine a traversal specification with different rewrite specifications (e.g., as possible
with pointcuts and advice in AspectJ), it imposes an organizational overhead (additional
references and files have to be maintained). Since we did not encounter convincing use
cases for the former approach yet, we choose the latter, simpler approach.

2 http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm
3 http://www.eclipse.org/aspectj/
4 http://www.ccs.neu.edu/research/demeter/DemeterJava/

http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm
http://www.eclipse.org/aspectj/
http://www.ccs.neu.edu/research/demeter/DemeterJava/


Traversal Specifications. A traversal is a function that receives an FST, visits each
node, and returns the set of nodes being affected by the modification. Consequently, a
language for traversals must take the hierarchical structure of FSTs into account, e.g., in
order to express parent-child relations. We illustrate the capabilities of a language that
implements our choices step by step by means of the graph example (Fig. 1).

In order to select a node, a traversal expression specifies the node’s path starting
from the root where each transition from parent to child node is represented by a dot (‘.’).
For example, selecting the node representing class Graph we would use the traversal
expression “gl.Graph” since Graph is a sub-element (child) of gl. Like in AP, AOP,
and SOP, wildcards can be used to select multiple nodes. For example, we can select all
members of Graph with the expression “gl.Graph.∗”, all elements of the package gl
whose names end with ‘Graph’ using the expression “gl.∗Graph”, or all elements of
any element of gl whose name is ‘print’ using the expression “gl.∗.print”.

Combining two sets of nodes can be expressed by the operation ‘+’. For example, the
expression “gl.∗Graph + gl.∗Edge” selects all classes whose names end with ‘Graph’
or ‘Edge’, assuming that there are classes like WeightedGraph and so on. Subtracting
two sets of nodes is denoted by ‘-’. For example, the expression “gl.∗Graph - gl.Color∗”
selects all classes whose names end with ‘Graph’ and do not begin with ‘Colored’,
assuming that there are classes like ColoredGraph and so on. We use operations on sets
of join points instead of logical operators on propositions because it fits more the nature
of traversals defined on top of the FST model.

The operator ‘..’ is used to express that every direct or indirect child node is selected.
For example, “gl..∗” selects any element of the package gl (including sub-packages,
classes, methods), “..Graph” selects any class Graph (including top-level and inner
classes), and “gl..Graph” selects any class Graph contained in the package gl and its
sub-packages.

Expressing that we do not want to select a certain set of join points we use a
combination of wildcards and set subtraction. For example, selecting all elements of a
program whose names do not end with ‘Graph’ is expressed with “..∗ - ..∗Graph”

Furthermore, we introduce the operator ‘:’ that is used to specify the desired type of
the node to be selected. For example, we can select all inner classes – assuming there
are inner classes – of the class Graph by “gl.Graph.∗ : JavaClass”. Here ‘JavaClass’
is the desired type. Of course, it depends on the target language which types may occur
in a traversal specification. For example, we can also select all members of all (inner)
classes that are not fields using the expression “gl..∗ - gl..∗ : JavaField”.

Moreover, we can use wildcards to quantify over types. For example, the expression
“gl..∗ : Java∗” selects all nodes whose type name begins with ‘Java’, in our example,
JavaClass , JavaField, and so on. This is useful when features contain artifacts written
in different languages. One can omit the type information meaning that the node may
have any type.

Rewrite Specifications. A rewrite is applied to a set of nodes selected by a correspon-
ding traversal specification. In the FST model, a rewrite can apply two kinds of changes:
(1) add a new child node to a non-terminal, (2) alter the content of a terminal by means
of a language-specific rewrite rule. A rewrite specifies which kind of change is applied
and where the nodes are located that are being added or merged with the nodes selected



by a traversal. For example, a rewrite that adds a new field lock has to specify where the
field is actually defined.

A rewrite specification looks similar to a traversal specification. Suppose we want
to synchronize access to all classes in the package gl whose names end with ‘Graph’
using synchronization facilities of package cp. We need two modifications to achieve
this: the first modification consists of a traversal “gl.∗Graph : JavaClass” and a rewrite
“cp.Lock.lock : JavaField”; it selects all classes whose names end with ‘Graph’ and
adds a field lock that has been defined in the class cp.Lock; Figure 2 illustrates the
interplay between traversal and rewrite specification.

count edges nodes

Graph Node Edge...

gl

b a

traversal

specification

Lock

lock sync

cp

rewrite

specification

selectselect

add child

Fig. 2. Interplay between traversal and
rewrite specifications.

The second modification consists of a
traversal “gl.∗Graph.∗ : JavaMethod” and
a rewrite “cp.Lock.sync : JavaMethod”; it
selects all methods of the classes whose
names end with ‘Graph’ and overrides these
methods with instances of the method sync.
How methods are technically merged/over-
ridden is described elsewhere [4].

Of course, modifications are not only use-
ful for extending Java programs. For exam-
ple, in order to synchronize all C functions in a program we can specify a modification
(“..∗ : CFunction”, “cp.sync”).

Tool Support. We have implemented support for modifications on top of FEATURE-
HOUSE [4]. FEATUREHOUSE is a tool suite that composes software artifacts by superim-
posing their FSTs. For every target language supported by FEATUREHOUSE a dedicated
parser generates corresponding FST from a given artifact.

Modifications are implemented as described in the previous section. Technically,
traversal and rewrite expressions are embedded in an XML document. Traversals and
rewrites are straightforwardly implemented on top of FEATUREHOUSE’s FST classes
using visitors and pattern matching. When applying a modification, FEATUREHOUSE
expects code artifacts that are being traversed and used for rewriting in the search path.
In our graph example, FEATUREHOUSE would expect files for the classes Graph, Edge,
Node, etc. located in the package gl and a file for the class Lock that contains the field
lock and the method sync located in the package cp.

Presently, FEATUREHOUSE supports the target languages Java, C#, C, Haskell,
Scheme, XML, JavaCC, and UML. It has been shown that further languages can be inte-
grated into FEATUREHOUSE almost solely on the basis of the languages’ grammars [4].

Three Case Studies. In three case studies we have implemented modifications for four
software systems of different sizes written in two different languages:

CLA LOC TYP MOD Description
GPLJ 14 2,439 Java 12 Graph Product Line (Java Version)
GPLC# 14 2,148 C# 12 Graph Product Line (C# Version)
Berkeley DB 300 58,030 Java 4 Oracle’s Embedded Storage Engine
AJHotDraw 290 43,368 Java 181 GUI Framework

CLA: # classes; LOC: # lines of code; TYP: types of artifacts; MOD: # modifications



The source code of all software systems of our study can be downloaded from the Web.5

In a first study, we have implemented several modifications that add new features
to a graph library, called Graph Product Line (GPL). GPL was proposed to serve as an
evaluation suite for product line methodologies [21] and so it is a good candidate to test
our approach. In order to demonstrate the language independence of modifications, we
have implemented five new features with, in summary, twelve modifications on top of a
Java and a C# implementation of GPL. The features implement different algorithms for
coloring the vertices and edges of a graph and calculating the degree of the graph. For
example, a modification injects a field that stores the color value into the classes that
represent vertices and edges, and another two modifications inject corresponding setter
and getter methods. All three modifications use wildcards in order to define the set of
affected classes. A fourth modification changes the method for displaying graphs via
overriding in order to adjust the display color according to the vertices and edges being
displayed. An observation was that, since the FSTs generated by FEATUREHOUSE differ
for Java and C# programs, we were not able to use the same traversal specifications
for the Java and C# version of GPL. Basically, we had to change the type annotations
of the FST nodes to be selected by the modifications. Apart from this problem, the
implementation of the modifications of GPL was straightforward.

In a second study, we have implemented a tracing feature for Berkeley DB (Java
Edition). Berkeley DB is an embedded storage engine by Oracle and used in many
commercial applications.6 The tracing feature consists of four modifications. A first
modification adds a new class for processing trace information to the code base of
Berkeley DB. A second modification injects an object for collecting trace information
to every class of Berkeley DB, and a third modification injects corresponding getter
methods. A fourth modification selects all methods of Berkeley DB and changes their
content to pass information to the tracer that was injected by the second modification.
The content change is implemented via overriding, i.e., statements are added in front
and in the end of the methods in question. This is similar to AspectJ’s around advice
for method executions. With 300 classes, the four modifications affect large parts of
the code base of Berkeley DB. This indicates the high degree of genericity that can be
achieved in the implementation of modifications as well as a certain scalability of our
approach and tool, at least for simple modifications.

In a third study, we have explored to what extent it is possible to reimplement the
aspects of AJHotDraw7 with modifications. AJHotDraw is a Java/AspectJ framework
for 2D graphics. As modifications in FEATUREHOUSE support only a limited set of
changes, we were not able to reimplement all of the 42 aspects. Specifically, we were
able to reimplement 23 aspects completely and 13 aspects partially. For readability, we
have implemented multiple modifications per aspect and bundled them in directories.
For 6 aspects, modification were not expressive enough, in particular, for aspects that
advise calls inside method bodies (7 pieces of advice) and that use advanced language
constructs such as ‘declare error’ or ‘cflow’. Remarkably, most modifications do
not affect multiple join points, much like their original pieces of advice. This study

5 http://www.fosd.de/fh
6 http://www.oracle.com/technology/products/berkeley-db/je/
7 http://sourceforge.net/projects/ajhotdraw

http://www.fosd.de/fh
http://www.oracle.com/technology/products/berkeley-db/je/
http://sourceforge.net/projects/ajhotdraw


indicates that, although modifications are less expressive than aspects, the expressiveness
is sufficient for a significant number of aspects in AJHotDraw.

4 Discussion

Our model and implementation of modifications builds on the underlying, language-
independent FST model. This implies that modifications are to some extent language-
independent as well. Traversal and rewrite specifications rely only on the FST structure
of a given software artifact. A drawback of language independence is that there is no
semantic information available about the correctness of modifications. There seems
to be a trade-off between generality and safety. The aim of our approach is to initiate
a discussion about this trade-off. Our model and implementation is on one end of
the spectrum between generality and safety. It shows to what extend programs and
modifications that features apply can be expressed language-independently.

A further implication of the underlying FST model is that modifications are inherently
static transformations. Although motivated by languages like AspectJ, a modification
cannot be expressed in terms of events in the computation of a program, which is possible
in AspectJ [10]. However, in our case studies we found several situations in which static
transformations were useful, and in a recent empirical study we found that use cases for
static extensions of programs occur frequently – in contrast to dynamic extensions [22].

Finally, our approach is limited in so far that a modification cannot perform arbitrary
rewrites but only add new nodes and change the content of existing nodes (e.g., in
order to extend a method body via overriding). Our approach shares this limitation with
many other languages for feature composition, e.g., AspectJ, Hyper/J, DemeterJ, and
AHEAD [5], which have been nevertheless proven useful in practice.

5 Related Work

Traversals and rewriting have a long tradition in programming [15, 16, 23]. They are
the roots of the composition style based on quantification and weaving. With AspectJ
this style became popular. AspectJ’s pointcuts are traversal specifications. AspectJ
supports patterns quantifying over elements and logical operations over propositions
of join points that are equivalent to our set operations. In contrast to FEATUREHOUSE,
AspectJ builds on a dynamic join point model (which is implemented with static code
transformations [24]), but is dedicated to Java.

Hyper/J is closer to our approach than AspectJ. Hyper/J separates target code and
composition specification. The bracket rule allows to quantify over some kinds of
program elements. Hyper/J depends on Java but supports more expressive composition
rules than FEATUREHOUSE, e.g., the merging of two elements with different names.

DemeterJ is a language that allows programmers to express some concerns as traver-
sals over object structures. Traversals are implemented using framework functions. In
contrast to the FST model, DemeterJ is more dynamic, as traversals operate on object
structures. DemeterJ is specific to Java but the general idea of traversals from which
DemeterJ arose is very similar to our approach [11]. In some sense, our approach is an
implementation of this concept in the context of general feature composition.



Gray and Roychoudhury propose a technique for constructing aspect weavers using
program transformation [25]. The idea is to exploit existing tool support for implementing
aspects. However, we aim not only at reusing tools but at a general, underlying model
for composition by quantification and weaving. Several researchers propose to raise the
abstraction level when expressing extensions to a program, e.g., [26,27]. The FST model
is such an abstraction that achieves language independence and that is a substrate for
expressing different styles composition.

We have developed a feature algebra that formalizes the key ideas of feature com-
position [3]. FSTs are represented as sums of elemental path expressions. Modification
application and composition are modeled with function application and function compo-
sition. Modification application distributes over a sum of path expressions. This way, we
model the traversal of the nodes of an FST. The feature algebra was a main motivation
for exploring the design space of a language for traversal and rewrite specifications.

6 Conclusion

Starting from the language-independent FST model, we have proposed a language for
expressing feature composition based on quantification and weaving. We have explored
the design space of such a language, explained our choices, and discussed a concrete
incarnation of such a language. We have outlined a tool for composition by quantification
and weaving applicable to any kind of software artifact that can be represented by an
FST (currently, Java, C#, C, Haskell, Scheme, XML, JavaCC artifacts). Three initial
case studies have demonstrated that our approach is feasible and scales to medium-
sized software project. However, due to the static nature and language independence,
modifications of FSTs are less powerful than AOP or SOP languages, but still usable
enough. In further work, we will experiment with more expressive rewrites and conduct
further case studies, especially with regard to polylingual systems.

Acknowledgments

Apel’s work is supported in part by the German Research Foundation (#AP 206/2-1).

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-Wesley
(2002)

2. Apel, S., Lengauer, C.: Superimposition: A Language-Independent Approach to Software
Composition. In: Proc. Int. Symp. Software Composition, Springer-Verlag (2008) 20–35

3. Apel, S., Lengauer, C., Möller, B., Kästner, C.: An Algebra for Features and Feature Compo-
sition. In: Proc. Int. Conf. Algebraic Methodology and Software Technology, Springer-Verlag
(2008) 36–50

4. Apel, S., Kästner, C., Lengauer, C.: FeatureHouse: Language-Independent, Automatic Soft-
ware Composition. In: Proc. Int. Conf. Software Engineering, IEEE CS (2009)

5. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE Trans.
Software Engineering 30(6) (2004) 355–371



6. Bergel, A., Ducasse, S., Nierstrasz, O.: Classbox/J: Controlling the Scope of Change in Java.
In: Proc. Int. Conf. Object-Oriented Programming, Systems, Languages, and Applications,
ACM Press (2005) 177–189

7. Apel, S., Leich, T., Rosenmüller, M., Saake, G.: FeatureC++: On the Symbiosis of Feature-
Oriented and Aspect-Oriented Programming. In: Proc. Int. Conf. Generative Programming
and Component Engineering, Springer-Verlag (2005) 125–140

8. Anfurrutia, F., Díaz, O., Trujillo, S.: On Refining XML Artifacts. In: Proc. of Int. Conf. on
Web Engineering, Springer-Verlag (2007) 473–478

9. Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Programming
and Aspects. In: Proc. Int. Symp. Foundations of Software Eng., ACM Press (2004) 127–136

10. Apel, S., Leich, T., Saake, G.: Aspectual Feature Modules. IEEE Trans. Software Engineering
34(2) (2008) 162–180

11. Lieberherr, K., Patt-Shamir, B., Orleans, D.: Traversals of Object Structures: Specification
and Efficient Implementation. ACM Trans. Programming Languages and Systems 26(2)
(2004) 370–412

12. Lämmel, R., Visser, E., Visser, J.: Strategic Programming Meets Adaptive Programming. In:
Proc. Int. Conf. Aspect-Oriented Software Development, ACM Press (2003) 168–177

13. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., Irwin,
J.: Aspect-Oriented Programming. In: Proc. Europ. Conf. Object-Oriented Programming,
Springer-Verlag (1997) 220–242

14. Tarr, P., Ossher, H., Harrison, W., Sutton, Jr., S.: N Degrees of Separation: Multi-Dimensional
Separation of Concerns. In: Proc. Int. Conf. Software Engineering, IEEE CS (1999) 107–119

15. Visser, E., Benaissa, Z., Tolmach, A.: Building Program Optimizers with Rewriting Strategies.
In: Proc. Int. Conf. Functional Programming, ACM Press (1998) 13–26

16. Visser, J.: Visitor Combination and Traversal Control. In: Proc. Int. Conf. Object-Oriented
Programming, Systems, Languages, and Applications, ACM Press (2001) 270–282

17. Kiczales, G., Des Rivieres, J.: The Art of the Metaobject Protocol. MIT Press (1991)
18. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model Superimposition in Software Product

Lines. In: Proc. Int. Conf. Model Transformation, Springer-Verlag (2009)
19. Apel, S., Kästner, C., Größlinger, A., Lengauer, C.: Feature (De)composition in Functional

Programming. In: Proc. Int. Symp. Software Composition, Springer-Verlag (2009)
20. Filman, R., Friedman, D.: Aspect-Oriented Programming Is Quantification and Obliviousness.

In: Aspect-Oriented Software Development. Addison-Wesley (2005) 21–35
21. Lopez-Herrejon, R., Batory, D.: A Standard Problem for Evaluating Product-Line Methodolo-

gies. In: Proc. Int. Conf. Generative and Component-Based Software Engineering, Springer-
Verlag (2001) 10–24

22. Apel, S., Batory, D.: How AspectJ is Used: An Analysis of Eleven AspectJ Programs.
Technical Report MIP-0801, Dept. of Informatics and Mathematics, University of Passau
(2008)

23. Lämmel, R.: Scrap Your Boilerplate with XPath-like Combinators. In: Proc. Int. Symp.
Principles of Programming Languages, ACM Press (2007) 137–142

24. Hilsdale, E., Hugunin, J.: Advice Weaving in AspectJ. In: Proc. Int. Conf. Aspect-Oriented
Software Development, ACM Press (2004) 26–35

25. Gray, J., Roychoudhury, S.: A Technique for Constructing Aspect Weavers using a Program
Transformation Engine. In: Proc. Int. Conf. Aspect-Oriented Software Development, ACM
Press (2004) 36–45

26. Gybels, K., Brichau, J.: Arranging Language Features for More Robust Pattern-Based
Crosscuts. In: Proc. Int. Conf. Aspect-Oriented Software Development, ACM Press (2003)
60–69

27. Ostermann, K., Mezini, M., Bockisch, C.: Expressive Pointcuts for Increased Modularity. In:
Proc. Europ. Conf. Object-Oriented Programming, Springer-Verlag (2005) 214–240


