
Performance-Influence Models for
Highly Configurable Systems

Norbert Siegmund†, Alexander Grebhahn†, Sven Apel†, Christian Kästner‡
†University of Passau, Germany ‡Carnegie Mellon University, USA

ABSTRACT
Almost every complex software system today is configurable.
While configurability has many benefits, it challenges per-
formance prediction, optimization, and debugging. Often,
the influences of individual configuration options on per-
formance are unknown. Worse, configuration options may
interact, giving rise to a configuration space of possibly ex-
ponential size. Addressing this challenge, we propose an
approach that derives a performance-influence model for a
given configurable system, describing all relevant influences
of configuration options and their interactions. Our ap-
proach combines machine-learning and sampling heuristics
in a novel way. It improves over standard techniques in that
it (1) represents influences of options and their interactions
explicitly (which eases debugging), (2) smoothly integrates
binary and numeric configuration options for the first time,
(3) incorporates domain knowledge, if available (which eases
learning and increases accuracy), (4) considers complex con-
straints among options, and (5) systematically reduces the
solution space to a tractable size. A series of experiments
demonstrates the feasibility of our approach in terms of the
accuracy of the models learned as well as the accuracy of
the performance predictions one can make with them.

Categories and Subject Descriptors: C.4 [Perfor-
mance of Systems]: Measurement techniques; D.2.13 [Re-
usable Software]: Domain engineering

Keywords: Performance-influence models, sampling, ma-
chine learning

1. INTRODUCTION
End-users, developers, and administrators are often over-

whelmed with the possibilities to configure a software sys-
tem. In most systems today, including databases, Web ser-
vers, video encoders, and compilers, hundreds of configura-
tion options can be combined, each potentially with distinct
functionality and different effects on quality attributes. The
sheer size of the configuration space and complex constraints

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ESEC/FSE’15 , August 31 – September 04, 2015, Bergamo, Italy
Copyright 2015 ACM 978-1-4503-3675-8/15/08 ...$15.00.
http://dx.doi.org/10.1145/2786805.2786845.

among configuration options make it difficult to find a con-
figuration that performs as desired, with the consequence
that many users stick to default configurations or only try
changing an option here or there. This way, the significant
optimization potential already built in many of our modern
software systems remains untapped. Even domain experts
and the developers themselves often do not (fully) under-
stand the performance influences of all configuration options
and their combined influence when they interact.

Our goal is to build performance-influence models (and
models of other measurable quality attributes, such as en-
ergy consumption) that describe how configuration options
and their interactions influence the performance of a sys-
tem (e.g., throughput or execution time of a benchmark).
Performance-influence models are meant to ease understand-
ing, debugging, and optimization of highly configurable soft-
ware systems. For example, an end user may use an op-
timizer to identify the best performing configuration under
certain constraints (e.g., encryption needs to be enabled)
from the model; a database administrator may use it to
determine the influence of certain configuration options and
how they interact; and a developer may compare an inferred
performance-influence model with her own mental model to
check whether the system behaves as expected.

Our approach is to infer a performance-influence model
for a given configurable system in a black-box manner from
a series of measurements of a set of sample configurations
using machine learning. That is, we benchmark a given
system multiple times in different configurations and learn
the influence of individual configuration options and their
interactions from the differences among the measurements.
Our approach addresses several challenges:
• We are facing huge configuration spaces that explode with

the number of configuration options. At the same time,
we can sample and measure only a relatively small number
of configurations (several hundred or thousand measure-
ments), so we better select our sample purposefully.
• Often, configuration spaces are highly constrained, such

that already random sampling is challenging, because most
random samples do not satisfy the constraints.
• Binary and numeric options in configurable systems typi-

cally have different characteristics that require dedicated
sampling and learning strategies. Of course, binary and
numeric options can interact, too [1, 15].
• If available, domain knowledge should be exploited for

sampling and learning. For example, if we know that per-
formance likely decreases quadratically with a certain nu-

meric option, we would like to incorporate that knowledge
for creating better models with fewer measurements.

To address these challenges, we propose a novel approach
of sampling and learning that takes the characteristics of
binary and numeric configuration options and their interac-
tions into account. Specifically, we propose a hybrid sam-
pling strategy that uses different experimental designs for
numeric options and sampling heuristics tailored for binary
options, grounded in their respective characteristics in prac-
tical systems. Furthermore, we use a learning mechanism
that can cope with both and that additionally incorporates
domain knowledge about an option’s influence, if available.
Our approach differs from prior work on performance opti-
mization in highly configurable systems in that (1) it sup-
ports both binary and numeric options, (2) it relies on sam-
pling heuristics that respect constraints among configura-
tion options, and (3) it learns models that can explain per-
formance behavior in terms of individual influences of indi-
vidual options and their interactions, allowing applications
beyond mere local or global optimization.

Our approach is able to build reasonably accurate perfor-
mance models of configuration spaces of real-world systems,
including compilers, multi-grid solvers, and video encoders.
In a series of experiments with configurable systems with up
to 1031 configurations, we demonstrate that few measure-
ments are sufficient to build fairly accurate models (19 %
prediction error, on average). The performance-influence
models learned by our approach can explain the performance
variation among configurations with a few dozen terms de-
scribing the influence of individual options and another dozen
terms describing interactions. Finally, while accuracy is im-
portant, simple models are important, too. Views on a
performance-influence model can be used to isolate influ-
ences of individual options and their interactions. This way,
we found two performance bugs in the Polly extension of
the LLVM compiler framework.1

In summary, our contributions are the following:
• We introduce a novel kind of performance-influence mod-

els describing the influence of binary and numeric config-
uration options and their interactions on performance.
• We propose a learning algorithm based on stepwise feature

selection that learns performance models focusing on the
most important factors influencing performance.
• We develop a sampling approach that smoothly integrates

binary sampling using heuristics and numeric sampling
using experimental designs.
• We demonstrate practicality and feasibility of our ap-

proach with several synthetic benchmarks as well as an
empirical evaluation on six real-world systems.
• We make an implementation of our approach on top of the

tool SPL Conqueror as well as all measurement results
and configuration models available online, including data
of several months of performance measurements, support-
ing others in replicating our experiments and evaluating
related approaches: http://www.fosd.de/SPLConqueror/.

2. PERFORMANCE-INFLUENCE MODELS
A performance-influence model consists of several terms

that describe the performance of a configuration based on
the values of configuration options. Individual terms may re-
fer to a single option, describing the influence of that option,

1http://polly.llvm.org/

or to multiple options, describing an interaction. Before we
explain how influence models are obtained by sampling and
learning in Section 3, let us outline the underlying concepts
and how we unify binary and numeric options.

Assume O is the set of all configuration options, includ-
ing numeric and binary options, and C the set of all con-
figurations. We model a configuration c ∈ C as a function
c : O → R assigning a (user-)selected value to every option.
For a binary option o, c(o) = 1 if the corresponding option
is selected and c(o) = 0 otherwise. For a numeric option
o, c(o) returns a number in the value range of that option.
Without loss of generality, we normalize the value range of
all numeric configuration options to the interval [0..1], as
common in machine learning.

Conceptually, a performance-influence model is simply a
function from configurations to a performance measure Π :
C → R, where performance can be any measurable property
that produces interval-scaled data. The model is described
as a sum of terms over configuration values. Individual terms
of the performance model can have different shapes, includ-
ing n · c(X), n · c(X)2, or n ·

√
c(X) · c(Y). For illustra-

tion, consider a configurable database management system
with the options encryption (E), compression (C), statistics
(S), page size (P), and DB size (D) and a corresponding
performance-influence model:

Π(c) = 50 +

φE︷ ︸︸ ︷
20·c(E) +

φC︷ ︸︸ ︷
15·c(C) +

φS︷ ︸︸ ︷
5·c(S)−

φP︷ ︸︸ ︷
0.5·c(P) +

φD︷ ︸︸ ︷
1.5·c(D)2

− 10·c(E)·c(C)︸ ︷︷ ︸
ΦE,C

+ 0.3·c(E)·c(P)︸ ︷︷ ︸
ΦE,P

+ 2.5·c(E)·c(C)·c(D)︸ ︷︷ ︸
ΦE,C,D

In general, we distinguish between terms that refer to a sin-
gle option o, denoted as φo, and terms that refer to multiple
options i..j, denoted as Φi..j . The former describes the per-
formance influence of an option (e.g., φE = 20·c(E) denotes
the influence of encryption), the latter describes the influ-
ence of a performance interaction among multiple options
(e.g., ΦE,C = 10·c(E)·c(C) denotes the influence of the in-
teraction between encryption and compression).

All performance-influence models are of the following form:

Π(c) = β0 +
∑
i∈O

φi(c(i)) +
∑
i..j∈O

Φi..j(c(i)..c(j)) (1)

β0 represents a minimum, constant base performance shared
by all configurations, as determined during learning;∑
i∈O φi(c(i)) represents the sum of the influences of all in-

dividual options;
∑
i..j∈O Φi..j(c(i)..c(j)) is the sum of the

influences of all interactions among all options.
This structure allows us to easily see the influence of an

individual option from the model. In our example, we can
see that encryption (E), if enabled, slows down our exam-
ple system by 20 (seconds) and that encryption interacts
with compression (i.e., their combined slowdown is less se-
vere than expected from their individual effects, since com-
pressed data are quicker to encrypt, which illustrates that
performance interactions are not necessarily bad).

Combining Binary and Numeric Options. Our approach
is flexible enough to incorporate both binary and numeric
options, but still allows us to handle them separately. Al-
though we could discretize the values of a numeric option
into a number of mutually exclusive auxiliary binary options,
this way, we would loose the relation between the binary op-

http://www.fosd.de/SPLConqueror/
http://polly.llvm.org/

tions that make up the corresponding numeric option, such
that we cannot fit a function and interpolate. By contrast,
converting a binary option into a numeric option, we would
interpret a categorical variable as an interval variable, as-
signing a possibly wrong meaning to the range between 0
and 1 and invalidating the mathematical methods we use in
our approach. Next, we explain how to obtain the φ and Φ
terms of Equation 1, by means of learning and sampling.

3. LEARNING INFLUENCE MODELS
Although performance-influence models are simple in their

structure, it is challenging to actually determine the relevant
influencing factors (i.e., terms) with a reasonable number of
measurements. The key problem is that we cannot learn
the whole influence model in a single step, since it contains
a potentially exponential number of terms. As a solution, we
incrementally select only the strongest influences regarding
prediction accuracy in each iteration of the learning process.
A key contribution of our work is thus not to develop a new
learning technique, but to select a suitable one and adapt it
to the requirements and specifics of configurable systems.

3.1 Overview
We use stepwise linear regression to learn the function of

a performance-influence model from a sample set of mea-
sured configurations. To reduce the dimensionality problem
of handling a very large number of options and interactions,
we use forward and backward feature selection to incremen-
tally learn the model.2

We use linear regression because it fits the requirements of
the domain of configurable software systems and the prac-
ticality requirements for end users. In contrast to many al-
ternative approaches, including classification and regression
trees, neuronal nets, and support vector machines, linear re-
gression allows us to learn a formula that can be understood
by humans. It also makes it easy to incorporate domain
knowledge on the influence of certain options, if available,
which can be an effective means to avoid overfitting and un-
derfitting [5]. Finally, we do not need any internal informa-
tion about the system, but can apply the learning approach
in a black-box fashion onto sampled benchmark results.

Linear regression is a common approach to learn how a
dependent variable y depends on a number of independent
variables xi in the form

y = β0 + β1x1 + β2x2 + . . .+ βnxn + ε

Given a learning set of observations for y, x1, ..., xn, linear
regression fits the regression coefficients βi such that the
overall error is reduced, this way, learning a function that ex-
plains the observations. We use the measured performance
of a configuration as dependent variable y and the configu-
ration values c(i) as the independent variables, thus learning
performance models of the form β0 +β1c(o1)+ . . .+βnc(on)
—a performance model of basic φ terms without any inter-
actions or nonlinear behavior.

Linear regression can also be used to learn linear coeffi-
cients for more complex terms (i.e., to learn non-linear func-
tions) by using computed values as independent variables.
For example, we can use c(p)·c(q) as independent variable to

2Note that the term feature selection used here, is a
machine-learning term and must not be confused by the pro-
cess of selecting features in product-line engineering.

Algorithm 1: Stepwise feature selection

Data: measurements, O
Result: model

1 featureSet = ∅, error = ∞
2 repeat
3 lastError = error
4 bestCandidate = ⊥
5 candidates = generateCandidates(featureSet, O);
6 foreach feature in candidates do
7 model = learnFunction(featureSet ∪ {feature},
8 measurements)
9 modelError = computeError(model, measurements)

10 if modelError < error then
11 error = modelError, bestCandidate = candidate
12 end

13 end
14 if bestCandidate 6= ⊥ then
15 featureSet = featureSet ∪ {feature}
16 end

17 until (lastError− error < margin) ∨ (error < threshold);
18 featureSet = backwardStep(featureSet, measurements)
19 return learnFunction(featureSet, measurements);

learn interactions between p and q, or c(o)2 to learn coeffi-
cient for a quadratic function. That is, if we know which
single-option terms, interaction terms, or function terms
might appear in the performance-influence model, we can
learn linear coefficients for all of them, yielding performance-
influence functions as in our initial example in Section 2.

The key challenge of using linear regression is, hence, to
identify the relevant terms to be used as independent vari-
ables. Next to |O| basic option terms (x = c(o)), there
is an exponential number of basic interaction terms (x =
c(o1) · . . . · c(on)) and an infinite number of additional func-
tion terms over one or multiple options (e.g., polynomials).
The problem of too many possible independent variables is
known as the curse of dimensionality [5].

Given a set of measurements selected by a specific sam-
pling heuristics (see Section 4), our learning process pro-
ceeds iteratively in a process known as forward feature selec-
tion [4], learning one term at a time, until further improve-
ment (minimizing the error term ε) becomes negligible. In
each iterative step, we try a number of candidate terms and
select the term that provides the biggest improvement for
the model. We select candidate terms based on heuristics
and domain knowledge, if available, as we will explain in
Section 3.3.

3.2 Incremental Learning Algorithm
In Algorithm 1, we sketch the learning algorithm that

computes the function representing the performance-influen-
ce model from a set of measurements (representing selected
configurations and corresponding measurement results). Con-
ceptually, we incrementally compute the relevant feature set,
in which each feature represents a term over one or multiple
configuration values c(o). Throughout the learning process,
the feature set holds the features that have been identified
to improve the error rate of the learned model with regard
to the measured learning set. For our example model in Sec-
tion 2, the feature set would eventually include c(E), c(D)2,
c(E) · c(C), and so forth.

Starting with an empty feature set, the algorithm selects
one feature in each iteration until improvements of model
accuracy become marginal or a threshold for expected ac-
curacy is reached (repeat loop, Line 2–17). The feature to
be added stems from a number of candidate features (their

selection is described in Section 3.3). Using linear regres-
sion to compute a model with every candidate (Line 12), we
select the candidate that reduces the error rate most.

The algorithm concludes with a backward learning step
(backward feature selection; not shown for brevity), in which
every feature in the feature set is tested for whether its re-
moval would decrease model accuracy. This can happen if
initially a single feature is selected because it best explains
the measurements, but it becomes obsolete by other features
(e.g., representing interactions) later in the learning process.

3.3 Selecting Candidate Features
A final, critical step is to select candidate features that are

explored during the learning process. Much like it is infeasi-
ble to learn a model with all features at once, it is infeasible
to try all features in each iteration—it is typically not even
possible to enumerate all features due to their sheer number.
Hence, we have to apply heuristics to select these candidates
that are likely to influence performance. A key innovation
of our approach is the procedure of determining which can-
didates we select for learning. We use separate heuristics
for the two main factors that result in the huge number of
candidate features: interaction and function terms.

Hierarchical Interactions. Conceptually, any combination
of options may cause a distinct performance interaction [25],
which would render any learning approach useless as there
is no common pattern. In practice, however, performance
behavior is usually more tractable in that only few inter-
actions contribute substantially to the overall performance.
In our previous work, we found that relevant interactions do
not emerge randomly among configuration options, but form
a hierarchy [25, 26]. That is, three-way interactions (i.e.,
interactions among three options) build on corresponding
two-way interactions among the same set of options. Fur-
thermore, we found, at most, five-way interactions, and the
most common interactions were two-way. Thus, based on
our experience and following standard practices of machine
learning [2], we perform our learning hierarchically: We first
start adding only the individual option influences and then
add interactions as candidates containing options that have
been found already to contribute to performance.

Function Learning. For numeric options, we learn func-
tions over their data ranges. If we know the kind of the
function or the polynomial degree, then we generate the
corresponding candidates. For example, if we know that the
performance influence of a numeric option o is logarithmi-
cally, we generate only the feature φo(log(c(o))) rather than
a set of polynomial candidates. Without domain knowledge,
we use an array of standard functions (linear, quadratic, log-
arithmic) that can be activated by the user of our approach.
Again, our approach can incrementally increase the com-
plexity of these functions by building new functions from
combinations of already learned ones.

4. SAMPLING CONFIGURATION SPACES
Sampling heuristics must satisfy two requirements: First,

they have to produce a reasonable number of measurements;
heuristics requiring millions of measurements are certainly
infeasible. Second, a heuristic must select the configurations
that incorporate most of the relevant interactions. That is,

we want to find a sweet spot between prediction accuracy
and measurement effort. There are several invariants that
need to be considered when constructing the learning set:
• Random sampling: Choosing configurations randomly

from the configuration space is still an open problem for
highly-configurable systems. The presence of constraints
prohibit off-the-shelf solutions, such as experimental de-
signs or random selection and filtering [17]. Using SAT
solving to find valid configurations usually produces only
locally clustered solutions in the configuration space [23],
although recent attempts try to mitigate that problem [11].
• Binary and numeric options: Binary and numeric op-

tions have substantially different value ranges resulting
in huge differences in the number of measurement points
we should select for them. For instance, a numeric op-
tion might have a quadratic performance influence when
varying its value, which certainly requires more measure-
ments than the constant influence of a binary option when
switched on and off.

We address these problems by dividing the configuration
space along the two types of configuration options and by
applying dedicated sampling heuristics to them.

4.1 Binary-Option Sampling
For binary-option sampling, we use heuristics that we de-

veloped in previous work [25]. The goal of these heuristics
is to pick configurations to learn the basic influence of each
individual binary option and, subsequently, to pick configu-
rations that exhibit two-way interactions.

Option-Wise Sampling (OW). Option-wise sampling se-
lects configurations such that it purposefully avoids interac-
tions. We use a constraint-satisfaction-problem (CSP) solver
to find, for each option o, a configuration with as many op-
tions disabled as possible under the constraint c(o) = 1 and
the given constraints among the options. The process is re-
peated until all options have been included in the learning
set, which requires a number of measurements that is linear
in the number of binary options.

Negative Option-Wise Sampling (nOW). Instead of min-
imizing the number of options, negative option-wise sam-
pling aims at maximizing the number of options in a con-
figuration to maximize the number of possible interactions.
That is, for each option o, we search a configuration with
as many options enabled as possible under the constraints
c(o) = 0 and the constraints between the options. Much like
OW, nOW requires a linear number of measurements.

Pair-Wise Sampling (PW). For pair-wise sampling, we con-
struct a learning set that includes a minimal set of config-
urations, in which all two-way interactions are present and
not confounded with other interactions. That is, for each
pair of options q and p, we determine a configuration with
as many options disabled as possible under the constraints
c(q) = 1 ∧ c(p) = 1 and the constraints between the op-
tions. Without constraints, PW requires a number of mea-
surements that is quadratic in the number of binary options.

4.2 Numeric-Option Sampling
The science of choosing an appropriate learning set in the

presence of numeric options has a long history, and many
approaches have been proposed under the umbrella of the

Design of Experiments (or Experimental Designs) [22]. The
goal of an experimental design is to generate an experimen-
tal plan by assigning values to independent variables (nu-
meric configuration options, in our case), such that a given
hypothesis can be properly tested.

As a preparation for this work, we surveyed eight stan-
dard experimental designs and sorted out those that do not
meet our requirements.3 For example, the D-optimal design
requires to enumerate all possible combinations, or other
designs, such as the full factorial and the 2k−1 design, re-
quire a number of measurements that is infeasible in prac-
tice. After this preselection, we selected the following exper-
imental designs for our empirical evaluation: Box-Behnken,
Plackett-Burman, Central Composite, and Randomization
with seed [18]. Due to space constraints, we report only
on the best performing designs (Plackett-Burman and Ran-
dom); the complete set of evaluation results are available on
our supplementary Web site.

Plackett-Burman Design. In 1946, Plackett and Burman
proposed an experimental design that aims at determining
the main effects of an experiment [20]. It minimizes the
variance of the estimates of the independent variables while
using a limited number of measurements. Wang and Wu
extended it to incorporate two-way interactions [28].

o1 o2 o3 o4 o5 o6 o7 o8

c1 0 1 1 2 0 2 2 1
c2 1 0 1 1 2 0 2 2
c3 2 1 0 1 1 2 0 2
c4 2 2 1 0 1 1 2 0
c5 0 2 2 1 0 1 1 2
c6 2 0 2 2 1 0 1 1
c7 1 2 0 2 2 1 0 1
c8 1 1 2 0 2 2 1 0
c9 0 0 0 0 0 0 0 0

Figure 1: Plackett-
Burman design defining 9
experiments for 8 numeric
options using the mini-
mum (0), maximum (2),
and midpoint as levels (1).

A Plackett-Burman de-
sign is a specific type of
fractional factorial design,
which are often used for
combinatorial testing [15].
The design specifies seeds
depending on the number
of experiments to be con-
ducted and the number of
levels of the input variables.
The level specifies the num-
ber of distinct values of an
independent variable, and
the seed defines the pattern
at which the different val-
ues are varied, which affects
also the number of measure-
ments. Since numeric con-
figuration options can have
a large number of values, we sample the value range uni-
formly depending on the chosen level. For a three-level de-
sign, we take the minimum, maximum, and center point of
the value range. Next, we have to determine the number
of measurements to be performed. When we are interested
only in the main factors (i.e., only φ), we need n + 1 mea-
surements for n numeric configuration options. If domain
knowledge is available and we know that there might be in-
teractions between configuration options, we chose the seed
such that more configurations are measured. In Table 1, we
show a Plackett-Burman design for a seed (n = 9, l = 3)
defining 9 experiments for 8 independent variables with 3
levels. The first row represents the seed, and each row be-
low is computed by a right shift of the row above, except for
the last row, which sets all numeric options to 0.

3Central Composite, 2k−1, D-optimal, Plackett-Burman,
Box-Behnken, one factor at a time, full factorial, hyper sam-
pling (form of gridding)

Random Design. Unlike binary-option sampling, we can
easily determine random values from numeric options, be-
cause we know the minimum and maximum value as well as
the step size, as these must be given to obtain a meaning-
ful configuration. Furthermore, constraints among numeric
options appear rarely in configurable systems. It is very
unusual that numeric options have value ranges with unde-
fined or invalid holes or that setting a numeric option’s value
prohibits certain value ranges of other options. To ensure
reproducibility of our experiments, we use random values
with seeds (available on the supplementary Web site).

4.3 Combining Binary and Numeric Sampling
So far, we have explained how we sample the configura-

tion space regarding binary and numeric options individu-
ally. The remaining task is to combine the two. In a first
step, we determine configurations using binary-option sam-
pling, resulting in a set of partial configurations. In a second
step, for each partial configuration, we determine a set of
complete configurations based on numeric-option sampling.
The rationale behind this ordering is that the majority of
domain constraints are usually between binary options, so
this part of the configuration space is more challenging for
finding valid configurations. Furthermore, in real-world ap-
plications, such as database and web servers, compilers, and
enterprise applications, it is often the case that a binary op-
tion activates a piece of functionality and numeric options
adjust existing functionality (e.g., by setting input bounds,
specifying the workload, or controlling the output quality).
As a consequence, numeric options often depend on binary
options. Overall, this combined approach yields a learning
set comprising n∗r measurements, where n is the number of
binary partial configurations and r is the number of numeric
partial configurations.

5. EVALUATION
A key question is whether our approach can learn accurate

performance-influence models for highly-configurable real-
world systems with a reasonably small number of measure-
ments. More specifically, we aim at answering the following
three research questions:
• RQ1: What is the range of prediction errors per sampling

heuristics we get with our approach?
• RQ2: Which combinations of binary and numeric sam-

pling technique give rise to Pareto-optimal solutions with
respect to measurement effort and prediction accuracy?
• RQ3: Is our learning approach accurate in the sense that

we learn actually existing influences and interactions?
For the purpose of our evaluation, we operationalize accu-
racy as follows: Given a sample set, we compute a perf-
ormance-influence model, which we subsequently use to pre-
dict the performance of a large number of configurations
in an evaluation set. As said previously, the actual perfor-
mance metric may vary and depends on the subject sys-
tems. We then measure the configurations of the evaluation

set and calculate the error rate by |measured - predicted|
measured

, av-
eraged over all configurations. Ideally, we would use the
whole configuration space of a system as evaluation set, but
the measurement effort would be prohibitively high for most
real-world systems. Therefore, we perform the evaluation in
two separate experiments with different goals.

In a first experiment, we use synthetic performance mod-
els. We start with a known, realistic formula of a perfor-

mance-influence model as ground truth and derive the mea-
surements for both sample set and evaluation set from this
formula. Since there are no measurement costs and no mea-
surement bias, we can perform accurate and large-scale ex-
periments with high internal validity, using the entire config-
uration space as evaluation set. We use this first experiment
primarily as a sanity check to determine whether we can ac-
curately learn a performance-influence model (RQ1 and 3)
and as means to explore the tradeoffs of different sampling
strategies (RQ2). In a second experiment, we assess the fea-
sibility of our approach by building performance-influence
models for six real-world software systems from a number of
different domains (RQ1). That is, we execute their actual
benchmarks and measure execution time over a large num-
ber of configurations in both sample and evaluation sets.

5.1 Experiment #1: Correctness and
Accuracy

Standard learning approaches are typically sensitive to
even slight variations in the learning set. This is undesired,
because we cannot trust the resulting performance-influence
model when analyzing the system, although it might give
reasonable performance estimates. Thus, we aim at checking
whether our approach learns the actually existing influences,
answering RQ3. For this purpose, we create measurements
from a number of ground-truth models, from which we learn
performance-influence models and compare them against the
ground truth to check whether the learned influences and
interactions are similar to the given ones. A second goal of
this experiment is to filter out infeasible sampling heuristics
regarding prediction accuracy and measurement effort, be-
cause evaluating all combinations of sampling heuristics on
real-world systems is computationally infeasible.

Setup. Overall, we compare three sampling heuristics for bi-
nary options, option-wise (OW), negative option-wise (nOW),
and pair-wise (PW), their combinations, and several experi-
mental designs, from which we report here only the Plackett-
Burman and Random Design with 100 randomly selected
numeric configurations and five seeds.

As ground-truth performance models, we use 7 formulas
(Π) along the lines of our motivating example in Section 2.
But, instead of creating random models, we create mod-
els that represent performance variations in real software
systems by deriving them from actual performance mod-
els extracted in prior work [25] using a different approach
(see Section 5.3). Since the original models contained only
binary options, we enhance them with numeric options as
follows: (a) we add one to four numeric options with dif-
ferent value ranges (100 to 1000), (b) we vary the number
of numeric-option interactions (1 to 3) and their kinds (i.e.,
binary–numeric and numeric–numeric), and (c) we use dif-
ferent shapes of functions (linear, quadratic, linear combined
with quadratic). This way, we consider a wide range of dif-
ferent influence functions and interactions. To get an im-
pression of how our given models look, we refer the reader
to Section 5.4.

To distinguish the ground-truth models, we name them
after the configurable systems from which we obtained the
binary options. Table 5.1 shows all ground-truth models in-
cluding their configuration spaces, the application domain
of the original performance models, and the number of con-
straints among options. We provide all models as well as

Table 1: Overview of the ground-truth performance-
influence models.

Model Domain # Bin #Num #Const |C|

AJStats Analysis tool 20 1 3 107

Apache Apache Web server 9 2 2 106

BDB C Berkeley DB C 7 2 0 105

BDB J Berkeley DB Java 26 4 31 1014

Clasp Answer set solver 20 4 64 1015

LLVM Compiler infrastructure 11 2 1 107

lrzip Compression library 19 4 107 1014

#Bin: Number of binary options; #Num: number of numeric

options; #Const: number of constraints; |C|: number of config.

the intermediate models of the learning process on the sup-
plementary Web site.

Mean error rate

Number of
measurements

Terms of the
influence model

Term with high
divergence

Undetected
influence

Term equal to
ground truth

To characterize the accuracy
of a learned model for a specific
sampling strategy, we use a com-
pact visual representation, as de-
picted to the right, covering sev-
eral aspects: mean error rate over
predictions of all configurations,
the standard deviation of the er-
ror when repeating sampling and learning (for random sam-
pling), the number of measurements required by the sam-
pling heuristic, and a compact representation of all terms
in the model (lower part: boxes denote individual terms
weighted in size by their effect strength (coefficients); accu-
racy per term is color-coded, from green for the same value
to red for a relative difference larger than 100%, and black
for terms that are missing in the learned model).

Results. Figure 2 summarizes our experimental results for
all binary-option samplings and Plackett-Burman and Ran-
dom Design. Again, we show only the best combinations
of sampling heuristics and refer the interested reader to our
supplementary Web site for all results. Overall, we observe
a good degree of similarity between the learned models and
the ground-truth models, indicated by the green rectangles.
Only when binary-option interactions exist and no pair-wise
sampling was used, we observe some undetected influences
(black bars). There are also models, such as for the syn-
thetic Clasp model, for which we obtain a prediction error
of 1 %, on average, but we miss 3 to 5 influence functions
(row PW PBD). This observation suggests that missing a
single term likely affects only a small fraction of the config-
uration space, such that the overall prediction error remains
small. These results suggest that we indeed learn the actual
existing influences in most cases, which is useful for perfor-
mance debugging and interactive configuration tools [19].

To analyze the tradeoff among prediction accuracy and
measurement effort (RQ2), we plot the Pareto front (dashed
line) of the combination of binary-option and numeric-option
sampling heuristics in Figure 3. The Plackett-Burman de-
sign (n = 49, l = 7) outperforms all designs no matter
which binary sampling heuristics is used, which applies also
to combinations not shown. For binary-option sampling,
pair-wise sampling has the highest accuracy in combination
with Plackett-Burman, 1.6 %, on average, (even better in
combination with option-wise and negative option-wise sam-
pling, 0.3 %, on average). However, it comes at the cost of
an increased number of measurements compared to the pure

OW
PBD(49,7)

AJStats

0% 126

OW
RD

0%
±0%

900

nOW
PBD(49,7)

0% 126

nOW
RD

0%
±0%

900

PW
PBD(49,7)

0% 1k

PW
RD

0%
±0% 8k

OW PW
PBD(49,7)

0% 1k

OW PW
RD

0%
±0% 8k

nOW PW
PBD(49,7)

0% 1k

nOW PW
RD

0%
±0% 9k

Apache

0% 441

41%
±59%

450

0% 735

30%
±35%

750

0% 2k

21%
±48% 2k

0% 2k

21%
±47% 2k

0% 2k

27%
±46% 3k

BDB C

61% 392

61%
±1%

400

100% 392

100%
±2%

400

6% 1k

8%
±3% 1k

6% 1k

6%
±0% 1k

19% 2k

19%
±1% 2k

BDB J

9% 490

9%
±0%

500

0% 2k

0%
±0% 3k

0% 2k

0%
±0% 2k

0% 2k

0%
±0% 2k

0% 4k

0%
±0% 5k

Clasp

21% 833

100%
±166%

850

1% 12k

22%
±37% 12k

1% 5k

23%
±28% 6k

1% 5k

27%
±53% 6k

0% 17k

61%
±109% 18k

LLVM

16% 539

16%
±0%

550

0% 539

60%
±80%

550

3% 3k

17%
±8% 3k

19% 3k

16%
±8% 3k

0% 3k

1%
±1% 3k

lrzip

12% 882

31%
±25%

900

1% 9k

1%
±0% 9k

1% 5k

3%
±3% 5k

2% 5k

2%
±2% 5k

6% 14k

1%
±0% 15k

Figure 2: Comparison of learned and ground-truth
models in terms of mean prediction error, number
of measurements, and existence and similarity of
model terms.

option-wise approach (which in turn has a mean prediction
error of about 18 %). Random sampling is not competitive
at sample sizes comparable to the Plackett-Burman design,
and we observed a strong fluctuation in the error rate when
repeating learning with a fresh random sample.

5.2 Experiment #2: Effort and Accuracy
In our second experiment, we evaluate whether our learn-

ing and sampling approach is feasible in practice. Although
partly parallelized, we invested more than two months (24/7)
for measuring configurations of six subject systems to obtain
a huge data basis (including learning and evaluation sets).
However, using our approach in practice would require much
less measurements, as most measurements were meant to
evaluate and analyze our approach.

Setup. With a focus on external validity, we selected six
highly configurable systems from different domains, written
in different programming languages, with varying numbers
of binary and numeric options. Some systems support con-
figuration at compile time, others at load time. We pur-
posefully selected some systems for which we can perform a
whole population analysis (Dune MGS, HIPAcc, HSMGP)
being able to reliably quantify prediction accuracy as well
as systems that are highly configurable to evaluate the scal-
ability of our approach (see Table 2 for an overview).
• Dune MGS is a geometric multi-grid solver based on the

Dune framework [3]. The framework provides algorithms
for smoothing and solving Poisson equations on structured
grids. Binary options include several smoother and solver

0 20 40 60 80 100

0
20

00
40

00
60

00
80

00

Mean prediction error in %

M
ea

n
nu

m
be

r
of

 m
ea

su
re

m
en

ts

●

●

●

●

●

●

OW + PBD(49,7)
OW + RD
nOW + PBD(49,7)
nOW + RD
PW + PBD(49,7)
PW + RD
OW + nOW + PBD(49,7)
OW + nOW + RD
OW + PW + PBD(49,7)
OW + PW + RD
nOW + PW + PBD(49,7)
nOW + PW + RD
OW + nOW + PW + PBD(49,7)
OW + nOW + PW + RD

Figure 3: Pareto front (dashed line) of combinations
of sampling heuristics.

algorithms. Numeric options include different grid sizes
and pre- and post-smoothing steps. We measured the time
to solve Poisson’s equation on a Dell OptiPlex-9020 with
an Intel i5-4570 Quad Code and 32 GB RAM (Ubuntu
13.4).
• HIPAcc is an image processing acceleration framework,

which generates efficient low-level code from a high-level
specification. Binary options are, among others, the kind
of memory to be used (e.g., texture vs. local). The number
of pixels calculated per thread is an example of a numeric
option. We measured the time needed for solving a test
set of partial differential equations on an nVidia Tesla K20
card with 5GB RAM and 2496 cores (Ubuntu 14.04).
• HSMGP is a highly scalable multi-grid solver for large-

scale data sets. Binary options include in-place conjugate
gradient and in-place algebraic multi-grid solvers. Nu-
meric options include the number of smoothing steps and
the number of nodes used for computing the solution. As
a benchmark, we performed a multi-grid iteration of solv-
ing Poisson’s equation. We executed the benchmark runs
on JuQueen, a Blue Gene/Q system, located at the Jülich
Supercomputing Center, Germany.
• JavaGC is the Java garbage collector (version 7) with

several options for adaptive garbage-collection boundary
and size policies. For measurement, we executed the Da-
Capo benchmark suite on a computing cluster consisting
of 16 nodes each equipped with an Intel Xeon E5-2690 Ivy
Bridge having 10 cores and 64 GB RAM (Ubuntu 14.04).
• SaC is a variant of C for high-performance computing

based on stateless arrays. The SaC compiler implements
a large number of high-level and low-level optimizations to
tune high-level programs for efficient parallel executions.
The compiler is highly configurable, allowing users to se-
lect various optimizations and to customize the optimiza-
tion effort (e.g., optimization cycles and loop-unrolling
threshold). As benchmark, we compile and execute an
n-body simulation shipped with the compiler, measuring
the execution time of the simulation at different optimiza-
tion levels. We executed all benchmarks on an 8 core Intel
i7-2720QM machine with 8 GB RAM (Ubuntu 12.04).
• x264 is a video encoder that encodes raw videos into the

H.264 compressed format. Configuration options config-
ure output quality, encoder types, and encoding heuris-
tics. As benchmark, we measured the time needed to en-
code the Sintel trailer (734 MB) using on an Intel Core2
Q6600 with 4GB RAM (Ubuntu 14.04).

Table 2: Overview of the real-world subject systems.

System Domain #Bin #Num #Const |C|
Dune MGS Multi-Grid Solver 8 3 20 2 304
HIPAcc Image Processing 31 2 416 13 485
HSMGP Stencil-Grid Solver 11 3 45 3 456
JavaGC Runtime Env. 12 23 4 1031

SaC Compiler 53 7 10 1023

x264 Video Encoder 8 13 0 1027

#Bin: Number of binary options; #Num: number of numeric

options; #Const: number of constraints; |C|: number of config.

We started our experiments by determining sample sets to
following the Plackett-Burman and Random Sampling (as
they performed best in our first experiment; see Sec. 5.1) as
well as our binary-sampling heuristics (OW, PW). We do not
report on the results for nOW, because our first experiment
(Sec. 5.1) showed that it increases measurement effort con-
siderably for only a limited gain in accuracy. As evaluation
set, we selected either the whole population (Dune MGS,
HSMGP, HIPAcc) or a large random set of configurations
(more than 10 000 randomly selected configurations).

Results. In Table 3, we present the results for the six sub-
ject systems. As expected, the error rate is larger than for
the synthetic models, since we cannot fully control for con-
founding factors, such as measurement bias, which made up
to 10 % of deviations within multiple repetitions of measur-
ing the same configuration. Putting this into perspective,
we observe still a comparatively high prediction accuracy
for most of the systems. We yield for every subject system a
performance-influence model whose error rate is below 19 %.
For SaC, the PW heuristic requires more than 160 000 mea-
surements, which is infeasible.4

Surprisingly, the OW heuristic performs often equally well
as the PW heuristic (for Dune MGS, HIPAcc, HSMGP,
SaC, x264), although requiring a substantially lower num-
ber of measurements. For numeric-option sampling, we see
similar results as in our first experiment: The Plackett-
Burman design is often superior to the Random Design. The
measurement effort for Plackett-Burman is higher with con-
strained configuration spaces (e.g., Dune MGS or HIPAcc).
For systems with few constraints and many options, Plackett-
Burman requires less measurements.

Learning a model required 1 to 5 hours, depending on
the size of the learning set and the size of the models. Re-
markably, the resulting models are compact with only few
terms explaining most of the performance variations; partic-
ularly, we observe usually a larger number of influences from
individual options (i.e., φi) and only a low number of inter-
actions (i.e., Φi..j), considering that there is potentially an
exponential number of interactions. Furthermore, we see an
increase in the number of interactions when PW sampling is
used compared to OW sampling, and also Plackett-Burman
results in larger numbers of identified interactions compared
to Random Design. In Section 5.4, we discuss these and
other results and put them into perspective.

4We use an active-learning approach, in which we first eval-
uated the performance-influence model produced with the
OW heuristic, to determine which binary options have an
influence at all. Then, we applied the PW heuristic to these
options. The corresponding results are marked with ∗ in
Table 3. We discuss this solution more in Section 5.4

Table 3: Results for the six subject systems and
combinations of option-wise (OW) and pair-wise
(PW) sampling. We consider terms with an absolute
coefficient of > 0.01 only.

OW PW

ē/|C| φi|Φi..j ē/|C| φi|Φi..j
Dune MGS
RD 20.1%/49 5|0 22.1%/78 8|8
PBD(49,7) 10.6%/240 6|24 11%/384 6|18
PBD(125,5) 8.8%/375 8|16 8.3%/600 8|20

HIPAcc

RD 14.2%/261 16|13 13.9%/1281 11|16
PBD(49,7) 13.9%/736 18|8 10.6%/3645 12|19
PBD(125,5) 13.8%/528 18|9 10.7%/2631 12|19

HSMGP
RD 4.5%/77 11|14 2.8%/173 9|13
PBD(49,7) 2.2%/384 9|13 1.6%/864 10|13
PBD(125,5) 1.7%/480 11|13 1.5%/1080 11|14

JavaGC
RD 31.3%/534 4|0 24.6%/3032 5|7
PBD(49,7) 37.4%/423 5|0 28.2%/2571 9|14
PBD(125,5) 21.9%/855 3|0 18.8%/5312 5|21

SaC
RD 21.1%/2060 14|5 30.7%/3261∗ 7|9
PBD(49,7) 16%/2499 14|11 25%/4704∗ 8|13
PBD(125,5) 20.3%/2295 14|5 27%/4320∗ 6|19

x264
RD 14.2%/304 4|3 13.5%/1000 3|7
PBD(49,7) 36.7%/216 5|4 12.5%/636 6|9
PBD(125,5) 21.2%/339 4|1 15%/1046 4|6

PBD: Plackett-Burman Design; RD: Random Design; ē: mean
prediction error; |C|: size of sample set; φi: number of terms

representing the influence of individual options; Φi..j : number
of terms representing the influence of interactions

5.3 Threats to Validity

Internal Validity. To rule out conceptual and implementa-
tion errors of our approach, we conducted a high-internal
validity experiment, in which we used ground-truth mod-
els and aimed at learning these models using different sam-
pling heuristics. Note that the ground-truth models have
been learned in prior work with linear programming [25],
which is important, as it would be invalid to compare mod-
els that have been created with the same learning technique.
Furthermore, we do not only computationally compared the
models, but manually reviewed them to avoid errors in the
evaluation. This way, we mitigate the threat that we learn
models with similar prediction accuracy, but with different
influences and detected interactions, which might be a re-
sult of overfitting. In the second experiment, we repeated
all measurements several times and used averages to control
measurement bias. Although we parallelized the measure-
ment on equal machines, they might slightly differ in their
performance, but these effects are usually small and, due to
repeated measurements, likely cancel each other out.

External Validity. As highly configurable systems exist in
a broad range of application domains, with different config-
uration spaces, we selected six real-world subject systems in
our second experiment. These systems have varying num-
bers of options and are from different application domains,

which increases external validity. Naturally, we cannot guar-
antee that our approach works for all possibly configurable
software systems, but we invested several months of mea-
surement to gather and analyze a substantial evaluation set.

5.4 Discussion

Research Questions. Our results show that building per-
formance-influence models is (a) computationally tractable
(a few hours of learning and measurement), (b) our approach
finds actual influences and represents them directly, and (c)
we attain a reasonable prediction accuracy.

Regarding RQ1 (prediction accuracy), in the first experi-
ment, we almost always learned performance-influence mod-
els with nearly perfect prediction accuracy. For the real-
world systems, we observe average error rates of 10 % to
19 %, which are only a slightly higher than the measurement
bias. For some subject systems and sampling heuristics, we
observe larger prediction errors. A possible explanation is
that these subject systems contain three-way or more com-
plex interactions, which cannot be detected by OW and PW
sampling. Another possible reason is that many weak influ-
ences may sum up to larger prediction errors. We purpose-
fully do not search for weak influences as they complicate
the model to an extent that is impracticable for performance
debugging or comprehension.

Regarding RQ2 (tradeoff between measurement effort and
prediction accuracy), we found that more configurations do
not necessarily lead to more accurate predictions. It de-
pends on which configurations are selected and how they
are distributed in the configuration space, to cover the rel-
evant interactions. For both experiments, Plackett-Burman
designs yield the best tradeoff. Although random sampling
is very effective in learning accurate models with compara-
ble sampling sizes, it incurs substantial fluctuations, such
that an additional design should be applied that acts as a
base layer to cover all numeric options and their respec-
tive data ranges. For binary-option sampling, we observe a
mixed picture. We found that the PW heuristic is superior
to OW and nOW for the ground-truth models (in which the
binary-option part originates from real-world performance
models), whereas without OW sampling, we miss some in-
fluences leading to higher error rates for some real-world
systems. Hence, also in this case, a combination of the OW
and PW heuristic might be a better solution.

RQ3 aimed at determining whether we learned the ac-
tual, relevant options and interactions. The results of the
first experiment provide us the clear picture that we, in-
deed, find most of the original terms of a given performance-
influence model. Moreover, when considering the size of the
learned performance-influence models of the real-world sys-
tems (number of terms), we conclude that we learn simple
models (at the cost of some prediction accuracy) with both

individual options and interactions. The ratio of |φi|
|O| over

all subject systems for OW with Plackett-Burman sampling
is 0.31, indicating that one third of the options significantly
contribute to the performance of a system. When consider-

ing interactions,
|Φi..j |
|O| is only 0.34, such that the number of

determined interactions is similar the the number of relevant
influences of individual options.

Comprehension and Debugging. An issue not addressed
by our evaluation is to what extent performance-influence
models help developers in their everyday development and
debugging tasks. While we strive for simple models that
contain only the most important factors for performance,
they still may get considerably large. Nevertheless, based on
such models, we are able to provide views such that isolated
influences of configuration options or interactions become
immediately apparent. Let us consider again the excerpt of
the performance-influence model of Berkeley DB C:

0.05 · PageSize− 0.12 · CacheSize + 2.4 · Hash + 0.12 · Statistics
+ 29.88 · Crypto · Hash− 8.04 · Hash · Verify · Statistics
+ 0.59 · Crypto · Hash · Replication− 0.15 · CacheSize · Crypto
+ . . .

If we are interested in understanding the influence of cryp-
tography on the overall execution time, we can project out
all other influences yielding the following simpler formula:

29.88 · Crypto · Hash + 0.59 · Crypto · Hash · Replication
− 0.15 · CacheSize

This view suggests that the cryptography feature should not
be used in combination with the hash search index, because
it degrades performance; when used in combination with
replication, the degradation is even worse, but, increasing
the cache size limits the negative influence of cryptography
on the execution time.

Actually, using our approach, we found an unexpected
slowdown in the Polly extension of the LLVM compiler
framework (trmm.c). By incident, this was observed around
the same time by others.5 Moreover, for the configura-
tion options ignore-aliasing and no-runtime-alias-checks, we
found differing performance influences, for which a developer
of Polly expected that both should have a similar effect.

We already propagated some performance-influence mod-
els back to domain experts (e.g., the HPC domain) to guide
and improve the development and configuration, which goes
beyond performance tuning of highly-configurable software
systems. While these examples nicely illustrate the power of
(views on) performance-influence models for program com-
prehension and debugging, it will be imperative to conduct
a comprehensive user study in further work.

Limitations. Our approach rests on several assumptions.
First, we use regression analysis to learn influence functions.
If a configuration option has an unsteady performance be-
havior or has a very complex (nearly chaotic) behavior, we
cannot learn, but only approximate its performance influ-
ence. Furthermore, we need the configurable system to have
a deterministic performance behavior. If two equal runs of
the same program lead to largely different performances,
we cannot reliably learn influences and hardly predict per-
formance. Finally, our approach has its limits regarding the
number of options and the size of the learning set. Although
we already tried to minimize the learning set (and there is
room for further improvement), it is still an infeasible prob-
lem to support systems with thousands of options (in terms
of constrainedness and performance variability). Still, our
evaluation demonstrated that our solution scales to prob-
lems with up to 1031 configurations, making it feasible for a
sufficient number of real-world systems.

5
https://groups.google.com/forum/#!topic/isl-development/Dm0bJS7jsCY

https://groups.google.com/forum/#!topic/isl-development/Dm0bJS7jsCY

Perspectives. Beside various facets of performance, perfor-
mance-influence models may be beneficial to reason about
other non-functional properties and quality attributes, most
notably, energy consumption. Moreover, we can supply the
models we learned to other performance-modeling and opti-
mization tools, such as Clafer [19] and EPOAL [9].

Technically, our approach could be extended to support
active learning. That is, we could evaluate the performance-
influence models in an intermediate step to decide whether
additional measurements should be applied. We found that,
for SaC, applying OW sampling with a Plackett-Burman
design resulted in a performance-influence model, in which
only 10 of 53 binary options have a relevant influence. Based
on this result, it is advisable to use the PW heuristic only
for the 10 binary options, which would reduce the required
measurements from 2809 to 100 (or from 280,900 to 10,000
when combined with 100 random numeric-option samples).

In general, our notion of performance-influence models is
conceptually independent of the concrete learning technique.
That is, the concrete technique is hidden behind the φis and
Φi..j terms of the model. Thus, our approach is complemen-
tary to existing approaches of performance modeling. We
made a number of decisions to support program compre-
hension and debugging performance of configurable systems.
However, when prediction accuracy or optimization is the
single most important aspect, then other techniques, such
as support vector machines, could be used.

6. RELATED WORK

Learning. Our approach aims at determining the individ-
ual influences of configuration options and their interactions,
which has several use cases, such as performance-bug detec-
tion or configuration optimization. There are many suc-
cessful approaches that aim at finding optimal configura-
tions without pinpointing the influence of configuration op-
tions explicitly [7, 12, 13]. More closely related to our work
are standard machine-learning techniques, such as support-
vector machines, Bayesian nets, and evolutionary algorithms.
These approaches trade simplicity and understandability of
the learned models for predictive power. Software configu-
ration, however, usually involves humans in the reasoning
process, since not a single, but a number of objectives need
to be satisfied. Hence, we need to understand how individual
options influence performance and which interact.

There are a number of approaches that use profiling data
to create performance models [16]. For instance, Jovic and
others analyze samplings of call stacks of deployed versions
of a program to find performance bugs [14]. Grechanik and
others propose to learn rules for the generation of workloads
that reveal program paths with suboptimal performance [6].
However, these approaches concentrate on workload vari-
ability rather than software-system configurability.

Sampling. Although a proper sampling heuristic is a crit-
ical success factor for determining the influence of config-
uration options and finding optimal configurations, there is
only little work done so far. Important sampling approaches
have been developed in statistics, in which experimental de-
signs have been developed to ensure certain statistical prop-
erties. We used these designs, such as Central Composite,
Box Behnken, and Plackett Burman, to determine config-

urations of numeric options [18]. One simple approach is
Gridding, which computes a grid over the space of the in-
put parameters. It was used for sampling configurations of
Berkeley DB [27]. However, due to its exponential com-
plexity, Sullivan and others could consider only four options
in a reasonable amount of time [27].

For binary-option sampling, several approaches tackle the
problem of finding valid configurations [8]. Especially, evolu-
tionary algorithms have been proposed for this task [24, 23,
11]. Pohl and others found that determining a valid config-
uration based on a variability model increases response time
exponentially with respect to the number of features [21].

The sampling heuristics and experimental designs we use
to identify interactions are related to the heuristics used in
combinatorial testing [10, 15]. The difference is that we
do not focus on functional correctness, but on performance,
which allows us to learn performance-influence models using
linear regression. This would be considerably harder when
applying it to defect prediction, as defects are much more
singular events in a program’s execution than the observable
performance profile.

7. CONCLUSION
Today, most contemporary systems are configurable, which

makes performance prediction, optimization, and debugging
difficult. We address this challenge by proposing an ap-
proach that derives a performance-influence model for a given
configurable system, describing all relevant influences of in-
dividual configuration options and their interactions. To
this end, we select and adapt a suitable machine-learning
technique and combine it with sampling heuristics for bi-
nary and numeric configuration options in a novel way. Our
approach rests on an algorithm that iteratively learns a
performance-influence model using a small set of candidate
features representing relevant performance influences. To
derive learning sets of tractable sizes, we combine heuris-
tics for binary-option sampling with experimental designs
for numeric-option sampling.

By means of a first experiment on (partially) synthetic,
ground-truth models, we could show that our hierarchical
learning strategy finds the actually relevant influencing op-
tions and interactions and yields a mean prediction error of
1 %. In a second experiment, we applied our approach to
six real-world software systems, in which we measured per-
formance in terms of the execution time of a given bench-
mark. Our results confirm the first experiment for both
accuracy and measurement effort. A major insight is that
the Plackett-Burman design is superior to all other numeric-
option sampling heuristics regarding the tradeoff between
measurement effort and prediction accuracy, with an aver-
age prediction error below 19 %, which is only slightly above
the measurement bias. Furthermore, we found that our ap-
proach is feasible for finding performance bugs in real-world
systems, which is a promising avenue of further research.

8. ACKNOWLEDGMENTS
We thank Z. Kolter, Y. Agarwal, and D. Batory for com-

ments on earlier drafts of this paper, A. Simbürger for his
help with the measurements, and the Jülich Supercomputing
Center for providing access to the supercomputer JuQueen.
This work has been supported by the DFG grants AP 206/4,
AP 206/6, and AP 206/7 and by the NSF award 1318808.

9. REFERENCES
[1] S. Apel, S. Kolesnikov, N. Siegmund, C. Kästner, and

B. Garvin. Exploring feature interactions in the wild:
The new feature-interaction challenge. In Proceedings
of the International Workshop on Feature-Oriented
Software Development (FOSD), pages 1–8. ACM,
2013.

[2] J. Bien, J. Taylor, and R. Tibshirani. A lasso for
hierarchical interactions. The Annals of Statistics,
41(3):1111–1141, 2013.

[3] M. Blatt and P. Bastian. The iterative solver template
library. In Applied Parallel Computing. State of the
Art in Scientific Computing, pages 666–675. Springer,
2007.

[4] G. Chandrashekar and F. Sahin. A survey on feature
selection methods. Computers & Electrical
Engineering, 40(1):16–28, 2014.

[5] P. Domingos. A few useful things to know about
machine learning. Communications of the ACM,
55(10):78–87, 2012.

[6] M. Grechanik, C. Fu, and Q. Xie. Automatically
finding performance problems with feedback-directed
learning software testing. In Proceedings of the
International Conference on Software Engineering
(ICSE), pages 156–166. IEEE, 2012.

[7] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and
A. Wasowski. Variability-aware performance
prediction: A statistical learning approach. In
Proceedings of the International Conference on
Automated Software Engineering (ASE), pages
301–311. IEEE, 2013.

[8] J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A
genetic algorithm for optimized feature selection with
resource constraints in software product lines. J.
Systems and Software, 84(12):2208–2221, 2011.

[9] J. Guo, E. Zulkoski, R. Olaechea, D. Rayside,
K. Czarnecki, S. Apel, and J. Atlee. Scaling exact
multi-objective combinatorial optimization by
parallelization. In Proceedings of the International
Conference on Automated Software Engineering
(ASE), pages 409–420. ACM, 2014.

[10] A. Hartman and L. Raskin. Problems and algorithms
for covering arrays. Discrete Mathematics,
284(1-3):149–156, 2004.

[11] C. Henard, M. Papadakis, M. Harman, and Y. Traon.
Combining multi-objective search and constraint
solving for configuring large software product lines. In
Proceedings of the International Conference on
Software Engineering (ICSE). ACM, 2015.

[12] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle.
Paramils: An automatic algorithm configuration
framework. J. Artificial Intelligence Research,
36(1):267–306, 2009.

[13] F. Hutter, L. Xu, H. Hoos, and K. Leyton-Brown.
Algorithm runtime prediction: Methods & evaluation.
Artificial Intelligence, 206:79–111, 2014.

[14] M. Jovic, A. Adamoli, and M. Hauswirth. Catch me if
you can: Performance bug detection in the wild. In
Proceedings of the International Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 155–170. ACM,
2011.

[15] R. Kuhn, R. Kacker, and Y. Lei. Introduction to
Combinatorial Testing. Chapman & Hall, 2013.

[16] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-G.
Chun, L. Huang, P. Maniatis, M. Naik, and Y. Paek.
Automatic generation of efficient performance
predictors for smartphone applications. In Proceedings
of the USENIX Annual Technical Conference, pages
297–308. Usenix Association, 2013.

[17] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre,
and C. Lengauer. Scalable analysis of variable
software. In Proceedings of the Joint Meeting of the
European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), pages 81–91.
ACM, 2013.

[18] D. Montgomery. Design and Analysis of Experiments.
John Wiley & Sons, 2006.

[19] A. Murashkin, M. Antkiewicz, D. Rayside, and
K. Czarnecki. Visualization and exploration of optimal
variants in product line engineering. In Proceedings of
the International Software Product Line Conference
(SPLC), pages 111–115. ACM, 2013.

[20] R. Plackett and J. Burman. The design of optimum
multifactorial experiments. Biometrika, 33(4):305–325,
1946.

[21] R. Pohl, V. Stricker, and K. Pohl. Measuring the
structural complexity of feature models. In
Proceedings of the International Conference on
Automated Software Engineering (ASE), pages
454–464. IEEE, 2013.

[22] F. Pukelsheim. Optimal Design of Experiments.
Classics in Applied Mathematics. Society for
Industrial and Applied Mathematics, 2006.

[23] A. Sayyad, J. Ingram, T. Menzies, and H. Ammar.
Scalable product line configuration: A straw to break
the camel’s back. In Proceedings of the International
Conference on Automated Software Engineering
(ASE), pages 465–474. IEEE, 2013.

[24] A. Sayyad, T. Menzies, and H. Ammar. On the value
of user preferences in search-based software
engineering: A case study in software product lines. In
Proceedings of the International Conference on
Software Engineering (ICSE), pages 492–501. IEEE,
2013.

[25] N. Siegmund, S. Kolesnikov, C. Kästner, S. Apel,
D. Batory, M. Rosenmüller, and G. Saake. Predicting
performance via automated feature-interaction
detection. In Proceedings of the International
Conference on Software Engineering (ICSE), pages
167–177. IEEE, 2012.

[26] N. Siegmund, A. von Rhein, and S. Apel.
Family-based performance measurement. In
Proceedings of the International Conference on
Generative Programming and Component Engineering
(GPCE), pages 95–104. ACM, 2013.

[27] D. Sullivan, M. Seltzer, and A. Pfeffer. Using
probabilistic reasoning to automate software tuning.
ACM SIGMETRICS Performance Evaluation Review,
32(1):404–405, 2004.

[28] J. Wang and C. Wu. A hidden projection property of
Plackett-Burman and related designs. Statistica
Sinica, 5:235–250, 1995.

	Introduction
	Performance-Influence Models
	Learning Influence Models
	Overview
	Incremental Learning Algorithm
	Selecting Candidate Features

	Sampling Configuration Spaces
	Binary-Option Sampling
	Numeric-Option Sampling
	Combining Binary and Numeric Sampling

	Evaluation
	Experiment #1: Correctness and Accuracy
	Experiment #2: Effort and Accuracy
	Threats to Validity
	Discussion

	Related Work
	Conclusion
	Acknowledgments
	References

