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1. INTRODUCTION

The goal of feature-oriented programming (FOP) is to modularize soft-
ware systems in terms of features [Prehofer 1997]. A feature is a unit
of functionality of a software system that satisfies a requirement, repre-
sents a design decision, and provides a potential configuration option [Apel
and Kästner 2009]. AHEAD (Algebraic Hierarchical Equations for Applica-
tion Design) is an architectural model for large-scale FOP [Batory et al.
2004].

The idea behind AHEAD is to unify approaches of FOP and scale them to
programming in the large. First, AHEAD generalizes the operations that are
performed when a feature is composed with a base program. A base program is
modeled as a collection of named program elements, which are organized in a
hierarchical namespace. A feature encapsulates a program refinement, which
is a set of changes to a base program. Such changes include the introduction
of new program elements and the modification of existing program elements.
The hierarchical namespace allows a refinement to target any element at any
depth of the hierarchy.

Second, AHEAD scales program refinement to arbitrary kinds of software
artifacts. A feature typically includes changes not only to the source code,
but also to other supporting documents, for example, HTML documentation,
ANT scripts, and UML diagrams. The principle of uniformity that underlies
AHEAD can be stated as follows: features are implemented by a diverse selec-
tion of software artifacts, and any kind of software artifact can be the subject
of subsequent refinement [Batory et al. 2004].

Whereas the idea of uniform feature composition captures the philosophy
behind the AHEAD model and guides us when reasoning about feature-based
program synthesis [Batory 2007], it is rather abstract. Although our previous
work on FOP [Hutchins 2006, 2009; Apel et al. 2005, 2008b, 2009c, 2009a,
2009b; Apel and Lengaver 2008] had established that program refinement is
similar for all artifact types, we had no way to express and reason about this
similarity. We wanted a formal model of feature composition that was indepen-
dent of the particular kind of software artifact that was being refined. Such
a model answers several important questions: What is the essence of feature-
based program refinement? What properties are mandatory for software arti-
facts to be refined? What is common to all artifact languages and what are the
differences? A theory of features and feature composition will help us answer
these questions.

We propose gDEEP, a core calculus for uniform feature composition, as the
backbone of such a theory. gDEEP has several benefits.

(1) It enables us to reason about the properties and procedures of program
refinement and feature composition in a formal way.

(2) Software artifacts of different types can be plugged into the calculus and
treated equally by the algorithms for feature composition and validation.
The algorithms can be expressed in a uniform and language-independent
way.
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(3) gDEEP’s type system factors out the portion of typing that is concerned with
feature composition. Rather than designing separate and incompatible type
systems to handle features in each artifact language, we can use a single
type system. The type system for features integrates with the type system
of each artifact language in a uniform way.

(4) Tools can operate directly on a concrete representation of gDEEP. This way,
tools for composition, validation, and analysis of features can be reused for
various types of artifacts.

gDEEP builds on the seminal work on mixin composition [Bracha and Cook
1990; Findler and Flatt 1998; Flatt et al. 1998; Bono et al. 1999; Smaragdakis
and Batory 2002; Ancona et al. 2003] and generalizes and scales previous
work on a formal foundation for FOP [Hutchins 2006]. It is an alternative to
approaches that rely on algebra [Lopez-Herrejon et al. 2006; Apel et al. 2008c,
2010b] and complements work on tools and case studies [Apel and Lengauer
2008; Apel et al. 2009c], which is discussed in Section 8. We present the syntax,
operational semantics, and type system of gDEEP and explain how different
artifact languages such as Java, Haskell, Bali, and XML can be plugged into it.
We focus here on the key design decisions and the generality of gDEEP and not
on the underlying type theory. Although this article is self-contained, in some
paragraphs, we refer to an accompanying technical report that provides more
details [Apel and Hutchins 2007].

2. FEATURE-ORIENTED PROGRAMMING

A feature refines the content of a base program either by adding new ele-
ments or by modifying and extending existing elements. Mathematically, we
treat features as functions that transform their input in a well-defined way.
Features can be composed with other features by function composition, or com-
posed with a base program by applying the function to yield another pro-
gram. The order in which features are applied is important; earlier features
in the sequence may add elements that are refined by later features. Existing
FOP tools perform feature composition at compile-time, although this is not a
requirement.

AHEAD is an architectural model of FOP [Batory et al. 2004]. With AHEAD,
each feature is implemented by a containment hierarchy, which is a directory
that maintains a substructure organizing the feature’s artifacts. Composing
features means composing containment hierarchies and, to this end, composing
corresponding artifacts recursively by name and type, much like the mecha-
nisms of hierarchy combination [Ossher and Harrison 1992; Tarr et al. 1999],
mixin composition [Bracha and Cook 1990; Findler and Flatt 1998; Flatt et al.
1998; Smaragdakis and Batory 2002; Bono et al. 1999; Ancona et al. 2003], and
superimposition [Bouge and Francez 1988; Bosch 1999]. In contrast to these
earlier approaches, for each artifact type, a different implementation of the
composition operator ‘•’, that is, a tool that performs the composition, has to be
provided in AHEAD.
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Fig. 1. A solution to the “expression problem” in Jak.

2.1 Jak

Jak is an implementation of a composition operator for Java artifacts [Batory
et al. 2004]. Figure 1 depicts the Jak code of an expression evaluator, which is a
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feature-oriented solution to the well-known “expression problem”.1 The expres-
sion problem has two elements that are commonly found in most programs:

(1) A recursively-defined variant data type (e.g., an abstract syntax tree).
(2) A set of recursive operations over that data type (e.g., evaluation and pretty

printing).

A solution to the expression problem is a programming language or technique
that satisfies the following three requirements:

(1) It is possible to extend the data type with new variants.
(1) It is possible to add new operations.
(2) Different extensions can be defined separately, and then later combined.

The expression problem illustrates a broader issue called the “tyranny of the
dominant decomposition” [Tarr et al. 1999]. In most programming languages,
it is possible to extend either the data type or the set of operations, but not both
at the same time. The data type and the operations are two different concern
dimensions. Although both dimensions are conceptually of equal importance,
existing languages require code to be factored in such a way that one is pri-
oritized over the other. In an object-oriented language, the interpreter design
pattern prioritizes the data type, and thus allows new variants to be easily
added, whereas the visitor design pattern prioritizes the operations. No matter
how the code is factored, concerns belonging not to the “dominant” dimension
cut across the implementations of concerns belonging to other dimensions [Tarr
et al. 1999; Kiczales et al. 1997]. The implementation of such a “crosscut-
ting concern” is scattered throughout the code, where it is difficult trace for
the programmer and difficult to extend with standard programming language
constructs.

Feature-oriented programming tools, such as Jak, provide a mechanism that
allows crosscutting concerns to be defined separately and then mixed together.
Figure 1 follows the interpreter design pattern, in which variants are classes,
with a method for each operation. It splits the functionality into four separate
features.

Feature Expr represents the base program. It defines class Expr, along with
two variants: Val for integer literals and Add for addition. It also defines a single
operation toString for pretty printing. Feature Eval adds the new operation eval,
which evaluates an expression. Evaluation is a crosscutting concern because
eval must be defined by adding a method to each of the three classes. Feature
Mult adds the new variant Mult. Adding a new variant is not ordinarily a
crosscutting concern. However, once the language supports both multiplication
and addition, the precedence of operations becomes important. Thus, feature
Mult also extends pretty printing in order to add parentheses. The new version
of Add.toString calls the old version using Jak’s keyword Super. Feature Var

1The expression problem was named by Phil Wadler in 1998 but has been known for many
years [Reynolds 1994; Cook 1991; Krishnamurthi et al. 1998]; see Torgersen [2004] for a retro-
spective overview.
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adds both a new variant Var, which implements named variables, and a new
operation replaceVars, which replaces all the variables in an expression with
their definitions.

The features Eval, Mult, and Var are each designed to extend Expr. However,
they are not completely orthogonal. The combination of a new variant and a
new operation, creates a “missing piece” that must be filled in to create a com-
plete program. We thus define three additional features, called lifters [Prehofer
1997] and derivatives [Liu et al. 2006; Kästner et al. 2009], that define how
each feature should be extended in the presence of the others. For example,
the derivative ‘Mult + Eval is present when both features Mult and Eval are
present.

2.2 Jak & Virtual Classes

It is worth examining briefly why the features in Figure 1 cannot simply be im-
plemented with standard object-oriented inheritance. The most obvious prob-
lem is that feature composition would require multiple inheritance, which Java
does not have. However, there is a more important and more subtle issue
involved.

Object-oriented inheritance creates a new class with a different name. Thus,
in order to implement feature Eval using standard object-oriented inheritance,
we would have to create three new classes: ExprEval, ValEval, and AddEval.
Creating new classes with different names would break the implementation
of other features, because all references to the original class names (e.g., Expr
and Add) would refer to the old definitions instead of the new ones. Classes are
referred to by name in two places: (1) when constructing instances of the class
and (2) in static type information.

Constructors. Feature Var copies an expression by calling the constructors of
Val and Add. If these constructors referred to the original class definitions, then
copying would produce an expression that did not support any of the operations
defined in other features, such as eval. When composing features with Jak, this
problem does not occur; notice that the main routine calls replaceVars followed
by eval.

Typing. The classes Add and Mult have data members of type Expr. Operations
such as eval and replaceVars are defined recursively on these members. Thus,
these additional operations must be defined within class Expr itself in order
for the implementation to be well-typed; they cannot be defined within derived
classes.

Unlike object-oriented inheritance, the Jak tool does not create new classes
with different names. Instead, each feature defines a different slice (or role)
of class Expr. The Jak tool collects the different slices and merges them to-
gether into a single class definition. In essence, Jak implements virtual classes
[Madsen and Moller-Pedersen 1989] and family polymorphism [Ernst 2001].
With FOP, both methods and classes use late binding. Classes can be refined
by subsequent features in the same way that methods are overridden during
standard object-oriented inheritance. Class names like Expr and Add are not
resolved until after feature composition has taken place.
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Fig. 2. A Bali grammar with separate features for addition, multiplication, variables, and

evaluation.

As Krishnamurthi et al. point out, the problem of class construction can be
resolved by using virtual factory methods, at the cost of some additional coding
effort [Krishnamurthi et al. 1998]. However, the typing issue is not so easily
resolved and requires a type system that can handle virtual types [Ernst et al.
2006].

As a side note, we wish to point out that FOP is slightly less flexible than
the family polymorphism in gbeta [Ernst 2001]. In gbeta, a family of classes
is encapsulated within an object, which exists at run-time. In contrast, Jak
performs feature composition at compile-time. Features are “erased” from the
final compiled code, and are not reified as run-time objects. The advantage of
the erasure semantics is that it allows FOP to be used with languages, like
Java, that do not have built-in support for features. The disadvantage is that,
unlike gbeta, it is not possible to instantiate new families at run-time.

2.3 Bali

A complete software system does not just involve Java code. It also involves
many non-code artifacts. For example, the simple expression evaluator in
Figure 1 may be paired with a grammar specification that provides a concrete
syntax for expressions.

Bali is a tool for synthesizing program manipulation tools on the basis of
extensible grammar specifications [Batory et al. 2004]. It allows a programmer
to define a grammar and to refine it subsequently, in a similar fashion to class
refinements in Jak. Figure 2 shows a grammar and two grammar refinements
that correspond to the Jak program above. The base program defines the syn-
tax of arithmetic expressions that involve addition only. We then refine the
grammar by adding support for multiplication and variables.

Unlike other tools for grammar specification, the grammar rules in Bali use
late binding: the name Expr is not resolved until after feature composition. Bali
is also similar to Jak in its use of keyword Super: Expression Super.Oper refers
to the original definition of Oper.

2.4 Xak

Semistructured program documentation is another example of a non-code
artifact. Xak is a language and tool for composing various kinds of XML
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Fig. 3. A Xak/XHTML document with separate features for addition, evaluation, multiplication,

and variables.

documents [Anfurrutia et al. 2007]. It enhances XML by a module structure
useful for refinement. This way, a broad spectrum of software artifacts can
be refined à la FOP, e.g., UML diagrams (XMI), build scripts (ANT), service
interfaces (WSDL), server pages (JSP), or XHTML.

Figure 3 depicts an XHTML document that contains documentation for our
expression evaluator. The base documentation file describes addition only, but
we refine it in a mixin style to add a description of evaluation, multiplication,
and variables as well. The tag xak:module labels a particular XML element
with a name that allows the element to be refined by subsequent features. The
tag xak:extends overrides an element that has been named previously, and the
tag xak:super refers to the original definition of the named element, just like
the keyword Super in Jak and Bali.

Feature composition tools like Xak require the software artifact to have
a named hierarchical structure. As far as documentation is concerned, FOP
works well for semistructured text such as websites, reference manuals, and
API documentation [Trujillo et al. 2006; Apel et al. 2009c]. FOP is less useful for
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narrative documents like novels, because features may not have proper points
to “hook in” and feature composition may disrupt the flow of text by inserting
sections.

2.5 AHEAD

Jak, Xak, and Bali are each designed to work with a particular kind of software
artifact. AHEAD brings these separate tools together into a system that can
handle many different kinds of software artifacts.

In AHEAD, a piece of software is represented as a directory of files. Compos-
ing two directories together will merge subdirectories and files with the same
name. AHEAD will select different composition tools for different kinds of files.
Merging Java files will invoke Jak to refine the classes, whereas merging XML
files will invoke Xak to combine the XML documents, and so on.

Recently, following the philosophy of AHEAD, the FeatureHouse tool suite
has been developed that allows programmers to enhance given languages
rapidly with support for FOP, for example, C#, C, JavaCC, Haskell, Alloy, and
UML [Apel et al. 2009c].

3. AN INFORMAL OVERVIEW OF gDEEP

We propose a formal, language-independent model of feature composition and
program refinement in the form of a calculus. Our goal is twofold: (1) to provide
deeper insight into the principles of feature composition, and (2) to develop
generic algorithms and tools that can be used to analyze and manipulate vari-
ous kinds of software artifacts.

We call our calculus gDEEP, which is short for generalized DEEP. As its name
might suggest, gDEEP is based on the DEEP calculus. The main concepts of DEEP

were initially presented in an earlier paper [Hutchins 2006], and are explored in
detail in the Ph.D. dissertation of Hutchins [2009]. The DEEP calculus provides
two capabilities that are relevant to FOP.

First, DEEP provides a formal model of deep mixin composition [Zenger
and Odersky 2005; Hutchins 2009], which is related to a number of tech-
niques in the literature, including higher-order hierarchies [Ernst 2003], vir-
tual classes [Madsen and Moller-Pedersen 1989], nested inheritance [Nystrom
et al. 2004], and superimposition [Apel and Lengauer 2008]. The “deep” part
of composition scales object-oriented inheritance to programming in the large.
Unlike inheritance in Java or C#, which support only the overriding of virtual
methods, the DEEP calculus supports the refinement (i.e., overriding) of nested
classes and submodules within a module hierarchy. The “mixin” part of compo-
sition allows separate refinements to be combined together, in a fashion that is
somewhat analogous to multiple inheritance [Bracha and Cook 1990].

Second, DEEP provides a static type system that can handle deep mixin
composition. This is not so important for untyped artifacts such as XML, but
it is important for typed artifacts such as Bali and Java, since it addresses a
crucial weakness of existing feature-oriented tools. In existing tools, all type
checking must be done after composition. Using the DEEP type system, we can
type check features before composition. Note that we do not provide proofs or
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cover the metatheory of DEEP in this paper; readers interested in technical
details should refer to Hutchins’ Ph.D. dissertation [Hutchins 2009].

The original DEEP calculus was conceived as a formal model of a stand-alone
programming language. The main contribution of this article is to demonstrate
that the module system of DEEP can be used for a wide variety of different
artifact languages. The gDEEP calculus extends DEEP with hooks that allow us
to embed Java programs, XML documents, and so on within DEEP modules.

3.1 Deep Mixin Composition

Features in gDEEP are represented as either modules or functions over mod-
ules. A base feature is an ordinary module, whereas a feature that performs
a refinement is a function that transforms a module. Modules have a named
hierarchical structure; a module may contain submodules, subsubmodules, and
so on.

Code in the artifact language can be represented in one of two ways: Com-
pound declarations are modules, which means they have a named substructure.
For example, a Java class is compound because it contains named methods and
nested classes. Atomic declarations do not have a particular substructure which
gDEEP can interpret; an atomic declaration can be any arbitrary term in the ar-
tifact language. Examples of atomic declarations are Java methods and fields,
ordinary XML declarations, and Bali grammar rules.

Modules are composed by recursively composing their constituent declara-
tions. The composition of two modules A and B will have all the declarations of
Aand all the declarations of B. If Aand B both have a declaration with the same
name, then those two declarations will be composed recursively. Composition
thus descends into the module hierarchy and recursively merges submodules
together until it reaches the atomic declarations, which form the leaves of the
hierarchy.

The composition of two atomic declarations works much like standard object-
oriented method overriding. One declaration overrides the content of the other.
However, the overriding declaration may use the metavariable original (much
like Java’s super or Jak’s Super) to refer to the overridden content. By using
keyword original it is possible to combine the content of two atomic declarations
together without needing to know details about them. The calculus assumes
only that the artifact language is defined using terms and that a substitution
operator is available over terms.

3.2 Plugging Artifact Languages into gDEEP

When representing a software artifact in gDEEP, all of the structural elements
in the artifact language must be mapped onto the two kinds of declaration in
gDEEP.

Bali is a simple artifact language, because it does not have any compound
elements, that is, there are no nested grammar production rules [Batory et al.
2004]. As a result, it is very easy to plug it into gDEEP. The gDEEP calculus pro-
vides a hierarchical module system, and all expressions in the artifact language
become atomic declarations. The module calculus and the artifact language are
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almost completely orthogonal.
XML elements may have subelements that are subject to refinement. Xak ex-

plicitly establishes a module structure for XML by associating a module name
with a particular XML element using the attribute xak:module [Anfurrutia
et al. 2007]. Thus, the module structure defined by Xak is largely independent
of the structure of the XML document itself. XML elements that are tagged with
xak:module become modules, whereas ordinary elements become atomic decla-
rations. Once again, the module language and artifact language are largely
orthogonal.

Java is the most difficult to handle, because Java and gDEEP are not or-
thogonal. Java defines different kinds of compound elements: packages contain
named subpackages, classes, and interfaces, whereas classes contain named
inner classes, methods, and fields, and so on. Hence, we map packages, classes,
and interfaces onto modules in gDEEP. Methods and fields have no named sub-
structure, so we represent them as atomic declarations.

We handle compound elements of the artifact language by defining a transla-
tion function. In the case of Java, the translation function provides a bijective
mapping between Java classes and gDEEP modules. In the case of XML, the
translation function provides a bijective mapping between Xak modules and
gDEEP modules. Since the translation function is bijective, any manipulations
performed within gDEEP can be translated back to the artifact language.

Once a software artifact has been translated to gDEEP, we can use the cal-
culus to compose features in a type-safe and language-independent way. Other
languages such as JavaCC, C++, C#, or C are plugged into gDEEP in similar
ways.

3.3 Constraints on the Artifact Language

Feature composition with gDEEP imposes three constraints on the artifact
language:

(1) The substructure of a feature must be a hierarchy of modules.
(2) Every module (submodule, . . .) of a feature must have a name.
(3) The name of a module must be unique in the scope of its enclosing module.

That is, a module must not have two submodules with identical names.

These constraints are satisfied by most programming languages. In addition,
many other (noncode) languages align well with them [Batory et al. 2004;
Anfurrutia et al. 2007; Apel and Lengauer 2008; Apel et al. 2005, 2009c], as we
will illustrate in Section 7.

Languages that do not satisfy these constraints do not provide sufficient
structural information for a feature composition with gDEEP. For example, plain
XHTML allows children of an XML element to be identical, for example, the
elements of a list. However, these languages may be enriched by assigning
unique names or by providing an overlaying module structure, for example, as
Xak does for XML [Anfurrutia et al. 2007].
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3.4 Pluggable Type Systems

In addition to providing an operational semantics for feature composition, the
gDEEP calculus also defines a language-independent type system for features
based on the type system of DEEP. gDEEP’s type system provides type judgments
at the module/feature level that are universal over all supported artifact types.
The gDEEP type system has two main capabilities:

First, there is a subtype relation defined over features and feature compo-
sitions. Features which require other features can express that dependency
by means of subtyping (see Section 4.6). The type checker will ensure that all
dependencies are properly declared as requirements and that all requirements
of a composition are satisfied.

Second, it is possible to use artifact-specific type systems in concert with the
gDEEP type system. For example, the standard Java type system is responsible
for assigning types to Java expressions, which always occur in atomic modules.
The type of an expression in Java is the name of a class (or a basic type). We
integrate the Java type system into gDEEP by replacing the default Java class
lookup mechanism. The gDEEP type system becomes responsible for looking
up class and method names within features, since such names cross module
boundaries (see Section 6 for more details). The core theorems of DEEP ensure
that this combination is sound. However, a discussion of DEEP’s core theorems
is out of scope, and we refer the reader to Hutchins [2006, 2009].

Current feature composition tools, such as Jak, do not support modular
type checking; all type checking must be done after composition. By plugging
the artifact type system into gDEEP, it is possible to do type checking before
composition.

4. OVERVIEW OF THE gDEEP CORE CALCULUS

The module system of gDEEP is a generalization of DEEP. The DEEP calculus is
described elsewhere in greater detail [Hutchins 2009]; we begin with a brief
overview of DEEP and proceed with gDEEP’s syntax and semantics.

Modules in DEEP were designed with the following goals in mind.

—Modules may contain both type-level definitions (e.g., classes) and object-
level definitions (e.g., methods and data members).

—Modules are recursive. One definition within a module can refer to other
definitions by name, in mutually recursive ways. Module-level recursion can
be used to define both recursive types (e.g., classes like List) and recursive
objects (e.g., recursive methods).

—Modules are extensible and use late binding. Unlike mainstream languages,
late binding applies to both type and object members. It is possible to define
both virtual methods and virtual types or virtual classes [Madsen and Moller-
Pedersen 1989; Ernst et al. 2006].

—Module refinement resembles object-oriented inheritance; there is a subtype
relationship defined between modules.

—Modules can be higher-order: they can be parameterized by other modules.
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—It is possible to define mixin modules as functions that transform
modules.

The operational semantics of DEEP is simple, but the type system (in par-
ticular the metatheory) is quite complex. There are three aspects of the type
system that deserve special mention.

First, type and class definitions within a module can be virtual, which means
that they can be overridden by derived modules. Virtual classes are not a new
idea; they first appeared almost 20 years ago in the BETA language [Madsen
and Moller-Pedersen 1989]. However, designing a type system that can handle
the simultaneous refinement of a system of mutually recursive classes has
proved to be very difficult, and it was not formalized until recently [Ernst et al.
2006].

Second, DEEP supports not only virtual types, but also higher-order sub-
typing [Steffen and Pierce 1994] with bounded quantification over such types
[Compagnoni and Goguen 2003]. Higher-order subtyping is crucial to our treat-
ment of feature composition, but it interacts with recursion and virtual types
in subtle ways [Hutchins 2009]. To our knowledge, DEEP is the only calculus
that is capable of handling this combination.

Third, subtyping is defined directly over modules, rather than classes or
types. In fact, the DEEP calculus does not even have a typing relation; the type
system is based entirely on subtyping. This is perhaps the most controversial
part of the calculus, but it simplifies the theory in various ways [Hutchins
2009].

The operational semantics of gDEEP, which defines how features are com-
posed, is defined below. The type theory is presented in Appendix A.

4.1 gDEEP Syntax and Semantics

The gDEEP module system is a generalization of the DEEP module system and
thus has all of the properties mentioned above. gDEEP provides a module system
that supports feature composition. It does not handle the syntax, evaluation,
or typing of expressions in the target artifact language (Java, Bali, etc.); these
must be provided by the “sister calculus” that it is paired with.

Figure 4 shows the syntax and the operational semantics of gDEEP. The
syntax is divided into two parts. The first part, shown on the left, is a calculus
for features. This part represents the core calculus, and it is the only part which
is common across all applications of gDEEP.

The second part of the calculus, shown on the right, is artifact-specific. These
terms serve as placeholders for the particular language to which gDEEP is
being applied—the target artifact language or target language. When support
for features is added to Java, these terms are “filled in” with Java constructs.
When support for features is added to XML, they are XML trees, and so on
(see Section 4.8).

4.2 Notation

We use the following notational conventions.
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Fig. 4. Syntax and operational semantics of gDEEP.

— D denotes a possibly empty sequence of declarations D1..Dn, in which each
declaration is terminated by a semicolon.

— DL and Dl denote the declaration labeled L or l, resp., in the sequence D.
—dom(D) denotes the set of labels in the sequence of declarations D.
—[X �→ M] N denotes the capture-avoiding substitution of the term M for the

variable X within N.
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— M.L and M.l are syntactic sugar for M@(M).L and M@(M).l, respectively.
—originalX.�, is syntactic sugar for M@(X).�, when the original keyword appears

in the context: μX refines M {...originalX.�...}. Furthermore, the X may be
omitted, for example, original.�, in cases that are unambiguous.

4.3 Modules

A module is declared using the syntax μX refines M {D}[ξ ]. The variable X
provides a name for “self” within the module, much like the keyword this in
Java. Modules in gDEEP can be nested, so it is important that each module has a
unique name for “self”. The self-variable allows a declaration within a module
to refer to other declarations within the same module using a path that starts
with X, for example, X.L.

D is a sequence of zero or more declarations, in which a declaration is a
labeled (i.e., named) term. The set � of labels is divided into the two subsets L
and l. A declaration L : N is a compound declaration, which is an ordinary term
N in gDEEP. A declaration l : d is an atomic declaration, which is a term d in
the artifact language. Since gDEEP is defined independently of any particular
artifact language, atomic modules are treated as raw “chunks of code” and are
not otherwise interpreted.

The refines M clause denotes the parent of the module, which is much like
a superclass in Java. A module that has no parent can declare Top to be the
parent. A module extends its parent by adding new declarations or by over-
riding existing declarations. Declarations that override existing ones must be
declared with keyword override.

ξ is an artifact-specific annotation. It can be used by the artifact language
for the composition of artifact-specific details, but is otherwise ignored by the
core calculus (see Section 4.8).

4.4 Inheritance and Composition

The following example demonstrates how composition works in gDEEP. For the
purpose of discussion, we will use a very simple artifact language in which
declarations l : d have the form l : Int = t, in which t is a simple arithmetic
expression.

A = μX refines Top { a: Int = 1; b: Int = 3; };
B = μX refines A { override a: Int = 2; c: Int = 4; };

In this example, A is a base module, and B inherits from (i.e., refines) A. Note
the use of keyword override. Overriding declarations must be declared as such;
it is an error to have two declarations with the same name.

In gDEEP, refinement is a computation that is performed at composition
time. Evaluating B will merge the definitions in B with the definitions in A.
Overriding definitions replace those in their parent:

B −� μX refines Top { a: Int = 2; b: Int = 3; c: Int = 4; };
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4.5 Paths and Delegation

Delegation, written using the syntax M@(N).�, projects the declaration named
� from the module M. Any occurrences of the self-variable X will be bound to
N.

Declarations in gDEEP are similar to methods in object-oriented languages.
The body of a declaration may refer to “self” using the self-variable of the
module. In most object-oriented languages, including Java, “self” is treated as
a hidden argument, which is passed implicitly during a method call. In gDEEP,
the “self” argument is not hidden; it is passed explicitly.

Usually, M and N are the same term. The standard object-oriented dot no-
tation M.� is syntax sugar for M@(M).�. In other words, the expression M.�

projects the slot named � from M, passing M as “self.” The case in which M and
N are different arises when a derived module wishes to delegate behavior to
its parent, as will be discussed shortly.

The following example demonstrates how delegation works in the simple
case: expressions of the form M.�.

M1 = μX {
A: μY refines Top { a: Int = 1; };
B: μZ refines X.A { b: Int = 2; };

};

In this example, M1 is defined as a module that contains two nested modules:
A and B. A is the base module, whereas B inherits (i.e., refines) from A. Note
that B refers to A using the path X.A – it projects A from the self-variable X.

Like object-oriented languages, gDEEP uses late binding. Variable X is not
assigned a value until B is actually projected from M1, for example,

M1.B −→ μY refines M1.A { b: Int = 2; } −� μY refines Top { a: Int = 1; b: Int = 2; }

In the next example, we create a new module M2 that refines A within M1 by
overriding declaration a. Note, the new definition of A refines the old definition
by inheriting from it.

M2 = μX refines M1 {
// originalX.A is syntactic sugar for M1@(X).A
override A: μY refines originalX.A { override a: Int = 2; };

};

Because of late binding, refining the definition of A will automatically affect
the definition of B. M2 inherits B from M1. However, when the expression M2.B
is evaluated, X will be bound to M2 rather than M1, for example,

M2.B −→ μY refines M2.A { b: Int = 2; } −→
μY refines (μY refines M1@(M2).A { override a: Int = 2; }) { b: Int = 2; } −�
μY refines Top { a: Int = 2; b: Int = 2; }

This example also illustrates a more complex use of delegation. Notice that
the module A is overridden with a version that inherits from originalX.A. The
“original” module in this case is M1, so originalX.A is syntax sugar for M1@(X).A.
The expression M1@(X).A means: “extract the declaration named A from M1,
but pass X, which is the self-variable for M2, as self.”

ACM Transactions on Programming Languages and Systems, Vol. 32, No. 5, Article 19, Publication date: May 2010.



A Calculus for Uniform Feature Composition • 19:17

Delegation is similar to the use of keyword super in Java or Super in Jak.
When a derived module inherits from a base module, it can delegate some
behavior to its parent. Delegation allows a feature to “refine” its parent by
transforming existing declarations, rather than just overriding these declara-
tions outright [Batory et al. 2004; Apel et al. 2008b]. Note that although we
refer to this mechanism as “delegation”, it is actually done statically, when
features are composed.

Late binding allows a base module to defer implementation details to derived
modules. All references to “self” within the base module are mapped to the
derived module when features are composed. Delegation, in turn, allows a
derived module to refer back to the base module. Module inheritance thus
establishes a two-way communications link between parent and child.

Type Constraints. It is neither sensible nor type-safe to pass just any term
as “self”. A declaration M@(N).L has a type constraint; it is only well formed if
N is subtype of M. In the case of the simple dot notation, M.L, this constraint
is trivially satisfied, because N = M. It is also safe for a derived module to
delegate to its parent.

In addition, every overriding declaration in a derived module must be a
subtype of the original declaration in its parent. In the example above, note
that the definition of A within M2 inherits from originalX.A. This pattern of
inheritance is enforced by gDEEP’s static type system.

4.6 Monotone Functions

In gDEEP, base features are represented as modules, whereas refinements are
represented as functions over modules. The expression λ+X ≤ M. N is a func-
tion that accepts any subtype of M as an argument. Function application is
written as M(N).

The subtype relation extends to functions as well as modules. Subtyping
between functions is point-wise; given two functions F and G:

F ≤ G if and only if F(A) ≤ G(A) for all A.
Unlike most other module calculi, functions in gDEEP are monotone, which is

why they are declared with the curious λ+ notation. Monotone functions have
an additional property: if F is a monotone function then:

A ≤ B implies F(A) ≤ F(B)
We provide only monotone functions in gDEEP because we are interested

in encoding features. The full DEEP calculus includes general-purpose (i.e.,
nonmonotone) functions as well, but such functions are not needed for FOP,
so we have omitted them in the interest of simplicity.

A feature which can be applied to a base program of type A is written as a
function that refines an argument of type A, for example,

λ+X ≤ A. μY refines X{...}
This feature takes an argument X and extends it by adding the declarations
given in {...}.

Type Constraints. Functions in DEEP have an additional restriction because
they are monotone. Given a function λ+X ≤ M. N, the variable X can appear
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only in covariant positions within N, which means that it cannot appear within
the argument type of functions.

The subtyping laws shown here are drawn from theory of polarized higher-
order subtyping for System Fω

≤, as developed by Steffen and Pierce [Steffen
and Pierce 1994; Steffen 1997]. gDEEP extends this theory by using bounded
quantification [Cardelli and Wegner 1985; Compagnoni and Goguen 2003] ex-
clusively to establish type constraints on formal arguments. The application
M(N) is valid only if N is a subtype of the argument type of M. Argument types
in gDEEP are invariant rather than contravariant in subtypes; this avoids the
well-known problem with contravariance [Pierce 1994].

4.7 Subtyping Laws for Feature Composition

A feature encapsulates a slice of program behavior. Applying a feature to a
program extends the functionality of the program in some way. This leads us to
two typing laws for features. If F is a feature and A and B are programs, then:

(1) F(A) ≤ A for any legal argument A
(2) A ≤ B implies F(A) ≤ F(B) for any legal arguments A, B

The first law states that a feature always extends its argument. We can
express the first law as a subtyping rule by saying that F is a feature if and
only if F ≤ λ+X. X, the identity function on modules. The second law states that,
if a feature is applied to a more specific program, it will always generate a more
specific result. The second law is guaranteed by the monotonicity requirement
on functions.

Together, these two laws allow us to derive subtyping rules for feature compo-
sitions. If F1..Fn is a sequence of features, and G1..Gm is a sequence of features,
then

F1(F2(...Fn(A))) ≤ G1(G2(...Gm(A)))

if F1..Fn contains all of the features in G1..Gm and all of these features
are applied in the same order. That is, G1..Gm must be a subsequence of
F1..Fn. For example, the feature composition Mult(Eval(Expr)) is a subtype
of the composition Mult(Expr), but it is not a subtype of Eval(Mult(Expr)) or
Var(Mult(Eval(Expr))).

4.8 Artifact-Specific Constructs

gDEEP provides two main “hooks” for integrating an artifact language. First,
declarations in the artifact language are denoted by d (cf. Figure 4). In the
case of Java, d represents field and method declarations; in the case of XML,
d represents XML elements, and so on. Artifact declarations are completely
opaque; gDEEP does not interpret them.

Second, compound modules of the artifact language such as Java classes or
Xak modules are represented as compound modules in gDEEP. gDEEP’s modules
can be annotated with a domain-specific construct, named ξ . ξ is defined to
hold any information about a compound module that is required by the artifact
language, but that gDEEP does not include. For example, in our encoding of
Java [Apel and Hutchins 2007], we use it to hold the class constructor along
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with the extends clause (see Section 6). Using this information, it is possible
to create a one-to-one mapping between Java classes and gDEEP modules. In
Section 6 and Section 7, we explain in detail how Java, Bali, XML and Haskell
are plugged into gDEEP.

5. TYPE CHECKING

We illustrate the role of gDEEP’s type system informally by example; the type
system of gDEEP is defined formally in Appendix A. The type system was de-
signed to support separate compilation and type checking of features, some-
thing that existing tools such as Jak cannot do.

Type errors will be detected before composition. Examples of type errors are:
referring to a slot (or calling a method) that does not exist, calling a function
with an invalid argument, or overriding a declaration with a value that is not
a subtype of the original. The following example illustrates these errors, using
a simple artifact language that supports integer arithmetic and strings:

A = μ X { a: Int = 1; }
B = μ X refines A { b: Int = X.a + 1; } // ok
C = μ X { c: Int = X.a + 1; } // error
D = μ X refines A { override a: String = "1"; } // error
F = λ+ X ≤ A. μ Y refines X { ... }
G = F(B) // ok
H = F(C) // error

The definition of C is an error because the slot a does not exist. D attempts
to override a with new definition that has a different type, and H calls F with
an invalid argument.

5.1 Integrating an Artifact Type System

The gDEEP type system can check only gDEEP expressions; it must be paired with
an artifact type system to check the artifact expressions. As illustrated in the
previous example, however, the artifact language and gDEEP are intertwined. In
particular, the artifact language may use paths such as X.a (syntactic sugar for
X@(X).a) in artifact declarations. Paths are the primary interface between the
artifact language and gDEEP; they allow artifact code to traverse the gDEEP mod-
ule structure. All of the languages that we consider in this paper rely on paths.

Figure 5 formally defines the simple artifact language that we have been
using so far in our examples. The language has two types, Int and String, and
supports arithmetic expressions and string concatenation. We have deliber-
ately made the language very simple, but it nevertheless demonstrates the key
mechanisms by which an artifact language can be integrated into gDEEP in a
type-safe way.

The artifact language includes three rules that hook it to gDEEP. First, arti-
fact reduction (−→art) must handle expressions of the form M@(N).l. It does so
by invoking gDEEP reduction (−→).

Second, artifact typing must assign a type to expressions of the form M@(N).l.
It does so by invoking the gDEEP type system. It (1) ensures that M@(N).l is well
formed and (2) uses the gDEEP subtyping judgment to look up the declaration
associated with M@(N).l.
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Fig. 5. A simple artifact language.

Third, the artifact language must define subtyping and well-formedness
rules for artifact declarations. These rules plug into the gDEEP type system;
a module is only well formed if all of its declarations are well formed. In this
case, an artifact declaration is well formed if it is well typed and if the type
of the expression matches the type that was declared for it. One declaration is
a subtype of another (i.e., one declaration can be overridden with another) if
they have the same declared type.

The artifact language in Figure 5 is sound only if the type of M@(N).l is
preserved under artifact reduction. Artifact reduction merely invokes gDEEP

reduction, so this result follows from the soundness of gDEEP.
In addition, we would like to know that types in the artifact language are

preserved by feature composition, that is, by gDEEP reduction. There are two
gDEEP reduction rules. β-reduction substitutes one term for another and mod-
ule composition overrides one slot with another. The soundness result for gDEEP

guarantees that subtyping and well-formedness are preserved under substitu-
tion, and the subtyping rule for artifact declarations ensures that overriding
declarations have the same type. Thus, feature composition preserves artifact
types.

It is not possible to prove that gDEEP can be combined with any artifact
language in a way that is sound. In most cases, however, the gDEEP type system
and the artifact type system are largely orthogonal. The type safety result for
gDEEP provides some basic guarantees that can be reused with many different
artifact languages to prove that features are safe for use in those languages.

5.2 Link Errors

Not all errors can be detected before feature composition. In particular, there
are two kinds of error that must be detected after composition: name clashes
and missing implementations.
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A name clash occurs when a derived module attempts to add a new dec-
laration �, but a declaration named � already exists in the parent. For
example:

A = μ X { a: Int = 1; }
B = μ X refines A { b: Int = 2; }
F = λ+ X ≤ A. μ Y refines X { b: String = "hello"; }
D = F(B)

All of the features above are well formed. The feature F can be applied to any
subtype of A, and B is a subtype of A, so F(B) is well formed. However, evaluating
F(B) will cause a name clash, because both F and B have declarations named b.

Missing implementations arise when gDEEP is paired with an artifact lan-
guage that allows program elements to be declared without an implementation.
The canonical example is an abstract method in Java; such a method has a type
signature but no implementation.

Figure 1 shows an example of missing implementations. Assume fea-
ture Expr is implemented as a module and Eval and Mult are defined
as functions that extend their input. Then Eval(Mult(Expr)) has a missing
implementation—class Mult does not implement the eval method.

Both of these errors correspond exactly to link errors in other program-
ming languages. For example, source files in C are type checked and compiled
separately. The compilation phase guarantees that every routine is declared
before it is used and the use of a routine matches the type that was declared
for it. However, it not possible to determine, at compile-time, that every de-
clared routine is actually implemented, because the compiler does not have
access to all source files. Indeed, the whole point of separate compilation is
that the compiler should not require access to all source files. As a result,
inter-file dependencies are resolved by the linker, rather than by the compiler.
The C linker will generate an error if there are any missing implementa-
tions or if there are two implementations with the same name (i.e., a name
clash).

gDEEP uses a linking mechanism that is similar to C, except that it supports
a hierarchical namespace based on features. Evaluating a gDEEP expression
will compose features together. If composition generates a name clash, then
the result will be an error, as defined by rule (E-ERROR).

Missing implementations are not automatically detected by gDEEP, because
missing implementations are artifact-specific (e.g., missing implementations
cannot occur in the simple artifact language shown in Figure 5). Instead, miss-
ing implementations will be detected after feature composition, when the arti-
fact program is compiled.

To summarize, feature composition proceeds in three distinct phases:

(1) Static type checking before composition (gDEEP well-formedness).
(2) Composition of features (gDEEP evaluation—will detect name clashes).
(3) Compilation of artifact code (will detect missing implementations).

Static type checking ensures that classes, objects, methods, etc. are properly
declared and used in a way that is consistent with their declaration. Linking
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(phases 2 and 3) ensures that every declaration is implemented and that im-
plementations do not conflict.

5.3 A Note on Name Clashes

Some other formalisms for mixin composition do not define name clashes as
errors. For example, the semantics given by Flatt et al. [1998] associate each
object with a view that defines which methods are visible. An object may have
multiple methods with the same name, and the view determines which one is
chosen.

There are several reasons why we have not pursued this approach. The
most important reason is that the purpose of gDEEP is to provide a model that
is consistent with existing feature composition tools such as Jak, Xak, and Bali.
In these tools, the end result of feature composition is a program in the original
artifact language that does not contain features. For example, Jak produces
straight Java code that can be handed off to a standard Java compiler. Views
are not a part of standard Java, so our semantics must treat name clashes as
errors.

In addition, views are semantically complex, and there are easier ways to
achieve a similar effect. Our preferred way is to use name mangling, which
is commonly used in other mixin-based languages such as gbeta [Ernst et al.
2006]. Each feature is assigned a unique name, and each non-overriding slot
is renamed to one that incorporates the name of its container. Overriding
slots are declared as such and are renamed to the name of the declaration
that they override. Ambiguous overrides and ambiguous paths are flagged as
errors during the name mangling phase, which precedes the type checking
phase.

Name mangling is good enough to prevent accidental name clashes, such
as the “artistic cowboy” that inherits a draw method from both Artist and
Gunslinger. In this case, the methods would have been renamed draw Artist
and draw Gunslinger. Name mangling does not handle the case where a com-
position includes the same feature multiple times (i.e., an artist who draws
with both oil paint and water color) but this situation does not typically arise
in FOP [Apel et al. 2008c, 2010b] and in the code factorization problems that
tools like AHEAD were designed to handle.

6. INTEGRATING JAVA WITH gDEEP

In order to illustrate the capabilities and the generality of gDEEP, we begin with
a complex example: the integration of Java with gDEEP.

To integrate Java with gDEEP, we must define a bijective (i.e., one-to-one and
onto) mapping between Java programs and gDEEP modules. Our basic strategy
will use this mapping to translate Java features to gDEEP, use gDEEP to perform
feature composition, and then translate the resulting program back to Java.
We will write the mapping function, which translates Java to gDEEP, as 〈〈 〉〉.

Member variables, constructors, and method declarations in Java are trans-
lated verbatim into atomic declarations in gDEEP. For member variables, we
use the name of the variable as the name of the declaration. For methods
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and constructors, we use a name-mangling scheme to ensure that overloaded
methods are assigned unique names, for example,

〈〈 int x; 〉〉 = x: (int x);
〈〈 void m(int x) { ... } 〉〉 = m1 i: (void m(int x) { ... });
〈〈 A() { ... } 〉〉 = new0: A() { ... }

Classes and interfaces are translated into modules in gDEEP. Since gDEEP

defines its own notion of inheritance, we could attempt to map Java inheritance
onto gDEEP inheritance. There are two problems with this approach. First,
we would like features to be a minimally invasive extension. Replacing Java
inheritance with gDEEP inheritance would significantly alter the structure of
the language.

Second, the inheritance requirements imposed by gDEEP are slightly differ-
ent than those imposed by Java. In particular, constructors in gDEEP are treated
like virtual methods; they are inherited by derived modules. Constructors must
be inherited in order for class refinement to work properly; if the refinement of
a class was to alter constructor signatures, it would break code in other features
that attempted to instantiate the class.

Instead of trying to map Java inheritance onto gDEEP inheritance, we simply
encode the extends and implements clauses as artifact-specific annotations,

〈〈 class B extends A { ... } 〉〉 = B: μY refines Top { 〈〈 ... 〉〉 } [ class B extends X.A ]

The final part of the translation is to map global class names like Bar onto
paths of the form X.Bar. In Java, all class names are treated as global identifiers.
In FOP, classes are not global—a class definition is local to the feature in which
it is defined. The translation from global names to local paths ensures that
classes are virtual and use late binding, which is the key to making feature
composition work. Figure 6 shows an excerpt of the earlier Java/Jak example
encoded in gDEEP

6.1 Modular Type Checking

Type checking in Java is largely unaffected by the translation into gDEEP, with
one exception: the fact that class names are translated into local paths.

Formal models of Java type checking, such as Featherweight Java [Igarashi
et al. 1999] or ClassicJava [Flatt et al. 1998], make use of a global class lookup
table. Type judgments then use this table to find the type signatures of methods
and constructors.

We perform modular type checking within a feature by using gDEEP to per-
form class lookups. We replace class lookups of the form:

CT (B) = class B extends A { ... }

where CT is the global class table, with gDEEP subtyping judgments of the
form:

X.B ≤ 〈〈 class B extends A { ... } 〉〉

All other typing rules are identical to ordinary Java. We now consider
whether a Java program that is well typed before feature composition will re-
main well typed after composition. Feature composition is performed by gDEEP
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Fig. 6. The “expression problem” encoded in gDEEP.

reduction, so we must show that typing derivations in Java are preserved un-
der reduction in gDEEP. Typing derivations make use of gDEEP subtyping and
well-formedness, so as with the simple artifact language shown in Section 5.1,
this result follows from the soundness of gDEEP [Apel and Hutchins 2007].

There is one remaining subtlety. Notice that we have replaced an equal-
ity in type lookup with an inequality. Java type checking uses the fact
that class lookup is an equality to determine whether methods are over-
riding or not. This situation is very similar to the name clashes discussed
in Section 5.2, and we can resolve it in the same way. We recognize the
fact that composition may introduce a name clash and signal an error if it
does.
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Fig. 7. The Bali example of Figure 2, written in gDEEP.

7. INTEGRATING FURTHER ARTIFACT LANGUAGES

We now illustrate how further artifact languages can be used with gDEEP. We
begin with the Bali and XHTML examples from Section 2 and proceed with
a further example written in Haskell. For Bali and XML, we have developed
formalizations, called gBALI and gXAK, that we have integrated with the gDEEP

calculus. A comprehensive description of the syntax and evaluation rules of
gBALI and gXAK can be found elsewhere [Apel and Hutchins 2007].

7.1 Bali

A Bali grammar contains a set of production rules. Bali does not define its own
compound modules; each grammar consists of a single top-level module, with-
out any nested modules. Because Bali does not have nested modules, there are
no Bali-specific module annotations and thus there is no need for a translation
function. gDEEP declarations and modules can be used as-is.

Rules in Bali can refer to other rules in the same grammar by name. In gBALI,
such references are expressed as paths of the form X.l. They can also override
rules of a base grammar and refer to the original definitions via originalX.l.
Both of these terms are syntax sugar for standard gDEEP delegation—M@(N).l.
Figure 7 shows how the earlier Bali example is encoded in gDEEP.

7.2 XML

An XML document contains a set of elements, which are organized in a hier-
archical structure. One might assume that, because XML documents already
have a named hierarchical structure, we might attempt to define a translation
function that maps XML elements onto gDEEP modules, in much the same way
as we did for classes in Java. However, such a mapping is inappropriate for
XML.

The names of declarations in a gDEEP program are used to establish a module
structure. In contrast, the tags of an XML document are just markup—they
may or may not have anything to do with modular structure. Moreover, names
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Fig. 8. The Xak example of Figure 3, written in gDEEP.

of XML elements do not need to be unique in the scope of an enclosing tag, for
example, as in the case of XHTML. gDEEP, on the other hand, requires that
names are unique.

Xak explicitly establishes a module structure for XML by associating a mod-
ule name with a particular XML element using the attribute xak:module. We
use the same strategy for gXAK. Figure 8 shows an except of the previous
XML code, written in gDEEP. This example divides the XML document explic-
itly into three named submodules: Contents, Operations, and Main. Note that,
unlike the original definitions, Contents and Operations are no longer subele-
ments of Main. Instead, Main refers to Contents and Operations by means of the
paths X.Contents and X.Operations. gXAK differs from Xak because it uses paths
rather than element annotations to establish a module structure. However, the
net effect is the same.

7.3 Haskell

Figure 9 shows a simple implementation of the expression evaluator, sup-
porting addition, evaluation, and multiplication, written Haskell and gDEEP.
Haskell supports a style of programming that is not found in Java; data types
and functions over those types are defined by means of cases.

As before, we must define a one-to-one function that maps Haskell code into
gDEEP declarations. Our mapping for Haskell translates both data types and
function definitions into atomic declarations. We represent all of the cases of
a function by a single cases clause (Lines 4 and 9 on the right), which can
reference previously defined cases by means of the original keyword.
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Fig. 9. An expression evaluator in Haskell (left) and its encoding in gDEEP (right).

As with our Java translation, Haskell typing judgments are preserved by
feature composition. A more detailed encoding that demonstrates type safety
for variant data types can be found in Hutchins [2009]. Practical experiences
with Haskell and FOP are discussed elsewhere [Apel et al. 2009b].

8. RELATED WORK

gDEEP is inspired by DEEP [Hutchins 2006], which is a formal object calculus
that implements virtual classes [Madsen and Moller-Pedersen 1989] in a type-
safe manner. Several other calculi have been developed for virtual classes, for
example, by Ernst et al. [2006], Clarke et al. [2007], and Odersky et al. [2003],
which could have been alternative starting points for our work.

Modules in gDEEP are similar in some respects to formal models of objects, for
example, by Abadi and Cardelli [1996] and Boudol [2004]. Boudol in particular
shows how extensible objects, classes, and even mixins can be implemented by
using generating functions—functions that take “self” as their first argument.
Modules in gDEEP are essentially generating functions, which are applied using
delegation: M@(N).L. The gDEEP type system, however, is completely differ-
ent from that used by Boudol, because gDEEP relies exclusively on subtyping,
whereas Boudol uses record types with row-variables.

A significant body of work has explored the concept of mixin composition,
for example, Bracha and Cook [1990], Findler and Flatt [1998], Flatt et al.
[1998], Bono et al. [1999], Ancona et al. [2003], and Kamina and Tamai [2004].
gDEEP builds on this work and implements deep mixin composition [Zenger and
Odersky 2005] in a language-independent manner. McDirmid et al. [2006] have
presented a formal system for modular linking in the presence of mixins. They
aim similarly at language independence but with focus on object orientation.
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It is an interesting issue how to generalize their formal system to noncode
languages.

A concept related to mixins is the concept of a trait. A trait is a reusable
unit of behavior that, in its original proposal, has no state [Ducasse et al.
2006]. Experiences from practical FOP show that features often have state,
or to phrase it differently, add fields to existing classes. Although there is a
recent proposal for stateful traits [Bergel et al. 2008], we favored the mixin
concept because of it is widely used in FOP tools. Another difference between
traits and mixins lies in the treatment of name clashes. Traits explicitly require
the composer to handle conflicts. Anyway, this paper does not focus on these
issues but on the principle of uniformity, which is also applicable to the work on
traits.

Multimethods have been proposed to problems of single method dis-
patch [Millstein and Chambers 2002], for example, the binary method problem.
Multiple method dispatch allows a programmer to extend a given object sub-
sequently without changing existing code or introducing type errors, which is
also possible with gDEEP. Additionally, gDEEP structures the name space hier-
archically in order to encapsulate and scale the extensions a feature can apply,
which has been shown useful in FOP [Smaragdakis and Batory 2002; Batory
et al. 2004].

Several approaches aim at ensuring the correctness of feature composition.
Apel et al. [2008a] extend Featherweight Java with constructs for feature
composition, in particular, with constructs for the refinement of classes, con-
structors, and methods. It is not obvious how to generalize these results to
arbitrary languages. Thaker et al. [2007], Delaware et al. [2009], Kästner and
Apel [2008], and Apel et al. [2010a] use a combination of a SAT solver and
an ordinary type system to check whether all program variants that can be
composed from a set of features are type safe. Again, all of these approaches
focus on Java only.

Li et al. [2002, 2005] proposed a technique to verify feature-oriented systems
in two steps: (1) features are verified modularly and (2) their composition is
verified without the need of re-verifying the involved features again. Their ap-
proach relies on three-valued model checking to take the “openness” of feature
into account. The state machine models they use are quite spartan and do not
consider noncode artifacts explicitly.

Features and feature composition can also be expressed in terms of alge-
bra [Lopez Herrejon et al. 2006; Apel et al. 2008c, 2010b]. The advantage of
an algebra-based approach is that reasoning about feature composition is sim-
pler than in gDEEP. The disadvantage is that algebraic approaches operate at a
higher level of abstraction. Algebraic approaches do not provide an operational
semantics and type system, so it is harder to prove certain properties, and they
cannot be easily used as a basis for implementations. We believe that both
abstraction levels are equally important and useful for exploring the principles
of feature composition.

We have developed a tool, called FEATUREHOUSE, that composes features writ-
ten in Java, C#, C, Haskell, Bali, JavaCC, XML, Alloy following the rules of
gDEEP, but a discussion of the rationales and details of the implementation
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of FEATUREHOUSE is outside the scope of this article and reported else-
where [Apel and Lengauer 2008; Apel et al. 2009c, 2009a, 2009b]. We have used
FEATUREHOUSE in seven case studies of different sizes (2–99 features with
about 300–90,000 lines of code) involving different types of artifacts (Java,
C#, C, Haskell, JavaCC, XML). The case studies demonstrate the practicality
of language-independent feature composition and reveals some insights in the
mandatory and optional properties of language to be represented in gDEEP.
Details about the case studies are out of scope of this paper and are available
on the Web.2

There are alternative composition models that relate to feature composition
as modeled by gDEEP. Aspect-oriented programming (AOP) aims at improving
modularity of crosscutting concerns [Kiczales et al. 1997]. It has been observed
that features are frequently crosscutting in nature [Mezini and Ostermann
2004; Apel et al. 2008b], and so it is not surprising that the techniques used
in FOP are also associated with AOP [McDirmid and Hsieh 2003; Mezini and
Ostermann 2004]. In this sense, gDEEP models a subset of AOP [Apel et al.
2008b]. Multidimensional separation of concerns (MDSC) [Tarr et al. 1999] is
very related to FOP [Apel et al. 2008b]. It favors the hierarchical nesting and
composition of software artifacts much like FOP but allows programmers to
define explicit composition rules for merging to pieces of software. Hence, gDEEP

is possibly a proper means for modeling MDSC and exploring the relationship
between AHEAD and MDSC.

9. CONCLUSION

We have developed gDEEP as a core calculus for feature-oriented programming
(FOP) that encapsulates the essence of feature composition and validation.
It abstracts from artifact-specific details and treats many different kinds of
software artifact in a uniform way. gDEEP provides three basic concepts for con-
structing features which are largely orthogonal: (1) a module allows a mutually
recursive set of named definitions; (2) refinement statements allow a module to
be extended; (3) monotone functions allow separate extensions to be composed.

We have presented the formal syntax, operational semantics, and type sys-
tem of gDEEP and illustrated what a language needs to provide when it is
plugged into gDEEP. We have demonstrated that a wide variety of very differ-
ent artifact languages can be used with gDEEP in order to enhance them with
feature composition capabilities. In an accompanying technical report, we ex-
plain how we adapted and developed formalizations of Java, Bali, and XML
and plugged them into gDEEP [Apel and Hutchins 2007].

Our calculus serves also as an intermediate language for feature repre-
sentation and manipulation, which is a foundation for large-scale feature-
oriented program synthesis [Batory 2007]. Our tool FEATUREHOUSE implements
feature composition following the principles of gDEEP. At the time of writing,
FEATUREHOUSE is able to compose feature written in Java, C, C#, Haskell, Bali,
JavaCC, XML, and Alloy. Several case studies demonstrate the practicality and

2http://www.fosd.de/fh/.
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scalability of our approach [Apel and Lengauer 2008; Apel et al. 2009c, 2009a,
2009b].

Beside composition, further algorithms and tools can be developed on top
of the calculus to provide a seamless infrastructure for developing, analyzing,
composing, and validating features in different representations.
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