
A Case Study Implementing Features Using AspectJ

Christian Kästner
School of Computer Science

University of Magdeburg
39106 Magdeburg, Germany

ckaestne@ovgu.de

Sven Apel
Dept. of Informatics and Math.

University of Passau
94030 Passau, Germany

apel@uni-passau.de

Don Batory
Dept. of Computer Sciences
University of Texas at Austin

Austin, Texas 78712
batory@cs.utexas.edu

Abstract

Software product lines aim to create highly configurable
programs from a set of features. Common belief and recent
studies suggest that aspects are well-suited for implementing
features. We evaluate the suitability of AspectJ with respect
to this task by a case study that refactors the embedded
database system Berkeley DB into 38 features. Contrary to
our initial expectations, the results were not encouraging.
As the number of aspects in a feature grows, there is a no-
ticeable decrease in code readability and maintainability.
Most of the unique and powerful features of AspectJ were
not needed. We document where AspectJ is unsuitable for
implementing features of refactored legacy applications and
explain why.

1. Introduction

Aspect-oriented programming (AOP) is a paradigm aimed
at modularizing crosscutting concerns by encapsulating repli-
cated, scattered, and tangled code in aspects [30]. Features
are used to distinguish programs within a software product
line (SPL) [43, 9, 27], where a feature is an increment in func-
tionality [9]. Studies have suggested that features of an SPL
be implemented by aspects [22, 16, 47, 32, 26, 46, 14], as
features often have an inherent crosscutting behavior to them.

In this paper, we present a case study on refactoring a
legacy application into an SPL using aspects to implement
features. Our study uses Oracle Berkeley DB JE1. Berkeley
DB is an embedded database system (about 84 KLOC), re-
leased as an open source project. It can be embedded in other
applications as a fast transactional storage engine. We chose
Berkeley DB because of its size and because its domain is
well-understood. Taking an extractive approach to SPL de-
velopment [13], we refactored Berkeley DB into optional
features, to be able to build tailored variants of it. For exam-

1http://oracle.com/technology/products/berkeley-db

ple, we might create a variant without any debugging code
(e.g., logging, leak checks, B+-tree verification, checksums)
that is faster for production use. Our goal was to evaluate
the suitability of AspectJ, the most popular AOP language,
to implement features.

Prior studies recommended using aspects to implement
features; in particular it was reported that source code quality
and configurability were improved. However, our experi-
ence with Berkeley DB makes us skeptical. In this paper
we explain and justify our finding that aspects written with
AspectJ are not suitable for implementing features in feature-
refactored legacy applications, I particularly when hetero-
geneous crosscuts (the predominant form of features), code
readability, fragility, and coupling are considered. We as-
sume minimal knowledge of AspectJ and AOP in this paper.

2. Perspective

We started this project with a basic knowledge of AspectJ.
We learned from examples given in Laddad’s book [31] and
various papers. We even built extensions to an AspectJ com-
piler [4, 29]. AspectJ provided all the constructs needed to
implement features, including impressive new possibilities
like pattern expressions and conditional pointcuts. However
up to this point, we had not used AspectJ in practice to im-
plement a larger program that exceeded the small illustrative
examples that dominate the literature. This and prior studies
encouraged us to tackle a larger case study, initially only
to analyze the concept of functional weaving for another
branch of research on aspects [6, 29].

However, we encountered problems early on in our refac-
toring. We anticipated difficulties, but their severity was
unexpected. Studying the suitability of AspectJ for imple-
menting features became a more important part of the case
study than the initial idea of functional weaving.

We believe that the problems we encountered will be fa-
miliar to others who have used AspectJ extensively. While
we are well-aware that any language can be abused and
statements stemming from inappropriate usage that claim

Feature LOC EX AT Description

ATOMICTRANSACT. 715 84 19 Part of the transaction system that is re-
sponsible for atomicity.

CHECKPOINTERD. 110 14 4 Daemon to create checkpoints in the log.
CHECKSUMVALID. 324 32 8 Checksum read and write validation of per-

sistence subsystem.
CHUNKEDNIO 52 2 1 Chunked new I/O implementations.
CLEANERDAEMON 129 9 2 Daemon to clean old log files.
CRITICALEVICTION 63 10 7 Evictor calls before critical operations to

ensure enough memory.
CPBYTESCONFIG 41 7 5 Configuration options for the Checkpointer

by size.
CPTIMECONFIG 59 6 5 Configuration options by time.
DBVERIFIER 391 16 10 Debug facility to verify the integrity of the

B+-tree.
DELETEDBOP. 226 31 13 Operation to delete a database.
DIRECTNIO 6 1 1 Direct I/O access.
DISKFULLERRORH. 41 4 2 Emergency operations on a full disc error.
ENVIRONMENTLOCK 61 5 2 Prevents two instances on the same

database directory.
EVICTOR 371 20 9 Subsystem that evicts objects from cache

for the garbage collector.
EVICTORDAEMON 71 9 3 Daemon thread that runs the Evictor when

a memory limit is reached.
FILEHANDLECACHE 101 6 2 File handle cache.
FSYNC 130 5 1 File synchronization for writing log files.
INCOMPRESSOR 425 21 4 Removes deleted nodes from the internal

B+-tree.
IO 38 2 1 Classic I/O implementation.
LATCHES 1835 155 28 Fine grained thread synchronization.
LEAKCHECKING 43 4 2 Debug checks for leaking transactions.
LOGGING 1115 132 24 Debug logging facilities, separated in 10

features for different logging levels and
handlers, not listed here.

LOOKAHEADCACHE 84 6 2 Look ahead cache for read operations.
MEMORYBUDGET 958 118 28 Observes the overall memory usage.
NIO 26 2 1 New I/O implementation.
STATISTICS 1867 345 30 Collects runtime statistics like buffer hit ra-

tio throughout the system.
SYNCHRONIZEDIO 26 2 1 Synchronized I/O access.
TREEVISITOR 138 24 9 Provides a Visitor to traverse the internal

B+-tree.
TRUNCATEDBOP. 131 5 3 Operation to truncate a database.

AD - Pieces of advice; EX - Extensions (advice, introductions);
AT - Number of types affected by the feature.

Table 1. Refactored features of Berkeley DB.

language unsuitability will be misleading, readers with min-
imal background with AspectJ will recognize many of the
issues that we raise. To make our scientific investigations
above-board, we make the source code of our case study
available for all to inspect2. We hope that our work, and
confirmations of our results, can serve as a starting point
to improve programming languages and support developers
in selecting the right language for the right problem in SPL
development.

3. Refactoring Berkeley DB

Refactoring a legacy application into features is known as
feature-oriented refactoring [34] (a.k.a. horizontal decompo-
sition [47]). Berkeley DB is written entirely in Java and can
be included into an application as a library. Its performance
and transaction safety make it popular in open source and

2http://wwwiti.cs.uni-magdeburg.de/iti_db/berkeley/

commercial applications. It consists of five large subsystems
as shown in Figure 1: access methods provide an abstraction
and API to the user, a B+-tree for internal data storage, di-
verse caching and buffering mechanisms, a concurrency and
transaction system, and finally a persistence layer. It is pos-
sible to deactivate some parts like transactions at startup, but
it is not possible to create a tailored variant of the database
system during build time that excludes unnecessary code.

Berkeley DB

Access Methods

Concurrency and Transactions

B+tree

Persistence Layer
Log

File 1
Log

File 2

Caching & Buffering

Log
File 3

Log
File n

...

Environment Database Sec. Database Cursor

INCompressor I/O Buffers

In-memory Tree

Memory Budget

Other Caches
Transactions Locking Latches

Cleaner Checkpointer

Figure 1. Overview of Berkeley DB.

By analyzing the domain, manual, configuration parame-
ters, and source code, we identified many parts of Berkeley
DB that represent increments in program functionality that
were candidates to be refactored into features. These features
were implicit in the legacy code. They varied from small
caches, to entire transaction or persistence subsystems [28].
All identified features represent program functionality as
a user would select or deselect them when customizing a
database system. From these features, we chose 38 for ac-
tual refactoring. They modularized code from all parts of
Berkeley DB and varied in size. A partial list with a short
description and the size for each feature is given in Table 13.
A feature diagram that shows how these features relate is
depicted in Figure 2. Lines indicate the hierarchy between
features and subfeatures, while empty circles represent op-
tional features and filled circles required ones. The additional
line between the connections of IO and NIO represent al-
ternatives, only one of these features can be selected at a
time.

With these features, we have an SPL. We can build dif-
ferent tailored variants of Berkeley DB by selecting which
features to include for compilation, e.g., log severe level
events and exclude checksum validation. Even though there
are dependencies between these features [28], we can create
thousands of different variants of Berkeley DB.

Infrastructure. Although it is possible to implement
large features in one aspect and even introduce classes as
inner classes, it became necessary to decompose large as-
pects during development to keep them readable as suggested

3All statistics in this paper were collected with two self-written tools
ajdtstats and abcstats which collect information from the internal structures
from the AspectJ compilers ajc and abc. The relevant parts of these tools
are published together with the source code of the study.

Berkeley DB

Persistency

LOGGINGBASE

LOGGINGINFO

LOGGINGFINE LOGGINGFINER LOGGINGFINEST LOGGINGCONFIG
LOGGING-
SEVERE

LOGGING-
DBLOGHANDLER

LOGGING-
FILEHANDLER

LOGGINGCON-
SOLEHANDLER

CHECKSUM-
VALIDATION

DISKFULL-
ERRORHANDL.

FILEHANDLE-
CACHE

LOOKAHEAD-
CACHE

CLEANER

CLEANER-
DAEMON

CPBYTECONFIG
CHECKPOINTER-

DAEMON
CPTIMECONFIG

ENVIRONMENT-
LOCK

CHECKPOINTER

STATISTICS

SYNCHRONIZEDI
O

DIRECTNIO

IO

CHUNKEDNIONIO

I/O

NIO

ATOMIC-
TRANSACTIONS

Concurrency &
Transactions

LEAKCHECKING

LATCHES FSYNC

TRUNCATEDB-
OPERATION

DELETEDB-
OPERATION

Database
Operations

TREEVISITOR DBVERIFIER

B+-Tree

MEMORY-
BUDGET

EVICTOR-
DAEMON

CRITICAL-
EVICTION

EVICTOR INCOMPRESSOR

Figure 2. Feature Diagram.

in [5, 3, 2]. Unfortunately, AspectJ provides no infrastruc-
ture to define features, e.g., to group multiple cooperating
aspects and classes together [36]. Further, the only way to
compose an application with features is to manipulate the
compiler’s build path, to include or exclude certain aspect
files.

It was thus necessary to impose an external infrastructure
on the project. We used AHEAD [9] in which each feature is
represented by a distinct directory (‘containment hierarchy’)
that can contain multiple code artifacts. This way we used
the AHEAD Tool Suite to describe features and dependen-
cies and to select configurations with a graphical feature
modeling tool [8].

The Refactoring Process. To refactor features from
the original code into aspects, we used various OOP-to-
AOP refactorings as suggested in recent research (e.g.,
[24, 39, 15, 11]). When possible, we moved whole clas-
ses or interfaces to a feature directory, or used the Extract
Introduction refactoring [24, 39] to move methods or fields
to aspects. Furthermore, we had to create advice to extend
join points throughout the code. Common were Extract Be-
ginning and Extract End refactorings [11, 24, 15] to move
code from the beginning or the end of a method to an aspect.
In cases where we had to refactor statements in the middle of
a method we used either Extract Before/After Call refactor-
ings [11], or prepared code with an object-oriented Extract
Method refactoring [21]. If neither were possible, we created
hook methods. Hook methods are empty methods placed
in the base code for later extension. They have no purpose
other than to provide a join point inside a method that can
be extended by an aspect. As hook methods are considered
‘unnatural’ by AOP researchers [40], we used them only as
a last resort. Such refactored extensions are heterogeneous,
i.e., they affect only one join point each. Where possible,
we created homogeneous advice, i.e., advice that extends
multiple join points, by combining two refactored advice

statements with the Extract Pointcut refactoring [15].

The Extract Introduction refactoring was used the most,
followed by the Extract Beginning/End refactorings. Unfor-
tunately, hook methods were often needed. In Table 2 we
list each refactoring and how often it was used.

Refactoring # times used

Extract Introduction (Method) 365
Extract Beginning/End 214
Extract Introduction (Field) 213
Create Hook Method 164
Extract Before/After Call 121
Move Class to Feature 58
Extract Method 15
Move Interface to Feature 4

Table 2. Refactorings used in Berkeley DB.

Even though we used refactorings described in prior pub-
lications, we performed all of them manually as we found
no tool that could be used productively. We refactored one
feature after another into one or multiple (up to 45) aspects
per feature. Of our 38 refactored features, 16 were small
with less than 140 LOC and 10 or fewer refactorings. The
features LATCHES, STATISTICS, LOGGING, and MEMORY-
BUDGET were large with 958–1864 LOC and required be-
tween 118 and 345 refactorings. These features affected
between 24 and 30 classes each. All other features have
a size in-between. Due to technical difficulties described
below which we already observed in medium-sized features,
we could not refactor very large features, like the whole per-
sistence subsystem to create an in-memory database. With
these 38 features, we refactored about 10 % of the code base
of Berkeley DB. Afterwards, we stopped the refactoring pro-
cess because it became repetitious and we did not expect
further insights.

1 p u b l i c c l a s s IN {
2 p u b l i c i n t insertEntry1(CR entry) { //...
3 i f (nEntries < entryTargets.length) { //...
4 updateMemoryS ize (0 , ge t InMemory S i z e (i n d e x)) ;
5 adjustCursorsForInsert(index); //...
6 }
7 }

8 p u b l i c a s p e c t MemoryBudget {
9 be f or e(IN in, i n t index):

10 c a l l(void IN.adjustCursorsForInsert(i n t)) &&
t h i s(in) && args(index) &&
with incode(i n t IN.insertEntry1(CR)) {

11 in.updateMemorySize(0, in.getInMemorySize(index));
12 }
13 }

Figure 3. Extract Before Call Refactoring.

4. Observations

We review our observations during the refactoring and of
the resulting feature code in this section. First, we identify
the AspectJ language constructs that we used and the limi-
tations we observed in using them. Then, we explain why
we feel that the resulting feature code is hard to understand
and hard to maintain. Finally, we comment on the utility of
existing AspectJ tools that could be used for refactoring.

4.1. Used Language Constructs

AspectJ has an expressive language. Constructs range
from static introductions, several types of advice, and up to
25 different pointcut designators. We found that we needed
only basic designators to implement features.

The majority of all extensions (57 %) were static intro-
ductions. Overall, we introduced 4 interfaces, 58 classes,
365 methods, and 213 fields. To introduce methods and
fields, we used AspectJ’s inter-type declarations.

The next most frequently-used extension was simple
method extensions, i.e., extensions to whole methods, im-
plemented with advice at execution join points. Method
extensions were used 214 times.

Similarly often, we needed extensions to statements or se-
quences of statements inside a method like Line 4 in Figure 3.
As such extensions are not supported by AspectJ because it
does not provide statement level join points, we had to use ei-
ther (1) call join points to approximate statement extensions,
typically with a combination of call and withincode point-
cuts (cf. Fig. 3, L. 8–13), (2) extract the statements to a new
method, or (3) introduce calls to empty methods as hooks
for later extension. We tried to avoid hook methods where
possible, but we could only emulate statement extensions
with other pointcuts in 54 cases and had to create 164 hook
methods.

A surprising result for us is that language constructs

1 p o i n t c u t latchedTxnMethods(TxnManager mgr): t h i s(mgr) &&
2 (e x e c u t i o n(void TxnManager.registerTxn(Txn)) ||
3 e x e c u t i o n(void TxnManager.unRegisterTxn(Txn)) ||
4 e x e c u t i o n(long TxnManager.getFirstActiveLsn()) ||
5 e x e c u t i o n(Stats TxnManager.txnStat(StatsConfig)));

Figure 4. Enumerated homog. pointcut.

unique to AspectJ were rarely used. Conditional pointcuts
like if, this, or cflow were used only in rare cases to experi-
ment with workarounds for limitations discussed later.

But more importantly, homogeneous extensions were
rarely used as shown in Table 3. Of 482 advice statements,
only 7 used pattern expressions in their pointcuts to extend
more than one join point. More often, multiple join points
were matched explicitly, but they were enumerated with the
|| operator in one pointcut (cf. Fig. 4). This allowed us to
avoid declaring the same advice body two or three times,
and rarely more than three times. Homogeneous statement
extensions, i.e., call, set or get pointcuts that match multiple
join points were infrequently used as well. Overall, less than
11 % of all advice is homogeneous, and only 2 % extends
more than 3 join points. These numbers are in line with
experience from our previous studies [3, 2, 35].

extended join points

Category 2 3 4 > 4
∑

Pattern expressions 5 1 1 0 7
Explicit enumeration 15 7 1 2 25
Homog. statement extensions 11 4 2 3 20

Table 3. Homogeneous dynamic extensions.

4.2. Language Limitations

Various limitations prevented us from implementing fea-
tures in a concise way. We often used workarounds which
caused complex or ‘strange’ designs. Due to the restricted
space we cannot discuss all observed limitations and some
are probably even very specific to Berkeley DB. Instead we
focus only on four that occurred frequently.

Statement Extension Problem. As stated above, we
frequently required extensions to a statement or a sequence
of statements inside a method. In some cases, we were able
to emulate this by extending a call join point, but in many
other cases we had to create hook methods as described
in [40]. On the one hand, advice to emulate statement exten-
sions requires fairly complex and fragile pointcuts, on the
other hand, hook methods give a ‘strange’ look to the base
code.

Local Variables Access Problem. Another problem
related to statement extensions is that with AspectJ we were

1 p u b l i c c l a s s Tree {
2 p u b l i c long insert(LeafNode ln, byte[] key, ...) {
3 BottomNode bin = findBINForInsert(key, ...);
4 long position = ln.log(key, ...);
5 bin.updateEntry(ln, position, key);
6 bin.clearKnownDeleted();
7 t r a c e (bin , ln , p o s i t i o n) ;
8 ...
9 }

10 }

11 p u b l i c c l a s s Tree {
12 p u b l i c long insert(LeafNode ln, byte[] key, ...) { ...
13 bin.clearKnownDeleted();
14 hook(bin, ln, position);
15 ...
16 }
17 void hook(BottomNode b, LeafNode l, long p) {}
18 }
19 p u b l i c a s p e c t TreeLogging {
20 be f or e(BottomNode bin, LeafNode ln, long pos):
21 e x e c u t i o n(void Tree.hook(...)) && args(bin,ln,pos) {
22 trace(bin, ln, pos)
23 }
24 }

Figure 5. Local Variables Access Problem.

not able to access local variables of a method. For example,
the variables bin and position in the simplified excerpt in
Figure 5 (L. 1–10) are inaccessible when refactoring the
trace method. This forces us to either reproduce (copy)
program logic in advice, to create method objects [21,
p. 135f], or to create a hook method that exposes local
variables as parameters (Fig. 5, L. 11–24).

Exception Introduction Problem. AspectJ cannot alter
a method’s signature, which also means that features cannot
add new exceptions to existing methods. For example, to
synchronize code with our LATCHES feature, we wanted
to use around advice to acquire a latch before and release
it after an operation. Unfortunately, the acquire operation
can throw an exception when the latch is already held.
Therefore, we can extend only methods that already declare
this exception in the base code. For example we cannot syn-
chronize a standard Java list, e.g., ‘around() : call(boolean
List.add(Object)) && within(Database)’, because its
operations do not declare any concurrency exception.

This forced us to either use runtime exceptions, or to
declare all throwable exceptions of all features in the base
code and to create hook methods to encapsulate API calls
that do not declare the required exceptions.

Scope Problem. In Berkeley DB, the scope modifiers
(private, protected, public) were used for a carefully de-
signed concept that allows users to access only few interface
methods. Unfortunately, scope problems during refactor-
ings forced us to frequently change the scope modifiers.
For example, AspectJ does not support protected inter-type
declarations. Furthermore, even declaring an aspect as privi-
leged does not allow complete access, e.g., it is not possible

to access non-public classes or inner classes. We frequently
had to increase the scope of methods, fields, or classes, thus
destroying the scope concept of the Berkeley DB design.

4.3. Coupling and Pointcut Fragility

Our aspects were fragile and hard to maintain. Especially
in later development steps this made it surprisingly difficult
to refactor more features without breaking existing ones.
There are several reasons.

Advice applies extensions to join points selected by
pointcuts. The join points themselves show no sign that they
are extended, i.e., coupling is implicit. Our statistics tool
counted 21 795 join points in Berkeley DB, but only 528
(2.4 %) were extended4. To find out which join points are
extended it is necessary to understand all aspects or use tool
support.

Further, we observed that our features heavily depend on
implementation details and are strongly coupled. A feature
like STATISTICS not only relies on public methods, but it
also extends join points throughout the application on a fine
grained level to collect information. Of our 151 aspects, we
had to declare 127 as privileged because they needed access
to such details. If we took the advice often given in the AOP
literature to rely only on interface methods that are not likely
to change (e.g., in [31]), we could rarely implement any of
our features, or we had to introduce many explicit public
extension points like hook methods.

This strong and implicit coupling makes maintenance
and evolution harder. It is not possible to make any local
changes without understanding all aspects or without a tool
that warns about extensions to a certain piece of code.

This problem is intensified by the fact that AspectJ’s point-
cuts are fragile [45, 23]. Changes to the source code, like re-
naming a method or moving code from the base to an aspect,
can change join points. When pointcuts are not updated ac-
cordingly, the set of extended join points can change silently,
thus changing the program behavior. Heterogeneous exten-
sions that are not applied any more create a compiler warning,
but homogeneous extensions, where the set of join points
changes, signal nothing. To use pattern expressions like

‘execution(* Database.put*(..))’ also for heterogeneous ex-
tensions might create an illusion of stability against changes,
however, in our experience this makes it even harder to detect
exceptions and fosters accidental weaving [37].

We observed such silent changes during development. We
refactored features sequentially, and only when we checked
all features in a later step did we discover that some pointcuts
matched an incorrect set of join points, because they were not

4Some AOP publications distinguish between ‘join points’ which occur
dynamically during the execution of the program and ‘join point shadows’,
the location of a join point in the static source code. Our statistics refer to
the latter.

updated accordingly. For example, LOGGING and LATCHES
broke frequently because some code they logged or synchro-
nized was moved. In the beginning with few features it was
still possible to keep track of all pointcuts, but as the num-
ber of aspects and the number of pointcuts in those aspects
increased, changes to join points which required updating a
pointcut occurred more often, and we missed some of them.
In our experience the most frequent causes were (1) signature
changes, e.g., when we added another parameter to a hook
method to grant access to a local variable, (2) object-oriented
refactorings like Extract Method we made to create new join
points, and (3) moving code from a method to advice and
thus either moving or removing join points.

4.4. Readability and Understandability

The syntax of AspectJ can be hard to read and under-
stand. Small examples in books and papers are illustrative
and easy to understand in isolation, but when we actually im-
plemented large features and wanted to show them to others
we recognized several problems.

Increased Code Size. Simple extensions such as
method extensions require overly complex constructs. In
Figure 6 we show two ways to write a method extension
that calls a logging method after each execution of the put
method. The first version is a method extension as it would
be written in object-oriented frameworks or collaboration-
based designs; the second is an AspectJ solution of the
same extension. The AspectJ solution is about twice as
long and more complex: it needs 4 pointcut designators:
execution, args, within5, and this. Furthermore the param-
eters are repeated five times: in the pointcut declaration,
in the execution pointcut designator, in the args pointcut
designator, in the advice declaration, and in the pointcut
reference. By using anonymous pointcuts, it is possible to
shorten the construct but it is still larger than the alternative
version.

14 p u b l i c vo id delete(Transaction txn, DbEntry key) {
15 super.delete(txn, key);
16 Tracer.trace(Level.FINE, "Db.delete", t h i s , txn, key);
17 }

18 p o i n t c u t traceDel(Database db, Transaction txn,
DbEntry key) :

19 e x e c u t i o n(void Database.delete(Transaction, DbEntry))
20 && args(txn, key) && wi th in(Database) && t h i s(db);
21 a f t e r(Database db, Transaction txn, DbEntry key):
22 traceDel(db, txn, key) {
23 Tracer.trace(Level.FINE, "Db.delete", db, txn, key);
24 }

Figure 6. Syntax comparison.

5The within pointcut designator is necessary to not affect subclasses of
Database.

We measured the overall pointcut complexity, by counting
how many pointcut designators were used per advice after
resolving named pointcuts. Only 5 pointcuts (1 %) used just
one designator, 70 pointcuts (14 %) used two. The large ma-
jority used three (194; 40 %) or four (176; 36 %) designators,
even though most of them are just simple method extensions.
Pointcuts with more designators were rare (9 %) and were
often caused by explicit enumerations or cflow designators.

Third-Person Perspective. AspectJ uses the third-
person perspective: advice does not directly extend the
target class, but is described as an external entity. It does
not have direct access to the extended object and cannot use
the this keyword to describe extensions like a first-person
narrator would. Instead, extensions have to refer to the target
class through an explicit object, captured with a pointcut.

We frequently required access to the extended object in
our refactorings. 400 advice declarations—83 % of all—
used a this or target pointcut designator to capture it.

The necessity to access an extended object with a pointcut
makes not only the advice declaration larger, it makes also
the extension harder to read. In Java, the this keyword is op-
tional and it is common practice not to use it, unless required.
Usually one expects that all calls or variables are members of
the current class if no explicit target is specified. This is not
possible in AspectJ. There the extended object must always
be intercepted with a pointcut and specified explicitly.

We perceive this third-person programming perspective
as unfamiliar, unusual, and—except for some homogeneous
crosscuts—unnecessary. We much more often refer to the
extended object than to the aspect’s instance. The confusion
potential increases because methods introduced with inter-
type declarations are written in a first-person perspective,
thus both perspectives are frequently mixed in one aspect.

Advanced Extensions. Homogeneous pointcuts, unless
they use very simple pattern expressions, often require tool
support to find all matched join points. Further, the long
syntax to specify a full method signature for call and exe-
cution pointcuts tempted us to use pattern expressions to
simplify the writing of heterogeneous extensions at the be-
ginning of our work. For example, the pointcut in Figure 7 is
a shortened version of the one in Figure 6. We observed this
practice in other AspectJ projects as well (cf. [2]). However,
in our perception, pattern expressions for heterogeneous ex-
tensions reduce the overall code quality: a new developer
trying to understand existing source code has to check for
every single extension whether it is homogeneous or whether
the pattern was just used for convenience.

1 p o i n t c u t traceDel(Database db, Transaction txn,
DbEntry key) :

2 e x e c u t i o n(* delete(..)) && args(txn, key) && t h i s(db);

Figure 7. Simplified heterogeneous pointcut.

Scaling Aspects. In Berkeley DB we found many
medium-sized and large features with over 100 LOC and
over 10 advice statements or introductions. For example, the
LATCHES feature, one of our larger features, has 104 pieces
of advice and 51 inter-type declarations in 1835 LOC. Small
AspectJ examples and our small features are usually easy
to understand. However, to read and understand a feature
with 104 pieces of nontrivial advice, mixed together in one
or more aspects, is harder. Beyond a certain feature size,
features are not understandable without tool support.

4.5. Tool Support

A frequent suggestion to avoid some of the problems
mentioned above is to use tools. For example, to solve the
implicit coupling that prevents local changes without under-
standing all aspects or the decreased readability of extensions
with pattern expressions, tools can visualize crosscuts; to
cope with pointcut fragility, tools to compare matched join
point sets are developed.

Such an IDE used during our development was Eclipse
with the AJDT plug-in. This IDE helped us a lot by showing
markers at the source code where advice applies, and by
showing which join points an advice statement extends. Even
though this tool is good, it has three drawbacks.

First, it can show markers and links only on fully compil-
able source code. When we refactored large features, we fre-
quently had syntax errors in our source code for multiple de-
velopment steps until we could compile the completely refac-
tored feature again. During this time we did not have any
markers that may warn us not to change certain join points.

Second, to update markers after source code changes
requires rebuilding the whole application (incremental build-
ing is possible but not reliable). As rebuilds of Berkeley
DB took about one minute, we did not perform them often
because they severely interrupted the development process.

Finally, markers are only shown for aspects that are in-
cluded in the current configuration. The used tools are not
designed for SPLs, we just used them for this purpose. This
forced us to always develop the application with all features
included. In our project this only slowed down the compila-
tion process, however when dealing with alternative, mutual
exclusive features, this might pose a significant problem.

5. Discussion and Remedies

In this section, we discuss the insights gained from our
observations and possible remedies to the problems we iden-
tified previously. We focus on three points: (1) the suitability
of AspectJ for implementing features compared to other ap-
proaches, (2) the role of tool support in AOP, and (3) inherent
feature complexity.

5.1. Right Tool for the Right Task

With few exceptions, we used only basic extension mech-
anisms like introductions, method extensions, and statement
extensions. Advanced mechanisms that are unique to As-
pectJ like conditional extensions or homogeneous crosscuts
were rarely needed. In those few cases, the third-level per-
spective is required and by the use of pattern expressions it is
possible to actually decrease code size and increase quality
metrics as shown in various studies. However, for the vast
majority of basic heterogeneous extensions that are typical
of features, the use of AspectJ seems counterproductive.

There are possible solutions to many of the mentioned
limitations and problems. Most require extensions to the Java
or AspectJ language, like different coupling mechanisms [1],
statement annotations [18], or less fragile pointcut lan-
guages [23]. Others suggest new tools to counter problems,
like the PCDiff tool to detect changed pointcuts [45], or
aspect-aware refactorings to safely evolve pointcuts [24, 39].
However, we think that these suggestions make the language
even more complex and even harder to use, where most of
the time only a few basic extensions are needed. They only
treat symptoms and do not address the cause, which is using
a language for a purpose for which it is not designed.

In SPLs, where aspects are needed to encapsulate
advanced crosscutting concerns, an integration of aspects
into other languages that were specifically designed for OO
collaborations seems favorable. Several such approaches
have been proposed recently [5, 2, 7, 33].

5.2. Tool Support

The emphasis on tool support in AOP, e.g., to solve
problems of fragility, implicit coupling, and hard to
understand pointcuts, only treats symptoms but not the
cause of the problems.

Progress in software engineering has broken periodically
with principles of locality multiple times. First subroutines
and later object-oriented programming structured programs
in novel ways. Understanding the source code became
harder. For example, Carter reflects on the design of ADA
and argues that subclasses are harder to read and to under-
stand than procedural implementations that do the same,
because the developer needs to look up the superclass to
understand it [12]. The development of modern large-scale
object-oriented applications also often requires tool support
to navigate the source code, e.g., to display a class hierarchy
or all calls to a method. Constructs like design patterns, or
J2EE beans make the development very abstract and tools
crucial for an understanding. History has shown that most
developers do not mind the acclaimed ‘reduced readability’
and the necessary tool support, for the improvements gained.

Nevertheless, we still think that there is a significant

difference between on the one hand having to look up a
superclass or calls, and on the other hand searching the
whole source code for affected join points. Therefore,
developers must demand much higher standards for AOP
tools because they depend on them instead of just using
them for support. In our experience, understanding or
maintaining aspect-oriented code in Berkeley DB without
tool support is impossible because of the implicit coupling
and fragility. The existing tool problems, like only providing
information after a complete and successful build, are not
acceptable for a production setting.

When using AspectJ for optional features, the whole tool
support must be adjusted. It is not possible to merely use
the existing AspectJ tools for SPLs, instead tools must be
built to support optional features. As stated above, it is
not acceptable to compile the project always with all (even
alternative) features included, just to get source code markers
to work around fragile pointcuts.

Basically, there are two different solutions for this prob-
lem. We can either (1) use language mechanisms that does
not require such high degree of tool support (e.g., collabo-
rations [44, 9]), or (2) we can use a tool driven approach,
where the tool is an essential part. This would limit the
extension mechanism to the capabilities provided by that
specific tool, but we could rely on this tool. AspectJ stands
between those two solutions, it requires a tool but a tool is
not part of the solution but just developed as an add-on.

5.3. Inherent vs. Added Complexity

Berkeley DB was not designed for feature-extensibility.
Its features were closely integrated into the original design
and internal implementation. It had a clean design, but
feature-extensibility was not one of its design goals. We
tried to decompose it instead of redesigning it. This is in line
with prior studies on implementing features with AOP.

Some of the observed complexity is inherent to refac-
tored features. In an application designed for extensibility,
e.g., with a framework design, a feature extends only well
defined extension points. In contrast, the original feature
implementation in a legacy application is often interwoven
strongly with the application’s internal implementation. The
refactoring of such features is a difficult process itself.

This raises the question whether the observed problems
are inherent to feature-refactoring, or whether they are
caused by AspectJ. For example, the needed statement exten-
sions, the necessity to access local variables, and the strong
dependence on implementation details might be reasonably
dismissed as inherent complexity of refactoring features.

The important question is: How does AspectJ support
the already complex task? Our observation is that AspectJ
adds complexity, which is not inherent in feature-refactoring.
Fragility, hard to read and maintain specifications, and

strong-dependence on tool support are contributing factors.
AspectJ may still be useful for implementing features in

an SPL that was designed to be extensible, where extension
points were anticipated or naming conventions could be
used to exploit the strengths of AspectJ. This is a topic of
future study.

6. Related Work

Implementing Features. There are various proposals
and languages how to implement features. Using an aspect-
oriented language as in this study is only one possibility.

An alternative is the use of collaborations with mixins to
implement features [9]. Other concepts include subjects [25],
virtual classes [38, 20], nested inheritance [42] and class-
boxes [10].

Moreover, there are some approaches that integrate
aspects with a different approach like collaborations to
implement features. This aims at still being able to use
aspects for homogeneous crosscutting concerns but to
use other language constructs to define other extensions.
Examples are aspectual feature modules [5, 2], aspectual
collaborations [33], and aspect components [7].

Features with AOP. There are various related publi-
cations that deal with feature implemented in an aspect-
oriented language, although they are often named differently.

Czarnecki and Eisenecker first suggested to use aspects
to implement features [17]. An early study on decomposing
features with aspect-oriented languages including AspectJ
was performed by Murphy et al. [40]. This study focuses
on expressibility of language constructs and notes some of
the limitations we observed in our refactorings, i.e., the need
for hook methods and the hard to read aspects. Similarly,
Lopez-Herrejon et al. noticed problems in using aspects
to implement features because of a lack of infrastructure
and means to describe coherent feature implementations
containing multiple aspects [36].

Colyer et al. discussed how features could be separated
with AspectJ to create program families, on a theoretical
level [16]. A brief discussion about the quality of the result-
ing features with AspectJ was already initiated by Nyssen et
al., based on the obliviousness and the implicit extensions of
aspects [41]. Although a small case study, the authors found
that novel aspect-oriented mechanisms are not required for
feature implementation and suggest tool-driven composition
of object-oriented feature modules as better alternative.

Case Studies. There are some empirical case studies on
refactoring existing applications, mainly from the areas of
embedded database systems and middleware systems.

The work closest to ours is the aspect-oriented refactor-
ing of the embedded database engine HSQLDB into nine
features, done as case study by Eibauer [19]. Even though
the feature selection was based on a catalog of typical

crosscutting concerns that are supposed to be encapsulated
by AspectJ easily, the results are similar: the number of
homogeneous crosscuts was lower than expected, code
quality decreased for heterogeneous extensions, and many
limitations we observed were found as well.

Tesanovic et al. refactored the C version of Berkeley DB
into four features with an AspectJ-like language [46]. This
study showed the general possibility and the advantages
of having a configurable version of Berkeley DB from
a database perspective, but did not focus on the feature
implementations and their quality.

Zhang and Jacobsen discussed the refactoring of five
selected features of a middleware platform into aspects [47].
They call this process horizontal decomposition, and their
aim is to configure the platform by including or excluding
features. However, they focus only on some selected
crosscutting concerns found with aspect mining tools.

Similarly, Hunleth and Cytron extracted 21 features from
a small middleware platform to make it configurable [26].
They used their own infrastructure with distinct feature di-
rectories built on ant, which is similar to our solution. They
focused on the differences in footprint and performance com-
pared to optional feature implemented with object-oriented
design patterns and observed improvements.

Coady and Kiczales refactored four small crosscutting
concerns in FreeBSD into features, three of which are op-
tional and can be used to configure FreeBSD [14], examining
the evolution of the aspects.

All these case studies are smaller than our refactor-
ings of Berkeley DB: Even though some case studies (e.g.,
HSQLDB, FreeBSD) have a large code base in terms of LOC,
only few features (usually 4–9) were refactored. These fea-
tures affect only a small part of the applications, and their
feature models are very simple. No case study analyzed
the effects of scale. Furthermore, most studies focused on
refactoring (homogeneous) crosscutting concerns, thus only
refactored features that are expected to perform well with
AOP and made no comment about how to implement other
features. The quality of the resulting feature implementa-
tions were usually evaluated only based on code size or
simple coupling metrics. Readability, fragility, or necessity
of tool support were not considered.

7. Conclusions

A common way in which SPLs are created is via an
extractive approach, where one (or more) applications serve
as a baseline. By factoring optional features, variations on
an application can be created by feature removal. This is
the approach that we took to refactoring Berkeley DB. As
a platform, we used AspectJ to implement our features.

Feature-refactoring legacy applications is a very difficult
problem, because such applications—even if they had an

elegant design to begin with—do not imply that their design
was amenable to feature-extensibility. It places great stress
on any language or tool. Nevertheless, our experience with
Berkeley DB suggests that AspectJ is not an appropriate
language for this task.

We used only the basic capabilities of AspectJ, mainly
static introductions and method extensions. Advanced
language constructs which are unique to AspectJ, like
conditional extensions or homogeneous extensions, were
rarely applicable. Even so, readability and maintainability of
the resulting code was clearly a problem. Pointcut fragility,
a well-known issue, was very evident, and ensuring correct
weaving was hard. Tool support that might be able to reduce
these problems is not yet sufficiently available.

As other researchers use AspectJ in larger applications,
we believe they will encounter problems that are similar to
those that we identified in this paper. We hope that our work,
and subsequent confirmations of our observations, can serve
as a starting point to improve languages and tool support that
developers need for creating SPLs by feature-refactoring
legacy applications.

Acknowledgments. We thank Roberto Lopez-Herrejon
and Maximilian Störzer for their helpful comments on earlier
drafts of the paper. This paper is a condensation of the mas-
ter’s thesis of C. Kästner. Apel was sponsored by the German
Research Foundation (DFG), project number SA 465/31-1
and SA 465/32-1. Batory’s research is sponsored by NSF’s
Science of Design Project #CCF-0438786.

References

[1] J. Aldrich. Open Modules: Modular Reasoning About Ad-
vice. In Proc. Europ. Conf. Object-Oriented Programming.
2005.

[2] S. Apel. The Role of Features and Aspects in Software De-
velopment. PhD thesis, University of Magdeburg, 2007.

[3] S. Apel and D. Batory. When to Use Features and Aspects?
A Case Study. In Proc. Int’l Conf. Generative Programming
and Component Engineering, 2006.

[4] S. Apel, C. Kästner, T. Leich, and G. Saake. Aspect Refine-
ment - Unifying AOP and Stepwise Refinement. In Proc.
Int’l Conf. TOOLS EUROPE, 2007.

[5] S. Apel, T. Leich, and G. Saake. Aspectual Mixin Layers:
Aspects and Features in Concert. In Proc. Int’l Conf. on
Software Engineering. 2006.

[6] S. Apel and J. Liu. On the Notion of Functional Aspects
in Aspect-Oriented Refactoring. In ECOOP Workshop on
Aspects, Dependencies, and Interactions, 2006.

[7] I. Aracic et al. Overview of CaesarJ. Transactions on Aspect-
Oriented Software Development I, 3880, 2006.

[8] D. Batory. Feature Models, Grammars, and Propositional
Formulas. In Proc. Int’l Software Product Line Conference,
2005.

[9] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-
Wise Refinement. IEEE Transactions on Software Engineer-
ing, 30(6), 2004.

[10] A. Bergel, S. Ducasse, and O. Nierstrasz. Classbox/J: con-
trolling the scope of change in Java. In Proc. Ann. ACM SIG-
PLAN Conf. Object-Oriented Programming, Systems, Lan-
guages and Applications. 2005.

[11] D. Binkley et al. Tool-Supported Refactoring of Existing
Object-Oriented Code into Aspects. IEEE Transactions on
Software Engineering, 32(9), 2006.

[12] J. R. Carter. Ada’s design goals and object-oriented program-
ming. Ada Lett., XIV(6), 1994.

[13] P. Clements and C. Kreuger. Point/Counterpoint: Being
Proactive Pays Off/Eliminating the Adoption Barrier. IEEE
Software, 19(4), 2002.

[14] Y. Coady and G. Kiczales. Back to the Future: A Retroac-
tive Study of Aspect Evolution in Operating System Code.
In Proc. Int’l Conf. Aspect-Oriented Software Development.
2003.

[15] L. Cole and P. Borba. Deriving Refactorings for AspectJ.
In Proc. Int’l Conf. Aspect-Oriented Software Development,
2005.

[16] A. Colyer, A. Rashid, and G. Blair. On the Separation of
Concerns in Program Families. Technical Report COMP-001-
2004, Computing Department, Lancaster University, 2004.

[17] K. Czarnecki and U. W. Eisenecker. Synthesizing Objects.
In Proc. Europ. Conf. Object-Oriented Programming. 1999.

[18] M. Eaddy and A. Aho. Statement Annotations for Fine-
Grained Advising. In ECOOP Workshop on Reflection, AOP,
and Meta-Data for Software Evolution, 2006.

[19] U. Eibauer. Studying the Effects of Aspect Oriented Refactor-
ing on Software Quality using HSQLDB as Example. Mas-
ter’s thesis, University of Passau, Germany, 2006.

[20] E. Ernst, K. Ostermann, and W. Cook. A virtual class calculus.
In Proc. Conf. Principles of Programming Languages. 2006.

[21] M. Fowler. Refactoring. Improving the Design of Existing
Code. Addison-Wesley, 1999.

[22] M. L. Griss. Implementing Product-Line Features by Com-
posing Aspects. In Proc. Int’l Software Product Line Confer-
ence. 2000.

[23] K. Gybels and J. Brichau. Arranging Language Features for
more Robust Pattern-Based Crosscuts. In Proc. Int’l Conf.
Aspect-Oriented Software Development. 2003.

[24] S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring of
Aspect-Oriented Software. In Proc. Net.ObjectDays, 2003.

[25] W. Harrison and H. Ossher. Subject-oriented programming:
a critique of pure objects. SIGPLAN Not., 28(10), 1993.

[26] F. Hunleth and R. K. Cytron. Footprint and feature man-
agement using aspect-oriented programming techniques. In
Proc. Conf. Languages, Compilers and Tools For Embedded
Systems. 2002.

[27] K. Kang et al. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Pittsburgh, PA, USA, 1990.

[28] C. Kästner. Aspect-Oriented Refactoring of Berkeley DB.
Master’s thesis, University of Magdeburg, Germany, 2007.

[29] C. Kästner, S. Apel, and G. Saake. Implementing Bounded
Aspect Quantification in AspectJ. In ECOOP Workshop
on Reflection, AOP, and Meta-Data for Software Evolution,
2006.

[30] G. Kiczales et al. Aspect-Oriented Programming. In Proc.
Europ. Conf. Object-Oriented Programming, volume 1241
of Lecture Notes in Computer Science. Springer, 1997.

[31] R. Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications, 2003.

[32] K. Lee et al. Combining Feature-Oriented Analysis and
Aspect-Oriented Programming for Product Line Asset De-
velopment. In Proc. Int’l Software Product Line Conference.
2006.

[33] K. J. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual
Collaborations: Combining Modules and Aspects. Comput.
J., 46(5), 2003.

[34] J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactor-
ing of Legacy Applications. In Proc. Int’l Conf. on Software
Engineering, 2006.

[35] R. Lopez-Herrejon and S. Apel. Measuring and Characteriz-
ing Crosscutting in Aspect-Based Programs: Basic Metrics
and Case Studies. In Proc. Int’l Conf. Fundamental Ap-
proaches to Software Engineering, 2007.

[36] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Sup-
port for Features in Advanced Modularization Technologies.
In Proc. Europ. Conf. Object-Oriented Programming. 2005.

[37] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disci-
plined Approach to Aspect Composition. In ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Pro-
gram Manipulation. 2006.

[38] O. L. Madsen and B. Moller-Pedersen. Virtual Classes: A
powerful mechanism in object-oriented programming. In
Proc. Ann. ACM SIGPLAN Conf. Object-Oriented Program-
ming, Systems, Languages and Applications. 1989.

[39] M. P. Monteiro and J. M. Fernandes. Towards a Catalog of
Aspect-Oriented Refactorings. In Proc. Int’l Conf. Aspect-
Oriented Software Development, 2005.

[40] G. C. Murphy et al. Separating Features in Source Code: an
Exploratory Study. In Proc. Int’l Conf. on Software Engineer-
ing. 2001.

[41] A. Nyssen, S. Tyszberowicz, and T. Weiler. Are Aspects
useful for Managing Variability in Software Product Lines?
A Case Study. In Aspects and Software Product Lines: An
Early Aspects Workshop at SPLC, 2005.

[42] N. Nystrom, S. Chong, and A. C. Myers. Scalable extensi-
bility via nested inheritance. In Proc. Ann. ACM SIGPLAN
Conf. Object-Oriented Programming, Systems, Languages
and Applications. 2004.

[43] C. Prehofer. Feature-Oriented Programming: A Fresh Look
at Objects. In Proc. Europ. Conf. Object-Oriented Program-
ming. 1997.

[44] T. Reenskaug et al. OORASS: Seamless Support for the
Creation and Maintenance of Object-Oriented Systems. J.
OO Programming, 5(6), 1992.

[45] M. Störzer and J. Graf. Using Pointcut Delta Analysis to
Support Evolution of Aspect-Oriented Software. In Proc.
Int’l Conf. Software Maintenance. 2005.

[46] A. Tesanovic, K. Sheng, and J. Hansson. Application-
Tailored Database Systems: A Case of Aspects in an Em-
bedded Database. In Proc. Int’l Database Engineering and
Applications Symposium. 2004.

[47] C. Zhang and H.-A. Jacobsen. Quantifying Aspects in
Middleware Platforms. In Proc. Int’l Conf. Aspect-Oriented
Software Development. 2003.

