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Abstract

Software product lines (SPLs) allow to generate tailor-
made software products by selecting and composing
reusable code units. However, SPLs with hundreds of fea-
tures and millions of possible products require an appro-
priate support for semi-automated product derivation. We
envision this derivation to be extended by non-functional
properties that are associated to code units and domain fea-
tures. Code units and domain features are commonly orga-
nized in different models and connected via complex map-
pings, what make automation difficult. We propose a model
that integrates features and code units in order to allow
semi-automated product derivation using non-functional
properties.

1 Introduction

Software product lines (SPLs) aim at providing variabil-
ity for a family of similar software products tailored to indi-
vidual user needs [12]. Variation points of an SPL, i.e., the
functional differences between different product line mem-
bers [4], are analyzed and modeled during domain analysis
as features inside a feature model [20, 14]. Based on feature
models SPLs are implemented using reusable and modular
code units that are organized in an implementation model.
Product line members are derived by composing such code
units.

In small SPLs, it is usually simple to derive a product
by selecting the required features manually. However, as
the size of SPLs grows – large SPLs in industry may con-
tain over 1000 features [31, 25] – the derivation process
of selecting these features becomes more tedious and diffi-
cult, because many decisions are necessary, each requiring
knowledge of the SPL’s domain and maybe of implementa-
tion.

Product derivation becomes further complex in the pres-

ence of non-functional constraints, e.g., in domains like em-
bedded systems where resources are restricted. There are
many relevant non-functional constraints [19], for example,
a generated database management product should have a
maximum footprint size of 48 KB to fit on an embedded
device and must be capable of handling a throughput of
10 transactions per second (T/s) because input is provided
at this rate. To derive a product by configuring hundreds
of variation points, that additionally has to adhere to non-
functional constraints is difficult and often results in a trial-
and-error approach, which is tedious and error-prone.

We envision tool support that assists developers in se-
lecting features to support the product derivation process.
For example, tools can automatically hide variation points
that are irrelevant because of constraints and features se-
lected earlier inside configuration process. In the follow-
ing, we refer to this process as semi-automated deriva-
tion (SAD) [32, 5, 36]. We argue that SAD is particularly
promising in the presence of non-functional constraints. For
example, tool support could check which features cannot be
selected because they would violate a footprint constraint.

SAD tools require domain specific information about the
SPL, that come solely from the feature model in existing
approaches (i.e., features and constraints between features).
However, to define non-functional constraints we need addi-
tional information. While some non-functional properties,
like development time, can be directly attached to the fea-
ture model [5], others, like performance, binary code size,
and in-memory size, depend on the implementation and can
be associated with code units [36]. Therefore, we have to
consider both, feature model and implementation model, for
SAD.

Current approaches to SPL development typically use a
mapping between feature model and implementation model
which makes SAD with non-functional constraints difficult
because the intermediate result of selecting code units us-
ing non-functional properties in the implementation model
must be propagated back to the feature model used for con-
figuration. In this paper, we suggest an integrated software



product line model (ISPLM), that combines both, feature
model and implementation model, to overcome problems in
the SAD process with two models. This model should pro-
vide the basis for creating an SAD tool that supports the user
in deriving products based on non-functional constraints. In
our long term vision, this model enables an adequate han-
dling of large and complex SPLs in resource constrained
environments.

2. Background

In this section, we give an overview of feature modeling
and current approaches for implementing and configuring
SPLs.

Feature Modeling. Feature-oriented domain analysis
(FODA) [20] is the process of identifying and collecting
information relevant for a stakeholder that describe the fea-
tures of a concrete domain. These features might be mod-
eled with additional information like attributes or annota-
tions [14] and are integrated into a feature model with fur-
ther domain constraints. Features can be mandatory or op-
tional and may have relations or constraints to other fea-
tures, e.g., two features can be alternative. The feature
model is typically visualized by a feature diagram that is
a hierarchical representation of all features of an SPL.
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Figure 1. Simple Feature Diagram.

Figure 1 depicts a sample feature diagram of an SPL for
a database management system (DBMS). The diagram con-
sists of the base concept DBMS as the root node which rep-
resents the core functionality of the DBMS and additional
nodes that represent features of the product line. The fea-
ture diagram shows that only feature Storage Manager is
mandatory for every product because of the required stor-
age functionality for every DBMS instance provided by this
feature. Feature B-Tree Index, which represents a special
data structure for accessing data in a DBMS, is optional,
i.e., a stakeholder has to decide, whether this special feature
should occur in a product. Further relations between fea-
tures are possible, e.g., excludes and implies, but not shown
in the Figure.

SPL Implementation. Code units implement the features
of an SPL [14]. A common practice is the realization of

code units using components [12]. A mapping assigns fea-
tures to code units that implement the according functional-
ity. In general, code units can implement multiple features
and crosscutting features may map to several code units [8].
All code units and constraints between them form the im-
plementation model (a.k.a. architecture model [23]).

An important difference between common SPLs and
SPLs in the embedded systems domain are alternative im-
plementations. Alternative implementations are required
for fine-grained adjustments of non-functional properties by
providing equivalent functionality. Figure 2 depicts two dif-
ferent implementations of a B-Tree feature. Component B-
Tree small implements basic functionality and is optimized
for binary code size at the costs of performance. In con-
trast, component B-Tree fast uses special algorithms, e.g.,
lazy deletion [37, 18], that increases performance at the
costs of binary code size. Such a need for specialized al-
gorithms is common in embedded systems [10, 35]. The
Buffer Manager functionality (cf. Figure 1) provides sup-
port for different storage types. It similarly has two vari-
ants, one for a simple data handling without any specialized
memory structures (Minimal Buffer Manager) and one for
performance optimized data handling (Unrestricted Buffer
Manager). The developer has to decide which code unit
is optimal for a given environment. As shown in Figure 2
there are constraints between code units as well.
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Figure 2. Implementation Model.

Product Derivation. To derive a product of an SPL, the
stakeholder decides which features to include. Feature se-
lection is usually realized based on a feature model [21, 1, 2,
27, 29]. During feature selection, tools can check the cur-
rent configuration against existing constraints that are de-
fined in the feature model and implementation model.

3 Semi-automated Derivation with Non-
Functional Constraints

SAD is an approach to assist a user during configura-
tion of a large SPL with many features. This support can
be realized by automatically hiding features that cannot be
selected at the current state of configuration due to existing



constraints [2, 15, 11, 7]. Other approaches guide the user
through the configuration space and further visualize depen-
dencies between features [27, 29]. Our vision goes beyond
this derivation process based only on the feature model, i.e.,
we also want to include non-functional constraints that have
to be fulfilled in the derived product.

We envision an extension to the concept of SAD by an
automated selection of features and code units according to
non-functional requirements. Often non-functional proper-
ties depend on how a code unit is implemented. Therefore,
it should be possible to present hints to a stakeholder dur-
ing configuration of an SPL which show how a selection
affects the properties of the final software. To start the SAD
process, a user defines constraints, e.g., Footprint < 48KB
AND Performance > 10T/s, for the resulting software which
may already exclude certain features from the configuration
space. As a next step, the user selects needed functional-
ity of the SPL. After every decision the SAD tool supports
the user by giving hints or automatically selecting features
or code units according to the constraints. Thus, the SAD
process requires information from the feature model (e.g.,
features, domain constraints) as well as from the implemen-
tation model (e.g., non-functional properties of code units
like binary code size and reliability). The measurement of
such non-functional properties of code units is in the focus
of our research, but outside the scope of this paper1.

4 Problem Statement

In the following we present problems we found that re-
sult from the separation of feature model and implementa-
tion model.

SAD Tools. During our development of an SAD tool, we
observed several problems. When evaluating a user selec-
tion, we have to proof this selection against domain con-
straints defined in the feature model. Afterwards, the tool
has to map the current configuration to the implementa-
tion model. Again, we have to proof the same user se-
lection of the feature, but now against the implementation
model, because of implementation constraints, e.g., it has
to be validated if excludes relations are violated. Moreover,
additional requirements and constraints may result in an au-
tomatic selection of required code units that map back to
a feature selection. This task is already complex, but the
SAD tool, which supports non-functional constraints, has
to evaluate the respectively actual configured implementa-
tion against the existing non-functional properties. These

1As part of the FAME-DBMS project (funded by the German Research
Foundation, project no. SA 465/32-1), we work on the derivation of non-
functional properties by composing products and measuring the resulting
properties.
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Figure 3. Problems of separated Models.

non-functional constraints can raise conflicts in the imple-
mentation selection and therefore, in the feature selection.

Figure 3 shows a simplified abstraction of a mapping be-
tween a feature model and an implementation model from
our DBMS product line. If we define performance and foot-
print constraints and select the feature Transaction, an SAD
tool has to map the selection to three different components.
The tool has to check the excludes constraints of compo-
nents Transaction and Unrestricted Buffer which results in
a verification of the incomplete feature selection. Further-
more, the SAD tool has to check that the non-functional
constraints are not violated. In this example, the config-
uration of component Minimal Buffer Manager might be
changed to the selection of component Unrestricted Buffer
Manager which leads to a change of the non-functional
properties of the current configuration.

The reason for for this complex derivation process lies in
a complex interaction of two separated models of one SPL
that are typically connected via an intricate mapping [9, 34,
23] and have to be consistent. This complexity makes the
development of SAD tools costly and time consuming and
the SAD process expensive.

Interacting Code Units. Assigning non-functional prop-
erties to elements of one model can be difficult if these
properties vary depending on the remaining module selec-
tion. Reasons for the changing values are mainly code in-
teractions. The interaction code, a.k.a. derivatives [24] or
lifters [26], arise if one feature crosscuts another feature.
For example, the code units of B-Tree fast and Unrestricted
Buffer Manager interact by including extra code if they oc-
cur in the same product. This is not shown in the diagram,
because we use components as code units that usually in-
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clude the whole interaction code so that it does not occur
modularly. This additional code may lead to increased bi-
nary code size or affect performance. However, interaction
code may change non-functional properties significantly,
e.g., a Transaction interaction code can reduce the perfor-
mance of the Buffer Manager by locking data in the mem-
ory. For an SAD tool, it is problematic to derive required
non-functional properties if derivatives are not modeled ex-
plicitly. Because of the common integration of interaction
code in one already existent code unit [22], it is not modeled
separately in the implementation model. This results in a
lack of expressiveness for the SAD process and therefore, it
is a problematic investigation of the varying non-functional
properties of interaction code.

Consistency. The problems of SAD tools and consistency
described above, typically occur with a complex mapping.
A possible solution for selecting alternative implementa-
tions during configuration, is the redundant representation
of code units of the implementation model in the feature
model. For example, the feature B-Tree Index could be
modeled by two alternative subfeatures (cf. Figure 4) which
represent the two alternative B-Tree components. This
transformation, however, results in a mixture and duplica-
tion of both models which raises consistency problems and
is error-prone. Additionally, SAD becomes more time con-
suming because it has to validate the code units twice. Con-
sidering changes in one model, like it is common during
software evolution, the maintenance of the models becomes
difficult. This is caused by the evolution of feature mod-
els which is separated from the evolution of implementation
models and leads to an increasing mismatch between both
models as already investigated by Tesanovic et al. [34].

5 Integrated Software Product Line Model

In the following we present our approach for an inte-
grated software product line model (ISPLM). In particular,
we integrate code units into a feature model to improve
SAD of an SPL.

5.1 Overview

In Figure 6 we show a meta model for our approach. The
ISPLM of Figure 5 consists of one root feature, like feature
DBMS. The feature DBMS has subfeatures that are con-
nected with different relations, e.g., feature Storage Man-
ager is mandatory and feature Transaction is optional. Our
syntax for these constraints is equivalent to the FODA rep-
resentation of the DBMS domain. We integrate code units
into the feature model to represent the features’ implemen-
tation, e.g., the code unit Database Core implements fea-
ture DBMS. Features and code units in the ISPLM can have
non-functional properties as well as relations (excludes and
implies).

The integration of code units into the feature model re-
quires two conditions. First, code units can only be child
elements of features or other code units. We do not allow
to model a code unit as a root node or as a parent of a fea-
ture node because features are defined during the domain
analysis which precedes the implementation phase (the fea-
ture model written once is solely extended but not changed).
Second, we need an additional relation to represent the in-
teraction between code units (i.e., derivatives, cf. Section 4)
because of the interacting code units. The Interaction rela-
tion allows an SAD tool to automatically include the target
code unit (filled rectangle) when all interaction sources are
configured. In Figure 5, this is the case for the code unit
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Caching Strategies. The code unit and its non-functional
properties influence the derivation process only if code unit
B-Tree fast and Unrestricted Buffer Manger are selected.
Relations can also exist between code units and features,
e.g., consider the excludes relation between code unit B-
Tree small and feature Transaction. With the ISPLM, it
is possible to constrain the variation points of the domain
space dependent on a selected code unit.
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Figure 6. UML Metamodel of the SAD Model.

5.2 Benefits of ISPLM

Semi-automated Derivation. The integration of code
units into the feature model allows to perform SAD with-
out the effort of creating and maintaining two consistent
models. It simplifies the implementation of SAD tools be-
cause information do not have to be propagated between

both models. Moreover, representing interactions of code
units inside the ISPLM provides an improved SAD because
these interactions can be responsible for changes of non-
functional properties.

User Benefits. The ISPLM allows a simplified visual-
ization of non-functional properties in a diagram because
no abstract and confusing mapping between feature model
and implementation model is needed. We reason that this
model can provide a basis for collaborating domain engi-
neers and software engineers because the interaction be-
tween domain features and code units is apparent with one
integrated model. We argue that maintaining one model is
less error-prone than two different because both engineers
use the same model which enhances the communication
during software development. In particular, this additional
information is needed for stakeholders who require imple-
mentation knowledge in deeply embedded systems and soft-
ware engineers who require domain knowledge when im-
plementing features.

Furthermore, the ISPLM explicitly allows to configure
all variation points (features and code units) instead of only
features.

Additional Benefits. Having an integrated model pro-
vides consistent changes in the domain as well as in the
implementation. When restructuring the domain model
the implementation is automatically adjusted, thus software
evolution needs less effort. For instance, if the exemplified
DBMS must run on an embedded device with feature Trans-
action but cannot fulfill the binary code size constraint, a



new code unit for feature Transaction might be needed.
A software developer solely has to attach the new code
unit to the feature Transaction and may define additional
constraints to other code units. Additionally, maintenance
costs for only one model instead of two independent models
might decreased.

5.3 Discussion

The proposed model raises several discussion points, be-
cause it contradicts the well known separation of domain
model and implementation model.

Separation of SPL Models. The separation of domain
model and implementation model has the advantage of sup-
porting independent implementation models by having a
constant domain model. Ideally, the stakeholder and do-
main engineer should not need implementation knowledge
nor be restricted by implementation issues. This distinc-
tion already blurs during the implementation phase where
programming depends on domain modeling. Furthermore,
this strict separation cannot be held up because the stake-
holder obviously is interested in implementation dependent
information, he at least wants to choose out of different im-
plementations. In fact, embedded systems’ SPLs need to
mix the domain requirements with implementation require-
ments. Moreover, source code structures (e.g., variables,
classes, etc.) could be directly generated from the domain
model and their values are set up in the product derivation
phase (e.g., configured numeric values). We argue that our
SAD model is an appropriate model in areas where imple-
mentation requirements are relevant for a stakeholder.

Model Complexity. The integration of two models may
increase complexity and size of the ISPLM compared to
feature model and implementation model. Large SPLs with
hundreds of features and a similar number of code units de-
grade usability of the whole model. To handle this prob-
lem we recommend views that filter only needed informa-
tion. For example, one view could only represent the fea-
tures and their constraints (the common feature model) and
another view could show all code units including their re-
lations (implementation model). In contrast to separated
models the implementation view could contain parts of the
domain model that are needed to understand the implemen-
tation. We enable the support of views by identifying the
source and the target of relations and restrict the position of
code units and features (e.g., a feature can only occur as a
child of another feature).

6 Related Work

Several researchers aim at simplifying product deriva-
tion using SAD [2, 1, 15, 11, 27, 29]. Some researchers
also include non-functional constraints for automated rea-
soning in extended feature modules. A prominent exam-
ple is the work of Benavides et al. [5, 3, 6, 7], where non-
functional properties, e.g., costs of a feature or its devel-
opment time, are assigned to features. Automated product
derivation strongly relates to the well known constraint sat-
isfaction problem. This approach laid the basis for our work
on SAD.

The next step for SAD is to include non-functional prop-
erties of product line code units. White et al. [36] pub-
lished the tool Scatter that integrates non-functional proper-
ties into the product derivation process. In particular, Scat-
ter includes the binary size of non-code data files (pictures).
Products are derived using an extended constraint satisfac-
tion solver presented in [5]. White et al. also investigated
that code units can be modeled similar to feature models in
the product line architecture model they proposed. In con-
trast to this approach, we go further to allow SAD with any
kind of non-functional property that is related to code units
of the SPL. Scatter handle only non-code data files. We
evaluate code units of the resulting product instance. More-
over, we enable to represent changing properties of interact-
ing code units (cf. Section 5.1).

Feature modeling gains much attention in recent re-
search. Different feature models and extensions have
been proposed, typically for tree-like diagram representa-
tion [21, 15, 16], in UML [17, 13], or using the object con-
straint language [30, 33] to improve domain modeling and
domain reasoning, e.g., by adding cardinality and attributes
to features. Extensions with attributes can also represent
non-functional properties. However, our vision goes be-
yond just domain modeling and includes code units and
their properties (potentially derived automatically) there-
fore we need an integrated software product line model.

A closely related approach by Reiser et al. [28] formal-
izes a unified feature model that includes features and code
units in the same model. They argue that the heterogene-
ity of the SPL development process, methods, and tools is
difficult to manage. They propose a framework to model
artifacts and code units of a product line as an artifact prod-
uct line. In other words the global product line consists of
many small product lines which can be further decomposed
in even smaller product lines. This approach models the
implementation and makes the implementation selectable
by configuring these small artifact product lines. However,
this framework does not consider any non-functional prop-
erties, hence it does not allow the SAD process using non-
functional properties.

Ziadi et al. [38] propose the use of UML to derive



products. They translate feature models into an equivalent
UML product line architecture model. Based on this archi-
tecture model they allow the configuration of product in-
stances. In contrast to our approach they do not consider
non-functional properties neither the interactions of code
units.

7 Conclusion and Further Work

In this paper we outlined our vision of semi-automated
derivation (SAD) using non-functional properties of SPL
products and discussed difficulties caused by the typical dis-
tinction between feature model and implementation model.
Product derivation is a complex task if an SPL has hundreds
of features and the implementation of features varies. To
configure such an SPL with many variation points we pro-
pose to use non-functional constraints for supporting a user
in product derivation.

We have shown that traditional approaches of model-
ing domain and implementation separately are insufficient.
They do not consider alternative implementations of one
feature nor non-functional properties completely. SAD
tools have to validate the feature model and the implemen-
tation model to enable a configuration which is not always
possible because of complex mappings between both mod-
els. In contrast, we presented a new integrated software
product line model (ISPLM) that integrates code units and
their non-functional properties into the feature model. We
argue that the ISPLM reduces the effort for the SAD process
and it improves consistency and evolution management.

In further work, we will continue to develop an SAD tool
and implement the ISPLM. This will allow us to analyze
and evaluate the resulting implementation effort and bene-
fits in contrast to existing models in a case study.
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