
1 23

Software Quality Journal

ISSN 0963-9314
Volume 20
Combined 3-4

Software Qual J (2012) 20:487-517
DOI 10.1007/s11219-011-9152-9

SPL Conqueror: Toward optimization
of non-functional properties in software
product lines

Norbert Siegmund, Marko Rosenmüller,
Martin Kuhlemann, Christian Kästner,
Sven Apel & Gunter Saake

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

SPL Conqueror: Toward optimization of non-functional
properties in software product lines

Norbert Siegmund • Marko Rosenmüller • Martin Kuhlemann •

Christian Kästner • Sven Apel • Gunter Saake

Published online: 28 June 2011
� Springer Science+Business Media, LLC 2011

Abstract A software product line (SPL) is a family of related programs of a domain. The

programs of an SPL are distinguished in terms of features, which are end-user visible

characteristics of programs. Based on a selection of features, stakeholders can derive tailor-

made programs that satisfy functional requirements. Besides functional requirements,

different application scenarios raise the need for optimizing non-functional properties of a

variant. The diversity of application scenarios leads to heterogeneous optimization goals

with respect to non-functional properties (e.g., performance vs. footprint vs. energy opti-

mized variants). Hence, an SPL has to satisfy different and sometimes contradicting

requirements regarding non-functional properties. Usually, the actually required non-

functional properties are not known before product derivation and can vary for each

application scenario and customer. Allowing stakeholders to derive optimized variants

requires us to measure non-functional properties after the SPL is developed. Unfortunately,

the high variability provided by SPLs complicates measurement and optimization of non-

functional properties due to a large variant space. With SPL Conqueror, we provide a

holistic approach to optimize non-functional properties in SPL engineering. We show how

non-functional properties can be qualitatively specified and quantitatively measured in the

N. Siegmund (&) � M. Rosenmüller � M. Kuhlemann � G. Saake
University of Magdeburg, Magdeburg, Germany
e-mail: nsiegmun@ovgu.de

M. Rosenmüller
e-mail: rosenmue@ovgu.de

M. Kuhlemann
e-mail: mkuhlema@ovgu.de

G. Saake
e-mail: saake@ovgu.de

C. Kästner
Philipps University Marburg, Marburg, Germany
e-mail: kaestner@informatik.uni-marburg.de

S. Apel
University of Passau, Passau, Germany
e-mail: apel@uni-passau.de

123

Software Qual J (2012) 20:487–517
DOI 10.1007/s11219-011-9152-9

Author's personal copy

context of SPLs. Furthermore, we discuss the variant-derivation process in SPL Conqueror

that reduces the effort of computing an optimal variant. We demonstrate the applicability

of our approach by means of nine case studies of a broad range of application domains

(e.g., database management and operating systems). Moreover, we show that SPL Con-

queror is implementation and language independent by using SPLs that are implemented

with different mechanisms, such as conditional compilation and feature-oriented

programming.

Keywords Software product lines � Non-functional properties � Feature-oriented software

development � Measurement and optimization � SPL Conqueror

1 Introduction

A software product line (SPL) is a family of related program variants that share a common

code base (Clements and Northrop 2002). Program variants of an SPL are distinguished in

terms of features, which are end-user visible characteristics of programs (Czarnecki and

Eisenecker 2000). Features usually satisfy functional requirements of stakeholders. Hence,

by selecting a set of features, stakeholders derive exactly the variant that fulfills their

functional requirements. Common techniques to implement features are conditional

compilation (e.g., C preprocessor using #ifdef), components and feature modules (Batory

et al. 2004). Features are mapped to these implementation units. According to a feature

selection, the corresponding implementation units are used to generate a variant.

Besides functional requirements, stakeholders have requirements regarding non-func-
tional properties of a program (Chung et al. 1995). In the literature, the definition of non-

functional properties (also referred to as quality attributes) is not consistent (Robertson and

Robertson 1999; Glinz 2007; Chung and do Prado Leite 2009). We use the definition of

Robertson and Robertson (1999), who define a non-functional property as: ‘‘A property, or
quality, that the product must have, such as an appearance, or a speed or accuracy
property.’’ We focus on common non-functional properties such as performance, reli-

ability, footprint and so forth. When developing single programs, non-functional

requirements are identified and documented before product development (Chung et al.

1999). During development, tools such as the non-functional requirements framework

(Chung et al. 1999), i* framework (Yu 1997) and KAOS (van Lamsweerde 2001) help

developers with design decisions that affect non-functional properties of the final program

variant. Conflicting requirements have to be resolved during development (van Lamswe-

erde et al. 1998). SPLs change this picture.

In contrast to conventional software development, an SPL usually covers a broad

spectrum of application scenarios in a certain domain. A vendor develops an SPL for an

entire domain in which stakeholders can have very different non-functional requirements.

Depending on the concrete application scenario, it is even possible that customers have

conflicting or contradicting non-functional requirements. Hence, an SPL has to satisfy very

different non-functional requirements. As running example, consider an SPL of database
management systems (DBMS). Stakeholders of such an SPL (e.g., users who derive a

variant of an SPL) have completely different non-functional requirements when they use a

particular variant in different application scenarios, such as mobile devices, parallel

computers, or desktop computers. For example, the footprint of a DBMS variant has to be

minimized for an embedded system, a variant for real-time systems must provide a

488 Software Qual J (2012) 20:487–517

123

Author's personal copy

deterministic response time, and a DBMS variant for a mobile device requires minimized

energy consumption.

Contrary requirements result in alternative features, which in turn result in the ability to

provide different variants that satisfy even contradicting requirements. For instance, a

DBMS SPL may provide alternative buffer manager features, e.g., a feature minimizes

working memory consumption and another feature optimizes performance. Hence, many

non-functional requirements are defined when deriving a concrete product during appli-

cation engineering, i.e., after SPL implementation (a.k.a. domain engineering). Non-

functional as well as functional requirements can often only be defined per application or

per customer, that is, at product derivation time. As described before, highly differing and

even contradicting non-functional requirements of different concrete application scenarios

make it necessary to postpone the definition of objective functions (or quality goals) to the

product derivation phase. Hence, often SPL vendors do not know the concrete non-func-

tional requirements before variant derivation (i.e., after development) and can only prepare

an SPL for anticipated possible requirements.

As a result of the high variability of an SPL, it is usually not clear which feature

selection leads to which non-functional properties. Since variants are generated by

selecting desired features, it is difficult to predict which selection of features or which

alternative feature implementations result in a program variant with, for example, a

footprint lower than 200 KB and a response time of less than one second. Again, an SPL

cannot be tuned to these requirements as the requirements are usually not known

beforehand and vary (in certain bounds) depending on the application scenario, environ-

ment and customer. Therefore, SPL developers implement a spectrum of non-functional

properties with a large degree of freedom in the implementation. During product deriva-

tion, actually important properties are determined by individual application engineers.

Hence, application engineers often face the questions: Is there a variant that meets my

functional requirements and also satisfies my non-functional requirements? What is the

best trade-off between different properties?

Answering these questions is far from trivial. An SPL usually has many variants that

satisfy the same functional requirements. To give a correct answer, an SPL’s vendor would

have to measure the properties for all of these candidate variants. This can lead to a costly

and time-consuming trial and error process, because even small SPLs with only few

features can have millions of possible variants. With an increasing number of features,

vendors face an exponential explosion of the variant space. Generating, compiling and

executing each relevant program is infeasible even for medium-sized SPLs (Krueger 2006;

Siegmund et al. 2008b). Even worse, some non-functional properties cannot be measured

at all. They have to be described qualitatively on an ordinal scale. These kinds of properties

must be considered for variant derivation, too.

Besides measuring and determining non-functional properties of a variant, a customer

often wants to derive a variant that is optimized with respect to a specific non-functional

property (e.g., performance or footprint). This means also that it is not sufficient to find a

feature selection that meets the requirements, but to calculate the optimal feature selection

for a given non-functional property.

We present a holistic approach, called SPL Conqueror, that integrates all aspects of the

variant-derivation process with respect to non-functional properties. We show the big

picture of optimizing non-functional properties in the area of SPLs. SPL Conqueror sup-

ports the optimization of qualitative and quantitative properties. In previous work, we

focused only on certain aspects of the optimization process. In this paper, we combine

developed solutions to automate the whole optimization process. We subsume and extend

Software Qual J (2012) 20:487–517 489

123

Author's personal copy

our previous work and evaluations (Siegmund et al. 2008a, b) and make the following

novel contributions:

1. We extend our integrated product-line model (Siegmund et al. 2008a) to assign non-

functional properties to features and implementation artifacts and to model feature

interactions explicitly. SPL Conqueror uses this model to compute an optimized

variant based on a feature’s properties.

2. We classify non-functional properties into three classes (qualitative, feature-wise
quantifiable and variant-wise quantifiable properties). We use these classes to select

suitable measurement and configuration techniques.

3. With SPL Conqueror, we provide a holistic approach in which user-defined metrics are

used to measure different non-functional properties. During measurement, we address

the problems of the variable code base of SPLs. Furthermore, we automate the

measurement process and enrich an integrated product-line model with the measure-

ment results.

4. We support derivation of variants that are optimized with respect to non-functional

properties by (1) highlighting features that improve a certain non-functional property,

(2) predicting the value of a non-functional property for a variant based on

approximations of a feature’s properties and (3) automatically measuring promising

variants using our automated measurement framework.

2 Problem statement

In this section, we describe the challenges of measuring and optimizing non-functional

properties in SPLs. This is the basis for understanding the rationales behind our classifi-

cation and measurement approach.

2.1 Software product line scenario

In SPL development, we differentiate between domain engineering and application
engineering (Czarnecki and Eisenecker 2000; Pohl et al. 2005) as illustrated in Fig. 1. A

domain engineer analyzes the functional and non-functional requirements that are

Fig. 1 Domain and application engineering phases in SPL development including requirements specifi-
cation (Czarnecki and Eisenecker 2000)

490 Software Qual J (2012) 20:487–517

123

Author's personal copy

important for an entire domain (i.e., not necessarily for a single application scenario). This

is in contrast to conventional software development in which concrete requirements are

defined and are usually known before development. These requirements address the whole

spectrum of possible program variants and may be contradicting. For example, a DBMS

SPL can contain features for in-memory and persistent storage. Although both features

have contradicting goals (i.e., performance vs. reliability), they both are useful for specific

scenarios (e.g., an in-memory variant for a web browser and a persistent variant for an

e-mail client). That is, developers implement alternative features to satisfy different and

even incompatible goals. After domain analysis, developers and domain engineers design

and implement reference architecture for the SPL. Hence, typically almost the whole

implementation work is done in the domain engineering phase (Clements and Northrop

2002).

For each product, application engineering starts with the requirements analysis of a

concrete application scenario. After this second requirement engineering phase, an

application engineer (e.g., the customer) selects features to satisfy her requirements. If

requirements cannot be satisfied (e.g., because functionality is missing or non-functional

requirements cannot be fulfilled), new features or alternative implementations have to be

developed.

Developing a DBMS SPL would start by analyzing the database domain. Domain

engineers identify common and variable functionality, such as data structures, search

indexes, encryption mechanisms, transaction support and logging. A feature model is used

to document the features of an SPL including their dependencies (e.g., a feature requires

the presence of another feature).1

In Fig. 2, we visualize the feature model of the Berkeley DB SPL. We use Berkeley DB

as a running example. Berkeley DB2 is a customizable DBMS with over 200 million

deployments (Oracle 2006). It has optional features (e.g., Hash, Queue, Cryptography) to

be able to tailor a program variant to a customer’s requirements. One can generate 256

different variants for the Windows platform. Features are represented by boxes and con-

nections between them express domain constraints. For example, a feature connected by an

empty bullet is optional (e.g., feature Hash), and a feature connected with a filled bullet is

mandatory (e.g., feature B-Tree). There are also grouping relationships in a feature model.

For example, a set of features can be alternative (XOR), which enforces user to select

exactly one feature of the alternative group. Furthermore, we can define an OR group that

allows user to select between at minimum one and an arbitrary number of features.

1 Please note, a feature model looks similar to a goal model often used for requirements engineering (van
Lamsweerde 2001). However, the concepts cannot be compared. A feature model describes the variability of
an entire SPL, i.e., all products.
2 Available at: http://www.oracle.com/technetwork/database/berkeleydb/.

Fig. 2 Feature model of Berkeley DB (C version)

Software Qual J (2012) 20:487–517 491

123

Author's personal copy

http://www.oracle.com/technetwork/database/berkeleydb/.

2.2 Measuring non-functional properties

Many but not all non-functional properties can be measured. Measurement theory defines

multiple scales, such as ordinal, interval and ratio (Stevens 1946). We measure non-

functional properties that can be described with a metric scale (i.e., interval and ratio) for

which a stakeholder (i.e., a vendor, developer, domain expert, or user) can define a suitable

metric. For example, we can define footprint (using the measurement of the binary size)

and performance (using a benchmark that outputs performed transactions per second) as

properties to be measured for Berkeley DB. By contrast, it would be difficult to define a

metric to measure user-friendliness. Hence, we differentiate between quantifiable and

qualitative properties, which we explain in Sect. 3.1.

In SPL engineering, developers face the problem that requirements of concrete cus-

tomers are specified after SPL development. That is, SPL vendors have to consider a

spectrum of non-functional properties during development. Typically, it is not known

without exhaustive measurements which implications a feature selection has on certain

non-functional properties. In Fig. 3, we illustrate the relationship between three features of

Berkeley DB and the four non-functional properties footprint, performance, reliability and

security. Often, a feature affects multiple non-functional properties, for example, feature

Replication of Berkeley DB increases the binary size by 89 KB. However, this information

is not known until we have actually measured it. Other non-functional properties such as

reliability cannot be measured at all. Their influence can only be described qualitatively,

rather than quantitatively. For example, we may also need domain knowledge to somehow

express the influence of a feature on such a property. Even worse, also a certain feature

combination has an influence on non-functional properties. On the right side of Fig. 3, we

show program variants with different feature combinations. The variant that includes both

features Replication and Cryptography have an unexpected behavior. We obtain a decre-

ment in performance although, when measuring a variant with only a single feature, there

is no performance decrement compared to the base variant. Moreover, based on the fea-

ture’s footprint, we would expect that the variant has a size of 448 KB3 rather than

3 The sum of the footprint of features Base, Replication and Cryptography is 448 KB.

Fig. 3 Relationship between non-functional properties and feature interactions. On the left side, we depict
the non-functional properties per feature (e.g., feature Replicate has a footprint of 89 KB). On the right side,
we show the measured properties of all variants that can be generated with the three features. For footprint,
we show the composition of the features’ footprints of a variant. The feature interaction introduces
additional footprint and changes the performance of variant 4. A plus symbol describes qualitatively that a
feature improves a certain property. Performance is given in transactions per second (T/s) and footprint in
KB

492 Software Qual J (2012) 20:487–517

123

Author's personal copy

480 KB. The observed difference is caused by feature interactions of both features at the

source code level.

Another example is SQLite.4 SQlite is a customizable DBMS SPL deployed on over 500

million systems (SQLite.org 2010). Although it targets embedded systems and thus has a

small footprint, the developers provide further configuration options to reduce the size of the

compiled DBMS. However, they can neither provide values to which degree a deactivated

feature saves binary size nor what influence a deactivation has on other non-functional

properties. The website states only: ‘‘[..]the library size can be less than 300KiB, depending

on compiler optimization settings,’’ and ‘‘If optional features are omitted, the size of the

SQLite library can be reduced below 180KiB.’’ Often, a customer needs more exact infor-

mation than ‘‘less than’’ or ‘‘can be reduced below.’’ Hence, to find a feature set for a specific

footprint limit, a customer would need to measure the binary sizes of many variants. Con-

sidering the fact that 88 features are optional and can be arbitrarily configured, there are 288

different variants. Measuring all variants would take longer than the time the universe exists.5

Obviously, a customer cannot find the optimal variant with a brute force approach.

2.3 Optimizing non-functional properties

Optimization means to find the best variant (feature selection) according to specific non-

functional properties. To optimize a variant with respect to non-functional properties, we

can search for an optimal feature selection during application engineering. For example,

we select those features that have the most positive influence on a property. For example,

we would select the B-tree search index in Berkeley DB (cf. Fig. 2) to optimize perfor-

mance. However, there are usually trade-offs between non-functional properties. Selecting

feature B-tree increases the binary size, which might be not acceptable for some appli-

cation scenarios. Typically, an SPL vendor has to cooperate with customers to define an

objective function over a set of non-functional properties. An objective function expresses

how to rate the diverse non-functional properties to achieve the desired goals (van Lam-

sweerde et al. 1998; van Lamsweerde 2001; Marler and Arora 2004).

Another problem is the computational complexity of finding an optimal variant (Floch

et al. 2006). White et al (2009) found that this problem is NP-hard. Special algorithms are

needed to approximate a good solution. Although there are already some solutions available

(e.g., using filtered Cartesian flattening (White et al. 2009) or constraint satisfaction problem

solvers (Benavides et al. 2005)), they work only for a limited class of properties (which we

later describe as feature-wise quantifiable). Other properties, such as performance and energy

consumption, that can only be measured per variant are not addressed and neither are qual-

itative properties (e.g., user-friendliness). Thus, we require a combined approach of com-

puting optimized variants on a per feature basis and measuring non-functional properties on a

per variant basis. We show how our approach addresses this issue in Sect. 6.

3 Representing non-functional properties in software product lines

We aim at optimizing non-functional properties in the product-derivation phase. Defined

by an SPL vendor or customer, the specification of desired properties must either contain a

4 Available at: http://sqlite.org.
5 In fact, a single measurement takes approximately 5 min. Measuring all 288 variants would take ca.
2.9 9 1021 years.

Software Qual J (2012) 20:487–517 493

123

Author's personal copy

http://sqlite.org.

qualitative statement regarding the range of values of a property or a metric that we can use

to measure a property. Hence, we need the information whether a property can be

described with an ordinal or a metric scale. To this end, we categorize non-functional

properties based on measurement theory (Stevens 1946) to use the proper measurement and

derivation technique for a given non-functional property.

3.1 Classification of non-functional properties

There is a number of non-functional properties including their classification described in

the literature, for instance, McCall’s quality model (Mccall et al. 1977), Boehm’s quality

model (Boehm et al. 1978) and the ISO 9126 quality model (International Organization for

Standardization (ISO) 2001). These models have a certain purpose. For example, McCall’s

quality model bridges the gap between a customer’s quality perspective and a developers

view on quality attributes. Hence, McCall describes factors based on an external view of a

software and quality criteria that describe the internal view of a software. A developer can

use this model to derive suitable metrics (e.g., error tolerance and accuracy) to improve a

quality factor (reliability). Boehm’s quality model is a hierarchical model to refine and

further specify characteristics from which a property is composed (Boehm et al. 1978). For

example, maintainability is refined to understandability which in turn is refined to con-

ciseness. Hence, he qualitatively defines software quality with a given set of metrics.

In contrast to the mentioned models, our purpose is to classify non-functional properties

such that we can choose proper optimization techniques based on this information. Some

non-functional properties can be described only qualitatively, whereas other properties can

be represented with metric-based values, so we cannot use the same optimization technique

for all properties. For example, we cannot compute which feature selection results in a

variant with the best user-friendliness, because we usually have no metric to obtain

quantifiable measures. But, we can compute the variant with the smallest footprint or

highest performance. Hence, we classify non-functional properties with respect to our

ability to measure them and which operations are valid for the measures.6

We classify non-functional properties into three different classes: qualitative properties,
feature-wise quantifiable properties and variant-wise quantifiable properties. It is impor-

tant to note that the categorization of a specific non-functional property depends on the

SPL and the application scenario and is not general. This means that the same property can

be in different classes for different SPLs or domains. Reasons for different classifications

are, for example, different view points and interpretations of stakeholders for the same

property. Also, the domain of an SPL may change the category of a property. For instance,

in a web-service SPL, security may be measured via an intrusion-detection system

resulting in quantifiable measures. In another scenario, security can only be qualitatively

specified (e.g., with weak, medium and strong secure), like it is done in Window 7.

3.1.1 Qualitative properties

There are non-functional properties that can only be described qualitatively using an

ordinal scale (i.e., there is no metric from which we can retrieve quantifiable measures).

For example, we can define that feature Verification in Berkeley DB improves the

6 Measurement theory defines which operations are valid for which scale of measurement. For example, we
can only use median and percentile operations for an ordinal scale, because we only have a totally ordered
set of measures.

494 Software Qual J (2012) 20:487–517

123

Author's personal copy

reliability of a DBMS, because it verifies the consistency of indexes (cf. Fig. 4). We can

assign such a qualitative statement to features (i.e., ‘‘feature Verification improves reli-

ability’’). Since ranking is a valid operation for values on an ordinal scale, a domain expert

can rate features according to their influence on a non-functional property. For example,

we can rate feature Verification higher than feature Diagnostic for property reliability,

because in the DBMS, domain consistency of search indexes has a crucial impact on

reliability whereas Diagnostic functions may only identify some possible weak points for

reliability.

Qualitative properties usually require domain knowledge. Hence, SPL vendors should

define important properties that can be used by customers as guidelines to support feature

decisions during product derivation. For example, we can assign them certain values (e.g.,

Verification = 2 and Diagnostic = 1). Again, a stakeholder must keep in mind that only

certain types of calculations (median, percentile) are suitable over ordinal numbers (Ste-

vens 1946). To sum up, we use qualitative properties (a) to show them as configuration

possibilities to the user (e.g., hint which features qualitatively improve a certain property),

(b) to automatically select features with positive influence, and (c) to avoid the selection of

features with negative influence during the computation of an optimal variant.

Common representatives of this class are: reliability, security, trustability, availability,
usability, integrity and completeness.

3.1.2 Feature-wise quantifiable properties

This category contains properties that can be measured on a metric scale. An important

requirement for feature-wise quantifiable properties is that we can either measure a single

feature directly or infer the results of the measurement of a variant to single features with

an user-defined metric (i.e., either customers or SPL vendors provide suitable metrics).

Hence, we can compute to which extent a feature influences a non-functional property.

Examples of this class are footprint of a feature (which can be measured per implemen-

tation unit (Siegmund et al. 2008b)) and maintainability (which can be measured to some

degree with code metrics such as lines of code and cyclomatic complexity (McCabe

Fig. 4 Product-line model of Berkeley DB with assigned properties. Footprint represents the actually
measured binary size per feature. The up-arrow visualizes an improvement for a qualitative property

Software Qual J (2012) 20:487–517 495

123

Author's personal copy

1976)). A feature-wise measurement allows us to annotate each feature and implementa-

tion unit of an SPL with a specific value and to compute a value for a feature selection. To

compute a value for a concrete feature selection, a stakeholder defines an aggregation

function, such as addition or maximum. The aggregation function is used to aggregate the

values for each selected feature. For example, we defined for Berkeley DB maximum as

aggregation function for cyclomatic complexity and addition for footprint. This way, we

are able to compute the properties of a variant in advance only based on a configuration.

Common representatives of this class are: footprint, maintainability, accuracy/resolu-
tion of data, price of a feature, adaptability, interoperability and modularity.7

3.1.3 Variant-wise quantifiable properties

Some properties have either no meaning for single features or we are not able to quantify

the influence of individual features on the non-functional properties of a concrete variant.

Usually, such properties emerge when a variant is executed. They require the highest

measurement effort, because we have to generate each variant from which we want to

know properties. This usually requires to execute and to measure a variant, e.g., by running

benchmarks. For example, to measure performance in Berkeley DB, we use Oracle’s

standard benchmark, which defines certain types of queries. Considering the large number

of possible variants, variant-wise properties should be measured only for a predefined set

of selected features. This set may be the result of previous optimization and configuration

steps based on the properties of the previous categories. Similar to the previous class,

variant properties can be described with a metric scale.

Common representatives of this class are: performance, response time, resource
behavior (e.g., energy and memory consumption) and bandwidth.

3.2 Product-line model to reason about feature selections

As we explained before, a feature model describes the variability of an SPL and ensures

that only meaningful variants can be derived (Kang et al. 1990; Czarnecki and Eisenecker

2000). We extended the common feature-model approach to include also non-functional

properties of features and implementation units (Siegmund et al. 2008a). We call our

extension a product-line model. In Fig. 4, we show the product-line model of Berkeley DB.

In addition to the feature model of Fig. 2, we model implementation units. For instance,

B-Tree fast and B-Tree small are alternative (mutually exclusive) implementations of

feature B-tree.

The product-line model supports the assignment of qualitative properties (with ordinal

values) and feature-wise quantifiable properties (with actually measured metric values). In

Fig. 4, we show the footprint of each feature that we measured for Berkeley DB’s features

(described in Sect. 5) We assigned also a price for features, for illustration. Furthermore,

we defined two qualitative properties security and reliability and also highlighted that a

certain feature has a positive influence on this property. For example, feature Verification

has a positive effect on reliability for a DBMS.

We distinguish between alternative features and alternative implementations. While

alternative features define different functionality, alternative implementation units imple-

ment the same functionality in different ways. For instance, an user can decide either to

derive a performance-optimized Berkeley DB variant (by selecting the implementation unit

7 Maintainability can be derived from source code metrics to some degree.

496 Software Qual J (2012) 20:487–517

123

Author's personal copy

B-Tree fast) or a footprint-optimized (binary size) variant (by selecting the implementation

unit B-Tree small). Hence, alternative implementations represent variability at the level of

non-functional properties. Often, alternative implementations are extensions for new

customers who have new requirements that cannot be satisfied with the currently available

SPL implementation. If an user is not interested in a non-functional property, then often a

standard decision is made.

As an important extension to our product-line model (Siegmund et al. 2008a), we

introduce the concept of feature interactions in our product-line model. Feature interac-

tions change non-functional properties of a feature depending on the presence of a certain

feature combination. We explicitly model feature interactions to consider them for pre-

dicting a variant’s non-functional properties. For example, interactions occur when mul-

tiple features share a common code unit or when a certain feature combination requires

additional code (e.g., using nested #ifdefs). Additionally, feature interactions can cause

deadlocks and bus overloads. In Berkeley DB, there is an exhaustive use of nesting a

feature’s code in another feature’s code (e.g., to implement statistics for the hash search

index; cf. Fig. 2) resulting in different binary sizes depending on a certain feature com-

bination. In Berkeley DB, we identified a feature interaction between features Replication

and Statistics. We measured the influence of this interaction on footprint: A product with

both features in combination has an increased binary size of 80 KB in addition to sum of

the feature’s sizes. Such feature interactions occur for many non-functional properties.

4 SPL Conqueror: a holistic approach for the optimization of non-functional
properties

With SPL Conqueror, we propose a holistic approach to integrate measurement and

optimization of non-functional properties in the product-derivation process. With holistic

we mean that we support the whole product derivation process starting from the definition

of desired non-functional properties, over the measurement of properties, to the concrete

feature selection and optimization by means of an objective function. We support the

different kinds of non-functional properties described in Sect. 3.1. A stakeholder (i.e., an

SPL vendor or domain expert) can assign properties to features to describe the influence of

a feature on a specific property. In addition, a stakeholder can specify measurements and

metrics in SPL Conqueror to measure either a single feature (e.g., the source code com-

plexity) or a whole variant. Once the measurement procedure is defined, the process of

selecting features and generating and measuring features is automatically performed.

The results of measurements are stored in the SPL’s product-line model, which we

described in Sect. 3.2. We use this model including all assignments and measurements

during the product derivation phase to provide multiple optimization possibilities. Cus-

tomers can define non-functional constraints (e.g., a footprint limit of 200 KB) as well as

objective functions for quantifiable properties (e.g., maximize performance). If the

objective function contains a property that can only be quantified on a per variant basis,

SPL Conqueror automatically generates and measures variants to identify the optimal

variant. In Fig. 5, we provide an overview of the process of SPL Conqueror including the

following tasks (cf. Fig. 5):

– (a) Assign quantifiable properties to features (by domain expert)

– (b) Measure non-functional properties per feature (by domain expert and vendor)

Software Qual J (2012) 20:487–517 497

123

Author's personal copy

– (c) Define functional and non-functional requirements in application engineering per

variant (by customer)

– (d) Optionally apply additional post-derivation optimizations to a generated variant (by

domain expert and SPL vendor)

In the Sects. 3–6, we describe each task in detail. Analogously to the classification of

non-functional properties (which we described in 3), we have different tasks to specify and

measure non-functional properties. For qualitative properties, a domain expert assigns non-

functional properties to features (in Fig. 5a). Ordinal values are stored in the product-line

model and are used in the variant-derivation process.

The next step is to measure quantifiable properties per feature (in Fig. 5b), which we

describe in Sect. 5 For this task, an SPL vendor or domain expert defines proper mea-

surement procedures (e.g., a source code metric or a tool which measures a property).

These measurement procedures are plugged into SPL Conqueror to automatically measure

individual features and to store the values in the product-line model. We describe the

measurement of properties of all categories including its evaluation based on multiple

SPLs in Sect. 5.

To derive a variant (in Fig. 5c), a customer defines functional and non-functional

requirements. That is, she selects features satisfying functional requirements and defines

constraints for non-functional properties as well as optimization goals (in terms of

Fig. 5 Process of SPL Conqueror including the different tasks of measurement, configuration and
optimization

498 Software Qual J (2012) 20:487–517

123

Author's personal copy

objective functions). For example, if a customer wants to optimize the footprint of

Berkeley DB, she would define an objective function, such as min(Footprint). During the

derivation process, SPL Conqueror provides for each property class a specific configuration

and optimization technique. We describe each technique including an algorithm in Sect. 6

in detail.

Once SPL Conqueror has found an optimal feature set (in Fig. 5d), an SPL vendor can

apply further optimizations to this variant. In the past, we developed two techniques that

scale to large SPLs and a high number of properties considered for optimization (Siegmund

et al. 2010a, b). We can purposefully use refactoring to alter the structure of a generated

variant in such a way that a certain non-functional property is improved. Our second

technique uses libraries of features that realize specific optimizations for different non-

functional properties. By linking such additional features in a variant, we can optimize a

non-functional property.

We structure the remaining article according to the tasks of SPL Conqueror. We first

describe for each class of non-functional properties our measurement techniques and

explain how we realized measurements in our case studies and which experience we

gained. We continue with a demonstration of the variant-derivation process.

5 Measuring non-functional properties

The measurement of non-functional properties is a challenging task, because often one

cannot measure features in isolation (i.e., without the presence of and interaction with other

features), and we have to guarantee that the measured feature is actually used in the

benchmarked variant. We illustrate our approach for the measurement of reliability,
complexity, footprint and performance. We selected these non-functional properties,

because they are commonly relevant during variant derivation, and they are representatives

of quantifiable and qualitative properties. In Fig. 6, we show the dialog of SPL Conqueror

with which users can define measurement procedures and metrics for a specific property. In

Fig. 6a, an user defines a measurement procedure using the following parameters: the

program that performs the measurement, required input values, and an access method to

extract the measurement values from the program output. Furthermore, aggregation

instructions can be inserted (Fig. 6b) to define how the values obtained from individual

features must be aggregated to obtain a value for an entire variant. SPL Conqueror can

export and import such definitions as XML files. Thus, metrics and measurement speci-

fications can be reused in different contexts and easily exchanged.

In previous work, we evaluated the measurement process using SPL Conqueror with

nine existing SPLs that have very different characteristics to cover a broad spectrum of

scenarios (Siegmund et al. 2011).8 In this paper, we present an approach to compute non-

functional properties of features based on a small number of generated and measured

variants. In contrast to previous work, we only give here examples for how measurements

can be achieved with SPL Conqueror rather than presenting concrete algorithms to com-

pute a feature’s properties. We give an overview of the sample SPLs, in Table 1. We

selected case studies of varying sizes (2500 to 13 million lines of code, 5 to 100 features)

and implemented with different languages (C, C??, and Java) and different variability

mechanisms (conditional compilation and feature-oriented programming), from different

8 We provide the raw material of our measurements and evaluations on our website:
http://fosd.de/SPLConqueror.

Software Qual J (2012) 20:487–517 499

123

Author's personal copy

http://fosd.de/SPLConqueror.

domains (e.g., operating systems, database engines and end-user applications) and from

different developers (both, academic and industrial).

5.1 Reliability (Qualitative property)

To specify a qualitative property, a domain expert inserts only the name of the property in

SPL Conqueror and selects the features and implementation units that improve or degrade

the property. Additionally, the domain expert can rank the features according to their

influence on the property.

Fig. 6 Creating a measurement for a feature-wise quantifiable property in SPL Conqueror. In a, users can
define a measurement procedure. In b, users can specify their aggregations functions for aggregating non-
functional properties of selected features

Table 1 Overview of the SPLs used in our evaluation. OS: Operating system; Acad.: Academic; Ind.:
Industrial

Product line Domain Origin Lang. Features Variants LOC

Linked list Structures Acad. Java 18 492 2,595

Prevayler Database Ind. Java 5 24 4,030

ZipMe Compr. lib Acad. Java 8 104 4,874

PKJab Messenger Acad. Java 11 72 5,016

SensorNet Simulation Acad. C?? 26 3240 7,303

Violet UML editor Acad. Java 100 ca. 1020 19,379

Berkeley DB Database Ind. C 8 256 209,682

SQLite Database Ind. C 85 ca. 1023 305,191

Linux kernela OS Ind. C 25 ca. 33 9 106 13,005,842

a We use only a subset of 25 features of the Linux kernel selected by a domain expert

500 Software Qual J (2012) 20:487–517

123

Author's personal copy

Giving an explicit ranking of features and implementation units may not be sufficient

for a later (automatic) optimization. For example, Berkeley DB has multiple features that

improve reliability, but the effect can heavily differ (as we described earlier). Hence, we

provide the option to define a value for each feature. These values estimate the impact of a

feature on the property. Similar to a feature model, in which features are an agreement

about expected functionality between stakeholders of a domain, we consider non-func-

tional properties as agreements between stakeholders about the meaning of a property

(Czarnecki et al. 2006).

In Fig. 7, we show the assignment of the non-functional property reliability to a number

of features. For example, we define that feature concur_transaction, transactions, and

loggingrecovery have a positive influence on reliability. Furthermore, we define values for

these features to express their influence (e.g., feature memorybudget and loggingrecovery

have both the same value). This means, that both features have the same positive effect. If

other non-functional requirements are relevant in the optimization process (e.g., a footprint

constraint), we are able to decide whether to select memorybudget or loggingrecovery,

depending on their measured footprint.

5.2 Measuring the complexity of a feature’s source code (feature-wise quantifiable

property)

Knowing the complexity of a feature’s source code is important if an SPL vendor sells the

source code of a variant including the responsibility to maintain the variant. A typical

application scenario in which a customer is interested in the source code of a variant is

components (e.g., graphical components). Often, a component must be further customized

and so must the source code of a component adapted, e.g., in white box frameworks and

libraries. To make the adaptation process efficient, a customer is interested in buying a

component that is easy to understand, maintain and customize. Hence, we have to provide

means that allow customers to derive easily maintainable variants.

There are several metrics that measure the complexity or maintainability of source code.

We use McCabe’s cyclomatic complexity (McCabe 1976) as an exemplary metric, but

Fig. 7 Definition and assignment of the qualitative property reliability in SPL Conqueror

Software Qual J (2012) 20:487–517 501

123

Author's personal copy

other metrics could be used as well. For measurement, we used the tool Source Monitor9

(cf. Fig. 6). For example, for SPLs implemented with feature-oriented programming10 the

source code of each feature is physically separated in different folders. When starting the

measurement, SPL Conqueror executes Source Monitor for each feature (giving the folder

of the feature’s source code as input), extracts the XML output with a previously defined

XPath statement and stores the result in the product-line model. Either a standard aggre-

gation function (we use the maximum) or a user-defined aggregation function is used to

determine the complexity of a feature from the complexity values of the classes of the

feature. As a design decision, we define the complexity of a feature as the maximum

complexity of each method that belongs to this feature.11

In Table 2, we show the results of two SPLs. We omit measurements of other SPLs,

since the results are straightforward.12 A number higher than 25 for the cyclomatic

complexity is considered to be poorly written code that is difficult to understand (McCabe

1976). For example, feature Compress of ZipMe (implementing a hash-based search index)

appears to be very difficult to maintain according to this metric with a measured value of

30. Depending on the configuration, maintainability for the variant (according to such

metrics) can significantly change.

5.3 Measuring footprint (feature-wise quantifiable property)

Measuring the footprint of an application strongly depends on the used implementation

technique. There are many ways to measure the footprint of a feature. For example, we

developed in previous work (Siegmund et al. 2008b) two methods to measure the footprint

of an SPL implemented with feature-oriented programming (Batory et al. 2004). When

using an implementation technique that supports separately compilable code units, e.g.,

components or feature modules (Batory et al. 2004), we can easily measure these units and

Table 2 Lines of code (LOC), maximum and average cyclomatic complexity of Berkeley DB and ZipMe
SPLs

Feature Complexity Feature Complexity

LOC Max. Avg. LOC Max. Avg.

B-tree 18,223 39 3.8 Base 2,837 25 2.8

Hash 11,562 14 4.1 Adaptation 7 1 1

Queue 7,394 23 3.3 Checksum 169 1 1

Sequence 913 12 2.8 ArchiveCheck 17 4 1.4

Verify 8,924 25 4.1 Compress 679 30 4

Statistic 9,576 63 3.7 CRC 34 5 1.8

Cryptography 1,058 1 1 Extract 293 17 3.4

Replication 9,112 8 2.2 GZIP 190 26 3.6

Diagnostic 21,342 15 2

9 http://www.campwoodsw.com/sourcemonitor.html.
10 The SPLs are: LinkedList, ZipMe, PKJab, SensorNetwork and Violet.
11 Please note, that this is only an example. Such a design decision should be made by domain experts and
SPL vendors.
12 The complete measurement can be found at our website: http://fosd.de/SPLConqueror.

502 Software Qual J (2012) 20:487–517

123

Author's personal copy

http://www.campwoodsw.com/sourcemonitor.html.
http://fosd.de/SPLConqueror.

store the results in the product-line model (similar to the complexity measurement). The

drawback of these measurement techniques is that they depend on the used implementation

techniques and programming language.

We need a more general technique to measure non-functional properties per feature,

since many SPLs are, for example, implemented by means of conditional compilation (e.g.,

with the C preprocessor). To measure a feature’s footprint, we developed an approach that

is implementation and language independent (Siegmund et al. 2011). The idea is to gen-

erate a set of variants that differ only in the presence of a single feature. The delta of the

measured footprint of two variants can be interpreted as the influence of the corresponding

feature on footprint. This way, we can approximate a feature’s non-functional properties.

The details of this approach are outside the scope of this paper and can be found in

(Siegmund et al. 2011).

We show the approximated footprint of selected features of Berkeley DB, Linux kernel

and ZipMe in Table 3. We refer the interested reader to our website for the measurements

of the other SPLs. We can see that our approach is applicable to large SPLs (e.g., Linux

with a size between 11 and 13 MB), medium SPLs (e.g., Berkeley DB’s footprint range for

the static library is between 1.8 and 2.7 MB) and small SPLs (e.g., for ZipMe13 the range

within 79 and 99 KB).

5.4 Measuring performance (variant-wise quantifiable property)

Often, stakeholders want to derive a performance-optimized variant. To measure perfor-

mance, we have to execute the variant. That is, we have to configure the SPL, compile the

variant and finally run a benchmark. Obviously, we can only measure the performance of

the whole variant, not of individual features. Thus, we classify performance as a variant-

wise quantifiable property. Each application domain or even each program has special

Table 3 Approximated footprint (binary size) of selected features of Berkeley DB, Linux kernel and
ZipMe

Berkeley DB Linux kernel ZipMe

Feature Footprint
(KB)

Feature Footprint
(KB)

Feature Footprint
(KB)

B-tree 1,800 SMP 709 Base 79

Hash 113 INotify_User 11 CRC 1.6

Queue 58 Firmware_In_Kernel 239 ArchiveCheck 0.3

Sequence 20 CHR_Dev_SCH 20 GZIP 5.8

Verify 50 No_HZ 12 Adaptation 0.2

Statistic 285 NF_Conntrack_IPV6 13 Checksum 2.4

Cryptography 19 PCNET32 34 Compress* 0

Replication 89 Module_Unload 24 Extract 7

Diagnostic 191 CC_Optimize_For_Size 1,443

* Compress is a mandatory feature

13 Since feature Compress is a mandatory feature, it is present in every product. Hence, the size of this
feature is measured together with the size of the SPL’s core feature Base.

Software Qual J (2012) 20:487–517 503

123

Author's personal copy

demands for measurements of runtime properties, such as performance. For instance, we

measure the time for sorting of the LinkedList SPL and we use Oracle’s standard read

benchmark for Berkeley DB.

Since the measurement of variant-wise properties is the last phase in the variant-deri-

vation process, we compare the results of different variants according to an objective

function. Depending on the feature selection, we can observe largely differing results. We

benchmarked three different variants of Berkeley DB. The variants differ in the features

B-Tree, Hash and Cryptography. In our case, we use 40 runs for each benchmark to reduce

the effect of measurement bias. As a result, the variant with feature B-Tree index has the

best performance with respect to the workload of Oracle’s standard benchmark. In average,

we measured a performance of about 110,000 T/s (transactions per second). If we change

the index to use the feature Hash, the performance degrades to about 45,000 T/s. Finally,

we also measured the influence of feature Cryptography on performance. Not surprisingly,

we found a substantial performance degradation if data are encrypted. In this case,

Berkeley DB was only able to perform 2,640 T/s, which is about 43 times slower than

without feature Cryptography. In SPL Conqueror, we use the aggregated result of such a

benchmark in the objective function to identify an optimal variant.

5.5 Discussion

In this section, we provide details about effort and accuracy of our evaluations. In par-

ticular, we show how much time we needed to perform the measurements using SPL

Conqueror compared to manual measurement (which we did in previous work). Further-

more, we evaluate the accuracy of the measurements of feature-wise quantifiable

properties.

5.5.1 Time for measurements

Compared to previous work (Siegmund et al. 2008b), SPL Conqueror has an automated

measurement process. SPL Conqueror does not require any user interaction (e.g., the

measurement process can run over night). It automatically generates variants and applies

predefined measurements to them, which significantly reduces effort for measurement.

Overall, the definition of appropriate measurements did not require any domain knowledge.

Before measurement, a stakeholder (usually the vendor) has to define a metric or a

program that can be applied to measure a variant or piece of source code (e.g., as we did for

Source Monitor). Additionally, an user must define how SPL Conqueror can extract the

results of the measurement. For example, we use XPath expressions to extract results from

XML files. Given such a setup, we can run SPL Conqueror without any user interactions in

our case.

Moreover, we could reuse the measurement setup (i.e., the definition how a non-

functional property can be measured) for different SPLs, which further reduce the effort

when new SPLs have to be measured. When measuring the footprint of an SPL, the largest

amount of time was dedicated to the compilation process. For example, measuring foot-

print for the selected 25 features of the Linux kernel took us 4 days with a standard desktop

computer. In Table 4, we show the average time needed to measure a feature’s footprint for

all SPLs. We required the most time for SPLs with either a large number of features (e.g.,

SQLite or Violet) or a large code base (in the case of the Linux kernel). Having a large

code base increases the compilation time substantially and having a large number of

504 Software Qual J (2012) 20:487–517

123

Author's personal copy

features requires to generate, compile, and measure many variants which also increases the

measurement time.

Measuring complexity took only 30 minfor all SPLs. We had to analyze the output format

of Source Monitor and defined an appropriate XPath expression to extract the correct value.

After we did this for one SPL, we could export the definition in SPL Conqueror and import it

for all other SPLs. The definition of footprint and performance measurements took about

5 min, on average, per SPL. Depending on the existence of a makefile for building and

benchmarking, we had to extract only the binary size or benchmark results either from the

command line output or extract from a self-written tool. For example, we wrote a simple tool

to compute the size of all class files, lib files, etc. Then, we only had to specify in SPL

Conqueror how to start the tool and from which file to read the (XML-based) output. This took

a minute. Again, we could reuse the tool for all SPLs.

5.5.2 Accuracy of property prediction

When predicting non-functional properties of a variant using a feature-wise measurement,

we found that predictions can be inaccurate due to unknown feature interactions or

compiler optimizations. In the following, we discuss our observations for the property

footprint and analyze how the accuracy can be improved.

In case of Berkeley DB, we identified some minor inaccuracies for our footprint pre-

diction.14 On the left side of Fig. 8, we depict the fault rate of our initial predictions. One

can see that we have an increasing fault rate for larger variants. The worst fault rate is 7%,

Fig. 8 Fault rates of predicted footprints of all variants of Berkeley DB using two different measurement
approaches

Table 4 Time spent for mea-
suring footprint per feature of a
number of variants

SPL Measurement
time

Measured
variants

Total # of
variants

LinkedList 15 min 13 492

Prevayler 7 min 7 24

ZipMe 8 min 10 104

PKJab 7 min 8 72

Sensornetwork 12 h 34 3,240

Violet 24 h 2,115 ca. 1020

Berkeley DB 11 h 15 256

SQLite 48 h 146 1023

Linux kernel 96 h 207 ca. 33 9 106

14 We used the Microsoft C compiler and /O2 optimization level as compiler flag.

Software Qual J (2012) 20:487–517 505

123

Author's personal copy

and the average fault rate is 1.9%. The reason for our inaccurate predictions is feature

interactions at the source code level, such as nested #ifdef statements (Kästner et al. 2009).

That is, some code fragments are only active if two or more interacting features are used at

the same time. When measuring a single feature’s footprint, we could not measure the

influence of code fragments that are only present in a product for a certain feature com-

bination. Hence, we refined our measurement approach to also measure combinations of

features. The measured values are assigned to the derivatives in our product-line model.

The existing feature interactions at source code level were easy to identify, because we

only had to look for nested code fragments.

With the refined approach, we could significantly improve our predictions up to a worst-

case fault rate of 0.1%. That is, we predicted the footprint of nearly every variant correctly

based on a feature’s footprint. The feature-wise measurement is usually accurate and has a

very low complexity. In Fig. 8, we show the improved predictions for Berkeley DB on the

right side. A complete description of the refined measurement approach is outside the

scope of this paper and given elsewhere (Siegmund et al. 2011).

6 Computing an optimal variant

The variant-derivation process of SPL Conqueror integrates the measurement of properties,

the manual selection of features by customers and the computation of an optimal feature

selection based on an user-defined objective function. An objective function can be defined

over multiple properties of the feature-wise and variant-wise quantifiable properties.

Additionally, if a customer or a domain expert provides a mapping from a qualitative

description of a property to real numbers, also qualitative properties can be used in an

objective function. However, it is the responsibility of the stakeholder who provides such a

mapping that the objective function produces meaningful results. In this work, we do not

address the problems of defining appropriate objective functions and so refer the interested

reader to according literature (Karlsson et al. 1998; Bagnall et al. 2001; Saliu and Ruhe

2007; Zhang et al. 2007). Hence, our work is orthogonal to previous work in this area and

we can integrate it. For simplicity, in SPL Conqueror, we currently use a single (weighted)

objective function that can be entered in a text field.

During the variant-derivation process, we face two major challenges. First, due to the

large variant space, the computation of the optimal variant is very time consuming. The

underlying problem is NP-hard (White et al. 2009). Second, properties of the third cate-

gory (variant-wise quantifiable properties) require the generation of a variant and usually

the execution of a benchmark, which requires additionally a large amount of time. Hence,

we need a solution that measures only variants that are likely to be the optimal variant. To

this end, we propose a staged product-derivation process, as illustrated in Fig. 9. The

underlying algorithm consists of four steps: (a) feature selection to satisfy functional

requirements, (b) constraining non-functional properties to reduce the search space to find

an optimal variant, (c) computing a feature selection to optimize non-functional properties

and (d) applying post-derivation optimizations to a derived variant. In the following, we

describe each step in detail.

6.1 Feature selection

The variant derivation starts with the selection of features according to the functional

requirements, (in Fig. 9a). For example, the product-line model of the Java version of the

506 Software Qual J (2012) 20:487–517

123

Author's personal copy

Berkeley DB SPL (on the left side of Fig. 10) can be used to select required features. After

selecting the desired features, users can verify the correctness of the selection (e.g., find out

whether there are domain constraints that require the selection of another feature). As a

result of this stage, we can exclude many variants that cannot satisfy functional

requirements.

6.2 Constraining non-functional properties

The aim of the second step is to exclude as many features and feature combinations as

possible from the search space of an optimal variant. To this end, we use multiple tech-

niques to define constraints for non-functional properties. For qualitative properties, we

highlight features that improve or degrade the respective property. For example, we can

highlight the features Replication, Verification and Diagnostic for non-functional property

reliability, since a domain expert already associated these features with the property. To

reduce the number of variants, we exclude features from further consideration if they have

a negative effect on a property that is of interest to a customer. Although this is an

approximation, it is often necessary to reduce the optimization complexity. Additionally,

constraints can be defined to exclude features. For example, a customer may define a

constraint that states that a DBMS variant has to be at least medium secure (e.g., like it is

used in Windows 7). Hence, we do not have to consider weaker security mechanisms

anymore.

If a customer is interested in a property that is not already assigned, either the SPL

vendor or a domain expert has to perform the assignment task. Since features are usually

Fig. 9 Algorithm of SPL Conqueror’s variant-derivation process

Software Qual J (2012) 20:487–517 507

123

Author's personal copy

well documented, this task is usually fast and easy to accomplish. However, it is important

that the understanding of the nature of a non-functional property is consistent between SPL

vendor and customer. It might be the case that an assignment of a non-functional property

looks optimal for one stakeholder might not look optimal to another stakeholder. For

instance, reliability can be interpreted in different ways. Thus, we store a description of the

property to give rational about how the influence of features is qualitatively interpreted.

In addition to qualitative properties, a customer can define constraints for quantifiable

properties in SPL Conqueror (top of Fig. 10) to reduce the search space for an optimal

variant. Based on the stored non-functional properties of features, we can compute in

advance whether the selection (or a certain feature combination) violates the given non-

functional constraints. Then, we remove these features and feature combinations from the

search space that would always violate the given non-functional constraints. If many non-

functional constraints are defined with contradicting goals, it might be the case that we

exclude all features or could not give any valid configuration. If so, we can give a warning

to the user that there is no product that can satisfy all given constraints.

To give a concrete example for footprint, we measured the footprint of all Berkeley DB

features and stored the results in the product-line model. If a customer wants to derive a

variant with a footprint limit of 500 KB, we can exclude features that alone are larger than

500 KB. For instance, we have to use the small B-Tree implementation with 340 KB

instead of the fast implementation (with 1,800 KB). Since feature B-Tree is a mandatory

feature, we have at minimum 340 KB for a variant. Hence, we can further exclude features

from the search space (e.g., feature Diagnostic) that would introduce more than 160 KB,

because it would always violate the given constraint. We can also define constraints for

Fig. 10 Variant derivation in SPL Conqueror including constraint specification and optimization

508 Software Qual J (2012) 20:487–517

123

Author's personal copy

variant-wise quantifiable properties. However, we cannot use such constraints to exclude

variants until we generate and measure a variant, which we also do in the optimization

step. We would have the effort of determining variant-wise properties twice. Therefore, we

postpone the Verification of such constraints to the optimization stage.

6.3 Optimization of non-functional properties

The next step in the derivation process is the computation of an optimal feature selection

based on an user-defined objective function (center of Fig. 10). As an example, consider

the following objective function in which a customer of Berkeley DB is interested in

deriving a variant with the best trade-off between high performance and low footprint:

maxðperformance=ð1000� footprintÞÞ ð1Þ
This objective function consists of a weighted feature-wise quantifiable property and a

variant-wise quantifiable property. According to our algorithm in Fig. 9, if the objective

function contains only feature-wise quantifiable properties, we directly compute an optimal

variant using a CSP solver. Since the computation is NP-hard, we may be able to give only

an approximately good feature selection in a suitable amount of time for a large number of

features. It is also possible to optimize a qualitative property with the same algorithm. To

this end, a domain expert must provide a mapping from qualitative assignments to num-

bers, which we can use in an objective function. Since we have all features assigned with a

value (zero if there is no influence), we do not have to measure a single variant. This shows

that our approach scales also for this type of property. However, the usual approach to

optimize a qualitative property would be to (automatically) select features that are marked

as positively influencing the respective property.

Our exemplary objective function is defined additionally over a variant-wise non-

functional property. In such a case, we can first compute a set of possible optimal variants

based on the part of the objective function that contains only feature-wise quantifiable

properties. The size of this set can be defined by a customer or SPL vendor to adjust the

processing time. Then, we order this set of feature selections based on the intermediate

results of the objective function and start the process of generating and measuring each

remaining variant until we found the optimal variant or the process is aborted. This process

is also performed only if variant-wise quantifiable properties exist in the objective function.

Regarding scalability of the number of different non-functional properties in an objective

function, we need only a linear number of additional measurements with respect to the

number of different properties. That is, we already generate a variant of the SPL for a

single variant-wise quantifiable property to compute its values for the objective function.

We can use the same variant to measure all further defined non-functional properties in the

objective function. Hence, our approach scales linearly with the number of defined

properties in the objective function.

6.4 Post-derivation optimization

In a last step, we can apply further optimizations to the generated source code of the

derived variant to improve non-functional properties. There are lots of optimization pos-

sibilities in the literature such as instruction reordering (Tiwari et al. 1994; Li and Henkel

2002), code transformations (Fei et al. 2007) or special compilers (Cooper et al. 2002) that

target different non-functional properties.

Software Qual J (2012) 20:487–517 509

123

Author's personal copy

Also, post-derivation optimizations specific to SPLs exist. Products of an SPL are

usually generated by a set of implementation units. The generated source code can be hard

to read and to maintain, and the generation process might even produce unoptimized code

with respect to performance or footprint. To overcome these drawbacks, we developed a

technique to further optimize a derived variant by means of refactorings. Altering the

structure of a derived variant may influence certain non-functional properties. In previous

work, we classified refactorings based on the influence on different non-functional prop-

erties (Siegmund et al. 2010a). For example, we can improve the execution time of a

variant by applying the Inline Method refactoring to a method of a variant. The refactoring

replaces the method call with the body of the called method and thus avoids the execution

overhead of the method call. Depending on the application scenario and a careful use of

this refactoring, we can improve performance by up to 50% (Götz and Pukall 2009). Since

other refactorings, such as Replace Inheritance with Composition or Inline Class improve

other non-functional properties (e.g., footprint or working memory consumption), we apply

only refactorings to a variant that actually optimize a desired non-functional property. A

detail discussion is out of scope of this paper (Siegmund et al. 2010a, b).

7 Related work

Our approach is orthogonal to other requirements and quality-engineering approaches as

well as to measurement and optimization techniques. We present a holistic approach that

integrates and makes use of existing measurement and optimization techniques. In the

following, we describe how different approaches integrate with SPL Conqueror.

7.1 Quality models

There is a number of quality models and definitions of non-functional requirements (or

properties) in the literature, see (Glinz 2007; Chung and do Prado Leite 2009) for an

exhaustive survey, such as McCall’s quality model (Mccall et al. 1977), Boehm’s quality

model (Boehm et al. 1978), SQUID, Software Quality in the Development Process, (Bøegh

et al. 1999) and the ISO 9126 quality model (ISO 2001). All these models can be used by

domain experts, SPL vendors or even customers to specify non-functional properties.

However, they do not consider the specifics of SPL engineering (i.e., the separation of

domain and application engineering) and of the variant-derivation process (i.e., the large

variant space). Nevertheless, we can use the modeling of non-functional properties to

evaluate whether a property is a qualitative or quantitative property. These models are

orthogonal to our approach, and an integration in SPL Conqueror is promising to define

proper measurements and to improve the optimization of non-functional properties.

Prometheus is an approach to model and predict non-functional properties in products of

SPLs (Trendowicz and Punter 2003). It concentrates on the design and development phase.

That is, Prometheus is limited to SPLs targeting a very restricted application scenario. The

goal of Prometheus is to reuse measurements and definitions of non-functional properties

for other product lines. But, it is not clear how it can be used for SPLs that have a broad

scope with contradicting requirements depending on the application scenario. In contrast to

Prometheus, we concentrate on product derivation. That is, we aim at optimizing varying

non-functional properties of an SPL’s product.

510 Software Qual J (2012) 20:487–517

123

Author's personal copy

7.2 Measurement and prediction of non-functional properties in SPLs

There are many measurement techniques to predict a software’s quality attributes (see

(Rana et al. 2007) for an overview and (Lincke et al. 2010) for a comparison of selected

models). However, prediction models usually target only a single property, such as reli-

ability (Khoshgoftaar and Seliya 2003) and do not consider a variable set of assets as it

would be necessary in SPL engineering. We do not propose novel measurements or pre-

diction models, but aim at using existing ones in our approach. We can, for example,

integrate source code-based measurements in SPL Conqueror (e.g., number of imple-

mented interfaces, number of inner classes, etc., as used by (Pizzi et al. 2002)) and use

existing methods to aggregate and reason about the results.

Only a few approaches apply measurements of non-functional properties to SPLs.

Zubrow and Chastek proposed measures that evaluate the development effort for an SPL

(Zubrow and Chastek 2003). Lopez-Herrejon and Apel express with their metrics the

complexity of an SPL in terms of variation points (Lopez-Herrejon and Apel 2007) and

cohesion (Apel and Beyer 2011). An approach close to our work is the measurement of the

binary size of an aspect-oriented SPL (Hunleth and Cytron 2002). The authors compiled

aspects in distinct files and measured the binary size. The footprint of different variants can

then be computed. However, the approach does not consider other non-functional prop-

erties or the computation of an optimal variant.

Sincero et al (2007, 2010) propose to estimate a product’s non-functional properties

based on a knowledge base consisting of measurement results of already created variants.

Using a machine learning approach, their aim is to find a correlation between feature

selection and measurement. This way, they can infer how a feature influences a non-

functional property during configuration. In contrast to our approach, they do not measure

a feature’s non-functional properties but a quantification of how a feature affects a prop-

erty. During product derivation, they do not present an expected value for a product’s

properties, as we do, but can show with a slider how much a feature selection improves a

property such as performance or not. Furthermore, they do not address the different types

of non-functional properties (i.e., qualitative properties) nor they define a holistic product

derivation process.

In a parallel line of research, we developed an approach to approximate non-functional

properties of features (Siegmund et al. 2011). We use the measurement delta of two

variants that differ only in the selection of a single feature. This delta is interpreted as the

influence of the according feature on the measured non-functional property. We developed

an algorithm to minimize the number of required measurements and to account for feature

interactions. In contrast here, we focus on the complete product derivation process rather

than only the measurement of products. We do not propose measurement techniques in this

paper, but use existing techniques in SPL Conqueror. The measurement of features is only

a single step toward the derivation of an optimal variant.

7.3 Variant derivation approaches

There are a number of approaches that target the development of programs with desired

non-functional properties. These approaches, such as the non-functional requirement

framework (Chung et al. 1999), i* framework (Yu 1997) and KAOS (van Lamsweerde

2001), are originally intended to help developers with design decisions to develop a

software considering non-functional requirements. In SPL engineering, the software arti-

facts are usually already implemented when new customers derive a variant, but decisions

Software Qual J (2012) 20:487–517 511

123

Author's personal copy

regarding desired non-functional properties can be made during the variant-derivation

process. Hence, these frameworks may be suitable for an integration in SPL Conqueror,

such that a goal-oriented model can be defined for an SPL’s feature model.

The vast majority of variant-derivation tools focuses on reducing the complexity of the

configuration process and supporting the user with advanced user interfaces during feature

selection (Batory 2005; Antkiewicz and Czarnecki 2004; Czarnecki et al. 2004; Bot-

terweck et al. 2007; Rabiser et al. 2007). These tools often use SAT solvers or Prolog (e.g.,

in pure::variants (Pure-systems GmbH 2004)) to verify a configuration against the con-

straints of the SPL.

As we explained before, we use a CSP solver to compute an optimal variant. There are

also some approaches that allow an user to optimize the feature selection with regard to a

specific non-functional property. Benavides et al. presented a technique based on CSP

solvers to find an optimal variant (Benavides et al. 2005, 2007). The solver evaluates

values attached to features in the feature model and then computes an optimal configu-

ration for a small number of features. Unfortunately, their studies show that with an

increasing number of features, the computation time exponentially grows. White et al.

(2007, 2009) extended the optimized feature selection by enabling the definition of

resource constraints. Moreover, they propose a solution based on filtered Cartesian flat-

tening to approximate a nearly optimal variant for even large scale feature models. Again,

we use a CSP solver in SPL Conqueror. But, both approaches might be useful in SPL

Conqueror (e.g., for selecting optimal feature sets).

7.4 Optimization techniques for non-functional properties

There are a number of techniques targeting the optimization of a specific non-functional

property. A related approach for optimizing non-functional properties was developed in the

COMQUAD project (Göbel et al. 2004). The project focuses on techniques for tracing and

adapting non-functional properties in component-based systems. Particularly, developers

can select between alternative implementations dynamically and an infrastructure weaves

these implementations as non-functional aspects in the component. This approach requires

a dedicated component model based on Enterprise JavaBeans, CORBA Components and

AOP. In contrast, SPL Conqueror is not constrained to a specific implementation technique

or language. Furthermore, we consider the measurement of non-functional properties,

which is not addressed in their work.

8 Conclusion

In this paper, we address the problems of measuring non-functional properties and finding

the optimal variant for given non-functional requirements. With SPL Conqueror, we

present a holistic approach for the whole variant-derivation process. It automates the

measurement of non-functional properties and derivation of optimized program variants of

a product line. We allow product-line vendors to measure the features of a product line

(e.g., footprint and performance) or to qualitatively rate features according to their influ-

ence on a non-functional property. By providing a classification of non-functional prop-

erties, we support different measurement techniques (feature-wise measurement and

variant-wise measurement). We solve the problem of the large variant space and the large

spectrum of non-functional properties in a product line by providing appropriate config-

uration possibilities for each class of properties embedded in a staged variant-derivation

512 Software Qual J (2012) 20:487–517

123

Author's personal copy

process. We discussed an evaluation for the measurement of non-functional properties with

nine case studies. The sample product lines were chosen from different domains (e.g.,

database and UML editor). They are implemented with different techniques and languages

(C, C??, Java). This demonstrates that our approach is language, domain and imple-

mentation independent.

In future work, we will extend our approach to reduce the measurement effort for

variant-wise quantifiable properties, such as performance and energy consumption. We

will also work on techniques to automatically identify feature interactions at the level of

non-functional properties and on an integration of other approaches for computing the

optimal feature selection in SPL Conqueror. Furthermore, an important work will be the

application of SPL Conqueror with an industrial setting including customer-defined non-

functional requirements.

Acknowledgment We would like to thank Janet Feigenspan and the anonymous reviewers for their
constructive and helpful comments which substantially improved the quality of the paper. Norbert Siegmund
is funded by the German ministry of education and science BMBF, number 01IM10002B. Marko Rosen-
müller is funded by the German research foundation, project number SA 465/34-1. Apel’s work is supported
by the DFG projects #AP 206/2-1 and #AP 206/4-1. Kästner’s work is supported by the European Research
Council (grand ScalPL #203099).

References

Antkiewicz, M., & Czarnecki, K. (2004). Featureplugin: Feature modeling plug-in for Eclipse. In Workshop
on eclipse technology eXchange (pp. 67–72). New York: ACM Press.

Apel, S., & Beyer, D. (2011). Feature cohesion in software product lines: An exploratory study. In Pro-
ceedings of the International Software Engineering Conference (ICSE) (pp. 421–430). New York:
ACM Press.

Bagnall, A. J., Rayward-Smith, V. J., & Whittley, I. M. (2001). The next release problem. Information and
Software Technology, 43(14), 883–890.

Batory, D. (2005). Feature models, grammars, and propositional formulas. In Proceedings of the Interna-
tional Software Product Line Conference (SPLC) (Vol. 3714, pp. 7–20). Berlin: Springer, LNCS.

Batory, D., Sarvela, J. N., & Rauschmayer, A. (2004). Scaling step-wise refinement. IEEE Transactions on
Software Engineering (TSE), 30(6), 355–371

Benavides, D., Segura, S., Trinidad, P., & Cortés, A. R. (2007). FAMA: Tooling a framework for the
automated analysis of feature models. In Proceedings of the Workshop on Variability Modelling of
Software-intensive Systems (VaMoS) (pp. 129–134). Berlin: Springer.

Benavides, D., Ruiz-Cortés, A., & Trinidad, P. (2005). Automated reasoning on feature models. In Inter-
national Conference on Advanced Information Systems Engineering (CAISE) (Vol. 3520,
pp. 491–503). Berlin: Springer, LNCS.

Bøegh, J., Depanfilis, S., Kitchenham, B., & Pasquini, A. (1999). A method for software quality planning,
control, and evaluation. IEEE Software, 16, 69–77.

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., Macleod, G. J., & Merritt, M. J. (1978). Characteristics
of software wuality (TRW series of software technology). Amsterdam: Elsevier.

Botterweck, G., Nestor, D., Preußner, A., Cawley, C., & Thiel, S. (2007). Towards supporting feature
configuration by interactive visualization. In Proceedings of Workshop on Visualisation in Software
Product Line Engineering (ViSPLE), IEEE Computer Society, pp. 125–131.

Chung, L., & do Prado Leite, J. (2009). On non-functional requirements in software engineering. In Con-
ceptual modeling: Foundations and applications (Vol. 5600, Chap 19, pp. 363–379). Berlin: Springer,
LNCS.

Chung, L., Nixon, B. A., & Yu, E. (1995). Using non-functional requirements to systematically support
change. In Proceedings of the International Symposium on Requirements Engineering (RE), IEEE
Computer Society, pp. 132–139.

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (1999). Non-functional requirements in software
engineering. Berlin: Springer.

Clements, P., & Northrop, L. (2002). Software product lines: Practices and patterns. MA: Addison-Wesley.

Software Qual J (2012) 20:487–517 513

123

Author's personal copy

Cooper, K. D., Subramanian, D., & Torczon, L. (2002). Adaptive optimizing compilers for the 21st century.
Journal of Supercomputing, 23(1), 7–22.

Czarnecki, K., & Eisenecker, U. (2000). Generative programming: Methods, tools, and applications. MA:
Addison-Wesley.

Czarnecki, K., Kim, C. H. P., & Kalleberg, K. T. (2006). Feature models are views on ontologies. In
Proceedings of the International Software Product Line Conference (SPLC), IEEE Computer Society,
pp. 41–51.

Czarnecki, K., Helsen, S., & Eisenecker, U. W. (2004). Staged configuration using feature models. In
Proceedings of the International Software Product Line Conference (SPLC) (Vol. 3154, pp. 266–283).
Berlin: Springer, LNCS.

Fei, Y., Ravi, S., Raghunathan, A., & Jha, N. K. (2007). Energy-optimizing source code transformations for
operating system-driven embedded software. ACM Transaction on Embedded Computer Systems, 7(1),
1–26.

Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., & Gjorven, E. (2006). Using architecture models
for runtime adaptability. IEEE Software, 23, 62–70.

Glinz, M. (2007). On non-functional requirements. In Proceedings of the International Conference on
Requirements Engineering (RE), IEEE Computer Society, pp. 21–26.

Göbel, S., Pohl, C., Röttger, S., & Zschaler, S. (2004). The COMQUAD component model: Enabling
dynamic selection of implementations by weaving non-functional aspects. In International Conference
on Aspect-oriented Software Development (AOSD) (pp. 74–82). New York: ACM Press.

Götz, S., & Pukall, M. (2009). On performance of delegation in Java. In Proceedings of the International
Workshop on Hot Topics in Software Upgrades (HotSWUp) (pp. 1–6). New York: ACM Press.

Hunleth, F., & Cytron, R. (2002). Footprint and feature management using aspect-oriented programming
techniques. In Proceedings of Joint Conference on Languages, Compilers, and Tools for Embedded
Systems & Software and Compilers for Embedded Systems (LCTES/SCOPES) (pp. 38–45). New York:
ACM Press.

International Organization for Standardization (ISO) (2001). Software engineering—Product quality, Part 1:
Quality model. In JTC 1/SC 7—Software and systems engineering, ISO/IEC 9126-1.

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, A. (1990). Feature-oriented domain analysis (FODA)
feasibility study. Tech. Rep. CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie Mellon
University.

Karlsson, J., Wohlin, C., & Regnell, B. (1998). An evaluation of methods for prioritizing software
requirements. Information and Software Technology, 39(14–15), 939–947.

Kästner, C., Apel, S., ur Rahman, S. S., Rosenmüller, M., Batory, D. & Saake, G. (2009). On the impact of
the optional feature problem: Analysis and case studies. In Proceedings of the International Software
Product Line Conference (SPLC), Software Engineering Institute (SEI), pp. 181–190.

Khoshgoftaar, T. M., & Seliya, N. (2003). Fault prediction modeling for software quality estimation:
Comparing commonly used techniques. Empirical Software Engineering, 8, 255–283.

Krueger, C. W. (2006). New methods in software product line development. In Proceedings of the Inter-
national Software Product Line Conference (SPLC), IEEE Computer Society, pp. 95–102.

Li, Y., & Henkel, J. (2002). A framework for estimating and minimizing energy dissipation of embedded
HW/SW systems (pp. 259–264). Dordrecht: Kluwer Academic Publishers.

Lincke, R., Gutzmann, T., & Löwe, W. (2010). Software quality prediction models compared. In Inter-
national Conference on Quality Software (ISCQ), IEEE Computer Society, pp. 82–91.

Lopez-Herrejon, R., & Apel, S. (2007). Measuring and characterizing crosscutting in aspect-based pro-
grams: Basic metrics and case studies. In Proceedings of the International Conference on Fundamental
Approaches to Software Engineering (FASE) (pp. 423–437). Berlin: Springer

Marler, R., & Arora, J. (2004). Survey of multi-objective optimization methods for engineering. Structural
and Multidisciplinary Optimization, 26(6), 369–395.

McCabe, T. (1976). A complexity measure. IEEE Transactions on Software Engineering, 2(4), 308–320.
Mccall, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in software quality. Vol. 1. Concepts and

definitions of software quality. Technical Report ADA049014, General Electric Co Sunnyvale
California.

Oracle (2006). Oracle press release. http://www.oracle.com/corporate/press/2006_sep/oracle_bdb_4-5.htm
Pizzi, N. J., Summers, R., & Pedrycz, W. (2002). Software quality prediction using median-adjusted class

labels. In International Joint Conference on Neural Networks (IJCNN), IEEE Computer Society,
pp. 2405–2409.

Pohl, K., Böckle, G., & van der Linden, F. (2005). Software product line engineering: Foundations,
principles and techniques. Berlin: Springer.

514 Software Qual J (2012) 20:487–517

123

Author's personal copy

http://www.oracle.com/corporate/press/2006_sep/oracle_bdb_4-5.htm

Pure-systems GmbH (2004). Technical white paper: Variant management with pure::variants. [Avaiblable
online at: http://www.pure-systems.com.

Rabiser, R., Dhungana, D., & Grünbacher, P. (2007). Tool support for product derivation in large-scale
product lines: A wizard-based approach. In Workshop on Visualisation in Software Product Line
Engineering (ViSPLE), IEEE Computer Society, pp. 119–124.

Rana, Z. A., Shamail, S., & Awais, M. M. (2007). A survey of measurement-based software quality
prediction techniques. Tech. Rep. Lahore University of Management Sciences.

Robertson, S., & Robertson, J. (1999). Mastering the requirements process. New York: ACM Press.
Saliu, M. O., & Ruhe, G. (2007). Bi-objective release planning for evolving software systems. In Pro-

ceedings of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC-FSE) (pp. 105–114). New York: ACM Press, FSE.

Siegmund, N., Kuhlemann, M., Rosenmüller, M., Kästner, C., & Saake, G. (2008a). Integrated product line
model for semi-automated product derivation using non-functional properties. In Workshop on Vari-
ability Modelling of Software-intensive Systems (VaMoS) (pp. 25–31). University of Duisburg-Essen.

Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., & Saake, G. (2008b). Measuring non-
functional properties in software product lines for product derivation. In Proceedings of the Asia-
Pacific Software Engineering Conference (APSEC), IEEE Computer Society, pp. 187–194.

Siegmund, N., Kuhlemann, M., Apel, S., & Pukall, M. (2010a). Optimizing non-functional properties of
software product lines by means of refactorings. In Proceedings of Workshop Variability Modelling of
Software-intensive Systems (VaMoS) (pp. 115–122). University of Duisburg-Essen.

Siegmund, N., Rosenmüller, M., & Apel, S. (2010b). Automating energy optimization with features. In
Proceedings of International Workshop on Feature-oriented Software Development (FOSD) (pp. 2–9).
New York: ACM Press.

Siegmund, N., Rosenmüller, M., Kästner, C., Giarusso, P. G., Apel, S., & Kolesnikov, S. S. (2011). Scalable
prediction of non-functional properties in software product lines. In Software Product Line Conference
(SPLC), IEEE Computer Society.

Sincero, J., Schröder-Preikschat, W., & Spinczyk, O. (2010). Approaching non-functional properties of
software product lines: Learning from products. In Proceedings of Asia-Pacific Software Engineering
Conference (APSEC), IEEE Computer Society, pp. 147–155.

Sincero, J., Spinczyk, O., & Schröder-Preikschat, W. (2007). On the configuration of non-functional
properties in software product lines. In Software Product Line Conference (SPLC), Doctoral Sympo-
sium (pp. 167–173). Kindai Kagaku Sha Co. Ltd.

SQLite.org (2010). Press release. http://www.sqlite.org/mostdeployed.html [Accessed at: 19th May 2011].
Stevens, S. S. (1946). On the theory of scales of measurement. Sciences, 103(2684), 677–680.
Tiwari, V., Malik, S., & Wolfe, A. (1994). Compilation techniques for low energy: An overview. In

Proceedings of Symposium on Low Power Electronics (ISLPED), IEEE Computer Society, pp. 38–39.
Trendowicz, A., & Punter, T. (2003). Quality modeling for software product lines. In ECOOP Workshop on

Quantitative Approaches in Object-Oriented Software Engineering (QAOOSE).
van Lamsweerde, A. (2001). Goal-oriented requirements engineering: a guided tour. In International

Symposium on Requirements Engineering (RE), IEEE Computer Society, pp. 249–262.
van Lamsweerde, A., Darimont, R., & Letier, E. (1998). Managing conflicts in goal-driven requirements

engineering. IEEE Transactions on Software Engineering, 24(11), 908 –926.
White, J., Schmidt, D. C., Wuchner, E., & Nechypurenko, A. (2007). Automating product-line variant

selection for mobile devices. In Proceedings of the International Software Product Line Conference
(SPLC), IEEE Computer Society, pp. 129–140.

White, J., Dougherty, B., & Schmidt, D. C. (2009). Selecting highly optimal architectural feature sets with
filtered cartesian flattening. Journal of Systems and Software, 82(8), 1268–1284.

Yu, E. S. K. (1997). Towards modeling and reasoning support for early-phase requirements engineering. In
Proceedings of the International Symposium on Requirements Engineering (RE), IEEE Computer
Society, pp. 226–235.

Zhang, Y., Harman, M., & Mansouri, S. A. (2007). The multi-objective next release problem. In Pro-
ceedings of the Annual Conference on Genetic and Evolutionary Computation (GECCO) (pp.
1129–1137). New York: ACM Press.

Zubrow, D., & Chastek, G. (2003). Measures for software product lines. Tech. Rep. CMU/SEI-2003-TN-
031, Carnegie Mellon University.

Software Qual J (2012) 20:487–517 515

123

Author's personal copy

http://www.pure-systems.com
http://www.sqlite.org/mostdeployed.html

Author Biographies

Norbert Siegmund received his Master in Computer Science (degree:
Diplom-Informatiker) from Otto-von-Guericke University, Magde-
burg, Germany in 2007. He joined immediately the database work-
group at the Otto-von- Guericke University in Magdeburg as a PhD
student. His research interests are software product line engineering
techniques and non-functional properties.

Marko Rosenmüller received his Diploma in Computer Science from
the University of Magdeburg, Germany in 2005. From 2000 to 2006,
he was a software developer at the icubic AG in Magdeburg. Since
2006, he is a Ph.D. student at the University of Magdeburg. His
research interests include software product lines, tailor-made data
management and programming languages for product line
development.

Martin Kuhlemann received his Master degree in Computer Science
(Diplom-Informatiker) at the University of Magdeburg, Germany, in
2006. After that, he joined the database research group of the faculty of
computer science at the Univerisity of Magdeburg. His research
interests include software product lines, refactoring and generative
programming.

516 Software Qual J (2012) 20:487–517

123

Author's personal copy

Christian Kästner is a post-doctoral at Philipps University Marburg
in Germany. He received a Ph.D. in Computer Science from the
University of Magdeburg, Germany in 2010. His research interests
include languages and tools for software product lines and (virtual)
separation of concerns.

Sven Apel is a post-doctoral associate at the Chair of Programming at
the University of Passau, Germany. He received a Ph.D. in Computer
Science from the University of Magdeburg, Germany in 2007. His
research interests include advanced programming paradigms, software
product lines and algebra for software construction.

Gunter Saake received the diploma and a PhD in Computer Science
from the Technical University of Braunschweig, F.R.G. in 1985 and
1988, respectively. From 1988 to 1989, he was a visiting scientist at
the IBM Heidelberg Scientific Center, where he joined the Advanced
Information Management project and worked on language features and
algorithms for sorting and duplicate elimination in nested relational
database structures. In January 1993, he received the Habilitation
degree (venia legendi) for Computer Science from the Technical
University of Braunschweig. Since May 1994, Gunter Saake is a
fulltime professor for the area ‘‘Databases and Information Systems’’
at the Otto-von-Guericke University, Magdeburg. His research inter-
ests include database integration, tailor-made data management,
object-oriented information systems and information fusion.

Software Qual J (2012) 20:487–517 517

123

Author's personal copy

	SPL Conqueror: Toward optimization of non-functional properties in software product lines
	Abstract
	Introduction
	Problem statement
	Software product line scenario
	Measuring non-functional properties
	Optimizing non-functional properties

	Representing non-functional properties in software product lines
	Classification of non-functional properties
	Qualitative properties
	Feature-wise quantifiable properties
	Variant-wise quantifiable properties

	Product-line model to reason about feature selections

	SPL Conqueror: a holistic approach for the optimization of non-functional properties
	Measuring non-functional properties
	Reliability (Qualitative property)
	Measuring the complexity of a feature’s source code (feature-wise quantifiable property)
	Measuring footprint (feature-wise quantifiable property)
	Measuring performance (variant-wise quantifiable property)
	Discussion
	Time for measurements
	Accuracy of property prediction

	Computing an optimal variant
	Feature selection
	Constraining non-functional properties
	Optimization of non-functional properties
	Post-derivation optimization

	Related work
	Quality models
	Measurement and prediction of non-functional properties in SPLs
	Variant derivation approaches
	Optimization techniques for non-functional properties

	Conclusion
	Acknowledgment
	References

