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Abstract

A software product line is a family of related programs that

are distinguished in terms of features. A feature implements

a stakeholders’ requirement. Different program variants

specified by distinct feature selections are produced from a

common code base. The optional feature problem describes

a common mismatch between variability intended in the

domain and dependencies in the implementation. When this

situation occurs, some variants that are valid in the domain

cannot be produced due to implementation issues. There are

many different solutions to the optional feature problem, but

they all suffer from drawbacks such as reduced variability,

increased development effort, reduced efficiency, or reduced

source code quality. We examine the impact of the optional

feature problem in two case studies from the domain of

embedded database systems, and we survey different state-

of-the-art solutions and their trade-offs. Our intension is

to raise awareness of the problem, to guide developers in

selecting an appropriate solution for their product line, and

to identify opportunities for future research.

1. Introduction

Software product line (SPL) engineering is an efficient

and cost-effective approach to produce a family of

related program variants for a domain [1], [2], [3]. SPL

development starts with an analysis of the domain to identify

commonalities and differences between the programs of the

product line, which are described as features in a feature

model [4]. There are many different ways to implement SPLs;

we focus on those in which common implementation artifacts

are produced and a variant (a.k.a. product line member)

can be automatically generated from those artifacts without

further implementation effort based on the selected features

for this product. This includes implementation approaches

based on framework and plug-in architectures [5], generative

programming [3], [6], preprocessors [2], [7], and various

forms of aspects and feature modules [8], [9], [10], [11].

In this paper, we address one particular problem of SPL

development: the optional feature problem. It is fundamental

to SPL development and occurs when there are two features

in a domain that are both optional, but the implementations

of both features are not independent. For example, consider

an SPL of embedded database management systems

(DBMS).1 In this SPL, a feature STATISTICS is responsible

for collecting statistics about the database such as buffer hit

ratio, table size, cardinality, or committed transactions per

second. Not every embedded DBMS will need statistics –

to reduce runtime overhead and binary size, or statistics are

simply not needed – therefore this feature is optional in this

domain. In the same SPL, a feature TRANSACTIONS, that

supports safe concurrent access (ACID properties), is also

optional because it is not needed in all systems of the domain

– e.g., in single user or read-only variants. Nevertheless,

even though both features are optional, they cannot be

implemented independently as long as feature STATISTICS

collects values like “committed transactions per second”. That

is, the implementation of one optional feature affects or relies

on the implementation of another; features that appear to be

independent in the domain are not in their implementation.

There are different solutions to the optional feature

problem, but all have one or the other drawback, leading

to a fundamental trade-off in SPL development: Solutions

either reduce variability (i.e., they impose limitations on

possible feature combinations such that certain variants like

“a database with statistics but without transactions” can no

longer be generated), increase development effort, deteriorate

program performance and binary size, or decrease code

quality. For example, an intuitive solution would be to use

multiple implementations of the statistics feature, one that is

used when transactions are selected and another that is used

without transactions. However, this solution increases devel-

opment effort and leads to code replication. Another solution

is to use additional modules to untangle the conflicting imple-

mentation as used in [15], [16], [8], [17]. This approach has

been formalized with an underlying theory by Liu et al. [16]

as derivatives, but concerns have been raised in discussions

at ICSE’06 whether derivatives scale in practice. However,

so far there is only little empirical insight into the optional

feature problem regarding (a) its impact (how often does it

occur) and (b) the suitability of different solutions in practice.

1. Throughout this paper, we use the domain of embedded DBMS because
it is well-understood and applying SPL technology promises benefits for
embedded DBMS since functionality must be carefully tailored to specific
tasks and scarce resources on embedded devices [12], [13], [14].
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Figure 1. Excerpt of the feature model (left) and

implementation model (right) of a DBMS SPL.

We survey the state-of-the-art techniques and trade-offs

in solving the optional feature problem. We deduce recom-

mendations for their application and report experience from

two exploratory case studies in the domain of embedded

DMBS. In both studies, the impact of the optional feature

problem was severe: We found more pairs of implementation

modules that exhibit the optional feature problem than

there are features in the SPL. Depending on the solution

used, this drastically reduced (almost entirely eliminated)

variability, increased binary size (by up to 15 %), or increased

development effort (days instead of hours). We found that

there is no optimal solution; therefore we discuss a trade-off

between solutions to assist developers with choosing the best

solution in the context of their SPL.

2. The Optional Feature Problem

The optional feature problem occurs if two (or more)

optional features are independent in a domain, but are not

independent in their implementation. For a closer analysis, we

first distinguish between feature model and implementation

model in SPL development.

A feature model (a.k.a. domain model or product line

variability model) describes the features of a domain or SPL

and their relationships. That is, it defines the scope of the

SPL and the domain’s variability: it specifies which products

of the SPL are conceptually meaningful and desired [4], [3].

A common way to describe a feature model is with a feature

diagram, as shown for our database in Figure 1 (left), but

other representations are possible. Dependencies between

features in a feature model are called domain dependencies

and are independent of the features’ implementations. In

our database example, TRANSACTIONS requires WRITE

because there is no use for transactions in a read-only

database. However, there is no domain dependency between

STATISTICS and TRANSACTIONS, both features make sense

in isolation and in combination.

While the feature model describes domain concepts, imple-

mentation modules (such as components, plug-ins, aspects,

or feature modules) and their relationships are described in

an implementation model (a.k.a. software variability model

or family model) [2]. Domain model and implementation

model are linked, so that for a given feature selection the

according implementation modules can be composed. There

are many different notations for implementation models, in

Figure 1 (right) we use a simple component diagram for

illustration. In this example, the implementation of statistics

references or extends code from the implementation of

transactions to collect values as “committed transactions per

second”, as explained above. We call a dependency between

implementation modules an implementation dependency.2

The optional feature problem arises from a mismatch

between feature model and implementation model. In our

example, features STATISTICS and TRANSACTIONS are

optional and independent, but there is a dependency in their

implementation. Although, considering the feature model,

it appears that we can create a variant with STATISTICS but

without TRANSACTIONS, an implementation dependency

prevents this.

The optional feature problem has interesting implications.

First, if the feature model describes that both features

can be selected independently (assuming that the feature

model correctly describes the domain), we should be able to

find an implementation for each variant; the difficulty lies

in generating those variants from reusable implementation

modules. Second, an implementation dependency between

two features is usually not accidental. If both features are

selected, there should be some additional behavior. In our

example, it is intended that STATISTICS collects statistics

about TRANSACTIONS if both features are selected, but

both features should also work in isolation. This fine-grained

adjustment in behavior does not justify adding another feature

like ‘STATISTICS ON TRANSACTIONS’ to the feature model

– it is an implementation concern.

For further illustration, consider a second example: an

optional feature WRITE in the database allows us to generate

read-only variants (by removing feature WRITE). However,

the implementation of WRITE cuts across the entire database

implementation and many features. For example, indexes

require a different implementation, so do the buffer manager,

statistics, and many other features. Once feature WRITE

is selected, it has an impact on numerous features and

causes many implementation dependencies. Finding the right

implementation mechanism so that read-write and read-only

variants with and without indexes or statistics can all be

generated efficiently remains the challenge for the remainder

of this paper.

3. An Analysis of Standard Solutions

When developers find the optional feature problem in their

code (manually or with tool support as in [18]), i.e., when

they find an implementation dependency that is not covered

2. We assume that the implementation model correctly describes imple-
mentation modules and includes all implementation dependencies. Detecting
a mismatch between implementation model and implementation modules
is a separate research problem outside the scope of this paper (see related
work in Sec. 6).



by a domain dependency, they need to decide how to handle

it. They can either (1) keep the implementation dependency

or (2) eliminate it by changing the implementation. In the

following, we discuss both approaches and their implications.

3.1. Keeping the Implementation Dependency

The first solution is simple, because we do not need to

change anything. We can simply acknowledge the existence

of the implementation dependency and accept that it prevents

us from generating certain variants like a database with

STATISTICS but without TRANSACTIONS.3

While this solution has the advantage that it is not neces-

sary to take any action, it reduces the variability of the SPL

(or at least acknowledges the reduced variability) compared

to what should be possible in the domain. Depending on the

importance of the excluded variants – that are possible in

the domain, but not with the current implementation – the

reduced variability can have a serious impact on the strategic

value of the SPL.

3.2. Changing Feature Implementations

Instead of reducing variability by acknowledging an

implementation dependency, we can eliminate the dependency

by changing the implementations of the features involved.

There are different state-of-the-art approaches which we

discuss separately.

Changing Behavior to Enforce Orthogonality. To

eliminate an implementation dependency, we can change the

behavior of one (or more) variants such that the involved

features can be implemented without dependency. In our

example, it may be acceptable to never collect statistics about

transactions. Although this alters the behavior of a variant

with STATISTICS and TRANSACTIONS against the original

intensions, it eliminates the implementation dependency.

Unfortunately, this solution is only possible in rare cases.

As discussed above, the additional behavior when both

features are selected is usually intended. Omitting this

behavior can lead to variants with unsatisfactory, surprising,

or even incorrect results. In many cases, it is difficult to

think of reasonable changes that would lead to orthogonal

implementations in the first place.

Moving Code. In some cases it is possible to move some

code of the implementation of one feature to another feature.

For example, we could move the code for collecting and

querying statistics on transactions to the implementation of

3. Depending on the technique used for modeling and reasoning, this
may require to change the feature model. Changing the feature model can
blur the separation of domain and implementation concerns, therefore it
is recommendable to at least document which dependencies in the feature
model represent implementation issues instead of domain issues.

feature TRANSACTIONS. This way, a piece of the function-

ality of statistics is included in every variant with TRANS-

ACTIONS, independently of whether STATISTICS is selected.

When TRANSACTIONS is selected without STATISTICS some

of the statistics code is included unnecessarily but simply

never called by other implementation modules.

While this approach is often feasible, it has two drawbacks.

First, this violates the principle of Separation of Concerns

(SoC) [19], [8], since we move code into implementation

modules where it does not belong, only for technical reasons

(see also related work in Sec. 6). Second, some variants

contain unnecessary code, which can lead to inefficient

programs regarding both binary size and performance

(overhead for collecting statistics that are never queried).

Whether this is acceptable depends on the particular SPL.

Multiple Implementations per Feature. A third solution,

without the drawbacks of the previous two, is to provide

different implementations of a feature, depending on the

selection of other features. In our example, we could

have two implementations of feature STATISTICS: one that

collects statistics on transactions and one that does not.

Which of these implementations is select during generation

depends on the presence of feature TRANSACTIONS.

While this approach allows us to generate all variants,

there are two main problems: code replication and scaling.

The alternative implementations usually share a significant

amount of code. Furthermore, a feature with implementation

dependencies to n optional features would require 2
n

different implementations to cover all variants.

Conditional Compilation. A very different solution is not to

modularize the feature implementation, but use preprocessors

or similar tools for conditional compilation. This way, it

is possible to surround the code that collects statistics

about transactions with directives like ‘#ifdef TXN’ and

‘#endif ’. We call such preprocessor statements regarding

features ‘annotations’. During generation, annotations are

evaluated and – in our example – if feature TRANSACTION

is not selected, the according code is removed before

compilation. Nested #ifdef directives can be used to annotate

code that is included only when two or more features are

selected. Conditional compilation is a general implementation

mechanism for SPLs [2], [7] or can be used inside modular

implementation mechanisms as plug-ins, components, feature

modules, or aspects [20].

Although this solution can implement all variants without

code replication or unnecessary code, conditional compilation

is heavily criticized in literature as undisciplined approach

that violates separation of concerns and modularity and that

can easily introduce hard-to-find errors [21], [22], [2].

Refactoring Derivatives. Finally, there is a general

refactoring to remove implementation dependencies



Solution variability additional effort binary size & performance code quality

Ignore Implementation Dep. less variants (– –) no effort (++) efficient (++) no impact (++)
Changing Behavior all variants, when possible (+) little to no effort (+) potentially inefficient (–) no impact (++)
Moving Code all variants (++) little effort (+) inefficient (– –) reduced SoC (–)
Multiple Implementations all variants (++) very high effort (– –) efficient (++) high replication (– –)
Conditional Compilation all variants (++) little to medium effort (+) efficient (++) no modularity & SoC (– –)
Derivatives all variants (++) high effort (–) efficient (++) modular but many modules (+)

Table 1. Comparison of solutions to the optional feature problem
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Figure 2. Illustration of derivative modules.

while keeping modular implementations, described by

Prehofer [15] and formalized by Liu et al. [16]. The idea

is to extract the code responsible for the dependency into

a separate module. This solution consists of two steps:

first, the responsible code is removed from both features’

implementation so that both are orthogonal; second, this

code is reintroduced as a new implementation module called

derivative module. The derivative module is included in the

generation process to restore the original behavior if and

only if both original implementation modules are selected.

In our example, the derivative would contain the code to

collect statistics about transactions. Basically, a derivative

contains the code that would be located in nested annotations

in the conditional compilation solution. Derivative modules

represent implementation concepts and not domain concepts,

therefore they are not included in the feature model but

included in the generation process automatically [16].

We illustrate this idea in Figure 2: The code that binds

both features A and B together is separated into a new

derivative module named A\B. With this refactoring, it is

possible to compose both features in isolation, but also in

combination together with the new derivative module. If one

implementation module has multiple implementation depen-

dencies, we need a derivative module for each dependency,

thus there are n derivative modules for n dependencies,

instead of 2
n different implementations as in the “multiple

implementations” solution above. If more than two features

interact at the same time, this can be resolved with higher-

order derivative modules (like A\B\C in Fig. 2) in the same

way [16] (similar to nested preprocessor statements).

Compared to conditional compilation, derivatives allow

modular implementations and enforce a strict separation of

concerns (see discussions in [16], [17]). However, while

derivatives can eliminate implementation dependencies, it

requires a certain effort to refactor the source code.

3.3. Summary

In Table 1, we compare the different solutions with regard

to four criteria: variability, effort, efficiency, and code quality.

Grades ranging from ++ (best) to – – (worst) are given roughly

based on the discussion of the solutions above. Variability

describes the ability to realize all variants prescribed by

the feature model (not possible when ignoring implemen-

tation dependencies; only sometimes possible by changing

behavior). Additional effort is required by all approaches

to eliminate implementation dependencies, but with varying

amount; for example, refactoring derivatives is usually a more

complicated process than adding #ifdef ’s or moving code.

The fourth column characterizes whether the solution can

provide an efficient implementation for each variant (moving

code results in unnecessary code in some variants; changing

behavior implements a different behavior than intended).

Finally, code quality characterizes the apparent effects of

replication, reduced modularity, and separation of concerns.

As it can be seen from the table, there is no ‘best’ solution;

all solutions have different advantages and disadvantages

(only ‘multiple implementations’ seems to be always weaker

than ‘derivatives’ and ‘conditional compilation’). However,

this table is derived only from a qualitative discussion of

these solutions. In the following, we enrich it with experience

from two case studies.

4. A Real Problem – Case Studies

Given the discussed solutions, it seems that developers

have to decide for the lesser evil. They can either accept an

implementation dependency, which reduces the variability

of the SPL, or they can apply some changes to the source

code accepting some drawbacks. Especially approaches that

increase the effort require evaluation on whether they are

applicable in practice.

To the best of our knowledge there is no study that

explores the effects of the optional feature problem and its

solutions on SPLs of substantial size. Especially derivative

modules have been discussed almost exclusively on small

academic examples, e.g., [15], [16], [17]. However, in our

experience in teaching SPL development (with AspectJ [9]

and AHEAD [10]) and in the development of DBMS

SPLs [14], [23], we encountered the optional feature problem



very frequently. For this reason, we analyze the impact of the

optional feature problem on SPL development and explore so-

lutions in two case studies. First, we report our experience in

decomposing Berkeley DB and afterward we analyze FAME-

DBMS which we designed and implemented from scratch.

4.1. Decomposition of Berkeley DB

Oracle’s Berkeley DB4 is an open source database engine

(approx. 70 000 LOC) that can be embedded into applications

as a library. In two independent endeavors, we decomposed

both the Java and the C version of Berkeley DB into fea-

tures [23], [14]. Our aim of this decomposition was to down-

size data management solutions for embedded systems [14].

Specifically, we aimed at generating different tailored variants,

especially smaller and faster variants, by making features like

transactions, recovery, or certain database operations optional.

The decomposition was originally performed by extracting

legacy code of a feature into a separate implementation

module (technically, we used aspects written in AspectJ [9]

respectively feature modules written with FeatureC++ [24]).

To generate a variant, we then specified which modules to

include in the compilation process. We already discussed

the AspectJ-specific experience of this decomposition in

SPLC’07 [23]. Here, we focus on the optional feature prob-

lem that is largely independent of the programming language

and that was excluded from discussions in prior work.

Impact of the Optional Feature Problem. In the Java

version, we refactored 38 features, which took about one

month. Almost all features are optional and there are

only 16 domain dependencies; in theory, we should be

able to generate 3.6 billion different variants.5 However,

implementation dependencies occurred much more often than

domain dependencies: With manual and automated source

code analysis, we found 53 implementation dependencies

that were not covered by domain dependencies. An excerpt

of features and corresponding dependencies between their

implementation modules is shown in Figure 3. We select

9 features with many implementation dependencies and omit

other features and dependencies due to space restrictions

(implementation dependencies marked with ‘x’; direction of

dependencies omitted for simplicity; there are no domain

dependencies between these features, since all are optional in

the feature model; see [23] for a complete list of features and

description). Overall, in Berkeley DB, the optional feature

problem occurred between 53 pairs of features.

Ignoring all implementation dependencies is not

acceptable, because this would restrict the ability to generate

tailored variants drastically. In pure numbers the reduction

from 3.6 billion to 0.3 million possible variants may appear

4. http://www.oracle.com/database/berkeley-db

5. To determine the number of variants, we use the FAMA tool [25],
kindly provided by D. Benavides.

11 12 13 20 27 29 30 31 33

11. ATOMICTRANSACT.

12. FSYNC x

13. LATCHES x x

20. STATISTICS x x x

27. INCOMPRESSOR x x x x

29. DELETEDBOP. x x x x

30. TRUNCATEDBOP. x x x

31. EVICTOR x x x

33. MEMORYBUDGET x x x x x

Figure 3. Implementation dep. in Berkeley DB (excerpt).
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Figure 4. Number of implementation dependencies in

Berkeley DB.

significant but acceptable considering that still many variants

are possible. Nevertheless, having a closer look, we found

that especially in the core of Berkeley DB, there are

many implementation dependencies. Important features like

statistics, transactions, memory management, or database

operations, shown in Figure 3, must be selected in virtually

all variants. This prevents many useful variants, so we have

to use suboptimal variants in many scenarios, in contrast

to our initial intension expressed in the feature model.

The remaining variability of 0.3 million variants is largely

due to several small independent debugging, caching, and

IO features. Considering all implementation dependencies,

this SPL has little value for generating variants tailored to

concrete use cases without statistics, without transactions, or

as read-only database.

In the C version, which has a very different architecture

and was independently decomposed by a different developer

into a different set of features, we extracted 24 features [14].

The overall experience was similar: With only 8 domain

dependencies almost 1 million variants are theoretically

possible, but only 784 variants can be generated considering

all 78 implementation dependencies that we found. Again,

important features were de facto mandatory in every variant.

These numbers give a first insight into the impact of the

optional feature problem. Furthermore, consider that with

a more detailed domain analysis, we would find far more

features in the domain of embedded DBMS than used in these

case studies. An analysis of the number of implementation

dependencies in Figure 4 shows a tendency that in an SPL

with further features, many more implementations dependen-



cies can be expected. (Again, the numbers of the Java and

the C version are not directly comparable due to different

feature sets and independent development). In Berkeley DB,

ignoring implementation dependencies reduces variability to

a level that makes the SPL approach almost useless.

Exploring Solutions. After the analysis revealed that ig-

noring all implementation dependencies is not an option,

we explored different solutions to eliminate implementation

dependencies. Since we created the SPL from an existing

application, we wanted to preserve the original behavior and,

thus, discarded the solution to change behavior. Observing

features with up to 9 implementation derivatives, also the

solution to provide (up to 512) alternative implementations

seemed not suitable. Focusing on a clean separation of

concerns, we started with refactoring derivatives.

In Java, we started with 9 derivative modules to elimi-

nate all direct implementation dependencies of the feature

STATISTICS. The 9 derivative modules alone required over

200 additional pieces of advice or inter-type declarations

with AspectJ. Of 1867 LOC of the statistics feature, 76 %

were extracted into derivative modules (which would also be

the amount of code we needed to move into different features

for solution “move code”). In the C version, we refactored

19 derivatives. In both case studies, this refactoring was rather

tedious and required between 15 minutes and two hours for

each derivative depending on the amount of code. Due to the

high effort, we refrained from refactoring all implementation

dependencies into derivatives.

Next, we experimented with conditional compilation. In

the C version, we directly used #ifdef statements inside

the code of FeatureC++ modules. In the Java version, as

Java has no native preprocessor, we used a preprocessor-

like environment CIDE [7] to eliminate all implementation

dependencies. Preparing the code with conditional compila-

tion was significantly faster than refactoring derivatives since

no changes to the code were necessary except introducing

annotations. However, code quality suffers as there is no form

of modularity, feature code is scattered and tangled (up to

300 annotated code fragments in 30 classes per feature), and

there are many nested annotations up to a nesting level of 3.

In Berkeley DB, both the derivative solution and the

conditional compilation solution were acceptable despite their

drawbacks. While we prefer a clean separation of concerns,

the required effort was overwhelming. At the current state

of development a mixture of derivatives and conditional

compilation appears to be a good compromise.

4.2. Design and Implementation of FAME-DBMS

The question remains whether the high number of im-

plementation dependencies is caused by the legacy design

of Berkeley DB and our subsequent refactoring or whether

they are inherent in the domain and thus also appear in

FAME-DBMS

OS BufferMgr StorageDebug Logging

Nut/OS Win InMemoryPersistent UnindexedB+TreeAPI

MemAlloc PageRepl. get put delete

LRU LFUStatic Dyn.

Figure 5. Initial feature model of FAME-DBMS.

DBMS SPLs designed from scratch. One may assume that

implementation dependencies arise solely because a legacy

application was not designed with optional features in mind.

With a careful redesign, we might have avoided some of these

implementation dependencies. To evaluate whether implemen-

tation dependencies are ‘just’ a problem of legacy design, we

conducted a second case study, in which we designed and im-

plemented a database SPL called FAME-DBMS from scratch.

FAME-DBMS is a database SPL prototype designed

specifically for small embedded systems. Its goal was to

show that SPL technologies can tailor data management

for special tasks in even small embedded systems (e.g.,

BTNode with Nut/OS, 8 MHz, and 128 kB of memory).

FAME-DBMS provides only essential data management

mechanisms to store and retrieve data via an API. Advanced

mechanisms like transactions, set operations on the data, or

query processing is being added in ongoing work. The initial

development, which we describe here, was performed in a

project by a group of four graduate students at the University

of Magdeburg, after Berkeley DB’s decomposition. From

SPL lectures, the students were familiar with feature

modeling and implementing SPLs using FeatureC++ [24].

Design. FAME-DBMS was designed after careful analysis

of the domain and existing embedded DMBS (Courgar,

TinyDB, PicoDBMS, Comet, and Berkeley DB). The initial

feature model of FAME-DBMS, as presented in the kick-off

meeting of the project, is depicted in Figure 5; only layout

and feature names were adapted for consistency. It shows

the subset to be implemented in this initial phase with

14 relevant features (grayed features were not implemented

directly but have been introduced for structuring the feature

model). To customize FAME-DBMS, we can choose

between different operating systems, between a persistent

and an in-memory database, and between different memory

allocation mechanisms and paging strategies. Furthermore,

index support using a B+-tree is optional, so is debug

logging, and finally it is possible to select from three optional

operations get, put, and delete. Regarding solely the feature

model, 320 different variants of FAME-DBMS are possible.

This feature model represents domain concepts and, in

particular, the variability considered to be relevant. While a

different feature model might have avoided some problems

later on, the domain model should be independent of any



1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. Nut/OS

2. Win o

3. InMemory

4. Persistent o

5. Static x x o o

6. Dynamic x x o o o

7. LRU o o

8. LFU o o o

9. Unindexed

10. B+-tree o

11. Put x x x x x

12. Get x x x x x

13. Delete x x x x x x x

14. Debug x x x x x x x x x x x x x

Figure 6. Domain dependencies (‘o’) and implementa-

tion dependencies (‘x’) in FAME-DBMS.

implementation. The fine granularity is deliberately chosen,

reflecting the domain’s requirements (typically very specific

tasks; binary size is expensive in mass production) [26].

Soon after the initial design, the students realized that many

of the features could not be implemented orthogonally but that

there would be many implementation dependencies. In Fig-

ure 6, we show the domain dependencies (‘o’) and the imple-

mentation dependencies (‘x’) that were expected additionally.

The latter are instances of the optional feature problem. For

example, feature DEBUG LOGGING has an implementation

dependency with every other feature (it extends them with

additional debugging code) but should be independent by

the feature model. Also the features GET, PUT, DELETE,

NUT/OS, and WIN have many implementation dependencies.

This analysis already shows that it is necessary to find a

suitable implementation to prevent dependencies, because

ignoring them would almost entirely eliminate variability.

Implementation. We left the implementation up to the

students. We recommended the derivative solution, but did

not enforce it. In the remainder of this section, we describe

the implementation at the end of the project and discuss

choices and possible alternatives.

First, as expected, the students eliminated most implemen-

tation dependencies to increase variability. There were only

two exceptions regarding the access API features: (1) the

implementation of feature PUT and DELETE were combined,

i.e., they were implemented with a single module so that they

cannot be selected independently; (2) implementation depen-

dencies to the implementation module of GET were not elim-

inated making this feature de facto mandatory in all variants.

With this choice the students reduced the number of imple-

mentation dependencies from 36 to 22 but also the number of

possible variants from 320 to 80. The intension behind these

decisions was the following: although there are use cases for a

database that can write but not delete data, or even for a write-

only database (see [26]), these variants are used so rarely that

the students considered the reduced variability acceptable.

Second, the feature DEBUG LOGGING was implemented

using conditional compilation. This eliminated

11 implementation dependencies, but scattered the

debugging code across all implementation modules.

Alternatively, some debugging code could have been moved

into the base implementation causing a little runtime penalty,

11 derivative modules could have been created, or even up

to 2
11 alternative implementations. The students decided to

use conditional compilation to avoid additional effort.

Third, the implementation of B+-TREE always contains

code to add and delete entries, even in read-only variants.

In those variants, the additional code is included but never

called. This implementation was chosen because the solution

was straightforward and simple in this case, compared to

additional effort required for derivatives. A measurement

after the end of the project revealed that the unnecessary

code increased binary size by 4–9 kB (5–13 %; depending

on the remaining feature selection).

Fourth, the remaining 10 implementation dependencies

were refactored into derivative modules, following our origi-

nal recommendation. The additional effort was considered

the lesser evil compared to a further reduction of variability,

a further scattering of code with preprocessor annotations, or

a further increase in binary size. Alternative implementations

were not considered at any time.

Overall, the FAME-DBMS case study illustrates that

the optional feature problem is not necessarily a problem

of legacy design, but appears to be inherent in SPLs

with multiple optional features. The implementation of

FAME-DBMS used a combination of various solutions,

but still increased the code size in some variants, reduced

variability and required effort to refactor 10 derivative

modules. Even in such small SPLs the optional feature

problem pervades the entire implementation.

4.3. Threats to Validity

Our case studies differ in three points from many SPLs we

have seen in practice, which might threat external validity.

First, both case studies are from the domain of embedded

DBMS, raising the question, whether these results are

transferable to other domains. Our experience from several

small projects indicates that the optional feature problem

also occurs frequently in other domains, but further empirical

evidence is necessary.

Second, as stated above, we consider only implementation

approaches in which variants can be generated from a

common code base without implementation effort during

application engineering. In approaches where reusable core

assets are created and combined manually to build a variant,

the task of handling the optional feature problem is deferred

to application engineering. For example, it may be the

responsibility of the application engineer to implement the

“committed transactions per second” statistics in every variant



with STATISTICS and TRANSACTIONS.

Third, our case studies use features at a fine level of

granularity. We extracted very small features, some of which

have many implementation dependencies. This is necessary

in our target domain to achieve the desired flexibility and

to deal with resource restrictions efficiently [13]. This is in

line with Parnas’ design for change that suggests minimal

extensions [27]. The usage of rather coarse-grained features,

often seen in practice, may indicate why the optional

feature problem was not noticed earlier. Alternatively, feature

granularity may have been modeled coarse intentionally to

avoid this problem, despite the lowered variability. This

means that designers have encountered the optional feature

problem, and intuitively made trade-offs, using a combination

of the solutions we described, and may never have realized

the generality of the problem.

5. Discussion and Perspective

In both case studies, the optional feature problem occurred

very often, i.e., many features that appear orthogonal in the

feature model are not independent in their implementation.

Ignoring implementation dependencies however reduces the

SPL’s variability to a level that completely defies the purpose

of the SPL approach. Instead, solutions to eliminate one or

more implementation dependencies are needed very often.

Which solution a programmer should use for eliminating

implementation dependencies depends on the context of the

SPL project. From an academic perspective, derivatives ap-

pear to be a good solution as they do not change the behavior

and can be implemented in a modular way. Nevertheless,

pragmatically also other solutions with lower effort may be

preferred, considering the importance of binary size, perfor-

mance, or code quality, and considering whether behavioral

changes are acceptable. For example, for uncritical debugging

code, scattering with conditional compilation might be ac-

ceptable; moving code is a suitable pragmatic solution if only

small code fragments must be moved. There is no overall best

solution, but our comparison in Table 1 and the experience

from our case studies can be used as a guideline for selecting

the appropriate (mix of) solutions for the SPL project at hand.

In our experience, determining the number of implementa-

tion dependencies is to some degree possible without actually

implementing the SPL. Typically, a developer who is familiar

with the target domain can predict whether two features can

be implemented with orthogonal implementation modules.

Systematically analyzing probable occurrences of the optional

feature problem prior to implementation (as we did in

Figure 6) can help choosing a suitable solution. For example,

features that cause many implementation dependencies can be

reconsidered in the feature model (e.g., in FAME-DBMS the

features PUT and DELETE were merged after such analysis be-

fore implementation), or implemented with a solution that re-

quires lower effort (see DEBUG LOGGING in FAME-DBMS).

Furthermore, the following decision has to be weighted

for every SPL: Are implementation dependencies eliminated

during initial development or just documented while their

elimination is deferred until a customer actually requires a

particular variant? Eliminating implementation dependencies

upfront requires a higher initial effort but reduces marginal

costs of products later (in line with a proactive adoption

approach [28]). Postponing the elimination may encourage

‘quick & dirty’ solutions with lower effort but also reduced

code quality.

As there is no generally satisfying solution, further research

is needed to improve the current solutions. One promising

area of research are automated refactorings that can extract

derivatives with little human intervention [16], [7]. For this au-

tomation it is first necessary to locate the code responsible for

the implementation dependency, which is a special instance of

the feature location problem [29]. To what degree this process

can be automated is an open research question. Regarding

other solutions, tools that estimate the impact of moving

code into another feature (in terms of binary size or perfor-

mance) are helpful in deciding whether moving code is a

suitable option, and automated transformations of conditional

compilation into modules can help to increase modularity.

Another issue which we did not discuss so far (because it is

difficult to quantify) is readability and maintainability. While

conditional compilation is generally regarded as a problem

for understanding and maintenance [21], [22], [2], modularity

and a clean separation of concerns are supposed to help [19],

[8]. However, we experienced that a feature split into many

modules (e.g., one implementation module and 9 derivative

modules for the feature STATISTICS in Berkeley DB) can

be a double-edged sword: On the one hand, we can easily

reason about the core implementation of statistics or the code

for “committed transactions per second”, but on the other

hand, to understand statistics in its entirety, it is necessary to

reconstruct the behavior from several modules in the develop-

ers head. We have reasons to believe that the other solutions

might be easier to understand than a feature split into too

many modules. What ‘too many’ means is an open research

question. We also found that some tool support for conditional

compilation can make this solution easy to understand when

used in certain limitations. For example, navigation support

and even views on the source code (e.g., show all code of

feature STATISTICS) can aid understanding [7]. An empirical

study (in the form of a controlled experiment) to compare

the effect of different solutions on understandability and

maintainability appears a promising path for future research.

6. Related Work

The optional feature problem is closely related to multi-

dimensional separation of concerns and the tyranny of the

dominant decomposition [8], which describes that programs

are decomposed into modules according to a single dominant



dimension only. Other concerns, which do not align with

this dominant decomposition, are difficult to modularize.

Decomposing a software system along different dimensions is

a fundamental problem in software engineering. The optional

feature problem adds another difficulty as modularization

is not only desirable regarding code quality, but also for

implementing optional features. If the application is not prop-

erly decomposed, implementation dependencies or variants

with inefficient binary size or performance are the result.

The solution used in Hyper/J is essentially equivalent to

the derivative solution and splits a concern into many small

modules [8], [17].

Furthermore, the optional feature problem is closely related

to research in the field of feature interactions [30]. Feature

interactions can cause unexpected behavior when two optional

features are combined. In the common example of a cell

phone with both call forwarding and call waiting, some

additional code is necessary to clarify how to decide which

features actually handles an incoming call. In some cases

feature interactions can be detected by implementation

dependencies, however detecting feature interactions that

occur during runtime, as in the cell phone example above, is

a very difficult task with a long history of research (see survey

in [30]). Once the interaction has been detected, different

implementations for different feature combinations can be

provided with the solutions discussed in this paper.

A mismatch between feature model and implementation

model can be automatically detected by tools, e.g., [18].

In this paper, we explored how to solve the optional

feature problem once it has been detected. Furthermore,

we assume that the implementation model correctly de-

scribes all dependencies between implementation modules.

Detecting a mismatch between implementation model and

implementation modules (which may include code prepared

for conditional compilation) is addressed in research on safe

composition respectively type-checking SPLs [31], [32], [33].

Finally, the matrices in Figures 3 and 6, which we use to

document implementation dependencies (and to estimate

their number upfront), are similar to a design structure

matrix (DSM) [34]. DSMs are common means to analyze

dependencies in software systems and aim at design or

analysis of software systems. DSMs can be used to describe

implementation models and for analysis, but again do not

solve implementation problems.

There are only few studies that report experience with

the optional feature problem. Some studies observe the

difference between feature model and implementation model

and that the latter is stricter than the former. However, in

most studies this reduced variability is accepted without

considering alternatives, e.g., in [35]. The derivative solution

of using additional modules to separate two implementations

was first introduced by Prehofer [15] and similarly used in

[8] and [17]. Though not targeted at variability or at reusable

artifacts in an SPL, adapters that connect independently

developed classes or components use similar mechanisms.

When combining two independent components, the ‘glue

code’ between them is manually written or taken of a library

of existing adapters [36], [37]. Finally, Liu et al. formalized

the composition of features with a mathematical model

and introduced the terms ‘optional feature problem’ and

‘derivative module’ [16]. All of these publications focus on

underlying mechanisms, but do not report experiences on

how derivatives scale to large SPLs.

Finally, we studied Berkeley DB already in prior work [23],

[7], [14]. Already during our first decomposition, we noticed

the optional feature problem, however previous studies

focused on different issues first (performance of embed-

ded DBMS [14], suitability of AspectJ to implement an

SPL [23], and expressiveness of different implementation

mechanisms [7]). In this paper, we focused only on the

optional feature problem. It is independent of whether the

SPL is implemented with AspectJ, AHEAD, Hyper/J, or

a framework with plug-ins, and independent of the actual

preprocessor used for conditional compilation.

7. Conclusions

We have discussed the optional feature problem, illustrated

how it influences SPL development in two database SPLs,

and analyzed the state-of-the-art solutions and their trade-

offs. The optional feature problem comes from a mismatch

of desired variability of the feature model and restrictions

from implementation dependencies. In our case studies,

variability was reduced to a minimum that rendered the SPL

almost useless. While there are several solutions to eliminate

implementation dependencies and thus restore variability,

they all suffer from drawbacks regarding required effort,

binary size and performance, and code quality. For example,

derivatives promise a modular implementation but our case

studies show that in practice the required effort can be

overwhelming.

When faced with the optional feature problem, developers

have to decide how to handle it. Our survey of different

solutions, summarized in Table 1, and experience from our

case studies can serve as guideline to decide for the best

(mix of) solutions in the context of the SPL at hand.

In future work, we will investigate whether we can group

features into dimensions and program cubes. Furthermore,

we will explore automation and visualizations to reduce

effort for the respective solutions.
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