
Language-Independent Safe Decomposition of Legacy Applications into Features

Christian Kästner
School of Computer Science

University of Magdeburg
39106 Magdeburg, Germany

ckaestne@ovgu.de

Sven Apel
Dept. of Informatics and Math.

University of Passau
94030 Passau, Germany

apel@uni-passau.de

Salvador Trujillo
IKERLAN Research Centre

Mondragon, Spain
STrujillo@ikerlan.es

Martin Kuhlemann
School of Computer Science

University of Magdeburg
39106 Magdeburg, Germany

mkuhlema@ovgu.de

Don Batory
Dept. of Computer Sciences
University of Texas at Austin
Austin, Texas 78712, USA

batory@cs.utexas.edu

Abstract

Software product lines (SPL) usually consist of code and
non-code artifacts written in different languages. Often
they are created by decomposing legacy applications into
features. To handle different artifacts uniformly (code, doc-
umentation, models, etc.), current SPL technologies either
use an approach that is so general that it works on character
or token level, but can easily introduce subtle errors; or they
provide specialized tools for a low number of languages.
Syntax errors that only occur in certain variants are difficult
to detect, as the exploding number of variants makes a man-
ual testing unfeasible. In this paper, we present CIDE, an
generic SPL tool that can ensure syntactic correctness for
all variants. We show CIDE’s underlying mechanism that
abstracts from textual representation and generalize it from
Java to arbitrary languages. Furthermore, we automate the
generation of safe plug-ins for additional languages from
annotated grammars. To demonstrate CIDE’s capabilities,
we applied it to a series of case studies with artifacts from
different languages, including Java, C#, C, Haskell, ANTLR,
and XML.

1 Introduction

A Software Product Line (SPL) is a set of software-
intensive systems that share a common, managed set of
features, satisfying the specific needs of a domain [9]. Fea-
tures are increments in program functionality and can be
implemented with a wide range of mechanisms. By select-
ing a set of features, it is possible to generate a program – a

member of the SPL, called variant – tailored to a specific
application scenario. In practice, a common way to create
an SPL is to refactor one or more existing applications in
order to extract features, instead of designing the SPL from
scratch, as this promises less risk and faster results [8].

In prior work, we presented the Colored Integrated Devel-
opment Environment (CIDE) for building SPLs in Java with
fine-grained extensions as they are especially needed when
extracting features from legacy applications [27]. CIDE
follows a paradigm we call virtual separation of concerns,
i.e., developers do not physically extract the feature code,
but just annotate code fragments inside the original code
and use tool support for views and navigation. To generate
a variant, CIDE removes code associated with those features
that are not required. CIDE is similar to preprocessors as in
C, however, the code is not polluted with ‘#ifdef’ statements,
but features are highlighted as background colors in the ed-
itor. If a physical separation of concerns is necessary, CIDE
can export the colored code into feature modules (cohesive
pieces of code that implement features) implemented in
Jak or AspectJ [28]. A more extensive introduction to the
concepts behind CIDE is given in Section 3.

When decomposing a legacy application into features, a
typical challenge is to ensure that the decomposition is safe,
i.e., that all variants are correct (syntactically correct, well-
typed, correct behavior, etc.) [34, 12, 42, 44]. Though CIDE
was originally designed to analyze and visualize feature in-
teractions for Java [32], we found that the basic mechanisms
we used allow us to claim that every variant generated with
CIDE is syntactically correct. In this paper, we illustrate
this mechanism and we use it as starting point to analyze its
underlying principles for a generalization.

This led us to a second challenge. CIDE was originally

1

ckaestne
Text Box
Technical Report 2/2008, School of Computer Science, University of Magdeburg, March 2008

designed for Java artifacts only. However, as stated by the
principle of uniformity [5], SPLs are typically built from a
number of different code and non-code artifacts (e.g., source
code, models, specifications, grammars, build scripts, doc-
umentation) that should be treated uniformly by SPL tools.
Therefore, in this paper, we generalize CIDE to arbitrary
languages while preserving the property that every variant
is syntactically correct. Nevertheless, a formal generaliza-
tion is not sufficient, as we still need to implement instances
of CIDE for each language. Thus, in this paper, we also
automate the process of extending CIDE for an additional
language from the language’s grammar.

The paper is structured as follows. First, we show the
mechanism used to ensure syntactic correctness in Java. Sec-
ond, we generalize these mechanisms to transfer them to
arbitrary languages, so that CIDE can be used to gener-
ate program variants safely for any language. Third, we
automate the creation of language plug-ins from the lan-
guage’s grammar, and show how we applied this approach
successfully to a series of code and non-code languages. Fi-
nally, we give a perspective how CIDE can be extended to
not only guarantee syntactically correct program variants,
but also that variants are well-typed and even consistent
in polylingual systems. The overall goal of this endeavor
is to ensure a language-independent safe decomposition of
complex systems that are typically written in multiple lan-
guages into features. Our latest version of CIDE together
with all languages and case studies presented in this pa-
per can be downloaded from the project’s web site: http:

//wwwiti.cs.uni-magdeburg.de/iti_db/research/cide/.

2 Problem Statement

There are two main approaches to decompose a legacy
application into features in order to create an SPL. The first
approach is to physically extract features into new mod-
ules and compose a selection of them to create variants.
There are several technologies that can be used for this com-
positional approach, including frameworks [24], compo-
nents [41], AHEAD [5], aspects [29], or aspectual feature
modules [2]. The composition mechanism usually assure
that – if all modules are syntactically correct – the result-
ing variant is syntactically correct as well. However, these
technologies are often limited to a single or a low number
of different languages. Even though the AHEAD Tool Suite
pioneered the approach of composing features written in
multiple languages (e.g., Jak, bali, XML), still a tool for
each language was developed individually [5]; only recent
work addresses this issue [3]. Furthermore, although de-
composition into features is possible with the compositional
approach, the effort is comparatively high [32, 43, 36, 26],
and only a low compositional granularity is supported, which
may hamper the refactoring [27].

The annotative approach is an alternative, in that legacy
code is not physically decomposed but just annotated; a
variant is created by modifying or removing annotated code.
Typical technologies include ‘#ifdef’ preprocessor directives,
Frames/XVCL [23], or tools like Gears [30]. These technolo-
gies are often so general that they are language-independent
because they treat all artifacts as ordinary pieces of text. At
the same time, they can introduce subtle errors that only
occur in some variants when an application engineer actually
creates them.

Consider the code fragment in Figure 1 that shows a
fragment of C code from Berkeley DB1 that uses C’s pre-
processor with multiple (partly nested) ‘#ifdef’ directives to
be able to generate different variants of the database engine.
Already, this short code fragment illustrates the complexity
that may occur in decomposition, but more importantly, it
illustrates a subtle error, which we deliberately introduced.
Note that the opening curly bracket in Line 4 is only closed in
Line 17 when the feature HAVE_QUEUE is selected, while
all other variants will result in a syntax error.

1 s t a t i c i n t __rep_queue_filedone(dbenv , rep, rfp)
2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 # i f n d e f HAVE_QUEUE
6 COMPQUIET(rep, NULL);
7 COMPQUIET(rfp, NULL);
8 re turn (__db_no_queue_am(dbenv));
9 # e l s e

10 db_pgno_t first , last;
11 u_int32_t flags;
12 i n t empty , ret, t_ret;
13 # i f d e f DIAGNOSTIC
14 DB_MSGBUF mb;
15 # e n d i f
16 // over 100 lines of additional code
17 }
18 # e n d i f

Figure 1. Broken code excerpt of Berkeley DB.

The shown problem is trivial, but when decomposing a
legacy application by successively adding such annotations,
syntax errors can easily occur in some variants. They can be
difficult to detect, especially when they occur in nested anno-
tations and thus only in very few variants [39]. A brute force
strategy of generating and compiling all variants is usually
not feasible, because already with few features the number
of program variants that can be generated from an SPL ex-
plodes exponentially. For n independent optional features,
there are 2n distinct variants; an SPL with 320 features could
generate more variants than there are estimated atoms in the
universe. Therefore, an approach that conceptually ensures
that every variant is syntactically correct is very helpful in a
software product line tool to avoid errors early on.

1http://www.oracle.com/database/berkeley-db

2

Interestingly, there are some tools that can guarantee syn-
tactic correctness for some languages by transforming and
annotating software artifacts on a higher level of abstraction.
One example is Czarnecki’s tool fmp2rsm [11] to generate
variants of UML models. In this tool syntax errors cannot
occur because generation of a variant is not performed on
the source code representation of the model (e.g., XML file),
but on an abstract level with the Rational Software Mod-
eler engine. The engine does not allow transformations that
would invalidate the UML syntax (e.g., by removing only the
name of a class). In other fields of software engineering, this
abstraction principle is also frequently applied. For example,
automated refactorings [14] are not performed directly on
the source code, but on an abstract representation, e.g., on
the abstract syntax tree. In CIDE we used the principle of
abstraction for removing annotated code. Although origi-
nally intended for another purpose, it guarantees syntactic
correctness for Java code, as we will show in the next section.

Although there are tools that guarantee syntactic correct-
ness for few specific languages, to the best of our knowledge,
there is no tool that is language-independent. In the remain-
der of this paper, we will address this issue by generalizing
CIDE to arbitrary languages.

3 Syntactic Correctness for Java

In this section, we introduce the basic design principles
of CIDE and explain how they guarantee for Java that all
variants of an SPL that can be generated are syntactically
correct. For that purpose, it is first necessary to give an
overview of the origins of CIDE and the motivation behind
it.

CIDE was originally designed to analyze and discuss how
the code fragments that implement a feature are scattered
and interact inside legacy applications. In our discussions,
we typically marked feature code with a text marker or used
colored pens with a different color for each feature. This
turned out to be very useful, so that the motivation for CIDE
was to convey this color metaphor to a Java IDE based on
Eclipse. In CIDE, developers assign features to code frag-
ments, that are then highlighted with a background color in
the editor (one color per feature), just as with the text marker
on paper. We refer to this process simply as ‘coloring code’.
Due to this metaphor, we avoid adding explicit annotations
like ‘#ifdef’ to the source code, but store feature annotations
separately.

A key decision at the very beginning of the implementa-
tion that turned out valuable was to assign features to ele-
ments of the underlying structure of the Java file, instead of
assigning it to a sequence of characters (possibly determined
by offset and length). In order to achieve high flexibility (the
discussed code fragments were often statement inside meth-
ods), we use the abstract syntax tree (AST) that represents

1 c l a s s C {
2 void m(i n t p){
3 s1();
4 s2(p,true);
5 }
6 } MethodCall

name=s2

Parameter
value=p

Parameter
value=true

TypeDecl
name=C

MethodDecl
name=m

BlockParameter
name=p

MethodCall
name=s1

ReturnType
type=void

Figure 2. AST Example.

Legacy Application

AST Annotated AST

Java code with
external annotations

Variant AST

Variant code

Program

assign
features

remove
features

 1 2 3 4 5

6

 serialize

compile

save/loadparse

Figure 3. Decomposing a legacy application
and creating a variant with CIDE.

the Java artifact and we assign colors to those AST nodes
that represent the selected code fragment.

In Figure 2, we illustrate this concept on a simple exam-
ple. It shows a code fragment and its AST. When assigning
a feature to a code fragment (in this example Line 4, under-
lined) internally this is mapped to the corresponding AST
nodes (gray boxes). In the user frontend, the code fragment
belonging to an AST node is shown with a background color
according to its assigned features. In case multiple features
are assigned to the same AST node, the background colors
are blended. Though this does not allow to recognize feature
code solely from the background colors, it indicates where a
feature’s code starts and ends so that the user can lookup the
actual features manually in a tool tip or context menu.

The overall process to get from a legacy application to an
SPL in order to generate variants of the product is depicted
in Figure 3. Developers start with a legacy application,
which is parsed into an AST (Step 1). Then, they assign
features to AST nodes inside the development environment
(Step 2). The feature-annotated AST can be saved and
loaded again (Step 3), so that it is still possible to edit
the source code. To create a variant, developers select a
set of features and CIDE removes all AST nodes that are
annotated with features not required (Step 4). Note, this is
a transformation from one AST to another. The generated
AST is then serialized as source code (Step 5), which finally
can be compiled into a program (Step 6).

Safe Decomposition Rules. Ensuring that every variant is
syntactically correct relies on the mechanism of assigning

3

features to the underlying AST and to generate variants by
AST transformations. With only two simple rules, we can
ensure that every transformation in Step 4 transforms the
annotated AST into another AST that also adheres to the Java
syntax specification. Thus, we can prevent the generation of
code with incorrect syntax in the first place. The rules are:

• Optional-Only Rule: Only AST nodes that are op-
tional in the language syntax specification can be re-
moved. For example, we cannot remove soley a class’
name without invalidating the AST, but we can remove
a method. Incidentally, the AST provided by the Eclipse
Java framework already enforces this rule; it allows to
remove optional elements only and throws exceptions
otherwise.

• Subtree Rule: When an AST node is removed, all its
child nodes must be removed as well. For example,
when method s2 is removed in Figure 2 also both pa-
rameters must be removed; when class C is removed all
content therein must be removed as well. For CIDE that
means, when an AST node is ‘colored’ all subnodes are
‘colored’ with the same feature as well.

In CIDE, these two rules provide a very simple mecha-
nism to syntactic correctness. With them, no transformation
is possible that invalidates the AST. At the same time, they
provide a fine granularity so that even individual statements
or parameters can be extracted, cf. [27]. Nevertheless, we
found some situations in Java in which the rules are too re-
strictive and more flexibility is needed. For those situations
we manually implemented specific exceptions.

Due to the Subtree Rule, we were not able to color code
fragments that wrap around other code independently. A
typical example is a try-catch statement, which belongs to
an exception handling feature as shown in Figure 4. The
try-catch statement wraps around a code block. When devel-
opers want to remove the exception handling (underlined)
for some variants, then the Subtree Rule automatically re-
moves all child elements including the wrapped code block
(cf. AST in Figure 4). The same effect occurs with several
other statements like try-finally, synchronize, if, for, while,
and do, which wrap other statements and which we there-
fore call wrapping elements. To offer the flexibility needed
to color wrapping elements, we allow an exception to the
Subtree Rule in Java: When wrapping elements are colored,
specific child elements can be uncolored despite the Subtree
Rule. When removing the colored wrapper in a variant, it is
replaced with the uncolored wrapped element.

4 Generalizing CIDE

CIDE was created for Java and builds directly on Eclipse’s
Java framework, which made implementing the two rules

1 c l a s s C {
2 void m(){
3 try {
4 s1();
5 } catch(Exception e) {
6 handleException(e);
7 }
8 }
9 }

... ...

...

TypeDecl
name=C

MethodDecl
name=m

Block

Block

MethodCall
name=s1

TryStmt

CatchBlock
exception=e

Block

MethodCall
name=han...

Figure 4. Wrapper as Exception to the Subtree
Rule.

simple. Nonetheless, SPLs usually consist of code and non-
code artifacts written in different languages, e.g., source
code, build scripts, documentation, models, or grammar
files. The principle of uniformity states that all these artifacts
should be handled uniformly by the product line technol-
ogy [5, 3]. Therefore, we want to offer CIDE for various
languages, i.e., for decomposing different code and non-
code artifacts, but still guarantee syntactic correctness. In
this section, we generalize CIDE beyond Java.

We proceed in two steps. First, we analyze the underlying
principles behind the rules and exceptions we found for
Java to derive a general model. Second, we describe our
approach to automate the process of extending CIDE for
new languages with minimal human effort.

4.1 Generalizing Safe Decomposition Rules

To decompose a software artifact with CIDE, we need
an underlying structure, so that transformations to remove
colored fragments are unable to produce syntax errors. This
structure can be an AST as common in programming lan-
guages, a document object model as in XML, or another
structure that represents the artifact. We develop a gener-
alized model for CIDE (gCIDE model) that represents the
necessary structure. The full gCIDE model is depicted in
Figure 5.

Basics. The Subtree Rule can easily be applied to arbitrary
tree structures: whenever a tree node is colored, its children
are colored as well. In the gCIDE model, this tree structure
is represented by structural elements that can have other
structural elements as children and have exactly one parent
each (except for the root that represents the whole artifact).
Because CIDE should later map a user selection to this
underlying structure it is also necessary to store the location
of the structural element inside the artifact (e.g., by offset

4

+children

+parent

0..*

0..1

WrappingElement

+wrappee

+wrapper

1

0..1

StructuralElement

+type
+mappingToArtifact

+isOptional()
+remove()

ParentChildRelation

+isOptional
+childType

Figure 5. gCIDE Model

and length, modeled as mappingToArtifact).
To transfer the Optional-Only Rule from Java to other

artifacts, there must be a description, which elements in the
tree structure are optional. In Java this is the Java Language
Specification [16], in XML the allowed structure is specified
by a W3C recommendation [6], for other artifact structures
such specification either exists or must be formulated to
determine which (removal) transformations on the structure
are safe. In the gCIDE model, we can determine for every
element whether it is optional, by the isOptional attribute of
the relationship to its parent.

Wrappers and Types. For the wrapper exception to the
Subtree Rule, i.e., that we could remove a try-catch statement
without removing the statements it surrounds, we introduce
the notion of a wrapping element in our model. A wrapping
element, when removed, is replaced by a specific child el-
ement it wraps around. In the gCIDE model, a wrapping
element is a special case of a structural element and specifies
exactly one child element it wraps around (implications of al-
lowing to wrap around multiple child elements are discussed
below).

However, wrapping elements cannot be placed at arbitrary
places or wrap around arbitrary elements. For example, in
Java a class cannot wrap around a method so that the class
is replaced by this method if removed, because this would
invalidate the AST. In the original implementation of CIDE,
we manually defined specific exceptions for selected Java
elements and implemented them individually. For a general
solution in gCIDE, we use a type-based mechanism instead.
Each structural element belongs to a type, and there is a
subtype relation on those types. For example, structural
elements representing try-catch or method invocations
share the same supertype Statement. This means that in all
places in which a structural element of the type Statement
is allowed (e.g., inside a block), all structural elements
with subtypes of statements can be used. In the gCIDE
model, types are introduced for structural elements, and
each parent-child relationship specifies the accepted type.

With types for structural elements, we can easily define
when wrappers are allowed. A structural element can wrap
around another element, if the wrapped element is compati-

ble with the type expected for the wrapper. Specifically, the
wrapper itself is a subtype of some expected childType from
its parent element (e.g., an try-catch-statement in a block is
a subtype from the expected statement), and the wrapped
element must be a subtype of childType as well (e.g., it must
also be a statement, not an expression or catch-block).

Note, it is conceptually also possible to model structural
elements that wrap around multiple elements. Handling such
wrappers is possible under some conditions, but requires a
more complex model and reasoning. Required conditions
are: (1) all wrapped elements must be of the correct type and
(2) it must be allowed to replace the wrapper with multiple
elements. Alternatively, more complex custom transforma-
tions could be specified. To keep the model simple, we allow
wrappers to wrap a single element only.

4.2 Automating Language Plug-in Creation

In the previous sections, we generalized the lessons
learned from Java to an abstract model, in which software
artifacts are represented in a tree structure. With the gCIDE
model we can now generalize CIDE for different artifact
types. For that, we evolved CIDE and removed all Java
specific code and replaced it by an abstract framework fol-
lowing the gCIDE model. Concrete target languages can
now be added as extensions – so called language plug-ins –
which implement this framework, i.e., create the structural
elements for the target language and fill values like types and
isOptional. This way, we can separate the infrastructure that
is common for all languages (user frontend, feature manage-
ment, tree transformation, cf. Figure 3, Step 2 and 4) from
the implementation of specific target languages as plug-ins.
The new architecture of CIDE with a general framework and
several language extensions is depicted in Figure 6.

CIDE

UI

Abstract gCIDE Model Framework

Feature Management

Variant Generator

Java Language Ext.

Parser

Language Rules

Serializer

C# Language Ext.

Parser

Language Rules

Serializer

XML Language Ext.

Parser

Language Rules

Serializer

Figure 6. Language Plug-ins in CIDE – Archi-
tecture

However, the effort to create language plug-ins for CIDE
is high. First, we need a parser for each language that trans-
forms the artifact into the tree structure (cf. Figure 3, Step 1).
Second, we need to implement serialization for each lan-

5

guage, which writes the transformed structure tree back to
an artifact (cf. Figure 3, Step 5). Finally, and most impor-
tantly, we need to define the rules for each specific language,
e.g., we need to define which structural elements are optional
or wrappers, so that transformations always transform valid
trees into new valid trees.

A straightforward way to implement language plug-ins
is to bridge the internal structures of an existing open com-
piler for that language to the gCIDE model. For example,
we could bridge the AST from the Eclipse Java framework
and thus reuse Eclipse’s parser. However, open industrial-
strength compilers that can be reused are not available for a
variety of languages. Furthermore, implementing the bridge
might require considerable effort. Instead, we pursue an
approach, in which we can uniformly generate language
plug-ins for arbitrary languages.

Fortunately, creating language plug-ins (parser gener-
ation, serializer implementation, rule definition) can be
automated to a high degree from the grammar of the target
language, as we will show in the remainder of this section.
Existing parser generators can generate a parser from the
language’s grammar. Some parser generators can also create
a pretty printer that can be used for serialization. Even infor-
mation for the Subtree Rule and the Optional-Only Rule can
be derived from the target language’s grammar, because a
grammar specifies (1) the child-parent relationship between
structural elements and (2) which elements are optional. That
is, we can use the grammar of a target language to generate
a language plug-in, instead of implementing it from scratch.

To generate language plug-ins for CIDE from grammar
specifications, we built our own tools, because common
parser generators (e.g., JavaCC or ANTLR) do not propa-
gate sufficient information from the grammar to the created
tree structure. For example, from the parse tree that JavaCC
or ANTLR generate, we can not determine which elements
are optional. Therefore, we decided to define our own gram-
mars specification language called gCIDE grammar and to
build an own tool called astgen to generate LL(k) parsers,2

serializers, and trees with all information required by the
gCIDE model. (Technically, the gCIDE grammar specifi-
cation language is a meta-grammar. It is a grammar that
specifies how developers can specify and annotate grammars
for a specific target language. For example, we can write a
Java grammar in the gCIDE format. From this Java gram-
mar, astgen generates all required parts for a Java language
plug-in.)

gCIDE Grammar Basics. The gCIDE grammar specifi-
cation language is close to Backus-Naur form. It consists
of production rules with one or more choices each, which
again contain a sequence of elements each. Elements can
either refer to other productions, be tokens or some special

2For parser generation, we internally reuse JavaCC.

annotations for astgen. From a given grammar, elements
are recognized as optional, when written square brackets,
or when they are part of a list (expressed with an asterisk
symbol).

In Figure 7, we illustrate an excerpt from a sample pro-
gramming language. A compilation unit consists of any
number of type declarations. The type declaration consists
of one mandatory identifier, a second optional one, an op-
tional ‘implements’ list, and a class body. The class body
contains any number of fields or methods.

1 CompilationUnit : (TypeDeclaration)* <EOF> ;
2 TypeDeclaration : "class" <ID> ["extends" <ID>]

[ImplementsList] ClassBody ;
3 ClassBody : "{" (Member)* "}" ;
4 Member : Method | Field ;
5 ImplementsList : "implements" <ID> ("," <ID>)* ;

Figure 7. gCIDE grammar example

From a given grammar for a target language, astgen gen-
erates the language plug-in, i.e., a parser that builds a tree
structure for a given artifact in that language, and a ‘pretty
printer’ that serializes it back into a file. The tree structure
generated by the parser not only represents the structure of
the source code, but can also reflect its structural proper-
ties derived from the grammar, i.e., each tree node knows
whether it is optional as described in the gCIDE model. So
in the given example in Figure 7, the type declarations are
optional and can be colored (there can be any number of type
declarations in a compilation unit, Line 1). Inside the type
declaration the first identifier and the class body are manda-
tory and can not be colored, but the second identifier and the
‘implements’ list are optional (Line 2). Also members are
optional and can be colored (Line 3).

Concrete Syntax vs. Abstract Syntax. Generating a tree
structure from a grammar for a target language results in
a Concrete Syntax Tree (CST). The tree contains those ele-
ments that are required for parsing. However, a CST does
not necessarily reflect the abstract syntax of the language,
and mapping the CST to the gCIDE model (instead of the
AST) can result in reduced flexibility.

A typical example how the concrete syntax may reduce
flexibility is the use of lists, as exemplified in Figure 7,
Line 5. The ‘implements’ list is optional inside the type
declaration, but inside the list the first entry is mandatory, due
to special parsing requirements for the separating commas.
Using the CST, the first entry cannot be colored individually,
although all entries are optional elements of a list in the
abstract syntax.

To ensure the full flexibility of the abstract syntax, it is
necessary to transform the CST generated by a standard
parser into an AST. For serialization, the same transforma-

6

tion must be performed backward on the modified AST. To
guarantee syntactic correctness for all variants, both trans-
formations must be performed safely without loss of infor-
mation.

To bridge this gap, we follow the concept of Wile who
used an extended grammar specification language to derive
the abstract syntax from an annotated grammar file [46].
Wile proposes a series of additional constructs in the gram-
mar specification language, so that the abstract syntax and
its relationship to the concrete syntax are directly specified
in the extended grammar file. This way the generated parser
can directly build an AST. Wile further proposes a semi-
automated process to transform an existing grammar describ-
ing a concrete syntax into the extended format. For example,
to solve problems like the ‘implements’ list described above,
he proposes a special ‘list’ construct. In Wile’s notation, the
ImplementsList production is expressed as ‘ImplementsList:
IDENTIFIER ˆ ",";’, in which the ˆ symbol is a special
construct for lists followed by the token that separates list
entries. Using this construct, the parser can interpret iden-
tifiers directly as list and build the AST accordingly. We
adopted this concept and implemented those extensions Wile
proposed in our gCIDE grammar specification language that
are relevant for our case studies. This way, we can generate
a parser that creates structural elements based on the target
language’s abstract syntax from a grammar file. No man-
ual mapping between CST and AST is required, all further
transformations to remove colored fragments can be directly
performed on the AST of the artifact.

Wrappers and Other Exceptions. Wrappers are not auto-
matically recognized from the grammar for a target language,
but a language expert has to decide where wrappers make
sense. Though, our tools could analyze where wrappers are
possible according to the typing rules sketched in Section 4.1,
wrappers should only be used where the additional flexibil-
ity is needed. Otherwise, it would still enforce syntactic
correctness, but be harder to use.3

In the gCIDE grammar specification language, we employ
additional annotations to specify exceptions like wrappers.
Other exceptions, e.g., making a mandatory production op-
tional by providing a default value, or marking an optional
production mandatory, can be defined with further annota-
tions. For the concrete syntax, we defer the interested reader
to the language description at the CIDE web site.

3For example, classes could automatically be interpreted as wrappers
around inner classes in Java. While this is syntactically correct and also
fulfills the typing rules, coloring a whole class except an inner class, usually
does not make any sense. Offering such flexibility is only confusing to the
developer; workarounds as preliminary refactorings are much easier to use.

5 Supported Languages

Using our approach, we generated language plug-ins for
a variety of languages, which all share CIDE’s guarantee
of syntactic correctness. Creating gCIDE grammars was
mostly simple and typically required only few hours each
(including tests), because we could often reuse or adapt ex-
isting grammar specifications. In the following, we list the
languages that are currently supported and briefly discuss
our experiences. We selected these languages for different
reasons, some because they were required for a industrial
project or case study, some to compare languages from dif-
ferent paradigms. All listed languages were generated from
a gCIDE grammar and can be downloaded from the CIDE
web site.

Featherweight Java. A first, very simple language is
Featherweight Java, a core functional subset of the Java
language that mimics the Java module system. The hand-
written grammar file consists only of few production rules,
yet it is sufficient to allow users to color individual methods,
fields or parameters. We found no need for annotations like
wrappers, because of the language’s simplicity.

Java. Next, we reimplemented a language plug-in for Java
1.5, this time not using Eclipse’s Java framework, but gen-
erating parser, serializer, and AST using gCIDE. We used a
grammar from the JavaCC repository as starting point, which
made the creation of an initial version very simple. Further-
more, using gCIDE annotations, we added seven wrappers
that were manually implemented in the original implemen-
tation. Regarding syntactic correctness and flexibility, the
generated version is equivalent to the original CIDE imple-
mentation based on Eclipse’s Java framework.

C. Although parsing C code is a very complex task – for
example the parser often depends on types recognized earlier
during parsing to determine how to parse a code fragment –
creating a gCIDE grammar for C based on an existing gram-
mar in the JavaCC format was straightforward. With this
grammar, we could generate a CIDE language plug-in for C,
in which users can color individual functions, declarations,
statements, or parameters.

Unfortunately, the C parser works only on C code that
has already been preprocessed, i.e., in which ‘#include’
statements were resolved, ‘#ifdef’ statements were removed,
and macros were evaluated. Without preprocessing (or even
just with ignoring preprocessor directives) C code cannot be
parsed. Unfortunately, working on preprocessed code is only
an option for downstream tools, but in CIDE developers work
on unprocessed code that still contains preprocessor direc-
tives. This problem was already faced much earlier, e.g., by
intentional programming [37] or refactoring tools [15] and

7

required complex workarounds. To overcome this problem
in CIDE, we wrote a pseudo-parser, which does not actually
parse the code based on the full language specification, but
recognizes only important constructs like functions, variable
declarations, or statements. For example, statements are rec-
ognized by the following semicolon, functions by the typical
pattern for return type and parameter declarations. Prepro-
cessor directives are recognized as part of the language, as
long as they are used within certain limitations (e.g. ‘#ifdef’
may only encapsulate whole statements or functions). With
this pseudo-parse we are able to use CIDE on C projects.

C#. In contrast to C, C# does not use a preprocessor and
can be parsed completely. We converted an existing ANTLR
grammar for C# into the gCIDE format and added some
annotations for wrappers. In CIDE, C# can be used very sim-
ilar to Java, i.e., users can color classes, methods, statements,
parameters, and so on, safely based on the underlying AST.

Haskell. Next, we created a language plug-in for Haskell,
a functional language that has a very different syntax com-
pared to Java. The language is very complex and fully pars-
ing all expressions and patterns requires a high effort. Fur-
ther, writing a full parser would have required an extensive
transformation from an existing LALR grammar [25] to our
required LL(K) format. Therefore, we again used a pseudo-
parser approach (reusing a pseudo-grammar from a Haskell
plug-in for Eclipse4) that skips over certain complex pro-
ductions of the source code like expressions and pattern and
only parses the main structure.

ECMAScript. Next, we generated a language plug-in for
ECMAScript (better known as JavaScript or JScript), a
dynamically typed, prototype based script language. The
gCIDE grammar was derived from an existing JavaCC gram-
mar. Users can safely color functions, statements, parame-
ters, etc. as described by the language’s grammar.

JavaCC, ANTLR, Bali. Yet, another different group of
artifacts are grammar files in diverse formats. For exam-
ple, in an SPL of Java compilers a feature might extend
the grammar of Java 1.4 with generics. We generated lan-
guage plug-ins for JavaCC, ANTLR, and Bali artifacts, in
which users can color productions or optional parts therein.
Wrappers are used for modifiers like multipliers or square
brackets (i.e., it is possible to color only the square brackets
in the production ‘A: B [C]’ making C mandatory in vari-
ants in which the feature is not included). This allows us to
safely decompose language grammars, which can be part of
a product line.

4http://eclipsefp.sourceforge.net/

XML, HTML, XHTML. Finally, we created language
plug-ins for XML and HTML files. We created a gCIDE
grammar for most parts of XML based on the language spec-
ification published by the W3C [6]; for HTML we used one
of many existing JavaCC grammars. In HTML, this allows
us to color structural elements like headings, paragraphs,
lists and so on safely. In XML, nodes and attributes can be
colored in a way that guarantees that every variant is syntac-
tically correct, i.e., well-formed in the XML terminology.

Guaranteeing that all variants of an XML artifact are valid
based on the given DTD or XML Schema description may re-
quire additional information. Note, DTD is a meta-grammar
itself that can be used for XML documents instead of gCIDE.
We implemented a prototype transformation tool dtdgen, that
converts a DTD into a gCIDE grammar, as a proof of concept.
This way, we generated a parser specifically for XHTML
(version ‘1.0 strict’) and some other specific XML-based
languages. However, in the long-run, we aim at a direct
transformation from a DTD or XML Schema to the gCIDE
model using an off-the-shelf XML parser.

6 Flexibility vs. Safety

During development and testing, we found that two prop-
erties are in conflict: flexibility and safety. By imposing a
structure on a source code artifact, we can guarantee syntac-
tic correctness, but at the same time, we reduce flexibility of
decomposition. For example, compared to a decomposition
using the C/C++ preprocessor that works on token level5,
CIDE allows only to color optional elements. Therefore,
using a preprocessor, it is possible for a method to have two
alternative return types, but in CIDE a return type cannot
be colored independently if it is mandatory by the language
grammar.

Programming languages already define a certain structure
for code artifacts by their language syntax. For example, the
Java syntax defines a top-down structure for Java code (e.g.,
Java files contain classes, which contain methods, which
contain statements). By using ASTs to color programs, we
expose this structure in CIDE and employ it with the Subtree
Rule and the Optional-Only Rule to prevent syntax errors.
Different languages provide a different amount of structure
in their syntax. For example, ECMAScript artifacts only
contain a list of statements or function declarations, grammar
artifacts only contain a list of productions with a simple inner
structure, and XML nodes are nested completely arbitrarily.

This raises two questions. (1) How much structure does
an artifact language need to be usable in CIDE? (2) Is the
structure defined by a language’s syntax a limitation when
adding further language plug-ins for other artifact types in

5To be precise the C/C++ preprocessor works on lines of source code.
However, due to the code layout flexibility in most languages, it can usually
be used as token-based decomposition.

8

the future?
To answer the second question first, consider a

‘README.txt’ file. It is a valid artifact in an SPL, but
will probably not provide any structure, at least none that is
described by a LL(k) grammar. Fortunately, such artifacts,
for which no specific language grammar is specified, can
still be parsed by a dummy grammar that matches any file as
a list of arbitrary optional tokens or even as a list of optional
characters. With such grammar, every character is optional
with respect to the document, i.e., every single character
in this document can be colored independently like with
preprocessors. This shows that a required structure is not a
limitation of our approach, in contrast to other (especially
compositional) approaches that assume a tree structure with
unordered named elements [5, 4, 1, 3]. Even if no structure
is available, as in the ‘README.txt’ file, we can still use
the same tool uniformly to color this file in line with other
artifacts in an SPL.

Nevertheless, structure is beneficial. When using the
dummy grammar, the guarantee of syntactic correctness is
lost, because any artifact adheres to this grammar. This
shows that any structure – although it reduces flexibility – is
beneficial for safety, because the grammar defines the syntax
checks. It restricts the possible parts of the artifact that can
be colored and enforces a ‘reasonable’ decomposition.

In this context, the pseudo-parsing approach presented
for C and Haskell artifacts in Section 5 is an interesting case.
This approach does not use the full structure as provided by
the language grammar (in these particular cases because of
technical limitations caused by the preprocessor in C and
because of the complexity of Haskell). Instead, it uses a
simpler approach that recognizes only certain elements like
functions and statements, but ignores inner fragments like
parameters, or expressions. There are two possibilities to
handle inner fragments that are ignored by the parser. First,
we can regard these fragments as a single mandatory node
each, i.e., there is no substructure inside a statement (alterna-
tive A, used in Haskell). Alternatively, we can parse these
fragments with a dummy grammar as a list of optional tokens
or characters (alternative B, used in C). Pseudo-parsing can
be used to balance between flexibility and safety, as alter-
native A guarantees syntactic correctness at a significantly
reduced flexibility, while alternative B with more flexibil-
ity guarantees syntactic correctness only for the recognized
parts but not for their inner structure.

In Figure 8, we visualize the relative differences in safety
and flexibility of all approaches. For decomposition based on
a concrete syntax tree or an abstract syntax tree, we can guar-
antee syntactic correctness, while the AST provides more
flexibility. Pseudo-parsing approaches in which the internal
structure of recognized elements is opaque (alternative A)
can also guarantee safety, but with a significantly reduced
flexibility. In contrast, a character based or token based

S
af

et
y

Flexibility

CST AST

Pseudo-
parser B

Token-based

Character-based

Pseudo-
parser A

Figure 8. Safety vs. Flexibility

decomposition – as with the dummy grammar or ‘#ifdef’
preprocessors – provides the most flexibility (every single
character or token can be colored) but no safety at all. A
pseudo-parser that uses a dummy grammar for inner ele-
ments (alternative B) lies in the middle, it provides high
flexibility, but reduced safety.

This discussion shows that a structure given by a gram-
mar is not necessary for an artifact to be handled by CIDE.
However, when a reasonable grammar is provided, CIDE
can ensure syntactic correctness and take advantage of the
artifact’s structure to support the developer toward a reason-
able coloring. This ability to use the artifact’s structure (if
available) to ensure syntactic correctness distinguishes CIDE
from naive ‘#ifdef’-like preprocessor approaches.

7 Toward Checking for Language Semantics

In the previous section, we have shown how CIDE guar-
antees that every variant is syntactically correct, independent
of the language. This is helpful to prevent errors when de-
composing legacy applications. Furthermore, this provides a
structural approach to decomposition that does not directly
use the source code representation but an abstraction thereof.
Still, many other kinds of errors are possible. In many lan-
guages syntactic correctness is not sufficient, but artifacts
have additionally to adhere to language semantics (not be be
confused with program semantics) that are not covered by
the syntax and thus cannot be generated from a grammar.

A straightforward example comes from programming
languages like Java, that must not only be parseable, but
also well-typed. While it is syntactically correct to remove a
method from a class even though it is still called from another
method, the generated variant would cause a compile-time
error because Java’s type checks fail. Another example
comes from UML models, in which the syntax guarantees
that every class element has a name and that interfaces do not
have attributes, but errors like dangling associations cannot
be recognized from the grammar.

Language specifications as the Java Language Specifica-
tion [16] or the Haskell 98 Language Report [25] describe
both, the language syntax and the language semantics. Ev-
erything that can be matched by a grammar (in our case an
LL(k) grammar) belongs to the language syntax, all addi-

9

tional constraints like type conditions or other integrity rules
are specified as language semantics. For example, the Java
Language Specification defines ‘It is a compile-time error for
the body of a class to declare as members two methods with
override-equivalent signatures.’ [16, Sec. 8.4], a condition
that cannot be covered by Java’s context-free grammar.6

CIDE, as described so far covers only the language syn-
tax, not language semantics. Ideally, an SPL tool should be
able to verify both in order to avoid errors without compiling
all variants. To make matters worse, as SPLs are typically
implemented with artifacts in multiple languages, it is not
sufficient to check artifacts from a single language, but arti-
facts from different languages may reference each other and
must be consistent. This raises the question of inter-language
semantics and whether it can be checked automatically for all
variants of an SPL [17]. A typical example is a Web service
whose interface is described with an WSDL7 file in XML
format and implemented with a programming language like
Java. In all variants, the Web service implementation should
be consistent with its description.

Language semantics are far more difficult to check than
language syntax. They are often only specified informally
– as in the Java Language Specification – and are typically
implemented in the front-end of a reference compiler. This
makes it very difficult to analyze language semantics for-
mally and guarantee safety for all variants. Especially inter-
language semantics are rarely formalized. Only for some
languages, language semantics are specified with formal
mechanisms that allow to formally proof safety, e.g., lan-
guage semantics in UML models are specified by OCL con-
straints [12] and language semantics for some languages like
Featherweight Java are described with a calculus [20]. How-
ever, for the majority of commonly used artifacts no such
formalization exists. Previous approaches that ensure safety
for all variants therefore used approximations and modeled
only the most important conditions [19, 42] and so did we
in the original Java version of CIDE.

In the following, we discuss what is required to check
language semantics for all variants in CIDE. Again, we start
with our existing approach to check language semantics of
Java, then we generalize it to language semantics of other
artifact languages and to intra-language semantics.

6The difference between language syntax and language semantics can
be blurred for some languages and depends on the implementation. For
example to parse XHTML, we can create a parser that parses only valid
XHTML artifacts (as we did in Section 5). This way, XHTML can be
specified by syntax without additional language semantics. Alternatively,
we can parse XHTML as XML (based on the XML grammar) and check all
structural conditions (e.g., a document must consist of header and body) as
language semantics. Taking this to extremes, it would also be possible to
parse Java using the dummy grammar and model the syntax as language
semantics.

7Web Services Description Language, http://www.w3.org/TR/
wsdl

7.1 Checking Language Semantics for Java

Already early on, we found it very useful to check several
language semantics in Java to ensure a reasonable coloring
and safety for all variants. Actually, these checks were very
useful for code exploration as well, because they alerted
us of incomplete colorings of features. The effort of im-
plementing checks for all possible compiler errors from the
Java Language Specification [16] was too high, therefore we
focused on the – in our experience – most frequent causes of
compiler errors in variants: the inability to resolve methods,
fields, or types and mismatching method signatures caused
by coloring parameters. If we implemented all checks, we
could guarantee that all variants can be compiled without
actually generating them. With the currently implemented
checks we can still detect the most common problems.

We exemplify the mechanics of such checks with the
condition in Java that method invocations must be statically
resolvable [16, Sec. 15.12]. Our current solution (others
might be possible) that guarantees that all variants meet this
condition is straightforward. CIDE resolves all invocations
of methods and determines the according method declara-
tions. For each pair of invocation and declaration, CIDE
checks that the method invocation is colored with the same
colors as the method declaration (or with a superset). For
example, consider that the method declaration is colored
with feature F. If the invocation of this method is not col-
ored, then all variants without feature F result in dangling
method references and, thus, compiler errors. However, if
the method invocation is also colored with feature F (and
possibly additional features) then the invocation only occurs
in variants where the declaration exists as well. If this sim-
ple check succeeds for all pairs of method invocation and
declaration, then all variants are free of compilation errors
caused by unresolvable method invocations.

This approach breaks down an apparently complex check
– ensure that all invocations in all variants can be resolved –
to a simple set comparison of colors on two Java elements.
We used the same mechanics for a number of conditions we
implemented in CIDE from the Java Language Specification:
(1) Every field access must be colored with at least the same
colors as the referenced field declaration. (2) Every access
to a local variable must be colored with at least the same
colors as the referenced local variable declaration. (3) Every
reference to a type (e.g. in a variable declaration or import
declaration) must be colored with at least the same colors as
the type declaration. (4) Every parameter in a method call
must have exactly the same colors as the parameter in the
method declaration.8

8Note, this rule is special, because parameters that are declared but not
used in the call result in an error, in contrast to types or methods that are
declared but not used. Also, only the directly declared colors have to be
equal, colors inherited via the Subtree Rule follow the other conditions
above.

10

The implemented conditions are not complete, but cover
the most common violation of Java’s language semantics. To
fully ensure language semantics in all variants, it is neces-
sary implement all conditions for Java’s language semantics,
including more complex ones like ‘a concrete classes must
implement or inherit all methods from superinterfaces’ [16,
Sec. 8.1.1.1] that have to take into account combinations of
colors for methods, interface declarations, and parameters.
Nevertheless, it is possible to balance flexibility and effort,
e.g., by restricting the flexibility of the language’s gCIDE
model (e.g. not allow to color modifiers or superinterfaces
from the implements clause) so that less checks have to be
implemented.

7.2 Generalizing Language Semantic Checks

After generalizing the tool so that we can language-
independently guarantee syntactic correctness for all vari-
ants, it is natural to ask for language-independent checks
for language semantics. It seems that we cannot offer intra-
language checks for every language. For example, for dy-
namically typed languages like ECMAScript (JavaScript),
method invocations cannot be resolved by static code anal-
ysis, thus language semantics cannot be formalized and at
most be tested based on heuristics. On the other hand, for
grammar specification languages like JavaCC or Bali, it is
surprisingly simple to validate colors: non-terminals refer-
ence other productions and semantics can be checked with
a single simple rule: non-terminals must be colored with at
least the same colors as the production they reference.

We observed in Java and other languages that most con-
ditions are checked by comparing references between two
elements. Thus, we need two components, first a Resolver
that finds references between elements (usually with the help
of a static type system) and second a Color Checker that
defines and checks conditions for color on those references.
Many conditions can be defined by simple set operations on
colors taken from a library of common checks. However,
more complex conditions can be modeled using a more com-
plex logic, rule, or specification languages like propositional
logics [42], OCL [45] or Alloy [21], if necessary.

For future work, we envision to model language seman-
tics in a formal language (similar to language semantics in
models that can be specified formally with OCL) that can be
automatically translated into checks on colors. We will start
with Featherweight Java, for which a formalization in form
of a calculus already exists, and languages like grammars
for which semantics are obvious.

In SPLs that consist of artifacts in different languages,
the challenge arises that references between those languages
should be checked as well. Given a formal model for intra-
language semantics, it will also be possible to define inter-
language semantics on top with the same mechanics. The

only difference is that the Resolver needs to detect references
between language elements from different artifact types (e.g.,
the reference from a WSDL interface specification to a C#
method declaration). If a polylingual type system does not
exist (what is typically the case), we need to implement the
resolver for specific combinations of artifact types individu-
ally. Once references are resolved, checks on colors can be
performed with the same mechanisms as for intra-language
semantics.

8 Case Studies

In the previous sections, we described how we created
a grammar specification language and a tool suite for
generating language plug-ins. All language plug-ins
described in Section 5 are fully implemented and were
tested with many artifacts. To show that CIDE is actually
useful for developing SPLs and to show how important
handling multiple artifact languages is for SPL development,
we additionally conducted a series of case studies. For
that purpose, we revisited some SPLs developed with other
product line technologies earlier and developed some new
projects. All case studies are available on the CIDE web site,
except for the last one that we have to disclose to protect
intellectual properties of our partners.

Berkeley DB and GPL. First, we review two Java case
studies we published in prior work [27]: the 84 000 LOC
embedded database engine Berkeley DB decomposed into
38 features and a small SPL of graph algorithms (Graph Prod-
uct Line, short GPL) with 14 features proposed as benchmark
for SPL technologies. In both case studies, the Java version
of CIDE was applied to color features and has shown ben-
efits in granularity what made the decomposition simpler
and faster. The generalization of CIDE now offers the op-
portunity not only to decompose the Java code, but also the
accompanying documentation. Consequentially, in GPL,
we additionally decomposed the documentation in form of a
single XHTML file, in that its basic mechanisms and all algo-
rithms were described. Overall, we colored 145 of 218 lines
of XHTML code. The colored fragments are typically head-
ings, paragraphs, or rows from a table. When a developer
now creates a variant of GPL, CIDE creates not only the
according Java code but also a documentation that exactly
describes those algorithms and properties that are applicable
in that specific variant. Similarly, we also decomposed the
HTML documentation of Berkeley DB coloring fragments
from 14 of the 56 HTML files of the ‘Getting Started Guide’,
e.g., removing the description of the transaction subsystem
or several background threads for variants in which they are
not included. In Berkeley DB, we also found that checks for
(informal) HTML language semantics would be useful, in
that hyperlinks are checked for dead links in all variants, as

11

we had to remove several links from the table of contents
and other parts of the document and it is easy to miss one.

Large Scale Multi-Representation Decomposition. Sec-
ond, we reimplemented the decomposition of the AHEAD
tool suite with CIDE, which two of the authors did manually
in prior work with the compositional approach [43]. The
AHEAD tool suite is a collection of tools for feature-base
program synthesis which over time has grown to 24 different
tools with over 200 000 lines of Java code. In addition to
code, there are makefiles, regression tests, documentation,
and program specification, “all of which were intimately
intertwined into an integrated whole” [43]. To better manage
the tool suite and to be able to remove or replace tools a
feature-oriented decomposition into 13 features for different
tools was performed. Especially build files and documenta-
tion were decomposed with special XML tools. With CIDE,
we redid the whole refactoring within less than 2 hours9, by
just coloring fragments inside different artifacts.

Customizable SQL Parser. Third, we applied the gen-
eralized version of CIDE to our ongoing work on highly
customizable SQL parsers as part of a project for tailor-
made data management in embedded systems [40, 36]. In
this project, we decomposed the grammar of SQL:2003 to
include only those operators that are needed for a specific
application. For example, if grouping data is not required,
it can be removed from the grammar, the resulting parser,
the query optimizer, and from the list of operations in the
database engine. This is a typical polylingual problem, be-
cause the grammar is written with the ANTLR grammar
specification language but the optimizer and database op-
erations are written in C or Java. A feature like Grouping
crosscuts different artifacts and parts of the database sys-
tem. In the context of this project, we prototypically applied
CIDE to decompose an SQL grammar subset and intend to
also decompose the optimizer and operations that are still to
be developed.

Arithmetic SPL in Haskell. Fourth, we created an SPL
of Haskell programs for arithmetic expression evaluation.
Currently, the SPL contains 4 features: base, variables, no-
variables, and if-then-else. With CIDE, we colored several
declarations that are safely removed for variants. We could
successfully generate and run all of the four variants of the
program. Though this SPL is still small, CIDE’s ability to
adapt to new languages by only specifying a language gram-
mar opened the possibility to confer the SPL concept from
Java or C that are typically used in SPL research to rather
uncommon languages. CIDE with its Haskell language plug-

9Admittedly, we benefited from the fact that no code exploration was
necessary; feature code was apparent from the first decomposition.

in will be at the heart of our future research on functional
software product lines.

Industrial Project in C. Finally, CIDE was used on an
industrial project written in C to decompose the embedded
software of a gas boiler application into features.10 The
software for this embedded system existed in many variants
for different hardware configurations (analog, digital, atmo-
spheric, or bitermic boiler types; 24 KW or 30 KW power
capacity; propane, butane, or solar energy; different inter-
faces). Decomposing the software into an SPL was a natural
endeavor to ease maintainability and manage the increasing
amount of functionality. The general results of decomposing
the software into features will be published in a separate
paper, here we focus only on CIDE’s impact. This project
and the experience with manual decomposition was one of
the key motivations to generalize CIDE for programming
languages beyond Java. After only few minor source code
changes toward a more disciplined usage of preprocessor
directives, we were able to parse the source code with our
pseudo parser and color code fragments reflecting the differ-
ent hardware configurations. Using CIDE, it is now possible
to safely generate different variants of the water boiler sys-
tem, that can be compiled and used.

9 Related Work

Language-independent SPL Tools. The principle of uni-
formity that claims that all artifacts during SPL development
should be handled uniformly by the SPL technology was first
introduced by Batory at al. [5]. Traditional SPL technologies
like preprocessors as in C/C++, Frames/XVCL [23], or tools
like Gears [30] provide this uniformity as they annotate code
at the level of text files. They do not require any additional
structure and thus can be used on arbitrary artifacts. At the
same time, correctness must be tested by generating and
compiling individual variants.

The AHEAD tool suite implements the principle of uni-
formity by providing tools for several artifact languages, e.g.,
Java, XML, and grammars. Although, the tool suite provides
an extensible infrastructure to create tools for new languages,
extensions were usually ad-hoc and implemented additional
tools from scratch. Recent research by Apel at al. focused
on this problem by analyzing the underlying principles of
feature composition and generalizing it in a formal frame-
work [3, 4]. They build a tool called FSTComposer that can
handle several artifacts uniformly, for which only the parser
has to be written for each language while the composition is
done by a general framework (we are currently synchroniz-
ing work to reuse gCIDE grammars also for FSTComposer).

10The interested reader may contact the third author Salvador Trujillo for
details about this case study.

12

Nevertheless, the AHEAD tool suite and the FSTComposer
are both tools that use the compositional approach and
conceptually can not handle the fine granularity often
needed when decomposing legacy applications [27].

Related Tools. The concept of using the representation
layer to show additional information without obfuscating
the source code as in CIDE was already used by several de-
velopment environments. Recent examples are presentation
extension [13], AspectBrowser [18] and Spotlight [10].

IDEs for visual programming and intentional program-
ming abstract from traditional code representations and store
code in internal tree formats close to structural elements
in the gCIDE model. The idea of storing program code in
databases to allow flexible queries to create different views
on the code goes back to Linton [31]. Modern examples
are effective views [22] and the Domain Workbench [37, 38],
that store code in internal tree structures.

Further, there are several tools to annotate source code
with features. However, such work usually does not aim at
SPLs or code transformation but at code exploration or at
making concerns or features explicit. For example, Robillard
and Murphy suggested concern graphs where developers can
collect methods belonging to a feature in an external win-
dow [35]. Work on visual separation of concerns extends
this and provides aggregated views on the source code by
features [7], however, they do not ensure that this view is
consistent or syntactically correct. Furthermore, the Aspect-
Browser [18] uses pattern expressions or queries to find code
fragments belonging to a certain feature. It works on charac-
ter level and supports arbitrary artifacts, but does not ensure
correctness or consistency.

Closest to our work is fmp2rsm, a tool for annotating and
generating variants of UML models by Czarnecki and An-
tkiewicz [11]. In this tool, UML elements of a superimposed
model are annotated with ‘presence conditions’, similar to
colors in CIDE. Variants are created by removing elements
whose presence condition does not evaluate to true for a
given feature selection. An interesting concept which we
might also consider for future versions of CIDE are meta-
expressions that allow alternative values for a model attribute.
An important distinction between fmp2rsm and CIDE is, that
in fmp2rsm arbitrary propositional formulas are attached as
presence conditions, whereas CIDE only allows conjunc-
tions of features, i.e., a set of colors. This restriction allows a
much simpler user interface in that colors are simply blended
(expressions like ‘feature A or feature B and not feature C’
cannot be displayed with the color metaphor). Whether
this simplification significantly restricts expressiveness is an
open research question.

Checking Language Semantics. An influential approach
proposed by Huang at al. ensures correct language semantics

for Java code generated by their tool SafeGen [19]. Their
tool is used for meta-programming in general, not as SPL
technology. Using first-order logics and theorem provers,
they check whether generators written in their confined meta-
language (with selection and iteration operators) produce
syntactically correct and well-typed output for arbitrary Java
input. A selection of language semantics are formulated
using first-order logics and checked for a given generator,
but checks do not cover all language semantics and are only
available for Java. This approach was starting point for
checking language semantics in the following two SPL tools.

Based on their SPL tool fmp2rsm, Czarnecki and Piet-
roszek proposed an approach to check language semantics
of their models against OCL constraints for all variants [12].
Language semantics for models can be specified formally us-
ing OCL constraints. Their tool now transforms the presence
conditions and OCL constraints into a propositional formula
that can be solved by an off-the-shelf SAT solver. By re-
stricting their approach to models specified in MOF, they can
ensure that all variants adhere to the model syntax and the
complete model semantics (all variants are well-formed in
the MOF terminology). Again the decision to use arbitrary
propositional formulas increases flexibility but also complex-
ity for evaluation of their approach, compared to simple set
operations in CIDE.

A different approach to ensure language semantics in all
variants of an SPL called safe composition was proposed
by Thaker at al. [42]. They analyze language semantics of
Jak, a Java dialect for feature-oriented programming. In
Jak, features are implemented in distinct feature modules
and composed to generate a variant. Syntactic correctness of
all variants can be ensured by the composition mechanism,
i.e., when all feature modules are syntactically correct the
composition tool can only create variants with correct syntax.
To check language semantics, they identify six constraints
that need to be satisfied, including method invocations as
discussed above. They analyze these constraints for all
features individually, and reason about the composition of all
variants using propositional formulas and a SAT solver. This
approach is used only for Jak and XML and there is no proof
of completeness that all language semantics are covered.

Both SPL tools check correctness against a feature model
that may restrict certain variants with domain constraints. In
CIDE, we take a more general approach, in that all variants
are checked, even those that cannot be generated because
of domain constraints. Instead, domain constraints must be
reflected by colors in the code. While this does not add any
security or expressiveness, it simplifies the reasoning and
reduces most semantic checks to set comparisons. Further,
we claim that colored programs are simpler to understand, as
the colors already reflect domain constraints and no external
model is needed for verification. A detailed comparison of
both mechanisms is outside the scope of this paper, but will

13

be part of our formal semantic checks in future work.

Software Merging. A similar problem as in CIDE for
safely removing code fragments for variants occurs when
merging artifacts, e.g., in version control systems. While
simple tools like diff operate language-independently on
simple text files, more advanced tools include language syn-
tax or even language semantics from selected languages to
improve accuracy, i.e., to detect more faults before merg-
ing two artifacts. Some tools even balance between safety
and performance using a pseudo-parsing approach. In [33],
Mens gives a comprehensive overview on software merging
and the concepts used.

10 Conclusion

Software product lines (SPL) usually consist of artifacts
written in different languages. To handle different artifacts
uniformly (‘principle of uniformity’), current SPL technolo-
gies either use an approach that is so general that it works
for arbitrary artifacts, but can easily introduce subtle errors
for some variants; or they provide specialized tools for a
low number of languages. Syntactic errors that only occur
in certain variants of the SPL are a serious problem, as the
exploding number of variants makes a manual testing by
generating and compiling each variant unfeasible.

We have shown how we can extend CIDE, a tool for de-
composing systems into features, to arbitrary languages by
abstracting from the concrete textual representation in a file.
CIDE uses the abstract structure of the language and can
therefore ensure that all created variants are syntactically
correct. We have shown, how we can generalize the con-
cepts from Java to a general model for arbitrary languages,
so that CIDE can be used uniformly for SPL development.
In a further step, we even automated the process of creat-
ing language plug-ins from annotated grammar files, so that
extending CIDE (including its guarantee for syntacical cor-
rectness) for new languages requires minimal human effort.

While CIDE only checks for syntactic correctness, further
errors may arise in some variants due to violations to the
language semantics. Moreover, even inconsistency between
artifacts written in different languages (intra-language
semantics) can occur. While due to missing formalization,
checking language semantics is more difficult, we have pre-
sented first results and a perspective for further work on an
automated language-independent check of (inter-)language
semantics in CIDE.

We have shown CIDE’s applicability by generating plug-
ins for a series of code and non-code languages including
Java, C, C#, Haskell, ECMAScript, JavaCC, and XML. We
have further shown CIDE’s usability for concrete problems
in several different case studies that consist of artifacts writ-
ten in many different languages.

Acknowledgments. We thank Peter Kim for fruitful com-
ments and discussions on earlier drafts of this paper. We
further thank Marko Rosenmüller and Norbert Siegmund
for their help and patience when developing and testing the
C grammar, Armin Größlinger for providing programs for
the Haskell case study, and Sagar Sunkle for releasing the
decomposed SQL grammars.

References

[1] F. I. Anfurrutia, O. Diaz, and S. Trujillo. On the Refine-
ment of XML. In Proc. International Conference Web
Engineering (ICWE), Como, Italy, July 2007. Springer.

[2] Sven Apel, Thomas Leich, and Gunter Saake. As-
pectual Feature Modules. In IEEE Transactions on
Software Engineering, 2008. Online first.

[3] Sven Apel and Christian Lengauer. Superimposition: A
Language-Independent Approach to Software Compo-
sition. In ETAPS International Symposium on Software
Composition, 2008.

[4] Sven Apel, Christian Lengauer, Don Batory, Bernhard
Möller, and Christian Kästner. An Algebra for Feature-
Oriented Software Development. Technical Report
MIP-0706, Department of Informatics and Mathemat-
ics, University of Passau, 2007.

[5] Don Batory, Jacob Neal Sarvela, and Axel
Rauschmayer. Scaling Step-Wise Refinement. IEEE
Transactions on Software Engineering, 30(6):355–371,
2004.

[6] Tim Bray et al. Extensible Markup Language (XML)
1.1 (Second Edition). W3C Recommendation, W3C,
August 2006.

[7] Mark Chu-Carroll, James Wright, and Annie Ying. Vi-
sual Separation of Concerns through Multidimensional
Program Storage. In Proceedings of the International
Conference Aspect-Oriented Software Development
(AOSD), pages 188–197, New York, NY, USA, 2003.
ACM Press.

[8] Paul Clements and Charles Krueger. Point/Counter-
point: Being Proactive Pays Off/Eliminating the Adop-
tion Barrier. IEEE Software, 19(4):28–31, 2002.

[9] Paul Clements and Linda Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2001.

[10] David Coppit, Robert Painter, and Meghan Revelle.
Spotlight: A Prototype Tool for Software Plans. In Pro-
ceedings of the International Conference on Software

14

Engineering (ICSE), pages 754–757, Washington, DC,
USA, 2007. IEEE Computer Society.

[11] Krzysztof Czarnecki and Michal Antkiewicz. Mapping
Features to Models: A Template Approach Based on
Superimposed Variants. In Proceedings of the Interna-
tional Conference Generative Programming and Com-
ponent Engineering (GPCE), pages 422–437, 2005.

[12] Krzysztof Czarnecki and Krzysztof Pietroszek. Ver-
ifying Feature-based Model Templates against well-
formedness OCL Constraints. In Proceedings of the In-
ternational Conference Generative Programming and
Component Engineering (GPCE), pages 211–220, New
York, NY, USA, 2006. ACM Press.

[13] Andrew Eisenberg and Gregor Kiczales. Expressive
Programs through Presentation Extension. In Proceed-
ings of the International Conference Aspect-Oriented
Software Development (AOSD), pages 73–84, New
York, NY, USA, 2007. ACM Press.

[14] Martin Fowler. Refactoring. Improving the Design of
Existing Code. Addison-Wesley, 1999.

[15] Alejandra Garrido. Program Refactoring in the Pres-
ence of Preprocessor Directives. PhD thesis, University
of Illinois at Urbana-Champaign, 2005.

[16] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
JavaTMLanguage Specification. The JavaTMSeries.
Addison-Wesley Professional, 3 edition, 2005.

[17] Mark Grechanik, Don Batory, and Dewayne Perry. De-
sign of Large-Scale Polylingual Systems. In Proceed-
ings of the International Conference on Software En-
gineering (ICSE), pages 357–366, Washington, DC,
USA, 2004. IEEE Computer Society.

[18] William Griswold, Jimmy Yuan, and Yoshikiyo Kato.
Exploiting the Map Metaphor in a Tool for Software
Evolution. In Proceedings of the International Confer-
ence on Software Engineering (ICSE), pages 265–274.
IEEE Computer Society, 2001.

[19] Shan Huang, David Zook, and Yannis Smaragdakis.
Statically Safe Program Generation with SafeGen. In
Robert Glück and Michael R. Lowry, editors, Proceed-
ings of the International Conference Generative Pro-
gramming and Component Engineering (GPCE), vol-
ume 3676 of Lecture Notes in Computer Science, pages
309–326. Springer, 2005.

[20] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler.
Featherweight Java: a minimal core calculus for Java
and GJ. ACM Transactions on Programming Lan-
guages and Systems, 23(3):396–450, 2001.

[21] Daniel Jackson. Software Abstractions: Logic, Lan-
guage, and Analysis. The MIT Press, Cambridge, MA,
USA, 2006.

[22] Doug Janzen and Kris De Volder. Programming with
Crosscutting Effective Views. In Proceedings of the
European Conference Object-Oriented Programming
(ECOOP), volume 3086 of Lecture Notes in Computer
Science, pages 195–218. Springer, 2004.

[23] Stan Jarzabek, Paul Bassett, Hongyu Zhang, and Weis-
han Zhang. XVCL: XML-based Variant Configuration
Language. In Proceedings of the International Confer-
ence on Software Engineering (ICSE), page 810, Los
Alamitos, CA, USA, 2003. IEEE Computer Society.

[24] Ralph E. Johnson and Brian Foote. Designing Reusable
Classes. Journal of Object-Oriented Programming,
1(2):22–35, 1988.

[25] Simon P. Jones, editor. Haskell 98 Language and Li-
braries – The Revised Report. Cambridge University
Press, 2003.

[26] Christian Kästner, Sven Apel, and Don Batory. A
Case Study Implementing Features Using AspectJ. In
Proceedings of the International Software Product Line
Conference (SPLC), 2007.

[27] Christian Kästner, Sven Apel, and Martin Kuhlemann.
Granularity in Software Product Lines. In Proceedings
of the International Conference on Software Engineer-
ing (ICSE), May 2008. to appear.

[28] Christian Kästner, Martin Kuhlemann, and Don Batory.
Automating Feature-Oriented Refactoring of Legacy
Applications. In Poster presented at Europ. Conference
Object-Oriented Programming, July 2007.

[29] Gregor Kiczales et al. Aspect-Oriented Program-
ming. In Mehmet Aksit and Satoshi Matsuoka, ed-
itors, Proceedings of the European Conference Object-
Oriented Programming (ECOOP), volume 1241 of
Lecture Notes in Computer Science, pages 220–242.
Springer, July 1997.

[30] Charles Krueger. Easing the Transition to Software
Mass Customization. In Proceedings of the Interna-
tional Workshop on Software Product-Family Eng.,
pages 282–293, London, UK, 2002. Springer-Verlag.

[31] Mark Linton. Implementing relational views of pro-
grams. SIGPLAN Not., 19(5):132–140, 1984.

[32] Jia Liu, Don Batory, and Christian Lengauer. Feature
Oriented Refactoring of Legacy Applications. In Pro-
ceedings of the International Conference on Software
Engineering (ICSE), pages 112–121, 2006.

15

[33] Tom Mens. A State-of-the-Art Survey on Software
Merging. IEEE Transactions on Software Engineering,
28(5):449–462, 2002.

[34] Klaus Pohl, Günter Böckle, and Frank J. van der Lin-
den. Software Product Line Engineering: Foundations,
Principles and Techniques. Springer Verlag, Secaucus,
NJ, USA, 2005.

[35] Martin Robillard and Gail Murphy. Concern Graphs:
Finding and Describing Concerns Using Structural Pro-
gram Dependencies. In Proceedings of the Interna-
tional Conference on Software Engineering (ICSE),
pages 406–416, New York, NY, USA, 2002. ACM
Press.

[36] Marko Rosenmüller, Norbert Siegmund, Horst
Schirmeier, Julio Sincero, Sven Apel, Thomas Le-
ich, Olaf Spinczyk, and Gunter Saake. FAME-DBMS:
Talor-made Data Management Solutions for Embedded
Systems. In EDBT Workshop on Software Engineering
for Tailor-made Data Management, pages 1–6, 2008.

[37] Charles Simonyi. The Death of Computer Languages,
the Birth of Intentional Programming. In NATO Science
Committee Conference, 1995.

[38] Charles Simonyi, Magnus Christerson, and Shane Clif-
ford. Intentional software. In Proceedings of the Con-
ference Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), pages 451–464,
New York, NY, USA, 2006. ACM Press.

[39] Henry Spencer and Geoff Collyer. #ifdef Considered
Harmful or Portability Experience With C News. In
USENIX, pages 185–198, Summer 1992.

[40] Sagar Sunkle, Martin Kuhlemann, Norbert Siegmund,
Marko Rosenmüller, and Gunter Saake. Generating
Highly Customizable SQL Parsers. In EDBT Work-
shop on Software Engineering for Tailor-made Data
Management, March 2008.

[41] Clemens Szyperski. Component Software: Be-
yond Object-Oriented Programming. Addison-Wesley,
2002.

[42] Sahil Thaker, Don Batory, David Kitchin, and William
Cook. Safe Composition of Product Lines. In Pro-
ceedings of the International Conference Generative
Programming and Component Engineering (GPCE),
pages 95–104, New York, NY, USA, 2007. ACM.

[43] Salvador Trujillo, Don Batory, and Oscar Diaz. Fea-
ture refactoring a multi-representation program into
a product line. In Proceedings of the International
Conference Generative Programming and Component

Engineering (GPCE), pages 191–200, New York, NY,
USA, 2006. ACM.

[44] Engin Uzuncaova, Daniel Garcia, Sarfraz Khurshid,
and Don Batory. A Specification-Based Approach to
Testing Software Product Lines. In Proceedings of the
European Software Engineering Conference/Founda-
tions of Software Engineering, pages 525–528, New
York, NY, USA, 2007. ACM.

[45] Jos Warmer and Anneke Kleppe. The Object Constraint
Language: Precise Modeling With UML. Addison
Wesley, Reading, MA, USA, October 1998.

[46] David Wile. Abstract Syntax from Concrete Syntax. In
Proceedings of the International Conference on Soft-
ware Engineering (ICSE), pages 472–480, New York,
NY, USA, 1997. ACM.

16

