LOOPO-HOC: A GRID COMPONENT
WITH EMBEDDED LOOP PARALLELIZATION

Johannes Tomasoni, Jan Diinnweber, and Sergei Gorlatch
University of Munster
CoreGRID Institute on Programming Model

{jtomasoni | duennweb | gorlatch} @uni-muenster.de

Michael ClaRen, Philipp Cla3en, and Christian Lengauer
University of Passau
CoreGRID Institute on Programming Model

{classenm | classen | lengauer} @fim.uni-passau.de

Abstract

Keywords:

This work integrates two distinct research areas of pdrafid distributed com-
puting, (1) automatic loop parallelization, and (2) comgatrbased Grid pro-
gramming. The latter includes technologies developediwi@oreGRID for
simplifying Grid programming: the Grid Component Model (@and Higher-
Order Components (HOCs). Components support developilgcapons on the
Grid without taking all the technical details of the partauplatform type into
account (network communication, heterogeneity, etc. GEM enables a hier-
archical composition of program pieces and HOCs enabletiserof component
code in the development of new applications by specifyingiegtion-specific
operations in a program via code parameters. When a progeaismrovided,
e.g., with a compute farm HOC, only the independent workekganust be
described. But, once an application exhibits data or coagpendences, the
trivial farm is no longer sufficient. Here, the power of locgrallelization tools,
like LooPo, comes into play: by embedding LooPo into a HOC sivew that
these two technologies in combination facilitate the auattiertransformation of
a sequential loop nest with complex dependences (supplititbtuser as a HOC
parameter) into an ordered task graph, which can be pratesséhe Grid in
parallel. This technique can significantly simplify GCMsea systems which
combine multiple HOCs and other components. We use an equsyistem
solver based on the successive overrelaxation method (8©B)r motivating
application example and for performance experiments.

Higher-Order Components (HOCSs), Loop Parallelization,
GCM, Grid Programming

2

1. Introduction

We demonstrate the benefits of using software componerggitegwith loop
parallelization techniques for Grid programming. In redcggars, component
technology [22] has reached wide-spread acceptance fatebelopment of
large-scale distributed software infrastructures. Alnmasproject that requires
an interconnection of multiple resources, e.g., databasespute clusters and
Web clients, is started from scratch anymore. Developéngraely on modern
component frameworks, which provide them with reusabldémgentations of
the functionality needed for their applications. This aygwh to code reuse
goes much further than traditional libraries, since framds usually provide
not only executable code but also the required configurdii@n, setup de-
scriptions, typically in the form of XML files) for deployinthe components in
the target context. This context may be, e. g., a middlevikeedlobus [19] for
interconnecting multiple components and remote cliemisss the boundaries
of heterogeneous hardware and software.

Inthe CoreGRID community [24], thérid Component ModeBCM [16] has
recently become the commonly agreed reference specificaitsnftware com-
ponents for the Grid. The GCM combines efforts of multiple&®RID part-
ners, e.g., the GCM predecessanactal [1] whose principle of hierarchical
composition has been adopted, the ProActive library [3&ynchronous com-
munication among components, and Higher-Order Compor{ei@<s [17])
that accept as input not only data but also pieces of coddisdpga an Internet
connection.

For assisting programmers in building parallel applicadiof Grid compo-
nents, this work combines HOCs with the automatic loop felizhtion tool
LooPo [7]. The idea is to apply the LooPo loop parallelizatnechanism to
HOC parameters, i.e., code pieces supplied to a HOC as petand hese
parameters often carry a loop nest to be executed by somemwlookts (i.e.,
any free processing nodes) in the Grid. A typical exampléésRarm-HOC,
implementing the popular master/worker pattern for rugrarset of indepen-
dent tasks [17]. The original Farm-HOC is not able to deahuviitter-task
dependences: they would make it necessary either to desigiw IOC which
takes the dependences into account or to remain with a segjuéess effi-
cient solution. Instead of requiring the developer to boite new HOC per
possible dependence pattern, we suggest a more flexibleormnp called
LooPo-HOC, which embeds the LooPo loop parallelizer [20].

Dependences in code parameters of the LooPo-HOC in the fbrrasted
loops are automatically resolved: code parameters (the hests) are trans-
formed into an ordered task graph. The processing patteptoged by the
LooPo-HOC can be viewed as an adapted farm whose masterusehiede
tasks as specified by this graph.

Development Automatization with LooPo & HOCs 3

In our previous work, we suggested to combine HOCs with LodBpand
discussed a farm implementation version for processiriggesphs [18]. This
paper presents the implemetation of the LooPo-HOC plusagtign examples
and performance experiments.

HOCs use a Web service-based code transfer technologyxteaids the
Globus middleware [19] by th€ode Serviceand theRemote Code Loader
(both are available open-source, within the scope of the@ocubator project
HOC-SA[15], see Fig. 1). The Code Service and Remote Codddrazan be
viewed as an add-onto the Globus Resource Allocation Mane§GRAM [10].
Their purpose is facilitating software components, whiglithe code for solv-
ing recurring problems and expect the user to supply onljicmn-specific
code pieces via the network. The Code Service and the Renuote Kbader
support the transfer of such code pieces across the netd®tk [n contrast,
programmers using only GRAM are supposed to transfer thregrams on
the whole rather than in pieces, which limits the potentiat@de reuse in
component-based software architectures.

The structure of the paperis asfollows. In Section 2, wedhice the LooPo-
HOC: Section 2.1 introduces theDependence service which implements our
adapted version of the master/worker processing pati@rexecuting ordered
task graphs (taking dependences into account). Sectioexplains the auto-
matic parallelization mechanism of LooPo. Section 2.3dess the challenges
of integrating LooPo into a Grid-aware component and howdaek@ssed them
in the LooPo-HOC. Section 2.4 shows how the internal woiklm@nitor of the
LooPo-HOC works. Section 3 introduces an example appticatihe parallel
SOR system solver. Performance measurements are preseStzdion 4, and
we draw the conclusions from our work in Section 5.

: LooPo-HOC

545632456733424556] | 1} H i
465564356742467343) :

234s67864345634367| SeAuential code
345654345675454561 .
23235543474235434 | .
456454345377743234) input .

data

LooPo
A\ d

master server compute farm

Figure 1. General setup of the LooPo-HOC in the HOC-SA

4

2. Implementation of the LooPo-HOC

The LooPo-HOC is composed of LooPo itself for transforminge (Sec-
tion 2.2), the Web service for clients to connect (Secti@), Zontroller software
for task queue management and workload monitoring (Se2tidy and an in-
ternal farm implementation for running the actual appi@atasks. These parts
are available to the client via a single Web service, as shiowig. 1.

21 Thelnternal Compute Farm of the LooPo-HOC

To explain how the compute farm in the LooPo-HOC works, |diniefly re-
call the functionality of the Farm-HOC [17] and explain tledig shown Fig. 1.
clients upload (sequential) application code to a centrabdérvice. This ser-
vice is provided by the master server which stores the cotie&ode Service
where it is assigned a key and saved in a database (using WASA5]).
Clients can send the master a request to reload the code mitdbrumultiple
remote worker nodes for processing data in parallel. Thaanasntrols the
distributed computations without requiring the user towara about the num-
ber of involved workers and the (Web service-based) comaation between
itself and the workers.

The compute farm in the LooPo-HOC differs from a common ca@parm
implementation for Grids [2] in two ways:

1 the LooPo-HOC embeds, besides a farm of workers, the Loadtand
uses it for ordering tasks in the form of a task graph takingedeences
among tasks into account. The farm executes the tasks augaodthis
order, freeing the user from dealing with task dependences.

2 the communication does not rely on a single protocol, birideease the
efficiency, a Web service is used only as the remote inteftacaipplying
input to the farm via an Internet connection. All internahtounication
(between master and workers) is handled using a light-weigitocol,
specifically developed for this component which is a disiial, version
of MPI, supporting all the basic and most of the collectivermpions,
using only Java and TCP sockets [5].

The LooPo-HOC offers a universal farm implementation faaleode [2],
i.e., this farm is capable of executing applications wittaependences as well
(and has shown almost linear speedup in various experiieérgsncluded in
the open-source distribution of the HOC-SA [15] in the paygkarDependence.

The worker nodes in Fig. 1 are fully decoupled from each other, they
need no communication between each other, and are supmoegdin a dis-
tributed environment. In the following, we describe in mdetail the transfor-
mation process, the scheduling and the workload monitprirgch make up

Development Automatization with LooPo & HOCs 5

the core of the LooPo-HOC and which are supposed to run ipcadlthe same
server, ideally on a multiprocessor machine.

2.2 Transforming Loop Nestsinto Task Graphs

For the automatic parallelization of loop nests, LooPo @sesmthematical
model, the so-callegolytope mode]20]. In this model, affine linear expres-
sions are used to represent loop iterations, dependendescaasses to array
elements. LooPo is an implementation of various methods$anisl for analyz-
ing a given loop program, bringing it into model represantaand performing
a dependence analysis and the actual parallelization usieger linear pro-
gramming. The result of the code transformation done by loasR task graph
in which groups of independent tasks are arranged in a seguen

For the automatic parallelization of loop nests using LqotPere are a
number of steps involved, as follows [18].

The first step is to analyze the input program and bring it theopolytope
model representation. This is done by analyzing the (affireal) expressions
in loop bounds and array accesses. The resulting modelstertdi one so-
calledindex spaceper statement. The index space contains the coordinates,
i.e., the values of the loop variables, of all steps in whicé statement is
executed. LooPo keeps track of all array accesses and cesnig resulting
data dependences.

In the second step, we use mathematical optimization msttmdompute
two piecewise affine functions: tlsehedulenaps each computation to a logical
execution step, and tiacemenimaps each computation to a virtual proces-
sor. The objective is to extract all available parallelisndependently of any
machine parameters, e.g., the number of processors. Tilewkthis step is
the so-calledspace-time mapping

In order to adjust the granularity of parallelism to a levelttis optimal for
task farming (our method for the distributed execution & garallel tasks,
as discussed in Section 2.1), ttikng technique is used in the third step to
aggregate time steps and virtual processors into largetksheallediles.

Each tile produced by LooPo representagkfor the LooPo-HOC and con-
tains the corresponding set of computation operationshiettime steps and
virtual processors that were aggregated. Information atlata dependences
between tasks is stored in the form dfak graphthat is used by the master for
scheduling them, i. e., to choose an order of execution tdependent tasks.
Thus, the master is responsible for arranging the execotider, whereas the
target processor for the execution can be determined usiadanced schedul-
ing system [11] to exploit task locality. In Grid environnterwhich do not
provide a scheduling system with tunable policies (e.g. AK®[11]), users
of the LooPo-HOC can also directly adapt the master, sudtttieacomplete

6

scheduling is handled there. This way, programmers can, argnge chains
of tasks that should be executed on the same worker. For éaendences
between tasks that make the exchange of computed data éenemessary,
the master provides a methodjtn a new (dependent) task with a finished
task. This way, the dependent task is decoupled from itsgoessor, gets the
updated data and is scheduled for execution.

2.3 Integration of the L ooPo-HOC with the Middleware

Beside the workers (executing the single tasks, as deslciib8ection 2.1)
and the master (running LooPo, as described in SectiontB),00Po-HOC
comprises a Web service for remote access and a resourcguatifin for
maintaining the distributed application state (status datd intermediate re-
sults), as is typical in the Web Service Resource FrameWwM&RF) [19].

While the service interface itself is stateless, the ressiconnected to it
(as configured in a setup file) hold their state (in the formrarfisient variables,
called resource propertiesn WSRF [19]) even past the scope/duration of a
session. The LooPo-HOC makes use of this feature, e.g. afatlelizing a
loop nest and preserving the resulting task graph as a daiedran a resource,
which can be referenced by a key and reused in multiple agijdits. Another

client LooPo HOC resource with key X Code Service
| | |
send parameters - |
|

| and key X
|

|
|
| |
I al arrangemen134>| I
I invoke calculation |
|

uoie[nofed
asedaid

| for key X '7@3(1 arrangements————3

———————————————————|oad parameters————————P,
|

_ 'stream progress’ _ _
information _

ape|nofes

AN

lisave result informa!ionsﬁ

make output available for the farm———————»
<—Notify that results are ava\lable—l | |

fetch result informations with key X4>|
|

auIyo aq ybiw jualo

Figure 2. Sequence Diagram for using the LooPo-HOC

feature, through which the LooPo-HOC benefits from the WSRidlaware,
is its support for asynchronous operations. While LooPusfiarms loop nests,
the client can disconnect or even shut down. The LooPo-HOGestore the
task graph from a former session, when the client sends itdhesponding
resource key. The LooPo-HOC uses two types of WSRF resouFcgsvery

Development Automatization with LooPo & HOCs 7

code transformation request, one new resource instargce tfiansient storage)
for holding the resulting task graph is created dynamicdilye other resource
is static (i. e., instantiated only once and shared glolziypng all processes),
calledmonitor and explained in Section 2.4.

The task graph resources are instantiated following thiefapattern, re-
turning a unique remote reference (the resource key) tolidet.c As shown
in Fig. 2, the client sends the resource key on every commatiait with the
LooPo-HOC, which uses the key afterwards to retrieve theesponding re-
source data (the task graph and intermediate results). , BhusoPo-HOC
server is not a single point of failure, but rather a serviaeipler that permits
clients to switch between mirror hosts during a session.

24 Workload Monitoring in the LooPo-HOC

The transformation of loop nests into tasks graphs is a ctetipo-intensive
operation, which is quite unusual for Web services: typyca Web service
operation retrieves or joins some data remotely and tetegnanmediately.
Due to the asynchronous operations of the LooPo-HOC, tleatsliproduce
processing load righafter their requests are served, since this is, when the
code transformations begin (concrete time costs followdatisn 4).

From the user's viewpoint, the
asynchrony is advantageous, since |
local application activities are not }

!
!

~—LooPo HOC

blocked by the code transformations
running remotely. However, when
multiple users are connected to the — "
same LooPo-HOC server, the worki S
load must be restricted to a certain -
(server-specific) maximum of con- st b1
currrent requests. For this purpose, | i
the LooPo-HOC has an integrated !
workload monitor (see Fig. 3) which }
provides status information to the Figure 3. Workload Monitor
clients.

The monitor consists of two parts, a fixed-size thread podlaastatus map.
For every transformation, the LooPo-HOC first checks if éa kdread is avail-
able. If the thread pool is fully loaded, then the LooPo-HQE€ates a new
transformation thread and adds it to the pool. The maximuestiold for the
thread pool is set by the server administrator and is useajbal to the num-
ber of CPUs of the hosting server. Once the number of exegtiireads has
reached this maximum, incoming requests are queued.

The status map (shown bottom right in Fig. 3) is a structurath dtore,
used to keep track of the successive transformations. Téwet dan read the
map by issuing an XPath query [9] to the monitor at any timeis Téature
is useful when the client reconnects during a loop transition. The map
also allows one application to execute the tasks resultorg fransforming the
sequential loops submitted by another application: viarihp, users can track
the status of transformations (and run the resulting tagkeh if they connect
to the LooPo-HOC for the first time (and, consequently, rexeaio automatic
notification about status updates). This scenario arisgs, the Web service
for connecting to the LooPo-HOC is deployed to multiple sesy allowing
clients to switch between hosts, when a connection failewreshost’s request
queue is full.

As future work, we are considering to use the workload moratad the
status map, for automatically balancing workload: instefagueuing requests
that exceed some threshold, another server will take oeepribcessing load.
Implementing load balancing this way is probably also agriggting case study
for on-demand deployment of HOCs and combining multipleect@dnsfer
technologies [12].

3. CaseStudy: The SOR Equation System Solver

As an example application, we have implemented a solveirfeat equation
systemsA¢ = b, using the successive overrelaxation method (SOR). The SOR
method works by extrapolating the Gauss-Seidel methodagsghown in the
following iteration formula:

k+1 k w i— k+1 n k
o) = (1-w)el” + @ (bi -4 aij¢§' o j=i+1 aij¢§'))

Here, vectorgb(’“) denotes théth iterate, thes;; are elements of the input ma-
trix A, andw is called theelaxation factorwhich is reduced in each iteration,
until it declines below some tolerance. Roughly speaking,3OR algorithm
computes weighted averages of iterations, leading to aguiar system of
linear equations, which is much simpler to solve than thgiwai arbitrary sys-
tem. There is one control dependence in the SOR solver,in each pair of
successive iterations the follow-up statement dependts @madecessor.

: @LooPo("begin loop", "constants: m,n; arrays: a{n+1}")
: for (int k = 1; k <=m; k++) {
for (int i = 2; i <=n - 1; i++) {
// average computation
ali]l = (ali - 1] + ali +1]) / 2.0; ... } }
: @LooPo("end loop")

O WN -

Figure 4. The sequential code parameter

Development Automatization with LooPo & HOCs 9

To run this application in parallel on the Grid, the user digspthe LooPo-
HOC with the application name (hei®)R) and a sequential description of the
computations expressed in Java notation, as shown in Figung.loop nest
(with metadata, as the delimiting annotations in lines 1 @&ndan be used as
input for the LooPo-HOC. The annotations have the purposkelihiting the
code that is automatically parallelized. The parallelmattself is applied to
the Java source code using the steps from Section 2.2,ingsula task graph.
First, a model of the input program is derived (Fig. 5). Faor #pace-time
transformation, the following scheduteand placementr were determined:
O(k,i) =2k +iandm(k,i) = k.

For obtaining the task dependence graph, tiling is applieithe transformed
target program. Fig. 6 shows the representation of thefwemed program after
tiling is applied using the same color tone for tiles that barexecuted inde-
pendently. The final model is derived by joining each tile as@e into a graph
with every inter-tile dependence as a directed edge in ttsgthg From the

i

processors

time

Figure 5. The input program (M=7, N=5) Figure 6. Transformed program after tiling

task graph model representation, the LooPo-HOC genetates jJava classes
as output which are stored in the Code Service [$0RMaster, SORData and
SORTask. TheSORMaster holds the dependence graph (it implements the in-
terfaceSchTaskDependence from themwDependenceService package) and
provides thejoin-method (required for distributing data to task groups; see
Section 2.2).S0RData objects are used for buffering application data and the
SORTask class describes a single task (as an implementation af:theute
method from the interfacewDependenceService.UserTask).

Since these files comply with the interface definitions inkH@C-SA [15],
the user can directly load the three output files for pargltetessing as code
parameters of the farm described in Section 2.1.

4. Experiments

Fig. 8 shows the computation times for matrices of diffestnes using from
1 to 10 workers running on commoh7 GHz PCs. We also experimented in a
more heterogeneous environment (and observed promisaagiaps), but here,
we only report the most regular results (for homogeneoukevsy, since these
results are the most comprehensible ones.

10

The experimental environment was set up in a high-perfagrmatwork
reaching a data throughput of approximat8ly) Bit/s. The strong time
decay in the left of Fig. 8 (from to 3 workers) shows that especially the
adding of the firs workers leads to a strong performance improvement, as
compared to the sequential computation time. The correspgrefficiency
values support this assumption: fomworkers, the efficiency was abow@%
and for2 workers even aroun@0% in multiple measurements.

The decline of the plane along thexis (matrix size) shows that using more
than 5 workers is only profitable for large matrices, white,thel00 K x 200K
matrix there are not enough tasks (using:a 5 tiling [18]) to take advantage
of more thant workers.

time [s]

initialization time [s]

TSokesook
matrix size

workers

J S
~/4 sec §
<

Figure 7. Computation Times .. _Figure 8. Initialization Times:§
The eight bars in Fig. 9 represent the initialization timaslfo workers (i. e.

the time that passes by after the client sends a requedtthatiemote com-
putations in the farm start). The time required to estaldishsh connection
between the master and all workers varied between 4 and Bd®cds can
be observed by comparing the bars in the front row and the tmaekthere is
no correspondence between the time required to connecharidltinitializa-
tion time (including the remote code loading), which extsilsitrong variations
between 30 and 90 seconds (the standard deviatifsam the mean value of
50 seconds was 22). This is due to the connection betweemtimeaind the
database: as explained in Section 2.1, the farm workerstkmadode for pro-
cessing the single tasks from the Code Service using OGSK-Z%)\, which
is known to deliver unreliable performance under certaimditions, especially
when it is deployed on a single server together with other ¥érhices [14].
In relation to the much longer computation times of the SORlieation (from
several minutes to several hours for large matrices), tkialimation time can,
thus, be disregarded. It should also be noted that thelinétaon is only per-
formed once per worker and application. After the first seinplut data (a
matrix in the SOR example) has been processed, the samkepewmde is used
to process any number of successive inputs without rege#sngeneration
(using LooPo) and its transfer from the Code Service to thekers.

The transformation of the single loop nest used in the SORplain Sec-
tion 3 takes approximately min on a contemporary dual-core PC, utilizing
50% of its overall CPU capacity. From this quick increase ahputational
load, we conclude that, if only one server is used to run tkle t@nsformations

Development Automatization with LooPo & HOCs 11

in multiple different applications of the LooPo-HOC, thisahine should be a
powerful multiprocessor server.

5. Conclusion

The idea of using LooPo for transforming the code parameteesHOC
was suggested in an earlier paper [13] and a prototype ofssaocmponent was
tested for local area networks [5]. By now, the implementatf a Grid-aware
version, called LooPo-HOC, has been completed and extenwleke server
side: instead of a farm, that supports only dependenceafipkications, the dis-
tributed master/worker implementation, described ini8a@.1, now provides
adistributed environment for Java programs that is capipleocessing depen-
dent tasks using a task graph scheduler. Using the LooPo;H@@eatment of
dependences becomes fully transparent, i. e., the Gridcagiph programmer
is no more responsible for scheduling independent taskpgr{ilB], but there
is an internal scheduler in the master.

Using the SOR program from Section 3 as an example, we havensiat
the LooPo-HOC provides a promising scalability and the tiraeded for the
initial code transformations does not critically impace thverall application
performance.

Another approach to automating the generation of paratidecwas de-
veloped within the recent research on OpenMP programgepatallelizing
them for the Grid [8]. This work also covers Java programsthedise oflis-
tributed shared memorp SM) for data exchange among tasks, but still requires
from programmers dependence-free input and the explictad&ion of par-
allel loops via OpenMP directives. The LooPo-HOC, on theti@oy, offers a
fully transparent programming interface that requirey seljuential code. The
required data sharing could have been implemented using Stamdardized
DSM implementation inlavaSpace§4]. However, the LooPo-HOC requires
only the joining of single tasks and no support for distrdaltransactions, and,
thus, relies on a more light-weight implementation [5], @fhprovides much
better performance.

The LooPo-HOC (including the source code) can be downloftdetthe In-
ternet as a part of the HOC-SA Globus incubator project [[t5§.interoperable
with any other Globus-based Grid software. For integratitegpresented par-
allelization technique into the GCM, the task graph may bismcluded into an
automatic manager in the membrane of a GCM component [1@].slifgested
combination of components with loop parallelization is anly useful for the
GCM, but also for other popular component models, such as (Z3Pand
CCM [21]. Beside the code transfer mechanism used by HOQsrhb2ther
special features of this component technology are required

Bibliography

[1] Institut National de Recherche en Informatique (INRIAYhe Fractal Web Site 2007.
http://fractal.objectweb.org.

[2] Marco Danelutto,Task Farm Computations in Javinternational Conference on High-Performance
Computing and Networking, Amsterdam, NL, 2000, pp. 385-394

[3] INRIA, The ProActive Web Sit2007. http://www-sop.inria.fr/oasis/ProActive.
[4] 1994-2007 Sun Microsystemshe JavaSpaces Specificationww.sun.com/softwaref/jini.

[5] Eduardo Argollo, Michael ClaRen, Philipp ClaRen, andrtiteGriebl, Loop Parallelization for a Grid
Master-Worker FrameworkCG Integration Workshop Heraklion, Greece, 2007, pp. 526-

[6] Yousef Saadlterative Methods for Sparse Linear Syste @AM U.S.A., 2003.

[7] University of PassauThe Polyhedral Loop Parallelizer: LooRPd 997. http://www.infosun.fim.uni-
passau.de/cl/loopo.

[8] Michael Klemm, Matthias Bezold, Ronald Veldema, and Miel PhilippsenReparallelization and
Migration of OpenMP Programdnternational Symposium on Cluster Computing and the GRid
de Janeiro, Brazil, 2007, pp. 529-540.

[9] James Clark and Steve DeRo3&L Path LanguageW3C Recommendations, 1999-2007.

[10] lan FosterGlobus Toolkit Version 4: Software for Service-Orientedt&ys International Conference
on Network and Parallel Computing, 2006, pp. 2—13.

[11] Catalin L. Dumitrescu, Dick H.J. Epema, Jan Dunnertand Sergei Gorlatch)ser-transparant
Scheduling of Structured Parallel Applications in Grid EEomments Workshop on Grid program-
ming Environments and Components, Paris, France, 20085592.

[12] Catalin L. Dumitrescu, Jan Dunnweber, Philipp lelithg, Sergei Gorlatch, loan Raicu, and lan Foster,
Simplifying Grid Application Programming Using Web-ereblCode Transfer Tools, ifoward Next
Generation GridsSpringer 2007pp. 225-235.

[13] Jan Dunnweber, Sergei Gorlatch, Martin Griebl, Edaafrgollo, and Christian Lengaudyjaking a
Task Farm Component Parallelize Loops for the G Integration Workshop (CYFRONET), 2006,
pp. 93-104.

[14] William Hoarau, Sébastien Tixeuil, Nuno Rodrigue€dd Sousa, and Luis Silv8enchmarking the
OGSA-DAI MiddlewareCG Integration Workshop (CYFRONET), 2006, pp. 357—368.

[15] Jan Dunnweber, Philipp Ludeking, Catalin L. Durei&cu, Eduardo Argollo, and Sergei Gorlat€he
HOC-SA Globus Incubator Projec2006. http://dev.globus.org/incubator/hoc-sa.

[16] CoreGRID Network of Excellenceww . coregrid.net, Basic Features of the Grid Component Model
(GCM), Technical Report D.PM.04, Institute on Component-basegfmming, 2005.

[17] Sergei Gorlatch and Jan Dunnwebémm Grid Middleware to Grid Applications: Bridging the Gap
with HOCs in Future Generation GridsSpringer Verlag, 2005, pp. 241-261.

[18] Martin Griebl, Peter Faber, and Christian Lenga&grace-time Mapping and Tiling — A Helpful Com-
bination, Concurrency and Computation: Practice and Experid6dqdlarch 2004), no. 3, 221-246.

[19] Jarek Gawor, lan Foster, and Stephen Pickles ed&te and Events for Web Servicesl’ Conference
on High-Performance and Distributed Computing, 2005, p{33

[20] Christian Lengauell,oop Parallelization in the Polytope ModeCONCUR, 1993, pp. 398-416.
[21] Object Management Grouphe Corba Component Model997. http://www.omg.org.

[22] C. SzyperskiComponent Software: Beyond Object-Oriented Programn#aiglison Weseley, 1998.
[23] The CCA ForumCCA Glossaryhttp://www.cca-forum.org/glossary.

[24] European Research Network on Foundations, Softwdrasinuctures and Applications for large scale
distributed, GRID and Peer-to-Peer Technolog@&sieGRID http://www.coregrid.net.

[25] UK Grid Database Task Forc®GSA Data Access and Integratidmttp://www.ogsadai.org.
Acknowledgement

This research work is carried out under the FP6 Network oelence CoreGRID funded by

the European Commission (Contract IST-2002-004265) asddeeived financial support from

the German Research Foundation (DFG) for project Comp8prea

