
LOOPO-HOC: A GRID COMPONENT
WITH EMBEDDED LOOP PARALLELIZATION

Johannes Tomasoni, Jan Dünnweber, and Sergei Gorlatch
University of Münster
CoreGRID Institute on Programming Model

{jtomasoni | duennweb | gorlatch}@uni-muenster.de

Michael Claßen, Philipp Claßen, and Christian Lengauer
University of Passau
CoreGRID Institute on Programming Model

{classenm | classen | lengauer}@fim.uni-passau.de

Abstract This work integrates two distinct research areas of parallel and distributed com-
puting, (1) automatic loop parallelization, and (2) component-based Grid pro-
gramming. The latter includes technologies developed within CoreGRID for
simplifying Grid programming: the Grid Component Model (GCM) and Higher-
Order Components (HOCs). Components support developing applications on the
Grid without taking all the technical details of the particular platform type into
account (network communication, heterogeneity, etc.). The GCM enables a hier-
archical composition of program pieces and HOCs enable the reuse of component
code in the development of new applications by specifying application-specific
operations in a program via code parameters. When a programmer is provided,
e.g. , with a compute farm HOC, only the independent worker tasks must be
described. But, once an application exhibits data or control dependences, the
trivial farm is no longer sufficient. Here, the power of loop parallelization tools,
like LooPo, comes into play: by embedding LooPo into a HOC, weshow that
these two technologies in combination facilitate the automatic transformation of
a sequential loop nest with complex dependences (supplied by the user as a HOC
parameter) into an ordered task graph, which can be processed on the Grid in
parallel. This technique can significantly simplify GCM-based systems which
combine multiple HOCs and other components. We use an equation system
solver based on the successive overrelaxation method (SOR)as our motivating
application example and for performance experiments.

Keywords: Higher-Order Components (HOCs), Loop Parallelization,
GCM, Grid Programming

2

1. Introduction

We demonstrate the benefits of using software components together with loop
parallelization techniques for Grid programming. In recent years, component
technology [22] has reached wide-spread acceptance for thedevelopment of
large-scale distributed software infrastructures. Almost no project that requires
an interconnection of multiple resources, e.g. , databases, compute clusters and
Web clients, is started from scratch anymore. Developers rather rely on modern
component frameworks, which provide them with reusable implementations of
the functionality needed for their applications. This approach to code reuse
goes much further than traditional libraries, since frameworks usually provide
not only executable code but also the required configuration(i. e. , setup de-
scriptions, typically in the form of XML files) for deployingthe components in
the target context. This context may be, e.g. , a middleware like Globus [19] for
interconnecting multiple components and remote clients, across the boundaries
of heterogeneous hardware and software.

In the CoreGRID community [24], theGridComponent ModelGCM [16] has
recently become the commonly agreed reference specification of software com-
ponents for the Grid. The GCM combines efforts of multiple CoreGRID part-
ners, e.g. , the GCM predecessorFractal [1] whose principle of hierarchical
composition has been adopted, the ProActive library [3] forasynchronous com-
munication among components, and Higher-Order Components(HOCs [17])
that accept as input not only data but also pieces of code supplied via an Internet
connection.

For assisting programmers in building parallel applications of Grid compo-
nents, this work combines HOCs with the automatic loop parallelization tool
LooPo [7]. The idea is to apply the LooPo loop parallelization mechanism to
HOC parameters, i. e. , code pieces supplied to a HOC as parameters. These
parameters often carry a loop nest to be executed by some worker hosts (i. e. ,
any free processing nodes) in the Grid. A typical example is the Farm-HOC,
implementing the popular master/worker pattern for running a set of indepen-
dent tasks [17]. The original Farm-HOC is not able to deal with inter-task
dependences: they would make it necessary either to design anew HOC which
takes the dependences into account or to remain with a sequential, less effi-
cient solution. Instead of requiring the developer to buildone new HOC per
possible dependence pattern, we suggest a more flexible component, called
LooPo-HOC, which embeds the LooPo loop parallelizer [20].

Dependences in code parameters of the LooPo-HOC in the form of nested
loops are automatically resolved: code parameters (the loop nests) are trans-
formed into an ordered task graph. The processing pattern employed by the
LooPo-HOC can be viewed as an adapted farm whose master schedules the
tasks as specified by this graph.

Development Automatization with LooPo & HOCs 3

In our previous work, we suggested to combine HOCs with LooPo[13] and
discussed a farm implementation version for processing task graphs [18]. This
paper presents the implemetation of the LooPo-HOC plus application examples
and performance experiments.

HOCs use a Web service-based code transfer technology that extends the
Globus middleware [19] by theCode Serviceand theRemote Code Loader
(both are available open-source, within the scope of the Globus incubator project
HOC-SA [15], see Fig. 1). The Code Service and Remote Code Loader can be
viewedas anadd-on to the Globus Resource Allocation Manager WS GRAM [10].
Their purpose is facilitating software components, which hold the code for solv-
ing recurring problems and expect the user to supply only application-specific
code pieces via the network. The Code Service and the Remote Code Loader
support the transfer of such code pieces across the network [12]. In contrast,
programmers using only GRAM are supposed to transfer their programs on
the whole rather than in pieces, which limits the potential of code reuse in
component-based software architectures.

The structure of the paper is as follows. In Section 2, we introduce the LooPo-
HOC: Section 2.1 introduces themwDependence service which implements our
adapted version of the master/worker processing pattern, for executing ordered
task graphs (taking dependences into account). Section 2.2explains the auto-
matic parallelization mechanism of LooPo. Section 2.3 describes the challenges
of integrating LooPo into a Grid-aware component and how we addressed them
in the LooPo-HOC. Section 2.4 shows how the internal workload monitor of the
LooPo-HOC works. Section 3 introduces an example application: the parallel
SOR system solver. Performance measurements are presentedin Section 4, and
we draw the conclusions from our work in Section 5.

compute farmmaster server

Web service

for(i = 0; i < 100; ++i) {

 for(j = 0; j < 70; j += 3) {

 for(k = 600; k > 0; k -= 5) {

 process (a [k - 1], b [j], i +1);

 ...

} } }

input

sequential code

Code Service

transformation

 request

 computation

 request

 database key

data

3 4 5 6 3 2 4 5 6 7 3 3 4 2 4 5 5 6

4 6 5 5 6 4 3 5 6 7 4 2 4 6 7 34 3

2 3 4 5 6 7 8 6 4 3 4 5 6 5 4 5 6 7

3 4 5 6 5 4 3 4 5 6 7 5 4 5 4 5 6 1

2 3 2 3 5 5 4 3 4 7 4 2 3 5 4 3 4

4 5 6 4 5 4 3 4 5 3 7 7 7 4 3 2 3 4

data LooPo

use

store/

reload

(via Remote

Code Loader)

control

provide

worker nodes

LooPo-HOC

Client

Figure 1. General setup of the LooPo-HOC in the HOC-SA

4

2. Implementation of the LooPo-HOC

The LooPo-HOC is composed of LooPo itself for transforming code (Sec-
tion 2.2), the Web service for clients to connect (Section 2.3), controller software
for task queue management and workload monitoring (Section2.4), and an in-
ternal farm implementation for running the actual application tasks. These parts
are available to the client via a single Web service, as shownin Fig. 1.

2.1 The Internal Compute Farm of the LooPo-HOC

To explain how the compute farm in the LooPo-HOC works, let usbriefly re-
call the functionality of the Farm-HOC [17] and explain the setup shown Fig. 1:
clients upload (sequential) application code to a central Web service. This ser-
vice is provided by the master server which stores the code atthe Code Service
where it is assigned a key and saved in a database (using OGSA-DAI [25]).
Clients can send the master a request to reload the code and run it on multiple
remote worker nodes for processing data in parallel. The master controls the
distributed computations without requiring the user to be aware about the num-
ber of involved workers and the (Web service-based) communication between
itself and the workers.

The compute farm in the LooPo-HOC differs from a common compute farm
implementation for Grids [2] in two ways:

1 the LooPo-HOC embeds, besides a farm of workers, the LooPo tool and
uses it for ordering tasks in the form of a task graph taking dependences
among tasks into account. The farm executes the tasks according to this
order, freeing the user from dealing with task dependences.

2 the communication does not rely on a single protocol, but toincrease the
efficiency, a Web service is used only as the remote interfacefor supplying
input to the farm via an Internet connection. All internal communication
(between master and workers) is handled using a light-weight protocol,
specifically developed for this component which is a distributed, version
of MPI, supporting all the basic and most of the collective operations,
using only Java and TCP sockets [5].

The LooPo-HOC offers a universal farm implementation for Java code [2],
i. e. , this farm is capable of executing applications without dependences as well
(and has shown almost linear speedup in various experiments) It is included in
the open-source distributionof the HOC-SA [15] in the packagemwDependence.

The worker nodes in Fig. 1 are fully decoupled from each other, i. e. , they
need no communication between each other, and are supposed to run in a dis-
tributed environment. In the following, we describe in moredetail the transfor-
mation process, the scheduling and the workload monitoring, which make up

Development Automatization with LooPo & HOCs 5

the core of the LooPo-HOC and which are supposed to run locally, on the same
server, ideally on a multiprocessor machine.

2.2 Transforming Loop Nests into Task Graphs

For the automatic parallelization of loop nests, LooPo usesa mathematical
model, the so-calledpolytope model[20]. In this model, affine linear expres-
sions are used to represent loop iterations, dependences and accesses to array
elements. LooPo is an implementation of various methods andtools for analyz-
ing a given loop program, bringing it into model representation and performing
a dependence analysis and the actual parallelization usinginteger linear pro-
gramming. The result of the code transformation done by LooPo is a task graph
in which groups of independent tasks are arranged in a sequence.

For the automatic parallelization of loop nests using LooPo, there are a
number of steps involved, as follows [18].

The first step is to analyze the input program and bring it intothe polytope
model representation. This is done by analyzing the (affine linear) expressions
in loop bounds and array accesses. The resulting model consists of one so-
called index spaceper statement. The index space contains the coordinates,
i.e., the values of the loop variables, of all steps in which the statement is
executed. LooPo keeps track of all array accesses and computes the resulting
data dependences.

In the second step, we use mathematical optimization methods to compute
two piecewise affine functions: theschedulemaps each computation to a logical
execution step, and theplacementmaps each computation to a virtual proces-
sor. The objective is to extract all available parallelism,independently of any
machine parameters, e.g. , the number of processors. The result of this step is
the so-calledspace-time mapping.

In order to adjust the granularity of parallelism to a level that is optimal for
task farming (our method for the distributed execution of the parallel tasks,
as discussed in Section 2.1), thetiling technique is used in the third step to
aggregate time steps and virtual processors into larger chunks, calledtiles.

Each tile produced by LooPo represents ataskfor the LooPo-HOC and con-
tains the corresponding set of computation operations for the time steps and
virtual processors that were aggregated. Information about data dependences
between tasks is stored in the form of atask graphthat is used by the master for
scheduling them, i. e. , to choose an order of execution between dependent tasks.
Thus, the master is responsible for arranging the executionorder, whereas the
target processor for the execution can be determined using an advanced schedul-
ing system [11] to exploit task locality. In Grid environments which do not
provide a scheduling system with tunable policies (e.g. , KOALA [11]), users
of the LooPo-HOC can also directly adapt the master, such that the complete

6

scheduling is handled there. This way, programmers can, e.g. , arrange chains
of tasks that should be executed on the same worker. For data dependences
between tasks that make the exchange of computed data elements necessary,
the master provides a method tojoin a new (dependent) task with a finished
task. This way, the dependent task is decoupled from its predecessor, gets the
updated data and is scheduled for execution.

2.3 Integration of the LooPo-HOC with the Middleware

Beside the workers (executing the single tasks, as described in Section 2.1)
and the master (running LooPo, as described in Section 2.2),the LooPo-HOC
comprises a Web service for remote access and a resource configuration for
maintaining the distributed application state (status data and intermediate re-
sults), as is typical in the Web Service Resource Framework (WSRF) [19].

While the service interface itself is stateless, the resources connected to it
(as configured in a setup file) hold their state (in the form of transient variables,
called resource propertiesin WSRF [19]) even past the scope/duration of a
session. The LooPo-HOC makes use of this feature, e.g. , for parallelizing a
loop nest and preserving the resulting task graph as a data record in a resource,
which can be referenced by a key and reused in multiple applications. Another

client LooPo HOC resource with key X

p
re

p
a

re

c
a
lc

u
la

tio
n

send parameters

and key X

save arrangements

invoke calculation

for key X load arrangements

c
a
lc

u
la

te

 Code Service

load parameters

make output available for the farm

save result informations

stream progress

information

Notify that results are available

 c
lie

n
t m

ig
h
t b

e
 o

fflin
e

fetch result informations with key X

Figure 2. Sequence Diagram for using the LooPo-HOC

feature, through which the LooPo-HOC benefits from the WSRF middleware,
is its support for asynchronous operations. While LooPo transforms loop nests,
the client can disconnect or even shut down. The LooPo-HOC can restore the
task graph from a former session, when the client sends it thecorresponding
resource key. The LooPo-HOC uses two types of WSRF resources. For every

Development Automatization with LooPo & HOCs 7

code transformation request, one new resource instance (i.e. , transient storage)
for holding the resulting task graph is created dynamically. The other resource
is static (i. e. , instantiated only once and shared globallyamong all processes),
calledmonitor and explained in Section 2.4.

The task graph resources are instantiated following the factory pattern, re-
turning a unique remote reference (the resource key) to the client. As shown
in Fig. 2, the client sends the resource key on every communication with the
LooPo-HOC, which uses the key afterwards to retrieve the corresponding re-
source data (the task graph and intermediate results). Thus, a LooPo-HOC
server is not a single point of failure, but rather a service provider that permits
clients to switch between mirror hosts during a session.

2.4 Workload Monitoring in the LooPo-HOC

The transformation of loop nests into tasks graphs is a computation-intensive
operation, which is quite unusual for Web services: typically, a Web service
operation retrieves or joins some data remotely and terminates immediately.
Due to the asynchronous operations of the LooPo-HOC, the clients produce
processing load rightafter their requests are served, since this is, when the
code transformations begin (concrete time costs follow in Section 4).

C lient

L ooPo HOC

T 1

T 2

T n

...use resources for

transformation

status map

pass
 thread

to resource

manage r eso urce

call

service

query statussend status

task graph

resource instances

workload monitor

(shared resource)

thread pool

transformation

monitor

return key or

reject request

Figure 3. Workload Monitor

From the user’s viewpoint, the
asynchrony is advantageous, since
local application activities are not
blocked by the code transformations
running remotely. However, when
multiple users are connected to the
same LooPo-HOC server, the work-
load must be restricted to a certain
(server-specific) maximum of con-
currrent requests. For this purpose,
the LooPo-HOC has an integrated
workload monitor (see Fig. 3) which
provides status information to the
clients.

The monitor consists of two parts, a fixed-size thread pool and a status map.
For every transformation, the LooPo-HOC first checks if an idle thread is avail-
able. If the thread pool is fully loaded, then the LooPo-HOC creates a new
transformation thread and adds it to the pool. The maximum threshold for the
thread pool is set by the server administrator and is usuallyequal to the num-
ber of CPUs of the hosting server. Once the number of executing threads has
reached this maximum, incoming requests are queued.

8

The status map (shown bottom right in Fig. 3) is a structured data store,
used to keep track of the successive transformations. The client can read the
map by issuing an XPath query [9] to the monitor at any time. This feature
is useful when the client reconnects during a loop transformation. The map
also allows one application to execute the tasks resulting from transforming the
sequential loops submitted by another application: via themap, users can track
the status of transformations (and run the resulting tasks), even if they connect
to the LooPo-HOC for the first time (and, consequently, receive no automatic
notification about status updates). This scenario arises, e.g. , if the Web service
for connecting to the LooPo-HOC is deployed to multiple servers, allowing
clients to switch between hosts, when a connection fails or some host’s request
queue is full.

As future work, we are considering to use the workload monitor and the
status map, for automatically balancing workload: insteadof queuing requests
that exceed some threshold, another server will take over the processing load.
Implementing load balancing this way is probably also an interesting case study
for on-demand deployment of HOCs and combining multiple code transfer
technologies [12].

3. Case Study: The SOR Equation System Solver

As an example application, we have implemented a solver for linear equation
systems,Aφ = b, using the successive overrelaxation method (SOR). The SOR
method works by extrapolating the Gauss-Seidel method [6],as shown in the
following iteration formula:
φ

(k+1)
i = (1 − ω)φ

(k)
i + ω

aii

(

bi −
∑i−1

j=1 aijφ
(k+1)
j −

∑n
j=i+1 aijφ

(k)
j

)

Here, vectorφ(k) denotes thekth iterate, theaij are elements of the input ma-
trix A, andω is called therelaxation factorwhich is reduced in each iteration,
until it declines below some tolerance. Roughly speaking, the SOR algorithm
computes weighted averages of iterations, leading to a triangular system of
linear equations, which is much simpler to solve than the original arbitrary sys-
tem. There is one control dependence in the SOR solver, i. e. ,in each pair of
successive iterations the follow-up statement depends on its predecessor.

1: @LooPo("begin loop", "constants: m,n; arrays: a{n+1}")

2: for (int k = 1; k <= m; k++) {

3: for (int i = 2; i <= n - 1; i++) {

4: // average computation

5: a[i] = (a[i - 1] + a[i + 1]) / 2.0; ... } }

6: @LooPo("end loop")

Figure 4. The sequential code parameter

Development Automatization with LooPo & HOCs 9

To run this application in parallel on the Grid, the user supplies the LooPo-
HOC with the application name (here,SOR) and a sequential description of the
computations expressed in Java notation, as shown in Fig. 4.Any loop nest
(with metadata, as the delimiting annotations in lines 1 and6) can be used as
input for the LooPo-HOC. The annotations have the purpose ofdelimiting the
code that is automatically parallelized. The parallelization itself is applied to
the Java source code using the steps from Section 2.2, resulting in a task graph.
First, a model of the input program is derived (Fig. 5). For the space-time
transformation, the following scheduleθ and placementπ were determined:
θ(k, i) = 2 ∗ k + i andπ(k, i) = k.

For obtaining the task dependence graph, tiling is applied on the transformed
target program. Fig. 6shows the representationof the transformedprogram after
tiling is applied using the same color tone for tiles that canbe executed inde-
pendently. The final model is derived by joining each tile as anode into a graph
with every inter-tile dependence as a directed edge in that graph. From the

Figure 5. The input program (M=7, N=5) Figure 6. Transformed program after tiling

task graph model representation, the LooPo-HOC generates three Java classes
as output which are stored in the Code Service [17]:SORMaster,SORData and
SORTask. TheSORMaster holds the dependence graph (it implements the in-
terfaceSchTaskDependence from themwDependenceService package) and
provides thejoin-method (required for distributing data to task groups; see
Section 2.2).SORData objects are used for buffering application data and the
SORTask class describes a single task (as an implementation of theexecute

method from the interfacemwDependenceService.UserTask).
Since these files comply with the interface definitions in theHOC-SA [15],

the user can directly load the three output files for parallelprocessing as code
parameters of the farm described in Section 2.1.

4. Experiments

Fig. 8 shows the computation times for matrices of differentsizes using from
1 to 10 workers running on common1.7 GHz PCs. We also experimented in a
more heterogeneous environment (and observed promising speedups), but here,
we only report the most regular results (for homogeneous workers), since these
results are the most comprehensible ones.

10

The experimental environment was set up in a high-performing network
reaching a data throughput of approximately3.4MBit/s. The strong time
decay in the left of Fig. 8 (from1 to 3 workers) shows that especially the
adding of the first2 workers leads to a strong performance improvement, as
compared to the sequential computation time. The corresponding efficiency
values support this assumption: for3 workers, the efficiency was above80%
and for2 workers even around90% in multiple measurements.

The decline of the plane along thez axis (matrix size) shows that using more
than 5 workers is only profitable for large matrices, while, for the100K×200K
matrix there are not enough tasks (using a5 × 5 tiling [18]) to take advantage
of more than4 workers.

Figure 7. Computation Times Figure 8. Initialization Times
The eight bars in Fig. 9 represent the initialization times for 10 workers (i. e.

the time that passes by after the client sends a request, until the remote com-
putations in the farm start). The time required to establishanssh connection
between the master and all workers varied between 4 and 5 seconds. As can
be observed by comparing the bars in the front row and the backrow, there is
no correspondence between the time required to connect and the full initializa-
tion time (including the remote code loading), which exhibits strong variations
between 30 and 90 seconds (the standard deviationσ from the mean value of
50 seconds was 22). This is due to the connection between the farm and the
database: as explained in Section 2.1, the farm workers loadthe code for pro-
cessing the single tasks from the Code Service using OGSA-DAI [25], which
is known to deliver unreliable performance under certain conditions, especially
when it is deployed on a single server together with other Webservices [14].
In relation to the much longer computation times of the SOR application (from
several minutes to several hours for large matrices), the initialization time can,
thus, be disregarded. It should also be noted that the initialization is only per-
formed once per worker and application. After the first set ofinput data (a
matrix in the SOR example) has been processed, the same parallel code is used
to process any number of successive inputs without repeating its generation
(using LooPo) and its transfer from the Code Service to the workers.

The transformation of the single loop nest used in the SOR example in Sec-
tion 3 takes approximately1 min on a contemporary dual-core PC, utilizing
50% of its overall CPU capacity. From this quick increase of computational
load, we conclude that, if only one server is used to run the code transformations

Development Automatization with LooPo & HOCs 11

in multiple different applications of the LooPo-HOC, this machine should be a
powerful multiprocessor server.

5. Conclusion

The idea of using LooPo for transforming the code parametersof a HOC
was suggested in an earlier paper [13] and a prototype of sucha component was
tested for local area networks [5]. By now, the implementation of a Grid-aware
version, called LooPo-HOC, has been completed and extendedon the server
side: instead of a farm, that supports only dependence-freeapplications, the dis-
tributed master/worker implementation, described in Section 2.1, now provides
a distributed environment for Java programs that is capableof processing depen-
dent tasks using a task graph scheduler. Using the LooPo-HOC, the treatment of
dependences becomes fully transparent, i. e. , the Grid application programmer
is no more responsible for scheduling independent task groups [13], but there
is an internal scheduler in the master.

Using the SOR program from Section 3 as an example, we have shown that
the LooPo-HOC provides a promising scalability and the timeneeded for the
initial code transformations does not critically impact the overall application
performance.

Another approach to automating the generation of parallel code was de-
veloped within the recent research on OpenMP programs andreparallelizing
them for the Grid [8]. This work also covers Java programs andthe use ofdis-
tributed shared memory(DSM) for data exchange among tasks, but still requires
from programmers dependence-free input and the explicit declaration of par-
allel loops via OpenMP directives. The LooPo-HOC, on the contrary, offers a
fully transparent programming interface that requires only sequential code. The
required data sharing could have been implemented using Sun’s standardized
DSM implementation inJavaSpaces[4]. However, the LooPo-HOC requires
only the joining of single tasks and no support for distributed transactions, and,
thus, relies on a more light-weight implementation [5], which provides much
better performance.

The LooPo-HOC (including the source code) can be downloadedfrom the In-
ternet as a part of the HOC-SA Globus incubator project [15].It is interoperable
with any other Globus-based Grid software. For integratingthe presented par-
allelization technique into the GCM, the task graph may alsobe included into an
automatic manager in the membrane of a GCM component [16]. The suggested
combination of components with loop parallelization is notonly useful for the
GCM, but also for other popular component models, such as CCA[23] and
CCM [21]. Beside the code transfer mechanism used by HOCs [12], no other
special features of this component technology are required.

Bibliography

[1] Institut National de Recherche en Informatique (INRIA), The Fractal Web Site, 2007.
http://fractal.objectweb.org.

[2] Marco Danelutto,Task Farm Computations in Java, International Conference on High-Performance
Computing and Networking, Amsterdam, NL, 2000, pp. 385–394.

[3] INRIA, The ProActive Web Site, 2007. http://www-sop.inria.fr/oasis/ProActive.
[4] 1994–2007 Sun Microsystems,The JavaSpaces Specification. www.sun.com/software/jini.
[5] Eduardo Argollo, Michael Claßen, Philipp Claßen, and Martin Griebl,Loop Parallelization for a Grid

Master-Worker Framework, CG Integration Workshop Heraklion, Greece, 2007, pp. 516–527.
[6] Yousef Saad,Iterative Methods for Sparse Linear Systems, SIAM U.S.A., 2003.
[7] University of Passau,The Polyhedral Loop Parallelizer: LooPo, 1997. http://www.infosun.fim.uni-

passau.de/cl/loopo.
[8] Michael Klemm, Matthias Bezold, Ronald Veldema, and Michael Philippsen,Reparallelization and

Migration of OpenMP Programs, International Symposium on Cluster Computing and the Grid, Rio
de Janeiro, Brazil, 2007, pp. 529–540.

[9] James Clark and Steve DeRose,XML Path Language, W3C Recommendations, 1999–2007.
[10] Ian Foster,Globus Toolkit Version 4: Software for Service-Oriented Systems, International Conference

on Network and Parallel Computing, 2006, pp. 2–13.

[11] Cătălin L. Dumitrescu, Dick H.J. Epema, Jan Dünnweber, and Sergei Gorlatch,User-transparant
Scheduling of Structured Parallel Applications in Grid Environments, Workshop on Grid program-
ming Environments and Components, Paris, France, 2006, pp.85–92.

[12] Cătălin L. Dumitrescu, Jan Dünnweber, Philipp Lüdeking, Sergei Gorlatch, Ioan Raicu, and Ian Foster,
Simplifying Grid Application Programming Using Web-enabled Code Transfer Tools, inToward Next
Generation Grids, Springer 2007, pp. 225–235.

[13] Jan Dünnweber, Sergei Gorlatch, Martin Griebl, Eduardo Argollo, and Christian Lengauer,Making a
Task Farm Component Parallelize Loops for the Grid, CG Integration Workshop (CYFRONET), 2006,
pp. 93–104.

[14] William Hoarau, Sébastien Tixeuil, Nuno Rodrigues, Décio Sousa, and Luis Silva,Benchmarking the
OGSA-DAI Middleware, CG Integration Workshop (CYFRONET), 2006, pp. 357–368.

[15] Jan Dünnweber, Philipp Lüdeking, Cǎtǎlin L. Dumitrescu, Eduardo Argollo, and Sergei Gorlatch,The
HOC-SA Globus Incubator Project, 2006. http://dev.globus.org/incubator/hoc-sa.

[16] CoreGRID Network of Excellencewww.coregrid.net, Basic Features of the Grid Component Model
(GCM), Technical Report D.PM.04, Institute on Component-based Programming, 2005.

[17] Sergei Gorlatch and Jan Dünnweber,From Grid Middleware to Grid Applications: Bridging the Gap
with HOCs, in Future Generation Grids, Springer Verlag, 2005, pp. 241–261.

[18] Martin Griebl, Peter Faber, and Christian Lengauer,Space-time Mapping and Tiling – A Helpful Com-
bination, Concurrency and Computation: Practice and Experience16 (March 2004), no. 3, 221–246.

[19] Jarek Gawor, Ian Foster, and Stephen Pickles et al.,State and Events for Web Services, Intl’ Conference
on High-Performance and Distributed Computing, 2005, pp. 3–13.

[20] Christian Lengauer,Loop Parallelization in the Polytope Model, CONCUR, 1993, pp. 398–416.

[21] Object Management Group,The Corba Component Model, 1997. http://www.omg.org.
[22] C. Szyperski,Component Software: Beyond Object-Oriented Programming, Addison Weseley, 1998.
[23] The CCA Forum,CCA Glossary. http://www.cca-forum.org/glossary.
[24] European Research Network on Foundations, Software Infrastructures and Applications for large scale

distributed, GRID and Peer-to-Peer Technologies,CoreGRID. http://www.coregrid.net.
[25] UK Grid Database Task Force,OGSA Data Access and Integration. http://www.ogsadai.org.

Acknowledgement

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by

the European Commission (Contract IST-2002-004265) and has received financial support from

the German Research Foundation (DFG) for project CompSpread.

