
On Computing Solutions of Linear Diophantine

Equations with One Non-linear Parameter

Stefan Schuster and Armin Größlinger

Abstract. We present an algorithm for solving Diophantine equations which
are linear in the variables, but non-linear in one parameter. This enables us
to compute data dependences in more general situations than is possible with
current algorithms.

1. Introduction

Finding data dependences, i.e., determining which operations of a program access
the same memory cells, is the basis for automatic parallelisation and cache opti-
misation. For example, in the code shown in Figure 1(a), we can ask which loop
iterations (i, j) and (i′, j′) access the same elements of the array A. In algorithms
proposed and implemented so far, this analysis is restricted to the case that loop
bounds and array index expressions are terms which are linear in the variables
(i, j in the example) and the structure parameters (m, n in the example). Syn-
tactic treatment of non-linearities has been suggested [PW95], but our aim is to
lift the restriction to linear parameters algebraically. Banerjee’s data dependence
analysis [Ban93] consists of two steps. First, it handles equations arising from the
array accesses in the program. Second, it takes inequalities in the loop bounds and
the execution order into account. As noted by Banerjee, handling the Diophan-
tine equations exactly in the integers is most important; the inequalities can be
handled in the reals without losing much accuracy in practise.

The algorithm we present solves Diophantine equations which are linear in
the variables, but non-linear in one parameter. This enables us to generalise Baner-
jee’s dependence analysis to computing the data dependences in presence of one
non-linear parameter. Some special cases with multiple non-linear paramters, most
importantly proving the absence of dependences, can also be handled. The inequal-
ities are handled in the reals using existing techniques [GGL06].

2. Solving Equations

Given x A = b with A ∈ Z
m×n, b ∈ Z

n, Banerjee’s algorithm solves for x ∈ Z
m

in a two-step procedure. First, U ∈ Z
m×m and S ∈ Z

m×n are computed such

2 Stefan Schuster and Armin Größlinger

that U is unimodular, S is an echelon matrix and UA = S (“extended GCD”).
Second, t S = b is solved for t ∈ Z

m (“backward substitution”). The solutions
for x are then given by x = t U . Generalising both steps to handling a non-linear
parameter p, i.e., to the case in which the coefficients of the variables can be
arbitrary polynomials in p, yields our main result:

Theorem 2.1. The solutions of x A = b with A ∈ Z[p]m×n, b ∈ Z[p]m and the
parameter p ∈ Z can be represented by a finite case distinction on p which can be
computed algorithmically.

To this end, we introduce the ring AIQ ⊇ Z[p] and show that, in Theorem 2.1,
Z[p] can be replaced by AIQ. A similar therorem cannot hold for the case with
more than one parameter, since the number of steps needed to compute gcd(p1, p2)
is unbounded [vdD03]. We proceed by showing the generalisation of the two phases.

2.1. Extended GCD Computation

The GCDs we must compute are mappings d : p 7→
∑u

i=0 ci(p)⌊p
l
⌋i, which we call

AIQ polynomials, where the ci : Z → Z are periodic functions with some common
period l. The set of all AIQ polynomials forms a ring and is exactly the set of
quasi-polynomials f with f(Z) ⊆ Z.

Theorem 2.2. Let f, g ∈ Z[p]. Then the mapping p 7→ gcd
(

f(p), g(p)
)

is an AIQ
polynomial (called the AIQ GCD of f and g).

In the non-parametric case of A ∈ Z
2×1, the matrices S and U are essentially

constructed by exploiting the fact that gcd(a, b) = gcd(b, a− kb) with of k = ⌊a
b
⌋.

This yields a sequence A = (a, b)T = (a0, b0)
T → (a1, b1)

T → · · · → (an, 0)T = S

of column vectors (and unimodular matrices Ui with (ai+1, bi+1)
T = Ui (ai, bi)

T

such that U = Un−1 · . . . · U0). Let us call this the GCD sequence of (a, b). To
generalise this procedure to integral polynomials f, g ∈ Z[p], we have to handle
two different cases (assuming w.l.o.g. that deg(f) ≥ deg(g)):

(1) If deg(f) = deg(g), we can “lift” the GCD sequence
(

HC(f), HC(g)
)

→
(

HC(g), HC(f) − ⌊HC(f)
HC(g) ⌋

)

→ · · · of the highest coefficients of f and g to

the polynomials themselves: (f, g) →
(

g, f − ⌊HC(f)
HC(g) ⌋g

)

→ · · · . As soon

as the second component becomes zero within the sequence, the degree of
one polynomial in the lifted sequence decreases. Note that gcd

(

f(p), g(p)
)

=

gcd
(

g(p), f(p)− kg(p)
)

holds for all p, k ∈ Z, which is necessary to show the
correctness of our method.

(2) If deg(f) > deg(g), we have in general HC(g) 6 | HC(f), i.e., we cannot reduce
f by g within Z[p]. However, a degree reduction of f by g becomes possible
if we substitute the parameter p by lp′ + i yielding f ′

i(p
′) := f(lp′ + i) and

g′i(p
′) := g(lp′ + i), where p′ is a new parameter (i.e., we switch from Z[p]

to Z[p′]), l := |HC(g)| and i ∈ {0, . . . , l − 1}. Each i now represents the case
that p ≡l i. In each case, we find that HC(g′i) | HC(f ′

i) and we continue the

GCD computation with the polynomials g′i and f ′

i − p′deg(f)−deg(g) HC(f ′

i
)

HC(g′

i
)g

′

i.

On Linear Diophantine Equations with one Non-linear Parameter 3

for (i=0; i<=m; i++)

for (j=0; j<=m; j++)

A[n*i+2*j] = i+j;
(a) code

S =

2
0
0
0

, U =

0 0 0 −1
1 0 0 n

2
0 1 0 1
0 0 1 −n

2

(b) result for n ≡2 0

Figure 1. Data dependence example

We have shown [Sch07] that, in each case the substitution is compatible with
the computation of gcd

(

f(p), g(p)
)

. A full algorithm to compute a description of

gcd
(

f(p), g(p)
)

in dependence of p can be implemented by repeating the appro-
priate step (depending on the degrees of f and g) until one of the polynomials is
zero, and termination can be guaranteed because the sum of the degrees of the
polynomials involved decreases with each step. The unimodular matrices can be
constructed analogously to the non-parametric case. Similarly, this result can be
extended from 2 × 1-matrices to arbitrary m × n-matrices, just as is described by
Banerjee [Ban93] for the non-parametric case.

2.2. Backward Substitution

At the core of the non-parametric backward substitution for solving t S = b lies
the transition from equations of the form tisi = b′i with 0 6= si ∈ Z, b′i ∈ Z to

the representation ti =
b′

i

si

, provided that si | b′i. In the parametric setting, the

equations are of the form tif(p) = g(p) with f, g ∈ Z[p] (since the entries in S are
AIQ-polynomials in p) and we have to describe those p for which f(p) | g(p). The
following theorem states that a description with finitely many cases is possible.

Theorem 2.3. Let f, g ∈ Z[p] and let D(f | g) ⊆ Z denote the set of integers p with
f(p) | g(p). Then there are some l induced by the AIQ GCD of f and g, some
finite set M ⊆ Z and k ∈ {0, . . . , l} different integers 0 ≤ n1 < · · · < nk < l such
that

D(f | g) = M ∪ (lZ + n1) ∪ · · · ∪ (lZ + nk).

Moreover, for each ni, we can compute some hi ∈ AIQ such that hi(p) = g(p)
f(p)

whenever p ≡l ni.

The ni and hi can be computed algorithmically. This shows that the back-
ward substitution can be performed with a finite case distinction. Together with
the echelon matrix computation, this yields a procedure for solving systems of
equations, as is claimed in Theorem 2.1.

3. Example

Let us consider the program shown in Figure 1(a). To establish which iterations
(i, j) and (i′, j′) write to the same memory location, we have to consider the
equation (i, j, i′, j′) A = 0 with A = (n, 2,−n,−2)T . The echelon reduction on A

4 Stefan Schuster and Armin Größlinger

starts by computing the GCD of f(n) = n and g(n) = 2. Since their degrees are
different, we have the two (= |HC(g)|) cases f ′

0 = 2n′, g′0 = 2 if n ≡2 0 and
f ′

1 = 2n′ + 1, g′1 = 2 if n ≡2 1. This yields a gcd
(

f(n), g(n)
)

of 2 for even n and
of 1 for odd n. For space reasons, we omit the other GCD computations and show
only the result for even n in Figure 1(b). Backward substitution in t S = 0 yields
t1 = 0, t2, t3, t4 ∈ Z and (i, j, i′, j′) = t U = (t2, t3, t4,

n
2 (t2 − t4) + t3). Finishing

the analysis by taking the loop bounds and (i′, j′) ≺ (i, j) into account, we find
(since n

2 (t2 − t4) + t3 ≤ m and t2, t3, t4 ≥ 0 must hold) that n ≤ 2m is a required
condition for dependences to exist.

4. Conclusion

Using certain quasi-polynomials, we are able to generalise backward substitution
and the GCD computation involved in echelon reduction to the case with one non-
linear parameter. This enables us to extend the set of data dependences which
can be computed. For space reasons, we have not reported on how to generalise
Theorems 2.2 and 2.3 to f, g ∈ AIQ and how our procedure can be applied to
special multi-parameter cases. The details can be found in [Sch07].

References

[Ban93] Utpal K. Banerjee. Loop Transformations for Restructuring Compilers: The

Foundations. Kluwer Academic Publishers, Norwell, MA, USA, 1993.

[GGL06] Armin Größlinger, Martin Griebl, and Christian Lengauer. Quantifier elim-
ination in automatic loop parallelization. Journal of Symbolic Computation,
41(11):1206–1221, November 2006. doi:10.1016/j.jsc.2005.09.012.

[PW95] William Pugh and David Wonnacott. Nonlinear array dependence analysis. In
B. K. Szymanski and B. Sinharoy, editors, Languages, Compilers and Run-

Time Systems for Scalable Computers, pages 1–14. Kluwer Academic Publish-
ers, Boston, 1995.

[Sch07] Stefan Schster. On algorithmic and heuristic approaches to integral problems in
the polyhedron model with non-linear parameters. Diploma thesis, Universität
Passau, June 2007. http://www.infosun.fim.uni-passau.de/cl/arbeiten/

schuster-d.pdf.

[vdD03] Lou van den Dries. Generating the greatest common divisor, and limitations
of primitive recursive algorithms. Foundations of Computational Mathematics,
3(3):297–324, 2003.

Stefan Schuster
Mühlstraße 33, D-88480 Achstetten-Stetten, Germany
e-mail: stefan@ngc-6543.de

Armin Größlinger
Universität Passau, Fakultät für Informatik und Mathematik, D-94030 Passau, Germany
e-mail: armin.groesslinger@uni-passau.de

