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ABSTRACT
Feature-oriented programming extends object-oriented pro-
gramming to support feature modularity. Feature modules
typically cut across class boundaries to implement end-user-
visible features. Customized program variants can be com-
posed automatically given a selection of desired feature mod-
ules. We propose behavioral feature interfaces based on
design by contract for precise localization of faulty feature
modules. There are three different approaches for feature-
module composition, which are considered to be equivalent
in the literature. We discuss advantages and disadvantages
for each approach with regard to behavioral feature inter-
faces. Based on our insights, we present Subclack as a new
approach for feature-module composition combining the ad-
vantages of all existing approaches. In our examples, we use
contracts defined in an feature-oriented extension of the Java
Modeling Language, and discuss how they can be checked
by means of runtime assertions.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication; D.2.13 [Software Engineering]: Reusable Soft-
ware; D.3.3 [Programming Languages]: Language Con-
structs and Features

General Terms
Design, Languages, Verification

Keywords
Feature-Oriented Programming, Behavioral Feature Inter-
faces, Design by Contract, Runtime Assertions, Java Mod-
eling Language, Explicit Contract Refinement
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1. INTRODUCTION
Feature-oriented programming is an approach to modu-

larize software according to the features it provides [25,
9]. A feature is a prominent or distinctive user-visible pro-
gram characteristic [21]. Features often cut across multiple
classes, and each class may contribute to multiple features.
In feature-oriented programming, classes reside in feature
modules. Technically, feature modules are rooted in mixin
composition [17, 28]. By composing different subsets of fea-
ture modules, one can generate customized program variants
automatically [25, 9].

Design by contract is an approach for the formal specifi-
cation of program behavior [24], which can be used for pro-
gram verification. Methods are specified by means of method
contracts, defining preconditions required from callers, and
postconditions ensured by callees. Furthermore, class in-
variants define properties that are assumed to hold before
and after execution of public methods. An advantage of
contracts compared to other specification techniques is that
they can be used for documentation, runtime assertion check-
ing, test-case generation, and formal verification [19, 12].
Furthermore, contracts facilitate blame assignment to locate
faulty method implementations [24]. That is, we can assign
blame to the caller if a method’s precondition is violated,
and to the callee if a method’s postcondition is violated.

Applying design by contract to feature-oriented program-
ming is beneficial to efficiently specify and verify feature
modules. First, we modularize the specification of features
similarly to the implementation of features, and compose
feature specifications based on a feature selection to auto-
matically generate the specification of a program variant [32,
27, 10]. Second, we exploit similarities between different pro-
gram variants and their specifications to efficiently verify all
compositions of feature modules [30, 31].

However, the location of faulty feature modules based on
contracts is not straightforward. In previous work [10], we
extended an existing tool for feature-oriented programming
named FeatureHouse [3] with support for design by con-
tract. With this extension, programmers can implement fea-
ture modules in Java, specify the modules with method con-
tracts defined in an extension of the Java Modeling Language
(JML) [13], and compose these modules automatically based
on a selection of desired features. The result is a composed
Java program including a composed specification in JML,
which can be tested or verified by any given JML tool. How-



ever, identifying faulty feature modules is not always possi-
ble with our FeatureHouse extension. The reason is that
methods may be composed from fragments defined in several
feature modules, and it is not clear how to identify feature
modules that violate contracts.

Our goal is to establish behavioral interfaces between fea-
ture modules, which we refer to as behavioral feature inter-
faces. To achieve this goal, we propose to translate con-
tracts into program variants that check the expected be-
havior at the boundaries of feature modules. In experi-
ments based on our FeatureHouse extension, we noticed
problems when feature modules introduce new class invari-
ants. While looking at other tools for feature-oriented pro-
gramming, we found that each tool follows a slightly differ-
ent semantics. Overall, we identified three approaches for
the composition of feature modules. For each composition
approach, we propose a strategy to generate contracts es-
tablishing behavioral feature interfaces. However, while all
approaches are considered equivalent in the literature, we
show that each approach has unique strengths and weak-
nesses when considering contracts. Based on our findings,
we present Subclack as a new approach for the composition
of feature modules. We demonstrate how to establish be-
havioral feature interfaces with Subclack and discuss how it
combines the advantages of all other approaches.

In our examples, we use a feature-oriented extension of
Java and JML, but our results can be generalized to other
object-oriented languages and other specification languages
supporting design by contract. We illustrate the different
approaches for feature-module composition by means of run-
time assertion checking, because it is an illustrative appli-
cation of contracts. However, our results are also crucial for
other verification techniques, because they often rely on a
particular semantics of feature-oriented programming, and
because each verification technique should establish behav-
ioral feature interfaces to facilitate precise error location.

In summary, we make the following contributions:

• We illustrate that the semantics of feature-oriented
programming is usually defined by means of tools. We
identify and distinguish between three approaches for
the composition of feature modules that are often con-
sidered as equivalent in the literature.

• We propose behavioral feature interfaces to identify
faulty feature modules. We discuss how the identified
approaches for the composition of feature modules can
be extended to establish behavioral feature interfaces.

• We discuss problems of all three approaches for feature-
module composition with respect to behavioral feature
interfaces, and propose the new approach Subclack
solving these problems.

2. FEATURE-ORIENTED PROGRAMMING
In feature-oriented programming, a feature module encap-

sulates the implementation of a feature [25, 9]. In tools for
feature-oriented programming, such as FeatureC++ [5],
Jampack [8], Mixin [8], FeatureHouse [3], and Class-
box/J [11], a feature module encapsulates a set of classes
and class refinements. A class refinement can add new mem-
bers to a class or refine existing members. Class refinements
are essentially mixins [17], and feature module composition
is a form of mixin-layer composition [28]. Different program

class Account { Base
int balance = 0;
int update(int x) { balance += x; return balance; }

}

refines class Account { DailyLimit
final int DAILY_LIMIT = −1000;
int withdrawToday = 0;
int update(int x) {
if (withdrawToday + x < DAILY_LIMIT)

throw new RuntimeException("out of limit");
if (x < 0) withdrawToday += x;
return original(x);

}
void newDay() { withdrawToday = 0; }

}

refines class Account { History
int lastTransaction = 0;
int update(int x) {
int result = original(x);
lastTransaction = x;
return result;

}
}

Figure 1: Feature modules may introduce classes or
refine classes introduced by other feature modules.

variants can be generated automatically by composing fea-
ture modules in different combinations.

In Figure 1, we present a feature-oriented implementa-
tion of a bank account consisting of the features Base, Dai-
lyLimit, and History. Feature module Base introduces a
class Account representing a simple bank account, storing
the current balance in a field balance and allowing with-
drawal or deposition of money using method update. Fea-
ture module DailyLimit applies a refinement to class Ac-

count (keyword refines). The class refinement introduces
a field withdrawToday to store the total withdrawal of the
day. Similarly, feature module History applies a refinement
to class Account to store the last update operation in field
lastTransaction and a refinement to method update. In
a method refinement, keyword original refers to the old
implementation of the method being refined.

Feature Base represents a valid program variant in itself
and may be composed with feature DailyLimit, History, or
both, which results in four variants that can be generated
from these feature modules.1 As said before, when com-
posing feature modules, classes are introduced and class re-
finements are applied. There is no consensus on how class
refinements should be applied. Actually, there are three dif-
ferent approaches for the composition of feature modules,
to which we refer to as Jampack, Subclassing, and Inlining.
In Table 1, we give an overview on the implementations
of these approaches in tools and formalizations. Each of
these approaches gives rise to a slightly different semantics
of feature-oriented programming, as the semantics is usually
defined by the code generation step involved.

Jampack Approach. All refinements of a class are com-
posed into a single class in the generated program. The com-
posed class then includes the code of the basic class as well as

1In our example, there is only a single base implementation
that is subject to refinement (e.g., feature Base). However,
feature-oriented programming also allows programmers to
define alternative or optional feature modules as a basis.



Feature-module composition Tools Formalizations

Jampack approach Jampack [8], FeatureHouse [3] —
Subclassing approach FeatureC++ [5], Mixin [8] Lightweight Feature Java [15]
Inlining approach Classbox/J [11] Feature algebra [6], extended feature algebra [20]

Table 1: Approaches for feature-module composition in feature-oriented programming.

of all refinements introduced by other features. Methods and
method refinements are each translated into methods of the
composed class. All methods and method refinements being
subject to refinement are renamed to have fresh names (i.e.,
the last method refinement of each refinement chain and
non-refined methods keep their names). Each original call
is replaced by a call to the refined method. In Figure 2a,
we show the result of composing the features Base, Dai-
lyLimit, and History of Figure 1 with the Jampack approach.
Class Account of feature Base and its refinements in feature
DailyLimit and feature History are translated into one com-
pound class Account. The method update from feature Base
is renamed to update$$Base, and the original call in the
method refinement in feature DailyLimit is replaced by a call
to update$$Base. Analogously, method update from feature
DailyLimit is renamed to update$$DailyLimit. The Jam-
pack approach is used by the tool Jampack of the AHEAD
tool suite [8] and by the tool FeatureHouse [3].

Subclassing Approach. Each class refinement is trans-
lated into an ordinary class; classes and their refinements
are connected via inheritance, such that a method refine-
ment overrides the refined method and replaces this method
by means of dynamic method dispatch. All classes and class
refinements that are subject to refinement are renamed using
a fresh name, and marked as abstract to indicate that they
are not intended to be instantiated. The original call is
translated into a call to the superclass method. In Figure 2b,
we show the result of composing the features Base, Dai-
lyLimit, and History with the Subclassing approach: class
Account of feature Base as well as the refinements of the
features DailyLimit and History have been translated into
separate classes; the class in feature Base is renamed into
Account$$Base and the class implementing the refinement of
feature DailyLimit inherits from class Account$$Base. The
class in feature DailyLimit is renamed analogously. The
class refinement from feature History is not renamed, be-
cause there is no later refinement in our example. The
Subclassing approach is formalized in Lightweight Feature
Java [15], and used by the tools FeatureC++ [5] and Mixin
of the AHEAD tool suite [8].

Inlining Approach. Much like in the Jampack approach,
all refinements of a class and the class itself are composed
into a single class in the generated program, whereas, in
contrast to the Jampack approach, each method is merged
with all method refinements using method inlining. In Fig-
ure 2c, we show the result of composing the features Base,
DailyLimit, and History with the Inlining approach. The
composition result is similar to the result of the Jampack
approach except that the methods update$$Base and up-

date$$DailyLimit are being inlined in method update. A
design decision of the Inlining approach is whether method
refinements can access local variables of the methods they
wrap or not. Accordingly, renaming of local variables might
be required. In our example, the result does not depend on

class Account { (a) Jampack approach
int balance = 0;
final int DAILY_LIMIT = −1000;
int withdrawToday = 0;
int lastTransaction = 0;
private int update$$Base(int x) {
balance += x; return balance;

}
int update$$DailyLimit(int x) {
if (withdrawToday + x < DAILY_LIMIT)

throw new RuntimeException("out of limit");
if (x < 0) withdrawToday += x;
return update$$Base(x);

}
int update(int x) {
int result = update$$DailyLimit(x);
lastTransaction = x;
return result;

}
void newDay() { withdrawToday = 0; }

}

abstract class Account$$Base { (b) Subclassing approach
int balance = 0;
int update(int x) { balance += x; return balance; }

}
abstract class Account$$DailyLimit

extends Account$$Base {
final int DAILY_LIMIT = −1000;
int withdrawToday = 0;
int update(int x) {
if (withdrawToday + x < DAILY_LIMIT)

throw new RuntimeException("out of limit");
if (x < 0) withdrawToday += x;
return super.update(x);

}
void newDay() { withdrawToday = 0; }

}
class Account extends Account$$DailyLimit {
int lastTransaction = 0;
int update(int x) {
int result = super.update(x);
lastTransaction = x;
return result;

}
}

class Account { (c) Inlining approach
int balance = 0;
final int DAILY_LIMIT = −1000;
int withdrawToday = 0;
int lastTransaction = 0;
int update(int x) {
if (withdrawToday + x < DAILY_LIMIT)

throw new RuntimeException("out of limit");
if (x < 0) withdrawToday += x;
balance += x;
int result = balance;
lastTransaction = x;
return result;

}
void newDay() { withdrawToday = 0; }

}

Figure 2: Composition of the feature modules Base,
DailyLimit, and History with different approaches.



this design decision, as there are no local variables affected.
The Inlining approach with renaming of local variables is
discussed for Feature Algebra [6]. The Inlining approach
with the access of local variables is discussed for Extended
Feature Algebra [20] and applied in Classbox/J [11].

3. CONTRACTS IN FEATURE MODULES
Design by contract has been introduced to increase the

reliability of object-oriented programs by support for spec-
ifying behavioral interfaces [24]. Behavioral interfaces be-
tween objects or classes document their intended behavior
and ease the localization of errors. Enriching syntactic inter-
faces with behavioral properties defined in contracts enables
blame assignment [19]. If the precondition of a method is
not established, the caller is blamed, and if the postcondi-
tion of a method is not established, the callee is blamed.
One way to achieve blame assignment is to translate con-
tracts into assertions that are checked at runtime [24, 19,
12]. A runtime assertion is inserted at the beginning of each
method body to check the precondition and all invariants of
the class. Similarly, the postcondition and all invariants are
checked when the method execution ends.

JML is a formal specification language supporting design
by contract in Java [13]. In Figure 3, we added JML annota-
tions to our running example. Feature Base is a valid Java
program; JML annotations are given in comments. Class
Account contains an invariant stating that the balance of
the account must not be negative. Furthermore, method
update is annotated with a contract: the precondition states
that the method should only be called when the invariant is
fulfilled, the postcondition states that the method correctly
updates the balance and returns the updated balance. More
language constructs of JML are discussed elsewhere [13].

In prior work, we proposed and discussed five approaches
to define contracts for feature modules [32]. Here, we use
explicit contract refinement, because it subsumes all oth-
ers [32]: explicit contract refinement allows programmers
to define contracts for methods and method refinements,
while preconditions and postconditions of refined methods
can be accessed using keyword original. The semantics of
original in contracts is similar to the semantics within the
method body; when composing features the keyword is re-
placed by the precondition or postcondition of the refined
method. Thus, a feature may not only introduce new fields
and methods, but also new invariants and contracts, which
only need to be fulfilled if the feature is selected.

In Figure 3, we give JML specifications for the features
DailyLimit and History. Feature DailyLimit introduces a
new invariant stating that the value of the new field with-

drawToday does not exceed the limit. Furthermore, the pre-
condition of method update is strengthened to maintain the
invariant. In feature History, the postcondition of method
update is strengthened to express that the last transaction
is stored correctly; the precondition is not refined.

In feature DailyLimit, we slightly changed the implemen-
tation of method update compared to Figure 1. The reason
is that contracts help to avoid defensive programming.2 In
this example, we formulated a precondition requiring callers

2Defensive programming is a practice ”to protect every soft-
ware module against the slings and arrows of outrageous for-
tune”and ”to include as many checks as possible, even if they
are redundant with checks made by callers” [24].

class Account { Base
//@ invariant balance_non_negative: balance >= 0;
int balance = 0;
//@ requires balance + x >= 0;
//@ ensures balance == \old(balance) + x &&
//@ \result == balance;
int update(int x) { balance += x; return balance; }

}

refines class Account { DailyLimit
final int DAILY_LIMIT = −1000;
//@ invariant withdraw_in_limit:
//@ withdrawToday >= DAILY_LIMIT;
int withdrawToday = 0;
//@ requires original &&
//@ withdrawToday + x >= DAILY_LIMIT;
//@ ensures original;
int update(int x) {
if (x < 0) withdrawToday += x;
return original(−x);

}
void newDay() { withdrawToday = 0; }

}

refines class Account { History
int lastTransaction = 0;
//@ requires original;
//@ ensures original && lastTransaction == x;
int update(int x) {
int result = original(x);
lastTransaction = x;
return result;

}
}

Figure 3: In explicit contract refinement, contracts
can be defined for methods and method refinements;
contracts for method refinements can refer to the
original precondition or postcondition.

to make sure that the daily withdrawal is within the limit,
and thus the branching statement throwing an exception is
dispensable. While one could argue against the design in
our example, it is well accepted that contracts are a means
against defensive programming [24].

Contracts in feature modules are beneficial for several rea-
sons. First, we can precisely define formal specifications in
addition to ambiguous, informal specifications such as with
JavaDoc. Second, we can avoid redundant checks as in
defensive programming that unnecessarily bloat the source
code. Third, contracts may be used to check feature mod-
ules for correctness by means of runtime assertion checking,
test-case generation, static analysis [27], or deductive veri-
fication [31, 30]. Finally, contracts can be used to achieve
blame assignment for features, as we detail next.

4. BEHAVIORAL FEATURE INTERFACES
Design by contract can be used to establish behavioral in-

terfaces between classes [19]. All method contracts and class
invariants defined for a particular class constitute the behav-
ioral class interface. It can be understood as an extension of
the syntactic class interface. The latter is given by the union
of all class members and their signatures. Typically, confor-
mance to syntactic class interfaces is checked using compil-
ers, whereas conformance to behavioral class interfaces is
checked by means of runtime assertion checking, test-case
generation, static analysis, or deductive verification [19, 12].

However, behavioral class interfaces are not sufficient to
locate faulty feature modules, because several feature mod-



ules may contribute to a given class or method. We propose
to generalize the notion of behavioral interfaces to features.
The union of all method contracts and class invariants de-
fined in a particular feature module constitute the behav-
ioral feature interface. When checking the conformance of
feature modules to behavioral feature interfaces, it is nec-
essary to check whether each method call from one feature
module to another feature module establishes all contracts.
As mentioned, with these checks, we can lift blame assign-
ments from methods and classes to feature modules, and
thus identify faulty feature modules.

For illustration, consider our example in Figure 3 again.
Compared to Figure 1, we deliberately introduced a bug in
the body of method update defined in feature module Dai-
lyLimit : original(x) is replaced by original(-x). With
this change, we consider feature module DailyLimit as faulty,
because it may violate the precondition of method update

defined in feature module Base, even if the precondition
of method update in feature module DailyLimit is fulfilled.
Thus, feature module DailyLimit does not conform to the
behavioral feature interface of Base.

When checking conformance of method refinements, it is
not sufficient to only check contracts for each single method;
to identify violations of behavioral feature interfaces, con-
tracts between methods and all respective method refine-
ments need to be checked, too. Assume we would compose
all three feature modules shown in Figure 3. For the be-
havioral class interface of class Account it is sufficient to
check a contract for method update that is composed from
all three given contracts (composition is achieved by replac-
ing the keyword original to respective preconditions and
postconditions as introduced in Section 3). The behavioral
class interface is sufficient from an outside perspective (i.e.,
for clients of that class). However, the behavioral feature in-
terface consists of three contracts for method update, which
are necessary for locating the faulty feature implementation,
DailyLimit in our case.

5. COMPOSITION OF CONTRACTS
How behavioral feature interfaces can be utilized in feature-

oriented programming, depends on the approach used for
feature-modules composition. For each approach discussed
in Section 2, we propose how to compose the corresponding
contracts to establish behavioral feature interfaces as far as
possible. These composed contracts can then be checked by
means of runtime assertion checking. As we want to reuse
existing tools for translating contracts to runtime assertions,
such as JMLc [12], the resulting contracts need to be valid
JML statements. Although we exemplify our approaches by
means of runtime assertions, behavioral feature interfaces
can also be used for static analysis or deductive verification.
We discuss drawbacks of existing approaches for feature-
module composition regarding behavioral feature interfaces,
and present a new approach named Subclack based on our
insights. All approaches are exemplified by the composition
of feature modules Base and DailyLimit.

Jampack Approach. When using Jampack, all invariants
written in any of the composed features are included in the
generated classes (see Figure 4a). Furthermore, the contract
of a generated method is obtained by recursively replacing
all occurrences of original in the contract with the pre-
condition or postcondition of the refined method. Contracts

for renamed methods such as update$$Base are treated in
the same way. Thus, violations of preconditions and post-
conditions of each method and method refinement can be
recognized at runtime.

Problems occur regarding the scope of class invariants:
refined and thus renamed methods may intentionally not
satisfy all invariants of the class. For example, the method
update$$Base in Figure 4a does not satisfy the invariant
withdraw_in_limit, because feature DailyLimit introduces
this invariant and refines the method update to actually
satisfy the new invariant. While the refined method update

satisfies this invariant, method update$$Base does not.
Thus, the question arises of how to specify that refined

methods do not need to satisfy all invariants. In JML,
the keyword helper expresses that a certain method does
not need to fulfill invariants. However, when using keyword
helper for all renamed methods, we lose parts of behavioral
feature interfaces, because renamed methods no longer need
to satisfy any invariants defined by previous features. For ex-
ample, method update$$Base should not establish invariant
withdraw_in_limit as it is introduced in a later feature, but
the invariant balance_non_negative should be established.
One solution to tackle this problem is to translate invariants
of refined features directly to preconditions and postcondi-
tions of renamed methods, as shown in Figure 4a. This way,
we can establish behavioral feature interfaces, but this may
involve many additional preconditions and postconditions
making the specification hard to read.

Subclassing Approach. Most specification approaches
in object-oriented programming, and especially JML [13],
implement specification inheritance [16]. Specification in-
heritance states that contracts of superclass and subclass
methods are conjoined such that each given contract must
be fulfilled by the subclass’ method. Furthermore, specifi-
cation inheritance forces subclasses to fulfill all invariants
defined in superclasses. Specification inheritance is required
when considering subtype polymorphism, because we may
call a method on an instance of a certain class or any sub-
class thereof. In this case, we can call the method by estab-
lishing the precondition of any overridden method and can
rely on the corresponding postcondition.

The problem with invariants in the Jampack approach can
be avoided in the Subclassing approach by copying invari-
ants to the generated class of the respective feature. In Fig-
ure 4b, we illustrate that invariant balance_non_negative

is copied to class Account$$Base. Because of specification
inheritance in JML, invariants need to be fulfilled by the
source feature and all features providing a refinement to this
class. For example, the classes Account$$Base and Account

need to establish invariant balance_non_negative, whereas
only Account needs to establish withdraw_in_limit.

While specification inheritance is reasonable for object-
oriented programming, assuming specification inheritance
between features, as generated by the Subclassing approach,
is too restrictive. Sometimes features need to break con-
tracts of previous features [32]. In Figure 4b, method update

of class Account actually does not fulfill the contract defined
for the superclass Account$$Base, since the method imple-
mentation in feature DailyLimit relies on the additional pre-
condition stating that the daily withdrawal is within the
limit. Hence, we cannot generate contracts for refined meth-
ods, and thus method update in class Account$$Base has no
contract. As a consequence, we lose behavioral feature in-



class Account { (a) Jampack approach
//@ invariant balance_non_negative: balance >= 0;
int balance = 0;
final int DAILY_LIMIT = −1000;
//@ invariant withdraw_in_limit:
//@ withdrawToday >= DAILY_LIMIT;
int withdrawToday = 0;
//@ requires balance+x >= 0 && balance_non_negative;
//@ ensures balance == \old(balance) + x &&
//@ \result == balance && balance_non_negative;
private /∗@helper@∗/ int update$$Base(int x) {

balance += x; return balance;
}
//@ requires balance + x >= 0 &&
//@ withdrawToday + x >= DAILY_LIMIT;
//@ ensures balance == \old(balance) + x &&
//@ \result == balance;
int update(int x) {

if (x < 0) withdrawToday += x;
return update$$Base(−x);

}
void newDay() { withdrawToday = 0; }

}

abstract class Account$$Base { (b) Subclassing approach
//@ invariant balance_non_negative: balance >= 0;
int balance = 0;
int update(int x) { balance += x; return balance; }

}
class Account extends Account$$Base {
final int DAILY_LIMIT = −1000;
//@ invariant withdraw_in_limit:
//@ withdrawToday >= DAILY_LIMIT;
int withdrawToday = 0;
//@ requires balance + x >= 0 &&
//@ withdrawToday + x >= DAILY_LIMIT;
//@ ensures balance == \old(balance) + x &&
//@ \result == balance;
int update(int x) {

if (x < 0) withdrawToday += x;
return super.update(−x);

}
void newDay() { withdrawToday = 0; }

}

class Account { (c) Inlining approach
//@ invariant balance_non_negative: balance >= 0;
int balance = 0;
final int DAILY_LIMIT = −1000;
//@ invariant withdraw_in_limit:
//@ withdrawToday >= DAILY_LIMIT;
int withdrawToday = 0;
//@ requires balance + x >= 0 &&
//@ withdrawToday + x >= DAILY_LIMIT;
//@ ensures balance == \old(balance) + x &&
//@ \result == balance;
int update(int x) {

if (x < 0) withdrawToday += x;
x = −x;
//@ assert balance + x >= 0;
//@ assert balance_non_negative;
//@ ghost int oldBalance = balance;
balance += x;
//@ assert balance == oldBalance + x;
//@ assert balance_non_negative;
return balance;

}
void newDay() { withdrawToday = 0; }

}

Figure 4: Composition of the features Base and Dai-
lyLimit with different approaches, each with a dif-
ferent strategy to compose contracts.

Approach Method contracts Class invariants

Jampack + −
Subclassing − +

Inlining − −
Subclack + +

Table 2: Approaches for feature-module composi-
tion and support for behavioral feature interfaces.

terfaces defined in terms of method contracts, and we may
not be able to locate faulty features.

Inlining Approach. The composition of contracts using
the Inlining approach is similar to that presented for Jam-
pack. However, a difference is that refined methods do not
appear in the derived Java program as distinct methods.
To establish behavioral feature interfaces, we propose to in-
clude JML assertions into the merged body of a method. We
use the JML keyword assert for this, which is intended to
express any properties that should hold between two state-
ments. Using assert, we can include the preconditions and
postconditions of all methods in the refinement chain.

The Inlining approach has a problem with invariants simi-
lar to Jampack. Class invariants are only checked before and
after executing composed methods, but class invariants are
a part of the behavioral interface of a feature and should also
be checked. Hence, we propose to insert further assertions to
check the class invariant right before and after each inlined
method of that class. In Figure 4c, we inserted assert bal-

ance_non_negative for the invariant defined in feature Base
to check that the method refinement in DailyLimit does not
violate this invariant. A problem with these assertions is
that we need copies of them, if there are several calls to
the original implementation, making the source code hard
to read, even worse than for the Jampack approach.

Subclack Approach. On the one hand, the Jampack
approach and the Inlining approach are problematic, as the
visibility of class invariants is not supported. Though, we
can introduce additional preconditions, postconditions, and
assertions, they limit the readability of the specifications due
to exhaustive specification cloning. The readability is an is-
sue, as a programmer needs to understand a specification
to identify a faulty feature upon violations of the runtime
assertions. On the other hand, the Subclassing approach
has the problem that we can only check the contract of the
last method refinement, because specification inheritance is
too restrictive for feature-oriented method refinement. In
Table 2, we summarize which approaches provide good sup-
port for method contracts and class invariants.

To avoid both problems, we propose the Subclack ap-
proach.3 It translates classes and their refinements to a
class hierarchy with inheritance similar to the Subclassing
approach, to achieve the desired visibility of class invariants.
In contrast to the Subclassing approach, refined methods are
renamed as in the Jampack approach, because then method
refinements no longer need to support specification inheri-
tance. The reason is that specification inheritance only ap-
plies to method overriding in object-oriented programming
(i.e., methods in superclasses and subclasses with the same
name and signature).

3Subclack is a portmanteau of Subclassing and Jampack.



abstract class Account$$Base { Subclack approach
//@ invariant balance_non_negative: balance >= 0;
int balance = 0;
//@ requires balance + x >= 0;
//@ ensures balance == \old(balance) + x &&
//@ \result == balance;
int update$$Base(int x) {

balance += x;
return balance;

}
}
class Account extends Account$$Base {
//@ invariant withdraw_in_limit:
//@ withdrawToday >= DAILY_LIMIT;
int withdrawToday = 0; final int DAILY_LIMIT = −1000;
//@ requires balance + x >= 0 &&
//@ withdrawToday + x >= DAILY_LIMIT;
//@ ensures balance == \old(balance) + x &&
//@ \result == balance;
int update(int x) {

if (x < 0) withdrawToday += x;
return update$$Base(−x);

}
void newDay() { withdrawToday = 0; }

}

Figure 5: Composition of features Base and Dai-
lyLimit with the Subclack approach.

In Figure 5, we illustrate the Subclack approach using our
running example. The result of composing the features Base
and DailyLimit is similar to the result of the Subclassing ap-
proach. The subtle difference is that method update from
feature Base is renamed into update$$Base. Because the
method has a different name than its refinement in class
Account, specification inheritance does not apply to this
method. Consequently, we can add a method contract to
method update$$Base, which need not to be established be-
fore and after a call to method update. Instead, the added
contract for method update$$Base needs to be fulfilled only
when the method refinement of feature DailyLimit calls the
method as defined in feature Base. Hence, we establish a
behavioral interface between the features DailyLimit and
Base. If feature DailyLimit does not fulfill the precondi-
tion of method update$$Base, we assign blame to feature
DailyLimit. Similarly, if feature Base does not fulfill the
postcondition, we identify feature Base as faulty.

Using the Subclack approach, class invariants apply to
the class refinement (or class introduction) that introduced
the invariant as well as to all subsequent class refinements.
There is no need to generate any additional preconditions,
postconditions, or assertions to check class invariants. At
the same time, we check method contracts between features,
and establish behavioral feature interfaces allowing us to
locate faulty feature implementations.

6. RELATED WORK
Thüm et al. propose five approaches to define contracts for

feature modules [32]. We discuss behavioral feature inter-
faces in the context of explicit contract refinement, because
this approach is more flexible than others. We noticed an in-
teresting connection between approaches for feature-module
composition and approaches to define contracts: consecu-
tive contract refinement is an approach to define contracts
in feature modules assuming specification inheritance be-
tween features. For consecutive contract refinement, the
Subclassing approach does not have any drawbacks. Sim-

ilarly, others assume specification inheritance for aspect-
oriented programming [23, 1] and delta-oriented program-
ming [18]. However, we found that specification inheritance
is often too restrictive to specify feature modules [32].

Beside discussions how to specify feature modules, re-
searchers investigated how to check the conformance of fea-
ture modules to contracts by means of model checking [7],
static analysis [27], and theorem proving [31, 30, 14]. All
these approaches focus on behavioral class interfaces rather
than behavioral feature interfaces, and thus cannot always
locate faulty feature modules.

Before checking the conformance of feature modules to be-
havioral feature interfaces, it is useful to check syntactic fea-
ture interfaces. Type systems were proposed to check type
safety in all possible combinations of the feature modules [29,
15, 2]. Similarly, Apel et al. discuss modifiers restricting the
access across feature modules syntactically [4].

Others apply design by contract to aspect-oriented pro-
gramming. Klaeren et al. define propositional dependencies
between aspects in assertions [22], whereas we focus on arbi-
trary specifications. Zhao and Rinard discuss aspect invari-
ants that are local to a single aspect [33], whereas we define
invariants in feature modules such that they are added to ex-
isting classes and must be established by subsequent class re-
finements. Lorenz and Skotiniotis [23] propose three advice
categories with respective strategies for runtime-assertion
generation, selected based on a static analysis: agnostic and
obedient disallowing to refine method contracts, and rebel-
lious allowing refinements analogous to specification inheri-
tance. Similarly, Agostinho et al. propose to check contracts
of the base system before and after each advice [1]. Con-
trary to both approaches, we allow arbitrary refinements,
the runtime-assertion strategy is the same for all method
refinements, and we allow alternative or optional base fea-
ture modules. Rebêlo et al. discuss gray-box contracts that
allow to specify which methods are called within a piece of
advice [26], whereas we consider black-box contracts.

7. CONCLUSIONS AND FUTURE WORK
We discussed Jampack, Subclassing, and Inlining as alter-

native approaches for the composition of feature modules in
feature-oriented programming. We illustrated how to gen-
erate Java programs annotated with JML specifications for
each composition approach. The generated JML specifica-
tions can then be used by existing tools for runtime assertion
checking, test-case generation, or formal verification.

We discussed problems of all three approaches concerning
the visibility of contracts and invariants in inheritance hier-
archies. Based on these insights, we proposed the Subclack
approach for the composition of feature modules with con-
tracts, which combines the advantages of Subclassing and
Jampack. Contrary to previous approaches, the Subclack
approach supports behavioral feature interfaces without the
need to clone specifications. Behavioral feature interfaces
can be used to identify faulty feature modules.

In future work, we plan to provide tool support for the
Subclack approach and behavioral feature interfaces based
on FeatureHouse. Preliminary analyses of examples have
shown that the Subclack approach is useful when applying
design by contract to feature-oriented programming. How-
ever, further evaluation is required to qualitatively and quan-
titatively assess the benefits of the Subclack.
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