
FAME-DBMS: Tailor-made Data Management Solutions for
Embedded Systems

Marko Rosenmüller1, Norbert Siegmund1, Horst Schirmeier2,
Julio Sincero3, Sven Apel4, Thomas Leich5, Olaf Spinczyk2, Gunter Saake1

1University of Magdeburg, {rosenmue,nsiegmun,saake}@ovgu.de
2Dortmund University of Technology, {horst.schirmeier,olaf.spinczyk}@tu-dortmund.de

3University of Erlangen-Nuremberg, sincero@cs.fau.de
4University of Passau, apel@uni-passau.de

5METOP Research Institute, thomas.leich@metop.de

ABSTRACT
Data management functionality is not only needed in large-
scale server systems, but also in embedded systems. Re-
source restrictions and heterogeneity of hardware, however,
complicate the development of data management solutions
for those systems. In current practice, this typically leads to
the redevelopment of data management because existing so-
lutions cannot be reused and adapted appropriately. In this
paper, we present our ongoing work on FAME-DBMS, a re-
search project that explores techniques to implement highly
customizable data management solutions, and illustrate how
such systems can be created with a software product line ap-
proach. With this approach a concrete instance of a DBMS
is derived by composing features of the DBMS product line
that are needed for a specific application scenario. This pro-
duct derivation process is getting complex if a large number
of features is available. Furthermore, in embedded systems
also non-functional properties, e.g., memory consumption,
have to be considered when creating a DBMS instance. To
simplify the derivation process we present approaches for its
automation.

1. INTRODUCTION
Traditionally, research on data management software is

discussed in the context of large-scale database manage-
ment systems (DBMS) like Oracle, IBM DB2 or Microsoft
SQL Server. In recent years, data management has also been
shown increasingly important for embedded systems [17].
Embedded systems are used as control units in cars, cell
phones, washing machines, TV sets, and many other devices
of daily use. Visions of pervasive and ubiquitous comput-
ing [26] and smart dust [25] emphasize the importance of
embedded systems for the future. Two factors make these
systems special and challenging for data management: First,
embedded devices have usually restricted computing power
and memory in order to minimize production costs and en-
ergy consumption. Second, embedded systems are strongly

heterogeneous, meaning that most systems differ in software
and hardware. Software for these systems is usually imple-
mented specifically for a single system and a special appli-
cation scenario.

For new application scenarios data management is often
reinvented to satisfy resource restrictions, new requirements,
and rapidly changing hardware [7]. This practice leads to an
increased time to market, high development costs, and poor
quality of software [9, 15]. A general data management in-
frastructure could avoid this by separating data management
and application logic [13]. Considering the limited resources
and special requirements on data management, traditional
DBMS are not suited for embedded environments [23, 6].

In this paper, we present our ongoing work on the FAME-
DBMS research project1. Our goal is to develop, extend, and
evaluate techniques and tools to implement and customize
DBMS. Such techniques have to account for the special re-
quirements of embedded systems. For that, we employ the
software product line (SPL) approach based on static com-
position of features. With an SPL approach and techniques
that enable to modularize also crosscutting features we can
attain high variability which is needed for embedded sys-
tems. However, variability also increases the configuration
space (i.e., the number of possible variants of a DBMS)
and requires assistance to derive and optimize a concrete
DBMS. We present two techniques to partially automate this
product derivation process. First, to identify features of a
DBMS SPL, needed for a particular client application, we
use static program analysis. Second, we propose to partially
automate the configuration process by using non-functional
constraints, i.e., constraints that are used to restrict the non-
functional properties of a DBMS like performance or me-
mory consumption. We present first results and show what
problems arise and what challenges are still ahead.

1The project is funded by German Research Foun-
dation (DFG), Projects SA 465/32-1 and SP 968/2-1.
http://www.fame-dbms.org/



2. TAILOR-MADE DATA MANAGEMENT
Resource constraints and a diversity in hardware of em-

bedded systems forces developers to tailor software to a
large number of application scenarios. Data management
is needed in embedded systems but often reimplemented be-
cause existing solutions lack customizability. SPLs enable to
develop software that can be tailored to different use cases
with minimized development effort. This technology should
also be applicable to tailor data management solutions for
embedded systems.

2.1 Software Product Lines
Developing software that contains only and exactly the

functionality required can be achieved using an SPL. Ex-
isting implementation techniques like components are in-
appropriate to support fine-grained customizability also of
crosscutting concerns if they are used in isolation [17]. Us-
ing static composition, e.g., based on C/C++ preprocessor
statements, achieves high customizability while not effect-
ing performance. However, C/C++ preprocessor statements
degrade readability and maintainability of source code [22,
5].

To avoid such problems new techniques – that are ap-
plicable to embedded systems – have to be explored and
developed. In the FAME-DBMS project, we study aspect-
oriented programming (AOP) [14] and feature-oriented pro-
gramming (FOP) [3, 18] for implementing SPLs. In contrast
to components, AOP and FOP also support modularization
of crosscutting concerns. By using AspectC++2 and Fea-
tureC++3, both language extensions of C++, we are able to
use these paradigms for embedded systems.

Here we concentrate on FOP and FeatureC++, however,
most of the presented concepts also apply to AOP. Using
FOP, features are implemented as increments in functional-
ity of a base program [3]. For product derivation (i.e., cre-
ating a concrete instance of a product line) a base program
has to be composed with a set of features. This results in a
number of different variants of an application.

2.2 Downsizing Data Management
There are solutions to apply the SPL approach to data ma-

nagement software. One possibility is to design a DBMS
product line from scratch, starting with domain analysis and
implementing and testing its features. Alternatively, instead
of beginning from scratch, one can refactor existing data ma-
nagement systems, e.g., using FOP. When starting with ex-
isting, tested, and optimized data management systems and
incrementally detaching features to introduce variability this
results in a stripped-down version that contains only the core
functionality. Additional features can be added when re-
quired for a certain use case. This approach, also known as
extractive adoption [8], reduces the required effort and risk
which makes it especially attractive for companies that want
2http://www.aspectc.org/
3http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/

to adopt SPL technology for their products. In the FAME-
DBMS project, we chose this approach to compare down-
sized versions with the original application which makes it
useful as a research benchmark.

In a non-trivial case study we refactored the C version of
the embedded database engine Berkeley DB into features.
The footprint of Berkeley DB is fairly small (484 KB) and
there are already a few static configuration options avail-
able. Even though, it is still too large for deeply embedded
devices and contains several features like TRANSACTIONS
that might not be required in all use cases. Therefore, we
transformed the Berkeley DB code from C to C++ and then
refactored it into features using FeatureC++. We used be-
havior preserving refactorings to maintain performance and
to avoid errors.

Our case study has shown that the transformation from C
to FeatureC++ (1) has no negative impact on performance or
resource consumption, (2) successfully increases customiz-
ability (24 optional features) so that we are able to create
far more variants that are specifically tailored to a use case,
and (3) successfully decreases binary size by removing un-
needed functionality to satisfy the tight memory limitations
of small embedded systems.

The results are summarized in Figure 1. Before refactor-
ing, the binary size of Berkeley DB embedded into a bench-
mark application was between about 400 and 650 KB, de-
pending on the configuration (1–6). After transformation
from C to FeatureC++, we could slightly decrease the binary
size (Figure 1a) while maintaining the original performance
(Figure 1b)4. By extracting additional features that were not
already customizable with preprocessor statements we are
able to derive further configurations. These are even smaller
and faster if those additional features are not required in a
certain use case (Configurations 7 and 8 in Figure 1). This
illustrates the practical relevance of downsizing data mana-
gement for embedded systems.

2.3 FAME-DBMS
Decomposing Berkeley DB showed us that FOP and Fea-

tureC++ are appropriate for implementing DBMS for em-
bedded systems. We could furthermore show that a fine
granularity, also of core functionality like the storage ma-
nagement, can be achieved using FOP [16]. However, when
decomposing Berkeley DB we recognized that it is a com-
plex task to decompose an existing DBMS that is not de-
signed for a fine-grained decomposition. Thus, further de-
composition of Berkeley DB was not possible in reasonable
time because remaining functionality was heavily entangled.
For example, decomposition of the B-tree index functional-
ity is hardly possible without reimplementing large parts of
it.

We argue that a DBMS SPL for embedded systems has
to be designed with an adequate granularity. This means

4In Figure 1b Configuration 8 was omitted since it uses a different
index structure and cannot be compared to Configurations 1–7.



a) b)

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

Configuration

B
in

a
ry

 s
iz

e
 [

k
B

]

C

FeatureC++

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 7

Configuration

M
io

. 
q

u
e

ri
e

s
 /
 s

1 complete configuration 5 without feature Queue

2 without feature Crypto 6 minimal C version using B-tree
3 without feature Hash 7 minimal FeatureC++ version using 
4 without feature Replication 8 minimal FeatureC++ version using 

Figure 1: Binary size and performance of different C and FeatureC++ variants of Berkeley DB.

that different levels of granularities have to be supported:
Functionality used in highly resource constrained environ-
ments should be decomposed with a fine granularity to en-
sure high variability. In contrast, functionality that is only
used in larger systems, where resources are not highly limi-
ted, may not be further decomposed or should only be de-
composed with a coarse granularity to avoid increasing com-
plexity. Thus, the granularity is the key for a trade-off be-
tween complexity and variability.

Another reason for decomposing a DBMS into features is
to impose a clean structure (e.g., for source code, documen-
tation, etc.). However, since a decomposition can increase
the complexity the benefit of such a decomposition has to
be estimated. This is not the case for features that are only
included to aggregate already decomposed features and thus
do not further increase the complexity.

To analyze the granularity of an appropriate DBMS de-
composition in more detail, we are currently implementing
a DBMS product line from scratch. The decomposition of
this FAME-DBMS prototype is depicted in Figure 2. While
we are using a fine-grained decomposition for features that
are also used in small systems (e.g., the B-tree index) we use
a coarse granularity for features like TRANSACTION which
is decomposed into a small number of features (e.g., alterna-
tive commit protocols). To further structure the DBMS pro-
duct line aggregating features are used. For example, feature
STORAGE aggregates different features but does not provide
own functionality. Using FOP this structuring can be applied
to all software artifacts including the source code.

3. AUTOMATED PRODUCT DERIVATION
Fine granularity of a decomposition of a DBMS is impor-

tant to achieve customizability but it also increases the deve-
lopment effort. Furthermore, the product derivation process
is getting more complex if there is a large number of fea-
tures. The developer of an application that uses a DBMS
has to tailor the DBMS for the specific needs of his applica-

FAME-DBMS

Storage Index

OS-Abstraction

Buffer Manager

Replacement

Memory Alloc

B+-Tree

NutOS

Win32

List

API

put

remove

update

get

add

remove

update

search

Static

Dynamic

LFU

LRU

Transaction

SQL Engine

Linux

Optimizer

Access

Data Types

Figure 2: Feature diagram of the FAME-DBMS proto-
type. Gray features have further subfeatures that are not
displayed.

tion which imposes significant configuration effort. Further-
more, the application developer needs detailed knowledge of
the DBMS domain for this configuration process. Thus an
automated product derivation is desirable.

Another important issue in embedded systems are non-
functional properties (NFPs) of a generated DBMS instance.
Often these are of interest to the stakeholder but cannot be
configured directly. For example, a developer wants to tailor
the functionality of a DBMS product line for his or her ap-
plication, but also has to stay within the resource constraints
of a given embedded device with fixed RAM and ROM size.
Other NFPs like performance or response time are also very



Figure 3: Automated detection of needed features with
the analysis tool.

important in the embedded domain. Thus NFPs should also
be considered in the product derivation.

In the FAME project we aim at improving tool support for
product derivation. We address the configuration complex-
ity by an approach that partially automates the configuration
process using the functional requirements of a client appli-
cation on a DBMS and furthermore integrate non-functional
constraints.

3.1 Functional Requirements
When developing client applications that use a DBMS

SPL the inherent uses relationship between application (e.g.,
a personal calendar application) and DBMS suggests to de-
rive the need for DBMS features from the application itself.

We developed an analysis tool (see Figure 3) which auto-
matically detects an application’s need for infrastructure fea-
tures by analyzing the C++ sources of the application [19].
For example, it would be beneficial to detect the applica-
tions’s need for the feature JOIN of a DBMS to remove this
functionality if it is not used. First, we statically analyze the
application’s sources which results in an application model
(a control flow graph with additional data flow and type in-
formation), abstracting from syntactic details in the source
code. Infrastructure features that are suitable for automatic
detection can be associated with queries on the application
model (model queries in Figure 3). These queries answer the
question whether the application needs a particular feature.
For example, in an application that uses Berkeley DB as a
database infrastructure, a certain flag combination used to
open a database environment indicates the need for the fea-
ture TRANSACTION, which can be formulated as one of the
abovementioned queries.

The result of this process is a list of features that need to
be included in the DBMS that the application is using. This
list can be further refined by analyzing constraints between
features of an SPL that are part of the feature model of that
application. Ideally, large parts of a feature diagram can be
configured automatically. The developer has to manually se-
lect only features that cannot be derived from the applica-

tion’s sources.
An evaluation of the approach with the refactored Berke-

ley DB (cf. Section 2.2) confirmed the assumption that the
need for infrastructure features can be derived from the ap-
plication sources in most cases. Our experiments with a
benchmark application (that uses Berkeley DB) showed that
15 of 18 examined Berkeley DB features can be derived au-
tomatically from the application’s source code; only 3 of 18
features were generally not derivable, because they are not
involved in any infrastructure API usage within any applica-
tion.

3.2 Non-functional Properties
As already stated also NFPs of an SPL are important for

embedded systems. For example, binary size and memory
consumption are critical for resource constrained environ-
ments and should also be considered in the product deriva-
tion process. To allow control over those properties our ob-
jective is to further automate product derivation. Using non-
functional constraints we can exclude variants of an SPL that
do not fulfill these constraints.

We support this by (1) measuring information about NFPs
of concrete DBMS and (2) assisting or automating the selec-
tion of features based on measured NFPs and user defined
constraints. To achieve these goals, our idea is to store as
much information as possible about generated products in
the model describing the SPL. This data is used to assist the
derivation of further products.

The ideas are part of the Feedback Approach [21], which
enables the application engineer to perform analysis (both
static and dynamic) on generated products so that knowledge
about specific NFPs can be obtained. This information can
be assigned to a complete product specification (configura-
tion properties), to a specific product feature (feature pro-
perties), or to implementation units, e.g., classes, aspects, or
components (component properties).

The result of the analysis is stored to be used during pro-
duct derivation to obtain the NFPs of a new product that is
to be derived. This can be based on a calculation of an op-
timal configuration using the properties assigned to features
or by estimating the properties based on heuristics (e.g., by
using similarities between the product to be derived and ear-
lier created instances). Calculating optimal solutions based
on constraints is known as the constraint satisfaction prob-
lem (CSP) that belongs to the complexity class NP-complete.
Currently we are using a greedy algorithm to calculate op-
timal solutions to cope with the complexity of the problem.
Furthermore, we can give hints to the user what the proper-
ties of a configured instance will be by using information
about already instantiated products.

We think that calculating an optimal solution has to be
based on both: Properties assigned to features and proper-
ties of concrete instances. First, a greedy algorithm can be
used to derive promising product configurations using fea-
ture properties. In the second step, more accurate values



for non-functional properties can be obtained by including
heuristics and information about already instantiated prod-
ucts and components. An optimal solution is selected by
comparing theses corrected values.

Our work on NFPs is at an early stage, however, our pre-
liminary results are promising. We have shown the feasibi-
lity of the idea for simple NFPs like code size [21] and are
developing heuristics and analysis components to address
performance of SPL instances.

4. RELATED WORK
Development of customizable data management software

has been in the focus of research for several years. Batory
and Thomas used code generation techniques to customize
DBMS [4]. They aimed at creating special language exten-
sions, e.g., to ease the use of cursors. As one of the origins
of FOP, Batory et al. focused on customizing DBMS with
Genesis [2]. In contrast to FOP as it is known today, it was
not based on OOP and its complexity decreased usability.
There have been many other developments to support ex-
tensibility of DBMS in the last 20 years. These approaches
found their way into current DBMS but cannot provide ap-
propriate customizability to support embedded systems (e.g.,
Kernel Systems). Additionally, detailed knowledge is often
needed to implement a concrete DBMS or extend existing
ones [11]. Component-based approaches are getting popular
for traditional DBMS [11, 7, 17]. These, however, introduce
a communication overhead that degrades performance and
increases memory consumption. Furthermore, limited cus-
tomizability because of crosscutting concerns does not al-
low for fine-grained customization. To overcome this limita-
tion Nyström et al. developed a component-based approach
named COMET that uses AOP to tailor the components [17].
In another approach, Tešanović et al. examined AOP for
DBMS customization [24]. They evaluated their approach
using Berkeley DB and showed customizability for small
parts of the system. Both approaches (and there is no other
approach that we are aware of) could not show concrete im-
plementations of a complete customizable DBMS nor de-
tailed evaluations. Other approaches like PicoDBMS [6] or
DELite [20] concentrate on special requirements on data ma-
nagement for resource constrained environments and not on
customizable solutions.

There is less research on automated tailoring of DBMS,
infrastructure SPLs, with their special relationship to appli-
cations built on top of them. Fröhlich takes this relationship
into account and aims at automatic configuration [12]. In
this approach the set of infrastructure symbols referenced
by the application determines which product line variant is
needed. Apart from the comparably simple static analysis
the main difference to our approach is the lack of logical
isolation between analysis and configuration, established by
a feature model.

NFPs of SPLs are getting more into the focus of current
research. Cysneiros et al. propose the modeling of NFPs

during application engineering [10]. This approach consi-
ders required non-functional behavior and adds it to design
documentation in order to make the non-functional proper-
ties traceable. Bass et al. also address NFPs during software
architecture design [1] to relate the NFPs to the system’s ar-
chitecture. Since these techniques tackle the same problem
in a different stage of development, we see our work as a
complementary approach and believe in the synergy between
them.

5. CONCLUSION
We illustrated that FOP can be used to develop tailor-

made data management solutions also for embedded sys-
tems. We applied an extractive approach to an existing
DBMS and thereby could show that FOP has no negative
impact on performance. We also presented our current work
on the FAME-DBMS product line implemented using FOP
and a mixed granularity for decomposition. The resulting
high customizability is needed for embedded devices but in-
creases the configuration space, rendering manual configu-
ration complex and error-prone. Addressing this increased
complexity, we presented two approaches that help simpli-
fying variant selection by partially automating the configu-
ration process and by providing non-functional properties
for product derivation. Although we need to extend the
approach and need further evaluation, first results are very
promising.

In future work, we plan to create complete tool support
that allows to develop SPLs optimized for embedded sys-
tems. As already outlined, we will continue working on
tailor-made DBMS and plan to extend SPL composition
and optimization to cover multiple SPLs (e.g., including the
operating system and client applications) to optimize the
software of an embedded system as a whole. Furthermore,
we think that knowledge about the application domain has
to be included in the product derivation process to automati-
cally tailor the DBMS with respect to a concrete application
scenario. For example, the data that is to be stored could be
considered to statically select the optimal index.

Acknowledgments
Marko Rosenmüller and Norbert Siegmund are funded by
German Research Foundation (DFG), Project SA 465/32-1,
Horst Schirmeier and Julio Sincero by Project SP 968/2-1.
The presented work is part of the FAME-DBMS project5,
a cooperation of Universities of Dortmund, Erlangen-
Nuremberg, Magdeburg, and Passau, funded by DFG.

6. REFERENCES
[1] L. J. Bass, M. Klein, and F. Bachmann. Quality

Attribute Design Primitives and the Attribute Driven
Design Method. In Revised Papers from the

5http://www.fame-dbms.org/



International Workshop on Software Product-Family
Engineering, pages 169–186. Springer-Verlag, 2002.

[2] D. Batory, J. R. Barnett, J. F. Garza, K. P. Smith,
K. Tsukuda, B. C. Twichell, and T. E. Wise.
GENESIS: An Extensible Database Management
System. IEEE Transactions on Software Engineering,
14(11):1711–1730, 1988.

[3] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on
Software Engineering, 30(6):355–371, 2004.

[4] D. Batory and J. Thomas. P2: A Lightweight DBMS
Generator. Journal of Intelligent Information Systems,
9(2):107–123, 1997.

[5] I. D. Baxter and M. Mehlich. Preprocessor Conditional
Removal by Simple Partial Evaluation. In Proceedings
of the Working Conference on Reverse Engineering,
pages 281—290. IEEE Computer Society Press, 2001.

[6] C. Bobineau, L. Bouganim, P. Pucheral, and
P. Valduriez. PicoDMBS: Scaling Down Database
Techniques for the Smartcard. In Proceedings of the
International Conference on Very Large Data Bases,
pages 11–20. Morgan Kaufmann, 2000.

[7] S. Chaudhuri and G. Weikum. Rethinking Database
System Architecture: Towards a Self-Tuning
RISC-Style Database System. In Proceedings of the
International Conference on Very Large Data Bases,
pages 1–10. Morgan Kaufmann, 2000.

[8] P. Clements and C. Krueger. Point/Counterpoint:
Being Proactive Pays Off/Eliminating the Adoption
Barrier. IEEE Software, 19(4):28–31, 2002.

[9] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[10] L. M. Cysneiros and J. C. S. do Prado Leite.
Nonfunctional Requirements: From Elicitation to
Conceptual Models. IEEE Transactions on Software
Engineering, 30(5):328–350, 2004.

[11] K. R. Dittrich and A. Geppert. Component Database
Systems: Introduction, Foundations, and Overview. In
Component Database Systems, pages 1–28.
dpunkt.Verlag, 2001.

[12] A. Fröhlich. Application-Oriented Operating Systems.
Number 17 in GMD Research Series. GMD -
Forschungszentrum Informationstechnik, Sankt
Augustin, 2001.

[13] T. Härder. DBMS Architecture – Still an Open
Problem. In Datenbanksysteme in Business,
Technologie und Web, pages 2–28. Gesellschaft für
Informatik (GI), 2005.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In Proceedings of the
European Conference on Object-Oriented
Programming, pages 220–242. Springer-Verlag, 1997.

[15] C. W. Krueger. New Methods in Software Product
Line Practice. Communications of the ACM,

49(12):37–40, 2006.
[16] T. Leich, S. Apel, and G. Saake. Using Step-Wise

Refinement to Build a Flexible Lightweight Storage
Manager. In Proceedings of the East-European
Conference on Advances in Databases and
Information Systems, pages 324–337. Springer-Verlag,
2005.

[17] D. Nyström, A. Tešanović, M. Nolin, C. Norström,
and J. Hansson. COMET: A Component-Based
Real-Time Database for Automotive Systems. In
Proceedings of the Workshop on Software Engineering
for Automotive Systems, pages 1–8. IEEE Computer
Society Press, 2004.

[18] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the European
Conference on Object-Oriented Programming, volume
1241 of Lecture Notes in Computer Science, pages
419–443. Springer-Verlag, 1997.

[19] H. Schirmeier and O. Spinczyk. Tailoring
Infrastructure Software Product Lines by Static
Application Analysis. In Proceedings of the
International Software Product Line Conference,
pages 255–260. IEEE Computer Society Press, 2007.

[20] R. Sen and K. Ramamritham. Efficient Data
Management on Lightweight Computing Devices. In
Proceedings of the International Conference on Data
Engineering, pages 419–420. IEEE Computer Society
Press, 2005.

[21] J. Sincero, O. Spinczyk, and W. Schröder-Preikschat.
On the Configuration of Non-Functional Properties in
Software Product Lines. In Proceedings of the
Software Product Line Conference, Doctoral
Symposium. Kindai Kagaku Sha Co. Ltd., 2007.

[22] H. Spencer and G. Collyer. Ifdef Considered Harmful,
or Portability Experience With C News. In
Proceedings of the USENIX Summer 1992 Technical
Conference, pages 185–197, 1992.

[23] M. Stonebraker and U. Cetintemel. One Size Fits All:
An Idea Whose Time Has Come and Gone. In
Proceedings of the International Conference on Data
Engineering, pages 2–11. IEEE Computer Society
Press, 2005.

[24] A. Tešanović, K. Sheng, and J. Hansson.
Application-Tailored Database Systems: A Case of
Aspects in an Embedded Database. In Proceedings of
International Database Engineering and Applications
Symposium, pages 291–301. IEEE Computer Society
Press, 2004.

[25] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister.
Smart Dust: Communicating with a Cubic-Millimeter
Computer. Computer, 34(1):44–51, 2001.

[26] M. Weiser. Some Computer Science Issues in
Ubiquitous Computing. Communications of the ACM,
36(7):75–84, 1993.


