
Author's personal copy

Science of Computer Programming 77 (2012) 174–187

Contents lists available at SciVerse ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Access control in feature-oriented programming
Sven Apel a,∗, Sergiy Kolesnikov a, Jörg Liebig a, Christian Kästner b, Martin Kuhlemann c,
Thomas Leich d

a Department of Informatics and Mathematics, University of Passau, Germany
b Department of Computer Science and Mathematics, University of Marburg, Germany
c School of Computer Science, University of Magdeburg, Germany
d Metop Research Center, Magdeburg, Germany

a r t i c l e i n f o

Article history:
Received 24 March 2010
Received in revised form 26 July 2010
Accepted 29 July 2010
Available online 6 August 2010

Keywords:
Feature-oriented programming
Feature modularity
Access control
Access modifier model
Fuji

a b s t r a c t

In feature-oriented programming (FOP) a programmer decomposes a program in terms of
features. Ideally, features are implemented modularly so that they can be developed in
isolation. Access control mechanisms in the form of access or visibility modifiers are an
important ingredient to attain feature modularity as they allow programmers to hide and
expose internal details of a module’s implementation. But developers of contemporary
feature-oriented languages have not considered access control mechanisms so far. The
absence of a well-defined access control model for FOP breaks encapsulation of feature
code and leads to unexpected program behaviors and inadvertent type errors. We raise
awareness of this problem, propose three feature-oriented access modifiers, and present
a corresponding access modifier model. We offer an implementation of the model on the
basis of a fully-fledged feature-oriented compiler. Finally, by analyzing ten feature-oriented
programs, we explore the potential of feature-oriented modifiers in FOP.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The goal of feature-oriented programming (FOP) is to modularize software systems in terms of features [1,2]. A feature
is a unit of functionality of a program that satisfies a requirement, represents a design decision, or provides a potential
configuration option [3]. A feature module encapsulates exactly the code that contributes to the implementation of a
feature [4]. The goal of the decomposition into feature modules is to construct well-structured and customizable software.
Typically, from a set of feature modules, many different programs can be generated that share common features and differ
in other features.

Many feature-oriented languages and tools aim at feature modularity, e.g., AHEAD/Jak [2], FeatureC++ [5], and
FeatureHouse [6]. Featuremodules are supposed to hide implementation details and to provide access via interfaces [7]. The
rationale behind such information hiding is to allow programmers to develop, type check, and compile features in isolation.
However, contemporary feature-oriented languages do not perform well with regard to feature modularity [7]; they lack
sufficient abstraction and modularization mechanisms to support independent development based on information hiding,
modular type checking, and separate compilation. In a theoretical work, Hutchins has shown that, in principle, feature-
oriented languages are able to attain this level of feature modularity [8]. However, there are many open issues, such as the
interaction with other language mechanisms.

∗ Corresponding author.
E-mail addresses: apel@uni-passau.de (S. Apel), kolesnik@fim.uni-passau.de (S. Kolesnikov), joliebig@fim.uni-passau.de (J. Liebig),

kaestner@informatik.uni-marburg.de (C. Kästner), kuhlemann@iti.cs.uni-magdeburg.de (M. Kuhlemann), thomas.leich@metop.de (T. Leich).

0167-6423/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2010.07.005

Author's personal copy

S. Apel et al. / Science of Computer Programming 77 (2012) 174–187 175

Fig. 1. A basic stack implemented in Jak.

An important ingredient for feature modularity that is missing in contemporary feature-oriented languages is a proper
mechanism for controlling the visibility of or access to individual program elements. Access modifiers allow a programmer
to define the scope and visibility of program elements such that implementation details can be encapsulated. For example,
in Java, programmers use access modifiers (e.g., private or public) to grant or prohibit access to classes, methods, and fields.
Access control has not been considered so far in research on feature-oriented languages. Contemporary feature-oriented
languages do not provide proper access controlmechanisms that take feature-oriented abstractions such as featuremodules
into account. The absence of a well-defined access control model for FOP breaks the encapsulation of feature code and leads
to unexpected program behaviors and inadvertent type errors, as we will demonstrate. To improve the situation, we make
the following contributions:

• We analyze object-oriented modifiers used in FOP and identify several shortcomings that limit the expressiveness of
feature-oriented languages and that may lead to unexpected program behaviors and inadvertent type errors.

• Weexplore the design space of feature-oriented access controlmechanisms and propose three concrete accessmodifiers.
• Wepresent an accessmodifier model that integrates common object-orientedmodifiers with our novel feature-oriented

modifiers.
• We offer an implementation of the proposed modifiers on top of the fully-fledged feature-oriented compiler Fuji.
• We analyze ten feature-oriented programs to demonstrate that there is a potential for feature-oriented access control

modifiers.

Especially, the last two contributions are novel compared to an earlier version of this work presented at FOSD’09 [9]. In a
nutshell, we found evidence that there is a need for feature-oriented modifiers in FOP. Another observation is that features
aremostly self-referential, which supports the view of features being cohesive units rather than being stepwise refinements,
as we will explain.

2. Feature-oriented programming

Often, a feature-oriented language extends an object-oriented base language by mechanisms for the abstraction
and modularization of features.1 Here we concentrate on languages that gained considerable attention in the past:
AHEAD/Jak [2], FeatureHouse [6], FeatureC++ [5], Classbox/J [12], CaesarJ [13], and OT/J [14]. To implement the additions
and changes a feature makes, these and other feature-oriented languages introduce a mechanism for class refinement. We
illustrate the capabilities of FOP bymeans of a brief example: we introduce a class (Fig. 1) and refine it subsequently (Fig. 2).
Note that in real feature-oriented programs, a feature typically comprises multiple classes and refinements.

In Fig. 1, we depict a class Stackwritten in the Jak language, which is an extension of Java and belongs to the AHEAD tool
suite [2]. The class definition is identical to a definition in Java except for the layer declaration (Line 1), which defines the
feature to which class Stack belongs—in our case, feature Base.

In Fig. 2, we depict a refinement of class Stack, declared by keyword refines (Line 2). The refinement is part of feature
Undo, which enables clients of the stack to revert the last operation. It adds a newmethod undo (Lines 13–16) and two new
fields lastPush and lastPop (Lines 3 and 4) to class Stack. Furthermore, it refines the methods push and pop (by overriding;
Lines 5–8 and9–12) to store the last itemadded to or removed from the stack. KeywordSuper refers to the class that has been
refined (Lines 7 and 10).2 Typically, a feature comprises multiple class declarations and class refinements that implement
the feature in concert.

We visualize a feature-oriented program design – like the design of our stack example – using a collaboration diagram
[15–17].3 In Fig. 3, we show a sample feature-oriented design, which decomposes the underlying object-oriented design

1 We are aware of some feature-oriented languages that build on languages that are not object-oriented [10,11]. These languages are outside the scope
of the paper, as they do not provide access modifiers like the ones we consider here.
2 For brevity, we use a slightly less verbose notation than used in Jak; other feature-oriented languages use different keywords anyway.
3 Note that the collaboration diagramswe refer to have their origin in collaboration-based design [16] and are not to be confusedwith UML collaboration

diagrams.

Author's personal copy

176 S. Apel et al. / Science of Computer Programming 77 (2012) 174–187

Fig. 2. A refinement of class Stack implemented in Jak.

Fig. 3. A sample feature-oriented design.

into features. The design in Fig. 3 consists of the five classes A–E (represented by medium-gray boxes), which are located
in the two packages P1 and P2 (represented by light-gray boxes). The diagram displays features (F1–F3) as horizontal slices
that cut across the core object-oriented design (represented by dark-gray boxes). Hence, a class is decomposed into several
fragments, called roles, that belong to different features [16]; the set of roles belonging to a feature make up a feature
module [4]. For example, class A consists of the roles A1, A2, and A3; feature F1 is implemented by the roles A1, B1, C1, D1, and
E1. The topmost role of a class is also called the base class (e.g., A1) and the other roles are called class refinements (e.g., A2 and
A3). The solid arrow denotes the refinement relationship between roles and the empty arrow denotes inheritance between
full classes.

Note that the sample feature-oriented design of Fig. 3 is minimal in the sense that it covers all situations that can occur
in access control and it fits onto a single page. We created this design on the basis of the specifications of Java and Jak.
Nevertheless, we checked that it applies also to the other languages we consider (see above). Despite its abstractness, we
have implemented the design and used it for regression testing our compiler (see Section 5).

3. Problem statement & related work

We explain the problems we encountered with feature-oriented languages by means of Jak—later we consider other
feature-oriented languages. Jak, as a Java extension, has inherited the access modifiers of Java. Hence, programmers can
control access to classes and members using the modifiers private, package, protected, and public.4 But there are two
problems with this:

1. Undefined semantics: object-oriented modifiers interact in undefined ways with feature-oriented mechanisms such as
class refinement.

2. Limited expressiveness: object-oriented modifiers are not expressive enough to control access in the presence of
feature-oriented abstractions.

Undefined semantics
Let us illustrate the problem of undefined semantics by means of our stack example. Suppose we refine our class Stack

by applying a feature Trace. Feature Tracemonitors the accesses to the stack and, as soon as the stack is changed, it writes

4 We assume a basic knowledge of Java’s access modifiers. In Java, if a class, field, or method does not have an access modifier then only elements from
the same package may access them. For the sake of consistency, we assume the modifier package for this case.

Author's personal copy

S. Apel et al. / Science of Computer Programming 77 (2012) 174–187 177

Fig. 4. A refinement of class Stack to trace accesses to a stack instance.

Fig. 5. Code generated by Mixin (left) vs. code generated by Jampack (right).

all stack elements to the console. In Fig. 4, we depict a corresponding refinement that refines the methods push (Lines 3–5)
and pop (Lines 6–8), accesses the list storing the stack’s elements (Lines 10 and 11), and prints them to the console (Line 11).

The question is whether the above example is correct. Is the class refinement allowed to access the private field elements
of the refined class? The answer is not obvious since feature-oriented languages usually do not come with a specification
and the behavior is de facto defined by the implementation of the compiler—a situation that we are going to change. Also,
formally specified subsets of feature-oriented languages do not include modifiers [18–21]. Compiling this code (or similar
code) with the Jak compiler reveals that, depending on a compiler flag, the code is correct or not.

The background of this inconsistency is that the Jak compiler generates Java code in an intermediate step and it supports
two options to do so [22]: in the first option, calledMixin, the compiler generates an inheritance hierarchywith one subclass
per refinement (which is good for debugging); in the second option, called Jampack, the compiler generates a single class
consisting of the elements of the base class and all of its refinements (which is good for performance). Comparing the two
options, it becomes clear that we get different results in our example, which we illustrate in Fig. 5.5 Using Mixin (left of
Fig. 5), private field elements cannot be accessed because the refinement is translated to a subclass, which cannot access
private members of superclasses. Using Jampack (right of Fig. 5), private field elements can be accessed because all code
of all refinements is moved to the class that is refined. So, we have two different results when compiling a single program
depending on a flag that is intended for debugging and optimization.

One can argue for one or the other semantics of private in FOP, and certainly it is possible to fix either Mixin or Jampack
such that both provide equal behavior. But we would like to stress that the semantics of access modifiers in general and
their interactionwith feature-orientedmechanisms such as class refinements are notwell-defined in contemporary feature-
oriented languages.

The difference between Mixin and Jampack is furthermore not only a matter of tool support because it can affect the
program semantics beyond type errors, as illustrated in Fig. 6.6 Which value is returned by method bar? Again, it depends
on a compiler flag: using Jampack, bar returns 42; using Mixin, bar returns 23. The return value of method bar depends on

5 Fig. 5 illustrates also howmethod overriding is implementedwithMixin and Jampack. A discussion of the differences is outside the scope of this paper;
more details are presented elsewhere [22,6].
6 For brevity, we merged the definitions of A, B, and Foo in a single listing.

Author's personal copy

178 S. Apel et al. / Science of Computer Programming 77 (2012) 174–187

Fig. 6. Abstract example that illustrates the difference between Jampack andMixin compiler flag. Method bar returns 23 using Jampack and 42 usingMixin.

Table 1
Comparison of different feature-oriented languageswith regard towhichmembers of a class can be accessed by a refinement
(× access prohibited; X access granted; — not supported). The bottom row shows the results of calling method bar of Fig. 6
in different feature-oriented languages.

Jak1 (Mixin) Jak1 (Jampack) FeatureHouse2 FeatureC++3 Classbox/J4 CaesarJ5 OT/J6

private × X X X X × X
package X X X – X – X
protected X X X X X X X
public X X X X X X X
bar() (Fig. 6) 23 42 42 42 42 23 42

1 http://www.cs.utexas.edu/∼schwartz/ATS.html.
2 http://www.fosd.de/fh/.
3 http://www.fosd.de/fcc/.
4 http://scg.unibe.ch/research/classboxes/.
5 http://caesarj.org/.
6 http://www.objectteams.org/.

the composition mechanism (Mixin or Jampack) and Java’s overloading rules. Method foo in class Foo is overloaded, the
first variant with a parameter of type A and the access modifier protected (Line 5) and the second variant with a parameter
of type B and the access modifier private (Line 6). Calling foo from bar returns either 23 or 42, depending on which variant
of foo was selected during method dispatch, which in turn depends on whether we use Mixin or Jampack. Using Jampack,
the compiler merges class Foo and its refinement into a single class. In this case, both variants of foo are visible to bar and
the second is called (returning 42) based on Java’s overloading rules (its parameter type is more specific with respect to the
argument supplied by bar). Using Mixin, a subclass is created for the refinement of class Foo, such that bar cannot access
the second variant of foo and has to resort to the first variant (returning 23).

In Table 1, we compare different feature-oriented languages with respect to their semantic rules for accessing fields from
a refinement and the program behavior with respect to our example of Fig. 6. We argue that the differences between the
individual feature-oriented languages are not intended but stem solely from the fact that research on FOP has not considered
access modifiers so far.

We hope that the examples make clear that we need well-defined semantics of feature-oriented languages including
access modifiers as well as a scientific discussion that motivates the choices of the semantics definition. We argue that
internal implementation details of compilers or the use of debugging and optimization flags should not decide arbitrarily
program semantics.

Limited expressiveness
We have also observed that object-oriented modifiers are not expressive enough for feature-oriented mechanisms (see

page 176), as illustrated by the following example. Supposewe refine our class Stack such that accessing the stack’smethods
is thread-safe (feature Sync). A refinement of feature Sync shown in Fig. 7 adds a new field lock and overrides the methods
push and pop to synchronize access via the methods lock and unlock. Furthermore, suppose that feature Sync also refines
many other classes to attain thread safety (e.g., Queue, Map, and Set) and that a central registry keeps track of all locks in
use. To grant the lock registry access to the locks of the synchronized stack (queue, map, set, etc.) objects, we have to change
the access modifier in Line 3 from private to public (similarly for the other synchronized classes). However, this also means
that every class of the entire program has access to the lock (not only the lock registry), which is certainly not desired. Other
modifiers such as package and protected are also not sufficient for similar reasons, and none of the languages compared
in Table 1 provide proper support. Instead, we envision a modifier that states that all roles of a given feature may access
a member within the same feature. In our case, we would like to grant access to the locks from the lock registry, which
is introduced in the same feature as the locks, but not from other classes of other features. The synchronization example
illustrates that the accessmodifiers available in contemporary feature-oriented languages are not sufficient for fine-grained,
feature-based access control.

Summary
Our discussion shows that we need access modifiers that are specific to the needs of FOP. Programmers would like to

restrict access to a program element to only certain features. Furthermore, wewould like to define how the feature-oriented

Author's personal copy

S. Apel et al. / Science of Computer Programming 77 (2012) 174–187 179

Fig. 7. A refinement of class Stack to synchronize accesses to a stack instance.

Fig. 8. Using modifier feature to grant access to field lock from all members of feature Sync.

modifiers interplay with the object-orientedmodifiers to avoid inadvertent interactions. To this end, in the next section, we
define an access modifier model for feature-oriented languages.

4. An orthogonal access modifier model

We explore the design space of possible and potentially useful modifiers for feature-oriented language mechanisms.
First, we introduce three feature-oriented modifiers and, second, we explain how they can be combined with the modifiers
commonly found in object-oriented languages.

4.1. Feature-oriented modifiers

We introduce threemodifiers that control the access tomembers of roles. Themotivation for themodifiers comes directly
from the fact that features cut across the underlying object-oriented design (see Fig. 3).

Modifier feature
The modifier feature is motivated by our previous example, in which we added synchronization support to a stack

and other data structures. There, we had the problem that object-oriented modifiers are not able to express that only
elements introduced by the synchronization feature — possibly of different classes and packages — may access the locks
of the synchronized objects. Themodifier feature grants exactly this access and forbids the access from other features, as we
illustrate for our stack example in Fig. 8. Modifying a member with feature allows every other role of the same feature to
access the member in question, in our example, including the lock registry (not shown), and prohibits access from the roles
of all other features.

Modifier subsequent
Modifier subsequent is motivated by FOP approaches that treat features as stepwise refinements. That is, starting from

a base program, features refine the existing program code gradually and produce a new version in each step [2,23]—some
researchers even draw a connection to functions that map programs to programs [2,23,24]. In the stepwise refinement
scenario, a feature (represented by a function)must not ‘‘know’’ about program elements that are introduced by subsequent
features. The positive effect of such a disciplined programming style is that features can be composed incrementally [23].

In Fig. 9, we show a feature StreamLine that refines class Stack such that it writes the stack’s state to a stream after
each operation (details omitted). Further suppose that another feature ByteOrder, shown also in Fig. 9, allows a client to
switch the byte order of the stream. If we would like to be able to compose the stack’s features incrementally, we have to
compose feature StreamLine before feature ByteOrder because the latter refers to the former. To guarantee incremental
compositionality, we propose a modifier subsequent that grants access to a program element from all elements of the same
feature or of features added subsequently. Features that have been added previously cannot access the program element in
question. So, for our example, we modify field objectStreamwith subsequent (Fig. 9, Line 3) and thus require that elements
that access this field are added subsequently.

Author's personal copy

180 S. Apel et al. / Science of Computer Programming 77 (2012) 174–187

Fig. 9. Using modifier subsequent to prohibit access to field objectStream from all features applied before feature StreamLine; ByteOrder may access
objectStream only if it is composed after StreamLine.

Another use case for modifier subsequent is in languages that support a pattern-based selection of extension points such
as advice and implicit invocation [25,26], which have been discussed recently in the context of FOP [23,4]. With pattern-
based selection, we can extend, for instance, all methods whose name begins with set. Modifier subsequent can be used to
prevent methods from being extended by previous features. It has been shown that, in this way, programmers can avoid
certain kinds of inadvertent interactions [23,26].

Modifier program
Modifier program broadens the scope of accessing a program element to all other program elements of all features

of the program (previous and subsequent). This is equivalent to the current situation in feature-oriented languages, in
which programmers have no fine-grained access control regarding to feature-oriented abstractions. Our motivation to add
modifier program is to achieve backward compatibility with programs written without feature-oriented modifiers. If no
feature-oriented modifier is specified, we use program as the default modifier (like package in Java).

Discussion
A question that arises is whether the new modifiers are expressive enough or whether we need an even more fine-

grained access control mechanism. The smallest modularization unit in feature-oriented design is the feature. With our
three feature-oriented modifiers, we are able to precisely control the access on a per-feature basis: individual, subsequent,
or all features. So there is no need for a more fine-grained or more coarse-grained access.

It would be possible to grant access only to a special feature or a subset of features by name. We did not consider this
possibility so far because of three reasons. First, in our previouswork on feature orientation, we did not encounter situations
in which such a mechanism would have been useful. Second, granting the access to special features would be a departure
from the object-oriented modifier model. For example, in Java, a programmer cannot declare that a member is visible only
for certain classes or packages, sowedo not support thismechanismat the level of features. Third,wewould like tominimize
the coupling between the features’ implementation and their mutual relationships. Apart from the layer declaration (which
is even optional) at the beginning of each Jak file, there is no information about the actual feature in the program text.
Instead, in languages such as Jak, the link between feature and program text is implicit and managed externally by the tool
infrastructure. We believe that this separation of concerns (feature implementation vs. feature management) is one of the
reasons of the success of contemporary feature-oriented languages and tools [3].

4.2. Object-oriented and feature-oriented modifiers in concert

The three feature-oriented accessmodifiers interactwith commonobject-orientedmodifiers in differentways. In Table 2,
we illustrate the interplay between object-oriented and feature-oriented modifiers with respect to the sample feature-
oriented design of Fig. 3. For each combination of an object-oriented modifier and a feature-oriented modifier, the table
shows the roles that may access the members of role A2 in our sample design. That is, each cell of Table 2 contains the roles
that are allowed to access role A2’s members, which have the combined modifiers corresponding to the cell’s column and
row. For example, a member of role A2 with the modifiers package and feature can be accessed by the roles A2, B2, and C2
(first column, second row) because they are located in the same package and feature; a member of role A2 modified with
private and program can be accessed by the roles A1, A2, and A3 (third column, first row) because they are of the same class.

Looking closer at Table 2, it is interesting to observe that the individual modifier combinations constitute a lattice with
scope inclusion as partial order, ‘public program’ as top element, and ‘private feature’ as bottom element, as illustrated in
Fig. 10. The lattice guided us in the development of a corresponding type system (see Section 5), which is concerned with

Author's personal copy

S. Apel et al. / Science of Computer Programming 77 (2012) 174–187 181

Table 2
Overview of the roles that are allowed to access a member
that has been introduced in role A2 (according to the design
shown in Fig. 3).
A2 Feature Subsequent Program

private A2 A2, A3 A1, A2, A3

package
A2,

B2,

C2

A2, A3,

B2, B3,

C2, C3

A1, A2, A3,

B1, B2, B3,

C1, C2, C3

protected

A2,

B2,

C2,

D2

A2, A3,

B2, B3,

C2, C3,

D2,D3

A1, A2, A3,

B1, B2, B3,

C1, C2, C3,

D1,D2,D3

public

A2,

B2,

C2,

D2,

E2

A2, A3,

B2, B3,

C2, C3,

D2,D3,

E2, E3

A1, A2, A3,

B1, B2, B3,

C1, C2, C3,

D1,D2,D3,

E1, E2, E3

Fig. 10. A lattice formed by modifier combinations.

the question whether a member is in the scope of an access. For example, when accessing a field of an unrelated class (i.e.,
not from a subclass) introduced in another package of the same feature, the field must be declared at least public feature
(public subsequent and public program would be sufficient, too).

Finally, since all feature-oriented languages of Table 1 rely on collaboration-based design, they can be seamlessly
enhanced by our modifier model.

5. Implementation and evaluation

To evaluate and experiment with our model, we have implemented a compiler that incorporates our access modifier
model and we have conducted an empirical study on ten feature-oriented programs exploring the potential of feature-
oriented modifiers in FOP.

5.1. Fuji

To evaluate and experiment with our model, we implemented a compiler for a feature-oriented language based on
Java called Fuji.7 Fuji’s syntax is based on the syntax of FeatureHouse and Jak.8 We implemented the Fuji compiler as an
extension of the Java compiler JastAddJ [27], which in turn fully implements the Java 5 language specification. Specifically,
we made three extensions. First, we extended the grammar of JastAddJ to include the new keywords (feature, subsequent,
and program). Second, we extended the frontend of JastAddJ with support for features and feature composition (the Fuji

7 Feature-Oriented Java Compiler
8 The reason for implementing a new compiler, rather than extending FeatureHouse or Jak, is that FeatureHouse and Jak do not provide a type system,

which is necessary to implement access control mechanisms.

Author's personal copy

182 S. Apel et al. / Science of Computer Programming 77 (2012) 174–187

Table 3
Overview of the analyzed programs.
Program name # Lines of code # Feature modules Description

Berkeley DB1 45000 100 Oracle’s transactional storage engine
EPL2 149 11 Arithmetic expression evaluator
GPL3 1929 28 Graph and algorithm library
GUIDSL4 11527 29 Graphical configuration tool
MobileMedia5 4227 47 Multimedia management for phones
Notepad6 1751 13 Graphical text editor
PKJab7 3305 8 Instant messaging client for Jabber
Prevayler8 5270 6 Persistence library
TankWar9 4845 38 Shoot ’em up game
Violet10 7151 88 Graphical model editor

1 Refactored by C. Kästner (U Magdeburg).
2 Developed by R. Lopez-Herrejon (UT Austin).
3 Developed by R. Lopez-Herrejon (UT Austin).
4 Developed by D. Batory (UT Austin).
5 Refactored by C. Kästner (U Magdeburg).
6 Developed by A. Quark (UT Austin).
7 Developed by P. Wendler (U Passau).
8 Refactored by J. Liu (UT Austin).
9 Developed by L. Lei et al. (U Magdeburg).

10 Refactored by A. Kampasi (UT Austin).

compiler expects the input features in separate directories). Third, we extended the type system of JastAddJ to implement
our access modifier model; the extended type system ensures that member accesses respect the rules defined by ourmodel,
as explained in the previous sections. The powerful extension mechanism of JastAddJ (which is based on aspect weaving)
allowed us to implement all extensions modularly. The compiler with examples and the results of our analysis is available
on the Web.9

For evaluation, we implemented a systematic test application following the example shown in Fig. 3 (available at Fuji’s
website). Role A2 declares twelve fields, each of which is modified by a unique combination of an object-oriented and a
feature-oriented modifier. Each role, including A2, accesses all of the fields of role A2.10 The Fuji compiler reports errors
for all accesses that do not conform with the specification in Table 2. As the test application covers all situations shown in
Table 2, we are confident that the compiler implements our specification correctly and completely, although this cannot be
a definitive proof.

5.2. Data of ten feature-oriented programs

Beside technical correctness and completeness, we evaluate the practicality of our model. Rather than implementing
one or two feature-oriented programs from scratch using the novel modifiers, we aim at a more realistic and less biased
evaluation. We are interested in the question of whether there is a need for feature-oriented modifiers in practical FOP. The
approach we have taken to answer this question is to analyze the members and accesses in current (third-party) feature-
oriented programs and to explore whether object-oriented modifiers alone are sufficient or whether additional feature-
oriented modifiers are necessary.

To determinewhether a declared object-orientedmodifier is sufficient for a givenmember, we analyze all accesses to the
member and determine themost-specific combination of an object-oriented and a feature-orientedmodifier with which all
accesses of themember are valid (i.e., the combination that is bottommost in the lattice shown in Fig. 10). If this combination
is more specific than the declared object-oriented modifier,11 thismay indicate that the programmer was not able to define
the scope more precisely (see Section 5.3 for a discussion). For example, if we encounter a field which is declared public but
all accesses stem from subclasses introduced by the same feature, then we know that the most-specific scope is protected
feature and the scope chosen by the developer is less specific.

In our evaluation,we analyzed ten feature-oriented programs including several non-trivial programsdeveloped by others
(see Table 3). We extended the Fuji compiler to collect for each member the following information:

• The declared modifier of the member (an object-oriented modifier).
• A list of access scopes, each of which corresponds to an access of the member and which is most-specific such that the

corresponding access is still valid (a pair of object-oriented and feature-oriented modifiers).

9 http://www.fosd.de/fuji/
10 To be specific, roles of the classes A, B, and D access the fields of A2 via this; roles of C and E access the fields of A2 via new p1.A().
11 The absence of feature-oriented modifiers in the analyzed programs is equivalent to uses of the modifier program.

Author's personal copy

S. Apel et al. / Science of Computer Programming 77 (2012) 174–187 183

Fig. 11. A class with a public field foo and a method bar that accesses foo (feature Base), and a refinement with a method foobar that accesses foo, as well
(feature Ext).

• The minimal modifier of the member, with which all accesses to the member are valid (a pair of object-oriented and
feature-oriented modifiers). The minimal modifier is the least upper bound of all access scopes in the access modifier
lattice.

For example, consider a class Awith a public field foo, shown in Fig. 11 (Line 3), which is accessed once from inside the same
role (Line 5) and twice from another role of the same class but in a subsequent feature (Lines 11 and 13). In this example,
the derived access scopes are: private feature (Line 5), private subsequent (Line 11), and private subsequent (Line 13). The
derived minimal modifier (with which all three accesses are valid) is private subsequent, so the corresponding member
could be redeclared safely using this modifier.

In Table 4, we show for each of the ten programs the overall number of members and accesses and the occurrences of
declared modifiers, derived access scopes, and derived minimal modifiers. For the raw data, see the electronic appendix in
the online version at doi:10.1016/j.scico.2010.07.005 and on Fuji’s website (along with the analyzed programs).

5.3. Analysis and discussion

We analyze and discuss the data with regard to two questions: First, which declared modifiers, derived access scopes,
and derived minimal modifiers occur most frequently? Second, why did developers not declare more-specific modifiers in
the case this would have been possible?

Access scopes and minimal modifiers
From the data presented in Table 4, we infer that 86.69±13.59% of all member accesses are from within the same

feature as the correspondingmembers (only 10.08±10.49% are from subsequent features and 3.23±3.5% are fromprevious
features).12 Furthermore, 76.43±20.42% of the derived minimal modifiers limit the scope of a member access to the same
feature (only 14.76±13.32% limit the scope to subsequent features and 8.81±8.09% to the entire program). These results
show that most accesses occur within individual features, rather than between different features, and, in many cases, the
scope of the corresponding members can be limited accordingly. So, there is a potential for information hiding at the level
of features, which cannot be expressed properly by object-oriented modifiers.

Actually, we were surprised that we could not find more features that access members of previous features, which
we expected to be the natural programming style in stepwise refinement (i.e., subsequent features build on previous
features) [2]. In the ten programs, features mainly access their own program elements (87%) – that is, they are very cohesive
– rather than referring to elements previously introduced by other features (13%). So, our results support the philosophy
of viewing features as cohesive units that should be developed independently [7,28,29], rather than viewing features as
transformations that have access to all program elements [30,31].

Given that not all feature-orientedmodifiers appear to be of equal usefulness, the question arises whether we really need
all of them. Modifier feature appears to be more useful in the analyzed programs than subsequent and program. However,
we argue that it is too early to answer this question. So, we leave the modifiers in the model and the implementation, so
that time will show which modifiers are used in practice.

12 We write a ± s denoting the average value a and the standard deviation s.

Author's personal copy

184 S. Apel et al. / Science of Computer Programming 77 (2012) 174–187

Table 4
Numbers of members, accesses, declared modifiers, derived access scopes, and derived minimal modifiers of ten programs.

Be
rk
el
ey

DB

EP
L

GP
L

GU
ID
SL

M
ob

ile
M
ed

ia

N
ot
ep

ad

PK
Ja
b

Pr
ev

ay
le
r

Ta
nk

W
ar

Vi
ol
et

Members 3 257 9 117 2301 250 86 534 731 539 335
Accesses 9 978 20 829 114435 700 923 13524 13516 9120 4733

Declared
modifiers

private 1282 0 15 433 54 26 241 450 44 140
package 271 8 4 628 44 9 24 23 37 21
protected 1305 0 2 89 120 15 72 67 284 26
public 399 1 96 1151 32 36 197 191 174 148

Access
scopes

private feature 9977 17 500 86391 700 576 10667 11110 5658 3951
private subsequent 0 0 81 5246 0 177 193 298 476 220
private program 0 0 17 635 0 44 63 125 98 4
package feature 1 3 72 8238 0 55 1040 713 560 325
package subsequent 0 0 132 8680 0 55 118 53 1483 192
package program 0 0 27 5245 0 16 81 28 845 25
protected feature 0 0 0 0 0 0 17 9 0 0
protected subsequent 0 0 0 0 0 0 0 0 0 0
protected program 0 0 0 0 0 0 0 0 0 0
public feature 0 0 0 0 0 0 916 946 0 16
public subsequent 0 0 0 0 0 0 205 165 0 0
public program 0 0 0 0 0 0 224 69 0 0

Minimal
modifiers

private feature 3256 8 45 1280 250 48 307 497 217 202
private subsequent 0 0 20 92 0 3 15 16 67 20
private program 0 0 5 22 0 8 4 13 17 1
package feature 1 1 7 93 0 11 42 64 63 48
package subsequent 0 0 26 367 0 11 23 12 95 49
package program 0 0 14 447 0 5 20 2 80 13
protected feature 0 0 0 0 0 0 1 1 0 0
protected subsequent 0 0 0 0 0 0 0 0 0 0
protected program 0 0 0 0 0 0 0 0 0 0
public feature 0 0 0 0 0 0 61 77 0 2
public subsequent 0 0 0 0 0 0 32 33 0 0
public program 0 0 0 0 0 0 29 16 0 0

Table 5
The fractions of minimal modifiers that are more specific than their corresponding declared modifiers.

Berkeley DB EPL GPL GUIDSL MobileMedia Notepad PKJab Prevayler TankWar Violet

More-specific 3 257 9 98 1832 250 73 481 700 442 321
Declared 3257 9 117 2301 250 86 534 731 539 335

% 100.00 100.00 83.76 79.62 100.00 84.88 90.07 95.76 82.00 95.82

Specificity of modifiers
Based on the collected data, we computed for each program the fraction of the minimal modifiers that are more specific

than their declared modifiers. In Table 5, we show the fractions for the analyzed programs. On average, 91.19±8.09% of
the minimal modifiers are more specific than the corresponding declaredmodifiers. This fraction raises the question of why
developers did not declare more-specific modifiers. We can think of three possible reasons:

1. Expressiveness: the developer was not able to express the scope more precisely due to the absence of feature-oriented
modifiers.

2. Extensibility: the developer chose the scope deliberately unspecific to facilitate extensibility [32].
3. Code smell: the developer simply did not care about access control.

The first reason for declaring less-specific modifiers (expressiveness) is supported by the fact that most accesses occur
within individual features, rather than between different features—a situation that cannot be expressed properly with
object-oriented modifiers. So there is an untapped potential for feature-oriented modifiers to improve information hiding
at the level of features.

Author's personal copy

S. Apel et al. / Science of Computer Programming 77 (2012) 174–187 185

The second reason for declaring less-specificmodifiers (extensibility) ismotivated by software design. If it is known that a
program is going to be extended, developers should prepare the program accordingly. In object-oriented programming, this
means that developers sometimes declare less-specific modifiers than possible (e.g., protected instead of private) to enable
subsequent extension. However, evenwhen looking only at the cases in which the declared object-orientedmodifiers are as
specific as possible (and dismissing all cases in which the declared object-oriented modifiers are less specific than possible
as intentionally loosened for extensibility), feature-oriented modifiers can reduce the scope of members in 97±4.33% of
the considered cases (37±23.27% of all cases).

The third reason (code smell) is difficult to recognize in the analyzedprograms.Hence,we choose a conservative approach
and consider programs that do not contain object-oriented modifiers (or only very fewmodifiers) as programs in which the
developers simply did not care about access control. Fortunately, only EPL falls in this category (the author of EPL confirmed
our suspicion). This is not too surprising because it is rather small and designed to illustrate a fundamental problem of
object-oriented programming rather than being a fully-fledged program in its own right. Since EPL is small compared to the
other analyzed programs, we can neglect its effect on our conclusions.

To summarize, even when considering reasons two (extensibility) and three (code smell), most declared modifiers are
too unspecific and can be specialized by feature-oriented modifiers.

5.4. Threats to validity

There are some threats to construct, internal, and external validity.

Construct validity
To determine the potential of feature-oriented modifiers, we counted the number of all declared modifiers and related

them to their minimal modifiers. A minimal modifier is calculated by comparing the corresponding declared modifier with
its list of access scopes. To this end, we process and analyze information on references and types provided by the Fuji
compiler. That is, the construct validity of our study relies on the correctness of the Fuji compiler. Although a correctness
proof is certainly outside the scope of the article, our test application (following the design of Fig. 3) makes us confident that
our data are reliable.

Internal Validity
A key idea of our study is to measure the use of object-oriented modifiers and to draw conclusions about the need for

feature-oriented modifiers. In Section 5.3, we already discussed the soundness of the conclusions one can draw from the
fact thatmost object-orientedmodifiers are less-specific than possible.We discussed the likeliness of three possible reasons
(expressiveness, extensibility, and code smell) because we lack data to identify the reasons definitively. Hence, a threat to
internal validity emerges from the soundness of our arguments. As said in Section 5.3, there are good reasons to assume that
object-oriented modifiers are too coarse-grained to control access in feature-oriented design (91% is a quite large fraction)
but, at the end, missing data pose a threat to validity.

External validity
Fuji is a feature-oriented extension of the Java programming language. Other feature-oriented languages are similar,

but may differ in their concrete syntax and may also support other language constructs (e.g., virtual classes). A threat to
external validity emerges from that fact that the results of our study may be specific to Fuji and may differ significantly for
other feature-oriented languages. Fortunately, our accessmodifiermodel relies only on the principles of collaboration-based
design, which abstracts from specific details of the language. So we are confident that we can generalize our conclusions to
other languages that are based on collaboration-based design. FeatureC++ is the only exception because it is based on C++,
and the modifier model of C++ has a different semantics.

Another issue is to what extent the external validity of our study relies on the selection of sample programs. Can we
generalize to other programs and application domains? To increase external validity, we collected asmany feature-oriented
programs as possible, deliberately excluding our own projects and artificial examples. Although a larger sample size would
increase the external validity—ideally including industrial case studies, we argue that the selected programs represent the
state of the art in FOP because they are of substantial size, of different domains, and have been developed by others for
different purposes. Furthermore, there are not many more studies on this area—a situation that has to be changed in the
future. Note that the fourth author was involved in refactoring two of the sample programs (not in the initial development),
but this was well before we began investigating access control.

6. Conclusion

The notion of access control has not gained much attention in feature-oriented language design, which has led to
a suboptimal modularity and expressiveness and to unintuitive semantics and inadvertent errors in feature-oriented
programs. Based on our experiencewith contemporary feature-oriented languages,we proposed threemodifiers specifically

Author's personal copy

186 S. Apel et al. / Science of Computer Programming 77 (2012) 174–187

targeting feature-oriented languagemechanisms.Wedeveloped an accessmodifiermodel that seamlessly integrates object-
oriented and feature-oriented modifiers. The model can serve as a reference for compilers to avoid inadvertent program
behavior and type errors and to provide expressive means to control access in the face of feature-oriented abstractions.

We provide an implementation of the model based on a fully-fledged feature-oriented compiler and found evidence
that feature-oriented modifiers can improve the situation in practical FOP. An analysis of ten non-trivial feature-oriented
programs revealed that common object-oriented modifiers are not able to define the scope of member accesses sufficiently
and therefore give away a potential for information hiding. On average, 91.19±8.09% of all declared modifiers can be
specialized with feature-oriented modifiers. Even when considering extensibility issues and code smells, the essence of
this result remains the same.

A further interesting observation is that features are mainly self-referential and thus are very cohesive. This observation
supports the philosophy of viewing features as cohesive units that should be developed independently, rather than viewing
features as transformations that have access to all program elements.

In further work, we shall provide further evidence on the practicality and soundness of our access modifier model. This
includes analyzing further programswith regard to the need of feature-orientedmodifiers, using feature-orientedmodifiers
systematically in developing feature-oriented programs from scratch, and interviewing developers about their rationales
in using object-oriented modifiers in existing projects and their expectations of and experiences with feature-oriented
modifiers.

Finally, access control is an important ingredient for feature modularity. Limiting the scope to certain features aids
modular type checking and verification in that the compiler can guarantee that certain members cannot be accessed from
outside a feature or set of features. Our model and implementation is a step in this direction. However, further ingredients
are necessary for feature modularity (e.g., modular type checking and linking [8]), which are outside the scope of this paper
and shall be addressed in further work.

Acknowledgements

This work is being supported in part by the German Research Foundation (DFG), project number AP 206/2-1 and by the
Metop Research Center.

References

[1] C. Prehofer, Feature-oriented programming: A fresh look at objects, in: Proceedings of the European Conference on Object-Oriented Programming,
ECOOP, in: LNCS, vol. 1241, Springer-Verlag, 1997, pp. 419–443.

[2] D. Batory, J. Sarvela, A. Rauschmayer, Scaling step-wise refinement, IEEE Transactions on Software Engineering (TSE) 30 (6) (2004) 355–371.
[3] S. Apel, C. Kästner, An overview of feature-oriented software development, Journal of Object Technology (JOT) 8 (5) (2009) 49–84.
[4] S. Apel, T. Leich, G. Saake, Aspectual feature modules, IEEE Transactions on Software Engineering (TSE) 34 (2) (2008) 162–180.
[5] S. Apel, T. Leich, M. Rosenmüller, G. Saake, FeatureC++: On the symbiosis of feature-oriented and aspect-oriented programming, in: Proceedings of the

International Conference on Generative Programming and Component Engineering, GPCE, in: LNCS, vol. 3676, Springer-Verlag, 2005, pp. 125–140.
[6] S. Apel, C. Kästner, C. Lengauer, FeatureHouse: Language-independent, automated software composition, in: Proceedings of the International

Conference on Software Engineering, ICSE, IEEE Computer Society, 2009, pp. 221–231.
[7] R. Lopez-Herrejon, D. Batory, W. Cook, Evaluating support for features in advanced modularization technologies, in: Proceedings of the European

Conference on Object-Oriented Programming, ECOOP, in: LNCS, vol. 3586, Springer-Verlag, 2005, pp. 169–194.
[8] D. Hutchins, Pure subtype systems: A type theory for extensible software, Ph.D. thesis, School of Informatics, University of Edinburgh, 2009.
[9] S. Apel, J. Liebig, C. Kästner, M. Kuhlemann, T. Leich, An orthogonal access modifier model for feature-oriented programming, in: Proceedings of the

International Workshop on Feature-Oriented Software Development, FOSD, ACM Press, 2009, pp. 26–32.
[10] F. Anfurrutia, O. Díaz, S. Trujillo, On refining XML artifacts, in: Proceedings of International Conference onWeb Engineering, ICWE, in: LNCS, vol. 4607,

Springer-Verlag, 2007, pp. 473–478.
[11] S. Apel, C. Kästner, A. Größlinger, C. Lengauer, Feature (De)composition in functional programming, in: Proceedings of the International Conference

on Software Composition, SC, in: LNCS, vol. 5634, Springer-Verlag, 2009, pp. 9–26.
[12] A. Bergel, S. Ducasse, O. Nierstrasz, Classbox/J: Controlling the scope of change in Java, in: Proceedings of the International Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA, ACM Press, 2005, pp. 177–189.
[13] I. Aracic, V. Gasiunas, M. Mezini, K. Ostermann, An overview of CaesarJ, Transactions on Aspect-Oriented Software Development (TAOSD) 1 (1) (2006)

135–173.
[14] C. Hundt, K. Mehner, C. Pfeiffer, D. Sokenou, Improving alignment of crosscutting features with code in product line engineering, Journal of Object

Technology (JOT) – Special Issue: TOOLS EUROPE 2007 6 (9) (2007) 417–436.
[15] T. Reenskaug, E. Andersen, A. Berre, A. Hurlen, A. Landmark, O. Lehne, E. Nordhagen, E. Ness-Ulseth, G. Oftedal, A. Skaar, P. Stenslet, OORASS: Seamless

support for the creation and maintenance of object-oriented systems, Journal of Object-Oriented Programming (JOOP) 5 (6) (1992) 27–41.
[16] M. VanHilst, D. Notkin, Using role components in implement collaboration-based designs, in: Proceedings of the International Conference on Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA, ACM Press, 1996, pp. 359–369.
[17] Y. Smaragdakis, D. Batory, Mixin layers: An object-oriented implementation technique for refinements and collaboration-based designs, ACM

Transactions on Software Engineering and Methodology (TOSEM) 11 (2) (2002) 215–255.
[18] S. Apel, C. Kästner, C. Lengauer, Feature Featherweight Java: A calculus for feature-oriented programming and stepwise refinement, in: Proceedings

of the International Conference on Generative Programming and Component Engineering, GPCE, ACM Press, 2008, pp. 101–112.
[19] B. Delaware, W. Cook, D. Batory, Fitting the pieces together: A machine-checked model of safe composition, in: Proceedings of the International

Symposium on Foundations of Software Engineering, FSE, ACM Press, 2009, pp. 243–252.
[20] S. Apel, D. Hutchins, A calculus for uniform feature composition, ACM Transactions on Programming Languages and Systems (TOPLAS) 32 (5) (2010)

Article 19.
[21] S. Apel, C. Kästner, A. Größlinger, C. Lengauer, Type safety for feature-oriented product lines, Automated Software Engineering—An International

Journal 17 (3) (2010) 251–300.
[22] M. Kuhlemann, S. Apel, T. Leich, Streamlining feature-oriented designs, in: Proceedings of the International Symposium on Software Composition, SC,

in: LNCS, vol. 4829, Springer-Verlag, 2007, pp. 168–175.

Author's personal copy

S. Apel et al. / Science of Computer Programming 77 (2012) 174–187 187

[23] R. Lopez-Herrejon, D. Batory, C. Lengauer, A disciplined approach to aspect composition, in: Proceedings of the International Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, PEPM, ACM Press, 2006, pp. 68–77.

[24] D. Batory, Program refactoring, program synthesis, and model-driven development, in: Proceedings of the International Conference on Compiler
Construction, CC, in: LNCS, vol. 4420, Springer-Verlag, 2007, pp. 156–171.

[25] F. Steimann, T. Pawlitzki, S. Apel, C. Kästner, Types andmodularity for implicit invocationwith implicit announcement, ACM Transactions on Software
Engineering and Methodology (TOSEM) 20 (1) (2010), Accepted for publication.

[26] S. Apel, C. Kästner, D. Batory, Program refactoring using functional aspects, in: Proceedings of the International Conference onGenerative Programming
and Component Engineering, GPCE, ACM Press, 2008, pp. 161–170.

[27] T. Ekman, G. Hedin, The JastAdd extensible Java compiler, in: Proceedings of the International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA, ACM Press, 2007, pp. 1–18.

[28] D. Hutchins, Eliminating distinctions of class: Using prototypes to model virtual classes, in: Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA, ACM Press, 2006, pp. 1–19.

[29] R. Lopez-Herrejon, Understanding feature modularity, Ph.D. thesis, Department of Computer Sciences, The University of Texas at Austin, 2006.
[30] D. Batory, From implementation to theory in product synthesis, in: Proceedings of the International Symposium on Principles of Programming

Languages, POPL, ACM Press, 2007, pp. 135–136.
[31] P. Ebraert, First-class change objects for feature-oriented programming, in: Proceedings of the Working Conference on Reverse Engineering, WCRE,

IEEE Computer Society, 2008, pp. 319–322.
[32] P. Bouillon, E. Großkinsky, F. Steimann, Controlling accessibility in agile projectswith the accessmodifiermodifier, in: Proceedings of the International

Conference on Objects, Models, Components, Patterns, TOOLS EUROPE, in: LNBIP, vol. 11, Springer-Verlag, 2008, pp. 41–59.

