
A Multiparadigm Study of Crosscutting
Modularity in Design Patterns

Martin Kuhlemann1, Sven Apel2, Marko Rosenmüller1,
and Roberto Lopez-Herrejon3

1 School of Computer Science, University of Magdeburg
{mkuhlema,rosenmue}@ovgu.de

2 Department of Informatics and Mathematics, University of Passau
apel@uni-passau.de

3 Computing Laboratory, University of Oxford
rlopez@comlab.ox.ac.uk

Abstract. Design patterns provide solutions to recurring design prob-
lems in object-oriented programming. Design patterns typically crosscut
class boundaries so previous work aimed at improving modularity of their
implementations. A series of recent studies has focused on aspect-oriented
programming while other crosscutting techniques such as collaboration-
based designs have remained unexplored. In this paper, we address this
limitation by presenting a qualitative case study based on the Gang-of-
Four design patterns comparing and contrasting mechanisms of represen-
tative languages of collaboration-based designs (Jak) and aspect-oriented
programming (AspectJ). Our work yields guidelines for using both
paradigms when implementing design patterns exploiting their relative
strengths.

Keywords: Aspect-oriented programming, collaboration-based design,
design patterns, crosscutting modularity.

1 Introduction

Design patterns are customizable and reusable solutions for recurring problems
in object-oriented applications [15]. The implementation of patterns commonly
involves or crosscuts multiple classes and interfaces that play different roles in a
pattern. The crosscutting nature of design patterns has attracted the attention
of aspect-oriented programming (AOP) advocates who conduct research on tech-
niques and tools to modularize crosscutting concerns [25] for the development
of customizable software [43, 31, 26]. A core tenet of AOP is that crosscutting
concerns, when poorly modularized, lead to code tangling (a module contains
code of multiple concerns) and scattering (the implementation of a concern is
spread across multiple modules) [25].

Several studies highlight the relative advantages of AOP over traditional
object-oriented programming (OOP) for implementing design patterns [22,13,16,
17]. However, AOP is not the only technology capable of modularizing crosscut-
ting concerns. Research on collaboration-based designs (CBD) predates AOP [36,

R.F. Paige and B. Meyer (Eds.): TOOLS EUROPE 2008, LNBIP 11, pp. 121–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

122 M. Kuhlemann et al.

1 public class Point {
2 public int pos;
3 public void resetPos (){
4 this .pos = 0;
5 }
6 public void click (){
7 Locker .lock();
8 this .resetPos ();
9 Locker .unLock ();

10 }
11 }

12 public aspect ObserverAspect {
13 protected pointcut observedCalls():

call (*aPoint .*(..));
14 before():observedCalls(){
15 System.out.println ();
16 }
17 public HashMap Point.obs;
18 public HashMap Point.getObs (){
19 return obs;
20 }
21 declare parents: Point implements

SubjectInterface;
22 }

Fig. 1. AspectJ concepts used in the case study

8,41] and embraces multiple technologies that extend OOP to attain goals similar
to those of AOP [6]. In CBD, a class is divided into code units that modular-
ize the roles played by that class. Collaborations in CBD modularize roles of
different classes that collaborate to perform a task.

In this paper, we compare and contrast AspectJ1 and Jak2 implementations
of the 23 Gang-of-Four (GoF) design patterns [15]; AspectJ is an AOP language
extension for Java [25] and Jak is a CBD language extension for Java [7]. Both
languages are representatives of their paradigms and have been used in several
studies, e.g., [6, 22, 16, 17, 13, 26]. For our qualitative comparison, we devise two
basic modularity criteria: cohesion and reusability. We measure their relative
support in the AspectJ and Jak pattern implementations. Subsequently, we op-
timize the implementations with respect to each of the two criteria and repeat
this evaluation. Based on all implementations (initial and optimized), we analyze
AspectJ’s and Jak’s crosscutting mechanisms and offer guidelines for choosing
aspects or collaborations in concrete contexts. We show that both criteria can-
not fully be met simultaneously using one of either paradigms; our study reveals
individual strengths of both approaches and outlines ways for their combination.

2 Background

In the following, we describe the basics of AspectJ and Jak, the categories
used for our evaluation, and the criteria analyzed in the AspectJ and Jak
implementations.

2.1 Language Mechanisms Used in the Case Study

AspectJ. The key abstraction mechanism of AspectJ is an aspect [24, 28]. An
aspect is a class-like entity that includes pointcuts and pieces of advice. Pointcuts
select join points (well-defined events during program execution) from a join
point model of a base application. Advice is code executed at these join points.
1 http://www.eclipse.org/aspectj/
2 http://www.cs.utexas.edu/users/schwartz/

A Multiparadigm Study of Crosscutting Modularity in Design Patterns 123

Advice may be bound to abstract pointcuts that do not select join points directly
but get overridden in inheriting aspects to select join points.

parents

Point

+resetPos()
+click()

<<interface>> <<aspect>>

body

<<advice>>

#observedCalls()
declare <<pointcut>>

[1]<before>()

ObserverAspectSubjectInterface

<<pce>>

+getObs()
+pos:int +obs: HashMap

Fig. 2. Graphical notation of an aspect

Figure 1 depicts a pointcut
(Line 13) and a piece of advice
(Lines 14-16) that extend all calls
to methods of class Point. Inter-
type declarations introduce new
methods or fields into existing
classes and declare errors statically
if user-defined constraints are vio-
lated. In Lines 17-20 of Figure 1,
ObserverAspect introduces the field
obs and the method getObs into
class Point. Aspects can declare a class to implement interfaces or to extend
a superclass with declare parents clauses. In Line 21, the aspect declares the
class Point to implement the interface SubjectInterface.

1 public class Point {
2 public int pos;
3 public void resetPos (){
4 this .pos = 0;
5 }
6 public void click(){
7 Locker.lock();
8 this .resetPos ();
9 Locker.unlock ();

10 }
11 }

(a) Collaboration: Base

12 refines class Point implements
SubjectInterface {

13 public void resetPos (){
14 System.out.println ();
15 Super.resetPos ();
16 }
17 public HashMap obs;
18 public HashMap getObs (){
19 return obs;
20 }
21 }

(b) Collaboration: Observer

Fig. 3. Jak concepts used in the case study

<<interface>>

SubjectInterface

Observer

+obs: HashMap
+resetPos()
+getObs()

Point

+pos:int

Base

HashMap

Point

+click()
+resetPos()

Fig. 4. Graphical notation of collaborations

Figure 2 depicts ObserverAspect
of Figure 1 in an extended UML
notation.3

Jak. A collaboration is a set of ob-
jects (hence the crosscutting) and
a protocol that determines how the
objects interact. The part of an ob-
ject that enforces or implements
the protocol in a collaboration is
called a role [37,41]. Collaborations
can be implemented using several
techniques, like inheritance, encapsulation, or polymorphism. Layers are ab-
stractions for collaborations in Jak and superimpose standard classes with mixin
3 To the best of our knowledge, there is no commonly agreed UML notation for as-

pects [21,18,38]. For this paper, we use the one of Han et al. [21].

124 M. Kuhlemann et al.

Table 1. Pattern categories

Category Name Design Patterns

No General Accessible Interfaces for Classes Chain of Responsibility, Command, Composite, Medi-
ator, Observer

Aspects as Object Factories Flyweight, Iterator, Memento, Prototype, Singleton
Language Constructs Adapter, Decorator, Proxy, Strategy, Visitor
Multiple Inheritance Abstract Factory, Bridge, Builder, Factory Method,

Template Method
Scattered Code Modularized Interpreter, State
No Benefit From AspectJ Implementation Facade

classes [9] that can add new fields and methods to the superimposed class. In
Figure 3, the Jak collaboration Observer (Fig. 3b) contains a mixin class Point
which adds a field obs (Line 17) and a method getObs (Lines 18-20) to the class
Point of the collaboration Base (Fig. 3a).

In Jak, method refinements extend methods via overriding, similar to method
overriding in Java subclasses. In Figure 3, the collaboration Base (Fig. 3a) con-
tains a class Point. Method resetPos of Point of the collaboration Observer
(Fig. 3b) refines method resetPos of class Point of the collaboration Base by
overriding. This overriding method calls the overridden refined method using
Super (Fig. 3b, Line 15) and adds further statements (Line 14). Figure 4 depicts
the collaborations Base and Observer.4

2.2 Categories of Design Patterns

Hannemann et al. [22] defined six categories of design patterns based on the
benefits of AspectJ implementations compared to their Java counterparts (see
Tab. 1). We use their categories to focus our analysis. The categories consider
crosscutting support and allow us to highlight differences between AspectJ
and Jak.

No General Accessible Interfaces for Classes. The patterns of this category do
not have an interface accessible from clients. Clients that use a class or a set of
classes are neither affected nor aware of whether a design pattern of this category
is applied or not. Consequently, the interfaces of these patterns mainly structure
the code instead of providing reusability of code. That is, these patterns can be
implemented entirely with aspects, in which roles are bound to classes through
pointcuts. The patterns in this category are Chain Of Responsibility, Command,
Composite, Mediator, and Observer.

Aspects as Object Factories. The patterns of this category control access to
objects. Factory methods provide access for clients on an aspect instance (using
aspectOf) or on a class whose methods are advised or introduced by an aspect.
That is, an aspect may advise an object-creating method and provide object
instances based on the parameters passed to the extended method. Note that
4 We are not aware of a commonly agreed UML notation for collaborations. In this

paper, we use the notation of [6,4,5].

A Multiparadigm Study of Crosscutting Modularity in Design Patterns 125

patterns in this category define only one role. The patterns in this category are
Flyweight, Iterator, Memento, Prototype, and Singleton.

Language Constructs. The patterns of this category replace OO constructs
by AO language constructs, e.g., methods by inter-type declarations or ad-
vice. Thereby, AO implementations sometimes do not completely provide the
same capabilities as the OO counterparts. For example, the AO implementation
of Decorator cannot be applied dynamically to the decorated object like the
OO counterpart [22]. However, implementing patterns with AO language con-
structs sometimes simplifies the design [11,12]. The patterns in this category are
Adapter, Decorator, Proxy, Strategy, and Visitor.

Multiple Inheritance. In the pattern implementations of this category, aspects
detach implementations from abstract classes which become interfaces. The
pattern-related interfaces are assigned to classes and are extended by the as-
pects. This results in a limited form of multiple inheritance [22]. The developer
can assign different role implementations to a single class by replacing the ab-
stract classes by interfaces that can be extended by aspects. The patterns in this
category are Abstract Factory, Bridge, Builder, Factory Method, and Template
Method.

Scattered Code Modularized. This category includes patterns that scatter code
across different classes in their OO implementation. This code can be modular-
ized using AspectJ, effectively decoupling the set of classes from the communica-
tion protocol of the patterns. The patterns in this category are Interpreter and
State.

No Benefit from AspectJ Implementation. Patterns in this category do not dif-
fer in their OO and AO implementations. The only pattern in this category is
Facade.

2.3 Evaluation Criteria

For our case study, we use two criteria that are common in software-engineering,
reusability and cohesion, and adapt their definition to our analysis of crosscutting
modularity.

Reusability. Reusability allows to use a piece of software in a context different
than that it has been developed for [10, 1]. A reusable piece of software must
provide benefits when reused but also must include as less design decisions as
possible, because the decisions can conflict with decisions made in the new con-
text [10, 40, 33].

Design patterns define reusable designs but do not provide reusable imple-
mentations [15,34,11]. To attain code reuse, each pattern ideally is implemented
by (1) an abstract piece of code that is common to all implementations of
the pattern across different applications and (2) application-specific binding
code [22, 20] – this way, even concerns different from design patterns should
be implemented [23]. Both conceptual parts of a pattern implementation offer
possibilities for reuse, as we explain next.

126 M. Kuhlemann et al.

��
��
��
�� ����
���� ����

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

(a) Free-standing units

����

����
����
�
�
�
�

��
��
��
��
��
��
��
��

(b) Nested units

Fig. 5. Different modularizations of one application

Screen

<<binding>>

ColorObserver CoordinateObserver

<<base class>> <<base class>>

ObserverProtocol
<<abstract pattern>>

Crosscutting
pattern

implementation

Base application

<<binding>><<binding>>

ScreenObserver

Point

observer subject

instantiate

observer
subject &

subjectobserver

instantiate instantiate

���
���
���
���

����
����
����
����

�����
�����
�����

�����
�����
�����

(b) Free-standing
units

����
����
����
����

�����
�����
�����

�����
�����
�����

����
����
����
����

(a) (c) Nested units

Fig. 6. Principle Observer implementation and two modularizations

(1) Abstract-Pattern-Reusability is the capability of reusing an abstract de-
sign pattern implementation across different applications (Inter-Application-
Reusability), that do not share code otherwise. A pattern implementation can
only be reused across applications if its implementation is decoupled from other
parts of a software. That is, the pattern implementation cannot be reused if it
includes application-specific code or if it depends on the application by reference.

(2) Binding-Reusability is the capability of reusing application-specific bind-
ing code across different variants of a single application (Intra-Application-
Reusability), i.e., across software products that do share a common base. Binding
code cannot be reused if a role of a pattern shall be bound to different classes in
different variants but all roles of that pattern are bound within one closed code
unit5 [33, 23]. Open code units can be adapted and allow independent reuse of
their nested parts.

5 A closed code unit exhibits a well-defined stable description while open units are
adaptable [33]. An open code unit is available for extensions or manipulations; a
closed unit solely can be used as it is without any adaptation. Please note that this
notion of open code units should not be confused with open modules of Aldrich [3]
that expose join points explicitly.

A Multiparadigm Study of Crosscutting Modularity in Design Patterns 127

In Figure 5, we show two designs, in which code units are depicted with
shapes (circle, square, or rounded quare). The free-standing units of Figure 5a
are reusable because every unit may be reused independently of other units (e.g.,
other circles). The nested units of Figure 5b (e.g., circles) can only be reused
independently if the surrounding composite units grouping them are not closed.
That is, nesting code units may effect their reusability.

In Figure 6a, we depict the Observer design pattern in UML notation that
consists of an abstract pattern implementation (top), binding units (middle),
and base application units (bottom); in Figures 6b and 6c, we show different
modularizations of this implementation with free-standing code units (Fig. 6b)
and nested code units (Fig. 6c). Striped boxes represent abstract code units,
white boxes represent binding units, and cross hatch boxes represent base appli-
cation units. For optimal reuse, every binding code unit, e.g., ScreenObserver,
and every abstract pattern code unit, e.g., ObserverProtocol, should be reusable
independently. This is possible if these units are free-standing (cf. Fig. 6b). In
case the units are nested (cf. Fig. 6c), they can only be reused if the surrounding
composite code unit is open. If the composite units of Figure 6c are closed, their
nested code units cannot be reused independently.

Cohesion. Cohesion is the grouping of a set of programming constructs that im-
plement a specific task into a single modular unit and referring to the collective
group using a name [31].6 A cohesive code unit implements a specific task com-
pletely and, thus, is valuable when being reused [10,40]. Low cohesive structures
of code units increase the complexity of an application [39, 30, 29] because they
contain an unstructured set of unrelated units. Hence, semantically related code
units cannot be referenced by name in a low-cohesive structure because they are
not grouped.

The structure of free-standing code units of Figure 5a is not cohesive because
units of different kinds and concerns (depicted by different shapes) are intermixed
and sets of semantically related code units cannot be referenced by name. The
composite units of Figure 5b are cohesive because every one of these units in
turn composes different code units of one concern (here: different atomic code
units, e.g., all circles) and, thus, implements this concern completely – every
composite unit can be referred to by name.

Figures 6b and 6c showdifferent modularization approaches (with free-standing
code units and with nested code units) for the Observer pattern of Figure 6a.
Based on our definition of cohesion, nested modularization (as in Fig. 6c) is more
cohesive than free-standing modularization (as in Fig. 6b) because it separates un-
related code units (binding, abstract, and base units) and groups semantically re-
lated units (e.g., different binding units). Moreover, through nesting, sets of
related code units (e.g., all binding units of that pattern or all crosscutting units)
can be referenced by name.

6 We use this extended definition of cohesion to highlight the need for module names.
This is important especially for modularizing crosscutting concerns because these
are designed and coded separately from the classes they crosscut [26].

128 M. Kuhlemann et al.

ScreenObserver

��

��

��

ColorObserver
CoordinateObserver

ObserverProtocol

Point

Screen

(a) AspectJ impl.

Screen

��

��

��

Crosscutting Observer Impl

ObserverProtocol
Observer Instances

ColorObserver
CoordinateObserver
ScreenObserver

Base Application

Point

(b) Jak impl.

Fig. 7. AspectJ and Jak implementation of Observer

3 Case Study

In our case study, we reimplemented the AspectJ pattern implementations of
Hannemann et al. in Jak.7 To transform AspectJ to Jak implementations, we
used the guidelines presented in [27]. We now discuss the implementations of
all 23 GoF design patterns with respect to our two criteria (reusability and co-
hesion) and our six categories. Firstly, we analyze the initial AspectJ and Jak
implementations and then we discuss the implementations optimized towards
reuse and cohesion. Due to space limitations, we focus our discussion on repre-
sentative patterns in each category.

3.1 Initial Implementations

No General Accessible Interfaces for Classes

Cohesion: AspectJ and Jak implementations differ in cohesion.
Binding-reusability : Jak binding implementations are more reusable than AspectJ binding implementa-

tions.
Abstract-pattern-reusability : Abstract pattern implementations using AspectJ are more reusable than their Jak

counterparts.

Patterns in this category do not need an interface for clients, i.e., they can be
implemented abstract and bound to an application in AspectJ. Jak does not
provide a mechanism to bind implementations to arbitrary methods directly like
abstract pointcuts, but the Jak pattern implementations have been bound to the
base code using method refinements. Method refinements are very application-
specific in contrast to abstract pointcut bindings, which reduces support for
abstract-pattern-reusability for all Jak implementations. However, Jak refine-
ments of bindings can be reused across variants of the application because the
composite collaborations that surround the bindings are open code units.

7 See: http://wwwiti.cs.uni-magdeburg.de/∼mkuhlema/patternsCBD/

A Multiparadigm Study of Crosscutting Modularity in Design Patterns 129

Typical for this category is the Observer implementation. In AspectJ, Ob-
server is implemented in one abstract pattern aspect8 and three binding aspects9

that crosscut the classes and bind all pattern roles. The abstract pattern aspect
and bindings are not grouped but located among classes they crosscut, that is,
the aspects lack cohesion. Each binding aspect binds all pattern roles together
which does not allow to vary individual bindings of a class to a pattern role, e.g.,
Subject.

Observer implemented with Jak (Fig. 7b) exhibits high cohesion because the
set of base classes is grouped in one composite and named collaboration and
the crosscutting and extending concern of the pattern is implemented cohe-
sively in one other collaboration. In that composite collaboration, the whole
pattern implementation is aggregated and can be referred to by name (here:
CrosscuttingObserverImpl). Moreover, the nested collaborations can be reused
independently of each other. Binding collaborations like ColorObserver are fur-
ther decomposed (not depicted for brevity) where the nested bindings allow to
configure the binding of single pattern roles, e.g., Subject.

Using abstract pointcuts in the AspectJ implementation, an abstract pattern
implementation can be bound to different applications. Jak extension mecha-
nisms depend on names and types of the base application; thus, they do not
allow to detach an abstract implementation of the pattern as easy as AspectJ.

Aspects as Object Factories

Cohesion: AspectJ implementations are less cohesive than their Jak counterparts.
Binding-reusability : Binding code of the AspectJ and Jak implementations in this category is largely

equally reusable.
Abstract-pattern-reusability : The AspectJ pattern implementations promote reuse of abstract pattern implemen-

tations compared to the Jak implementations.

In this category, the abstract aspects act as hashmap containers to reference
objects that they instantiate and control based on intercepted runtime events.
Intercepting runtime events can be performed more flexibly with pointcuts and
advice in AspectJ than with method refinements in Jak. That is, advice in As-
pectJ can wrap methods and method calls (and other) which is more fine-grained
than the events extensible with Jak, where Jak only allows to wrap methods. Due
to missing abstract binding mechanisms in Jak, abstract pattern implementa-
tions (here: the hashmap containers) are moved into the binding collaborations –
this increases cohesion because only one named pattern module is left but
decreases abstract-pattern-reusability in Jak implementations.

The representative pattern of this category is Singleton. Its AspectJ imple-
mentation includes an abstract implementation that creates and controls (using
a hashmap) singleton objects. A free-standing aspect binds the Singleton role
to a specific class and wraps methods and calls that instantiate this class using
pointcut and advice; the wrapper code manipulates the abstract implementa-
tion’s hashmap. The extended classes are not separated from the implementation
8 The abstract aspect is a hashmap container with nested role interfaces.
9 Each binding aspect extends the abstract aspect and binds both role interfaces Sub-

ject and Observer to the classes of the base implementation.

130 M. Kuhlemann et al.

of the Singleton pattern and the pattern implementing aspects are not aggre-
gated. In the Jak counterpart, the whole pattern implementation of Singleton
is aggregated in a single composite collaboration and separated from the set of
pattern-unrelated and extended classes, i.e., collaborations are cohesive. How-
ever, using the Jak binding mechanism, i.e., method refinements, we can solely
extend whole object-creating methods but nothing else, such as constructors or
method calls. Method refinements can be reused independently (good binding-
reusability) but the role they implement is closely bound to the extended base
class (bad abstract-pattern-reusability). The abstract pointcut mechanism of As-
pectJ is applied to implement the Singleton role abstractly – this implementation
is bound afterward to base classes, that is, implementing Singleton abstract is
more difficult with Jak than with AspectJ concepts.

Language Constructs

Cohesion, binding-reusability, abstract-pattern-reusability : The AspectJ implementations in this category differ
in all criteria from their Jak counterparts.

Patterns in this category deal with redirecting method calls by wrapping ex-
isting methods and introducing new ones. Wrapping and introducing methods
can be performed in AspectJ as well as in Jak. However, the code that wraps a
method has to be assigned one-to-one in Jak while AspectJ allows to wrap dif-
ferent methods with one piece of advice. Due to this weak dependency, AspectJ
implementations outperform their Jak counterparts with regard to abstract-
pattern-reusability. Due to the close relationship between base classes and col-
laborations, both were structured cohesively without loosing more reusability;
the free-standing (and mostly unrelated) code units of the AspectJ counterparts
are less cohesive.

The Proxy implementation with AspectJ uses pointcuts and advice to shield
an object by redirecting methods called on it. To shield different methods of an
object independently, different free-standing binding aspects shield that object.
These binding aspects are ungrouped, which decreases cohesion. The method
calls to the shielded object are redirected within an abstract implementation and
each binding aspect in essence declares which methods to redirect. In the Jak
implementation, abstract pattern implementation and bindings also exist but
the overall pattern implementation, i.e., different binding collaborations (each
shields a method) together with the abstract role implementation, is aggregated
within one collaboration; the extended base implementation of classes is aggre-
gated in another collaboration. Thus, in Jak, both sets, the crosscutting pattern
collaborations and the extended base classes, can be referred to by name – this
is typical for high cohesion. In Jak as in AspectJ, the nested binding collabora-
tions and the free-standing binding aspects can be reused in different variants
of the software. However, due to completely grouping the pattern implementa-
tion in composite collaborations in Jak, there is no reusable abstract pattern
implementation like in the AspectJ counterpart.

A Multiparadigm Study of Crosscutting Modularity in Design Patterns 131

Multiple Inheritance
Cohesion: Jak implementations are more cohesive than the AspectJ counter-

parts.
Binding- and abstract-pattern-reusability : AspectJ and Jak implementations are equivalent.

Patterns in this category deal with method insertions into classes – for the
sake of reuse often realized with multiple inheritance. Both languages, AspectJ
and Jak, allow to introduce methods into classes. This way, both languages obey
strong bindings of extensions toward the extended class; thus, abstract pat-
tern implementations are tangled with bindings for all patterns in this category.
Consequently, no bindings or abstract pattern implementations can be reused
independently in the AspectJ or Jak implementations – AspectJ and Jak are
equivalent with regard to reuse.

The aspect of Template Method introduces an algorithm method into a class
whose subclasses implement the algorithm steps. The aspect that implements
the crosscutting pattern Template Method is not separated from the crosscut
classes, i.e., different extended pattern-unrelated classes are not grouped but
free-standing among crosscutting pattern aspects, this structure of free-standing
code units lacks cohesion. In Jak, the set of basic classes and the set of ex-
changeable Jak extensions are grouped; however, members of these groups can
be reused as easily across variants of the software as free-standing aspects in
AspectJ. Abstract pattern implementations cannot be separated and reused be-
cause introducing the algorithm method into a class binds respective aspects
and collaborations closely to this class.

Scattered Code Modularized
Cohesion and binding-reusability : The AspectJ implementations differ in cohesion and binding-reusability from

the Jak implementations.
Abstract-pattern-reusability : All AspectJ and Jak counterparts are equivalent for abstract-pattern-reuse

because no abstract pattern implementation is separated.

Patterns in this category include different roles, in this case different methods,
that have to be introduced into classes. These introductions result in a strong
binding of the pattern code in AspectJ and Jak, i.e., code that is not abstract
and cannot be reused across applications.

In contrast to the Jak implementation of Interpreter, the AspectJ version does
not group and separate crosscutting pattern aspects from the set of pattern-
unrelated classes thus are not cohesive. All roles of the Interpreter pattern are
bound to classes by one closed aspect or by one open and adaptable collab-
oration, i.e., bindings for different Interpreter roles can be adapted and thus
reused across variants more easily in Jak than in AspectJ. Roles are assigned to
classes by extending the classes with methods – this prevents abstract pattern
implementations in AspectJ and Jak.

No Benefit from AspectJ Implementation
Cohesion, binding-reusability, abstract-pattern-reusability : The AspectJ and Jak implementations of Facade, the

only pattern in this category, are equivalent with re-
gard to the criteria.

132 M. Kuhlemann et al.

Table 2. Results of evaluating initial and optimized implementations

�
�

�
�

�
�

�
�

�
��

Comparison

Patterns by
Categories

C
h
ai

n
of

R
es

p
on

si
b
il
it
y

C
om

m
an

d

C
om

p
os

it
e

M
ed

ia
to

r

O
b
se

rv
er

F
ly

w
ei

gh
t

It
er

at
or

M
em

en
to

P
ro

to
ty

p
e

S
in

gl
et

on

A
d
ap

te
r

D
ec

or
at

or

P
ro

xy

S
tr

at
eg

y

V
is

it
or

A
b
st

ra
ct

F
ac

to
ry

B
ri

d
ge

B
u
il
d
er

F
ac

to
ry

M
et

h
od

T
em

p
la

te
M

et
h
od

In
te

rp
re

te
r

S
ta

te
F
ac

ad
e

a) initial AspectJ/initial Jak

Cohesion
Binding-Reusability
Abstract-Pattern-Reusability

b) cohesive AspectJ/initial Jak

Cohesion ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Binding-Reusability ’ ’ ’ ’
Abstract-Pattern-Reusability ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’

c) initial AspectJ/reusable Jak

Cohesion ’ ’ ’ ’ ’ ’
Binding-Reusability
Abstract-Pattern-Reusability ’ ’ ’ ’ ’ ’ ’ ’ ’ ’

: AspectJ impl. outperforms Jak impl.; : Jak impl. outperforms AspectJ impl.;
: both impl. are equal; primed result: changed through optimization

The AspectJ version of Facade uses error-declaration mechanisms that do not
affect reuse or cohesion. Both implementations, AspectJ and Jak, do not differ
in their structure.

Summary

In Table 2a, we summarize our results. The initial implementations exhibit high
cohesion for Jak collaborations and low cohesion for AspectJ aspects. This is
because aspects should be reused across applications and therefore must be
free-standing. Extensions in Jak are typically bound to an application and thus
abstract pattern implementations are often integrated and aggregated with bind-
ings which hampers abstract-pattern-reuse but improves cohesion.

3.2 Optimized Implementations

Interestingly, reusability and cohesion are not satisfied simultaneously in any
implementation. Nearly all AspectJ implementations lack cohesion and the ma-
jority of Jak implementations lack abstract-pattern-reusability compared to their
respective counterparts (cf. Tab. 2a). Trying to eliminate the possibility of this
result being a consequence of the legacy initial implementations, we decided to
develop a new version of the patterns aiming to improve the lacking property
identified. That is, we improved the AspectJ implementations with regard to co-
hesion and improved the Jak implementations with regard to abstract-pattern-
reusability.

A Multiparadigm Study of Crosscutting Modularity in Design Patterns 133

Screen

��

��

��

ObserverProtocol

Crosscutting Observer Impl

Observer Instances

ColorObserver
CoordinateObserver
ScreenObserver

Point

(a) cohesive AspectJ impl.

Screen

��

��
��

ObserverProtocol
Observer Bindings

ColorObserver
CoordinateObserver
ScreenObserver

Base

Point

(b) reusable Jak impl.

Fig. 8. Optimized modularizations of Observer

Cohesion-Optimal AspectJ Implementations. We improved the AspectJ imple-
mentations toward cohesion by nesting aspects. For example, to maximize co-
hesion for Observer, we aggregated the abstract pattern aspect and all binding
aspects inside a single composite aspect.10 The composite aspect encloses related
classes and aspects and can be referred to by name. By nesting abstract pat-
tern and binding aspects within composite aspects we improved cohesion in the
AspectJ implementations of Chain Of Responsibility, Command, Composite,
Decorator, Factory Method, Flyweight, Mediator, Memento, Observer, Proto-
type, Proxy, Singleton, Strategy, and Template Method. For these patterns, the
new implementations became at least equivalent with respect to cohesion com-
pared to their Jak counterparts. In the case of Command and Composite, the
new AspectJ implementations even outperform their Jak counterparts because
both patterns need redefinitions of existing class declarations (only additions to
classes but no changes are possible in Jak).

However, we have observed that all but three cohesion-optimized AspectJ im-
plementations exhibit reduced abstract-pattern-reusability and become equiva-
lent to their Jak counterparts in this respect.11 The reason for reduced reusability
is that composing aspects results in a composite aspect that is closed, i.e., the
abstract pattern implementation gets tangled with its bindings and cannot be
reused independently. AspectJ implementations cannot be optimized for cohe-
sion without reducing their abstract-pattern-reusability and vice versa. Some of
the AspectJ solutions (patterns Decorator, Flyweight, Memento, and Proxy) ad-
ditionally led to a reduced support for binding-reusability after being optimized
for cohesion.12

For example, we improved Observer by composing the free-standing aspects
(cf. Fig. 7a); thus, we created the structure of Figure 8a with nested aspects.

10 Different nesting techniques of AspectJ, like packages, are possible but are considered
inappropriate for aspects [6] because packages are already used as abstractions of
(non-crosscutting) classes and cannot be composed.

11 Decorator, Factory Method, and Template Method already were equivalent here
before.

12 Many of them already lacked binding-reusability before (cf. Tab. 2a).

134 M. Kuhlemann et al.

Now, the AspectJ code structure exhibits high cohesion and is as cohesive as the
Jak counterpart. Unfortunately, in this code structure nested aspects cannot be
reused independently because their surrounding composite aspects are closed.
Consequently, reusability decreases.

Reuse-Optimal Jak Implementations. We have improved abstract-pattern-reus-
ability of Jak implementations by separating abstract pattern implementations
from the binding code and from the pattern-unrelated classes into free-standing
collaborations. We detached abstract implementations for Command, Chain Of
Responsibility, Composite, Flyweight, Mediator, Memento, Observer, Prototype,
Strategy, and Visitor. Of these patterns, Chain Of Responsibility, Flyweight,
Mediator, Memento, Prototype, and Strategy now exhibit less cohesion and are
equivalent to their AspectJ counterparts in this respect. The cohesion of Com-
mand, Composite, and Visitor remain equivalent as before, while the Jak Ob-
server remains more cohesive than the AspectJ counterpart. The reuse-optimized
Jak Observer implementation remains more cohesive because it still groups (in
an open collaboration) binding collaborations, that are free-standing aspects in
the AspectJ code. Notably, patterns Proxy and Singleton could not be improved
to become as reusable as their AspectJ counterpart. Abstract implementations
of these patterns require advanced binding mechanisms such as call-advice or
abstract pointcuts unavailable in Jak.

For example, consider Observer where in the initial Jak implementation (cf.
Fig. 7b) all pattern collaborations (abstract implementation and binding collab-
orations) are grouped in a composite collaboration and the extended base classes
are grouped within another composite collaboration. After optimizing for reuse,
the abstract pattern implementation is extracted from the composite pattern
collaboration into a free-standing collaboration and can be reused (see Fig. 8b).

We summarize both comparisons in Table 2 (parts b and c). Firstly, we com-
pare the cohesion-optimized AspectJ versions with the initial Jak implementa-
tions (Tab. 2b). Secondly, we compare the reuse-optimized Jak versions with the
initial AspectJ implementations (Tab. 2c). We highlight the evaluation results
of those patterns with a prime whose evaluation changed due to optimizing.

4 Consequences, Insights, and Guidelines

Consequences and Insights. Using Jak, we were able to build cohesive pattern
implementations that obey binding-reusability similar to AspectJ counterparts
but not abstract-pattern-reusability. In neither technique it is possible to imple-
ment cohesive software that separated abstract pattern implementations.

We have optimized AspectJ and Jak implementations with respect to reusabil-
ity and cohesion. We observed that when AspectJ implementations are optimized
to allow reuse they loose cohesion and vice versa. Thus, an AspectJ developer has
to decide between reusability and cohesion uncompromisingly. AspectJ imple-
mentations are scattered across free-standing aspects if abstract pattern imple-
mentations or binding aspects are to be reused independently. Large composite
aspects obey cohesion but are closed and thus their nested aspects cannot be

A Multiparadigm Study of Crosscutting Modularity in Design Patterns 135

reused independently. For Jak, we observed that with a proper cohesion we could
also optimize reusability to some extend (namely binding-reusability). However,
neither Jak nor AspectJ implementations are cohesive when they are to be reused
across applications (abstract-pattern-reusability). A reason for that might be
that AspectJ mechanisms are designed to maximize reuse of abstract (pattern)
and application-specific (binding) aspects while scattering and free-standing as-
pects are accepted for adaptability. Jak provides two options, (1) software can
be implemented cohesively including (binding) collaborations that are reusable
within an application or (2) the software’s collaborations can be implemented
in a more reusable manner without cohesion even (everything is scattered in
free-standing collaborations).

Guidelines. In summary, we suggest to implement patterns of the categories Mul-
tiple Inheritance and Scattered Code Modularized with Jak instead of AspectJ
because all (even all optimized) according Jak pattern implementations outper-
form their AspectJ counterparts. We do not recommend any particular technique
for the pattern of category No Benefit From AspectJ Implementation (pattern
Facade) because all AspectJ and Jak implementations are pairwise equivalent
for both criteria. Pattern implementations in the remaining categories are very
diverse with regard to the criteria such that no general guidelines are discernable.
To implement each design pattern in a software with the paradigm we proposed,
we suggest multi-paradigm approaches, like Caesar or Aspectual Feature Mod-
ules [35,6]. In order to choose the best implementation technique for the classes
of patterns, the developer has to decide on a per pattern basis or has to balance
certain desired criteria of the software to build. For example, if the developer
mainly aims at cohesion he/she should implement design patterns with Jak in-
stead of AspectJ for all categories, except No General Accessible Interface and
No Benefit From AspectJ Implementation.

In the case of reusability within applications, i.e., across variants of one ap-
plication, we favor Jak to implement patterns of the categories No Accessible
Interfaces for Classes and Aspects as Object Factories because all Jak imple-
mentations in these categories allow better reuse of bindings (except patterns
Iterator and Singleton whose implementations are equivalent). Pattern imple-
mentations of the remaining categories are equivalent for binding-reusability.

To build libraries and abstract components that should be reused across appli-
cations, AspectJ should be preferred over Jak. The reason is that only AspectJ’s
abstract pointcut declarations allow to bind abstract pattern implementations
to arbitrary base programs. Furthermore, some patterns require sophisticated
AspectJ mechanisms not available in Jak to implement reusable abstract imple-
mentations, e.g., method call extensions. Jak extensions rely on names in base
code more than AspectJ extensions – a fact that hampers abstract pattern im-
plementation. In the categories No General Accessible Interfaces for Classes and
Aspects as Object Factories, all AspectJ implementations but one (pattern It-
erator) are suited better for abstract-pattern-reuse than their Jak counterparts;
the AspectJ Iterator implementation is as reusable as its Jak counterpart.

136 M. Kuhlemann et al.

Since AspectJ and Jak provide common mechanisms of either AOP and CBD,
we argue that our results hold for most AOP and CBD languages.

Threats to Validity. In this study, we made some assumptions. We took the
pattern implementations of Hannemann et al. as a base because they are well
documented and commonly referred. Our insights and guidelines might differ
if other languages of AOP and CBD are evaluated; but, we observed that As-
pectJ and Jak are most widely used as representatives for AOP and CBD. For
criteria different than cohesion and reusability our guidelines cannot say any-
thing – however, cohesion and reusability strongly impact other criteria (main-
tainability, extensibility, etc.). We did not weight our criteria because we assume
each to be equivalently important for evolving and reusing software. Other initial
implementations of GoF patterns may fit our criteria better, but therefore we
optimized the implementations toward the evaluated criteria.

5 Related Work

Different studies compared OOP and AOP by means of the GoF design pat-
terns. Hannemann et al. defined criteria of well-formed software designs (locality,
reusability, composition transparency, and (un)pluggability) to evaluate differ-
ent design pattern implementations using AspectJ [22]. Garcia et al. evaluated
AOP concepts quantitatively on the basis of cohesion and coupling criteria us-
ing a case study of design patterns [16]. Gélinas et al. compared AO and OO
design patterns with respect to cohesion [17]. Our qualitative study focused on
comparing AOP and CBD languages and found that both paradigms provide
crosscutting support but exhibit specific strengths with respect to the criteria
reusability and cohesion.

We used a definition of cohesion similar to the definition of locality of Hanne-
mann et al. Their work is primarily focused on detaching the pattern code into
aspects to enhance cohesion of the pattern. We additionally analyze the cohesion
of bindings. In contrast to the notion of cohesion of Garcia et al., we do not limit
our focus on pairs of method and advice that access the same field but also at-
tend dependencies between code units based on inheritance or method calls. We
have used different criteria than Gélinas et al. because their cohesion criterion is
hardly usable to contrast refinements with (abstract) pointcut mechanisms and
nested with free-standing code units.

Our definition of reusability roughly corresponds to composition transparency
of Hannemann et al. In contrast, we do not only focus on the reusability of the
classes that are assigned to a pattern but also on the reusability of binding units
across different variants of one software.

Apel et al. performed a qualitative case study on AOP and CBD [6]. They
used AOP and CBD to cope with different kinds of problems, e.g., the problem
of homogeneous crosscutting was tackled using AOP and heterogeneous cross-
cutting was tackled using CBD concepts. This study neither uses design patterns
nor is focused on the duality of AOP and CBD concepts, i.e., they used both,

A Multiparadigm Study of Crosscutting Modularity in Design Patterns 137

AOP and CBD concepts, within the same application and evaluated when they
used which technique within that application. We evaluate AOP and CBD lan-
guages using related programs implemented in mature AOP and CBD languages
twice, once in AspectJ and once in Jak. Consequently, we are able to evaluate
different implementations based on common criteria.

Meyer et al. focused on the transformation of the GoF design patterns into
reusable components [34]. They used language concepts that are specific to the
Eiffel programming language, e.g., genericity, contracts, tuples, and agents to
implement pattern components. We focus on AOP and CBD to improve de-
sign pattern implementations. AOP and CBD are programming techniques not
bound to a single programming language as Eiffel but can be applied to differ-
ent programming languages, like Java and C++, and – in theory – to arbitrary
software units [9, 36].

We also have considered category systems for design patterns by Gamma et
al. [15], Garcia et al. [16], and others [19,44,14,2] but found them inappropriate
for our study. Gamma et al. defined categories of design patterns based on the
purpose a design pattern serves and on the scope, i.e., whether the pattern deals
with objects or classes. Garcia et al. gave a new categorization system based on
every criterion they analyzed in their case study, i.e., every category is associ-
ated with one single criterion. Other researchers categorized patterns based on
the pattern’s adequacy to be a language construct, on the predominant relation-
ship (relationship: one pattern uses another pattern), or categorized different
patterns than the GoF. We have also applied these categories to analyze our
evaluation results but find them too diverse and consequently not meaningful
to derive commonalities and significant guidelines for using AspectJ and Jak.
For example, Gamma et al. assigned eleven patterns to a category (behavioral
patterns) but according pattern implementations in our study were too diverse
for cohesion and reuse and did not allow significant results. Furthermore, other
researcher’s categories overlap, which hampers reasoning about language prop-
erties and programming guidelines.

Several researchers introduced further design patterns than the GoF patterns,
also for other programming paradigms [14, 42, 44, 28, 32]. All these researchers
(including Gamma et al.) aimed at increased flexility and reuse. We focused on
patterns of Gamma et al. because they comprise the best-known patterns for
OOP and are domain independent [2].

6 Conclusions

Several researchers observed a lack of modularity in object-oriented design pat-
tern implementations and improved the pattern implementations using AspectJ.
We followed this line of research and reimplemented their aspect-oriented de-
sign pattern implementations with collaboration-based concepts using the Jak
language because Jak also provides crosscutting support needed for modulariz-
ing design patterns but both approaches show different mechanisms to support
crosscutting.

138 M. Kuhlemann et al.

We have used cohesion and reusability as the qualitative criteria to compare
and contrast the AspectJ and Jak design pattern implementations. Based on
this evaluation, we have inferred guidelines for implementing design patterns.
They apply for initial AspectJ and Jak implementations as well as for imple-
mentations that are optimized for cohesion or reuse. We further have shown
that AspectJ and Jak are complementary and the developer has to balance de-
sired aims of cohesion and reuse. Concepts of AspectJ and Jak on their own do
not suffice in structuring software appropriately. But, we propose to use AspectJ
and Jak concepts adequately depending on categories of design patterns, possi-
bly resulting in mixed implementations. This can be achieved by using existing
multi-paradigm approaches that combine AspectJ and Jak or similar languages.
Finally, our results of comparing AspectJ and Jak can be easily mapped to other
AOP and CBD languages.

As further work we target on analyzing and evaluating overlapping design
pattern implementations. For that, we modularize design patterns in a large-sized
framework. This also addresses the limitation of this work that the evaluated
case studies of design patterns are rather small.

Acknowledgments

We thank Jan Hannemann and Gregor Kiczales for their AspectJ pattern im-
plementations which have been the basis of this case study. We thank Christian
Kästner for helpful discussions and comments on earlier drafts of this paper.
Martin Kuhlemann is supported and partially funded by the DAAD Doktoran-
denstipendium (No. D/07/45661).

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, New York (1996)
2. Agerbo, E., Cornils, A.: How to Preserve the Benefits of Design Patterns. SIGPLAN

Not. 33(10), 134–143 (1998)
3. Aldrich, J.: Open Modules: Modular Reasoning About Advice. In: Black, A.P. (ed.)

ECOOP 2005. LNCS, vol. 3586, pp. 144–168. Springer, Heidelberg (2005)
4. Apel, S., Kästner, C., Trujillo, S.: On the Necessity of Empirical Studies in the As-

sessment of Modularization Mechanisms for Crosscutting Concerns. In: Workshop
on Assessment of Contemporary Modularization Techniques, p. 161 (2007)

5. Apel, S., Kästner, C., Leich, T., Saake, G.: Aspect Refinement - Unifying AOP
and Stepwise Refinement. JOT 6(9), 13–33 (2007)

6. Apel, S., Leich, T., Saake, G.: Aspectual Feature Modules. IEEE TSE 34(2), 162–
180 (2008)

7. Batory, D., Liu, J., Sarvela, J.N.: Refinements and Multi-Dimensional Separation
of Concerns. In: FSE, pp. 48–57 (2003)

8. Batory, D., O’Malley, S.: The Design and Implementation of Hierarchical Software
Systems with Reusable Components. ACM TOSEM 1(4), 355–398 (1992)

9. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
TSE 30(6), 355–371 (2004)

A Multiparadigm Study of Crosscutting Modularity in Design Patterns 139

10. Biggerstaff, T.J.: A Perspective of Generative Reuse. Annals of Software Engineer-
ing 5, 169–226 (1998)

11. Bosch, J.: Design Patterns as Language Constructs. JOOP 11(2), 18–32 (1998)
12. Bryant, A., Catton, A., De Volder, K., Murphy, G.C.: Explicit Programming. In:

AOSD, pp. 10–18 (2002)
13. Cacho, N., Sant’Anna, C., Figueiredo, E., Garcia, A., Batista, T., Lucena, C.:

Composing Design Patterns: A Scalability Study of Aspect-Oriented Programming.
In: AOSD, pp. 109–121 (2006)

14. Coplien, J.O., Schmidt, D.C. (eds.): PLoPD. ACM Press/Addison-Wesley Publish-
ing Co. (1995)

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

16. Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., A.: Modular-
izing Design Patterns with Aspects: A Quantitative Study. In: AOSD, pp. 3–14
(2005)

17. Gélinas, J.-F., Badri, M., Badri, L.: A Cohesion Measure for Aspects. JOT 5(7),
75–95 (2006)

18. Georg, G., France, R.B.: UML Aspect Specification Using Role Models. In: OOIS,
pp. 186–191 (2002)

19. Gil, J., Lorenz, D.H.: Design Patterns vs. Language Design. In: Workshop on
Object-Oriented Technology, pp. 108–111 (1998)

20. Hachani, O., Bardou, D.: On Aspect-Oriented Technology and Object-Oriented
Design Patterns. In: Workshop on Analysis of Aspect-Oriented Software (2003)

21. Han, Y., Kniesel, G., Cremers, A.B.: Towards Visual AspectJ by a Meta Model
and Modeling Notation. In: Workshop on Aspect-Oriented Modeling (2005)

22. Hannemann, J., Kiczales, G.: Design Pattern Implementation in Java and AspectJ.
In: OOPSLA, pp. 161–173 (2002)

23. Hölzle, U.: Integrating Independently-Developed Components in Object-Oriented
Languages. In: Nierstrasz, O. (ed.) ECOOP 1993. LNCS, vol. 707, pp. 36–56.
Springer, Heidelberg (1993)

24. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
Overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

25. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-
M., Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

26. Klaeren, H., Pulvermueller, E., Rashid, A., Speck, A.: Aspect Composition Apply-
ing the Design by Contract Principle. In: GCSE, pp. 57–69 (2001)

27. Kuhlemann, M., Rosenmüller, M., Apel, S., Leich, T.: On the Duality of Aspect-
Oriented and Feature-Oriented Design Patterns. In: Workshop on Aspects, Com-
ponents, and Patterns for Infrastructure Software, p. 5 (2007)

28. Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publications Co. (2003)

29. Lieberherr, K.: Controlling the Complexity of Software Designs. In: ICSE, pp. 2–11
(2004)

30. Liskov, B.: Data Abstraction and Hierarchy. In: OOPSLA, pp. 17–34 (1987)
31. Lopez-Herrejon, R., Batory, D., Cook, W.R.: Evaluating Support for Features in

Advanced Modularization Technologies. In: Black, A.P. (ed.) ECOOP 2005. LNCS,
vol. 3586, pp. 169–194. Springer, Heidelberg (2005)

32. Lorenz, D.H.: Visitor Beans: An Aspect-Oriented Pattern. In: Workshop on Object-
Oriented Technology, pp. 431–432 (1998)

140 M. Kuhlemann et al.

33. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice Hall PTR
(1997)

34. Meyer, B., Arnout, K.: Componentization: The Visitor Example. IEEE Com-
puter 39(7), 23–30 (2006)

35. Mezini, M., Ostermann, K.: Conquering Aspects with Caesar. In: AOSD, pp. 90–99
(2003)

36. Reenskaug, T., Anderson, E., Berre, A., Hurlen, A., Landmark, A., Lehne, O.,
Nordhagen, E., Ness-Ulseth, E., Oftedal, G., Skaar, A., Stenslet, P.: OORASS:
Seamless Support for the Creation and Maintenance of Object-Oriented Systems.
JOOP 5(6), 27–41 (1992)

37. Smaragdakis, Y., Batory, D.: Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM TOSEM 11(2),
215–255 (2002)

38. Stein, D., Hanenberg, S., Unland, R.: A UML-based Aspect-Oriented Design No-
tation for AspectJ. In: AOSD, pp. 106–112 (2002)

39. Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured Design. IBM Syst.
J. 13(2), 115–139 (1974)

40. Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M.: N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In: ICSE, pp. 107–119 (1999)

41. VanHilst, M., Notkin, D.: Using Role Components in Implement Collaboration-
based Designs. In: OOPSLA, pp. 359–369 (1996)

42. Woolf, B.: Null Object. In: PLoPD, pp. 5–18 (1997)
43. Zhang, C., Jacobsen, H.-A.: Quantifying Aspects in Middleware Platforms. In:

AOSD, pp. 130–139 (2003)
44. Zimmer, W.: Relationships Between Design Patterns. In: PLoPD, pp. 345–364

(1995)

	Introduction
	Background
	Language Mechanisms Used in the Case Study
	Categories of Design Patterns
	Evaluation Criteria

	Case Study
	Initial Implementations
	Optimized Implementations

	Consequences, Insights, and Guidelines
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

