
FeatureC++: Feature-Oriented and
Aspect-Oriented Programming in C++

Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake

Department of Computer Science
University of Magdeburg, Germany

email: {apel,leich,rosenmue,saake}@iti.cs.uni-magdeburg.de

Abstract. This paper presents FeatureC++, a novel programming
language which supports Feature-Oriented Programming (FOP) for C++.
Besides well-known concepts of FOP languages, FeatureC++ supports
several novel FOP language features, in particular multiple inheritance
and templates for Generic Programming. Furthermore, FeatureC++
solves, as some other FOP languages, the extensibility problem, the
constructor problem, and the problem of hidden overloaded methods.
A first contribution of this article is to introduce and discuss the lan-
guage concepts of FeatureC++. A second contribution is the analysis
of current drawbacks of FOP languages. Specifically, we outline four key
problems and present three approaches to solve them: Wildcard-Based
Mixins, Aspectual Mixin Layers, and Aspectual Mixins that adopt con-
cepts of Aspect-Oriented Programming (AOP) in different ways. These
approaches are not exclusive to FeatureC++ and can be easily applied
to other FOP languages. Furthermore, we introduce our implemented
prototype that already supports most of the presented FeatureC++
language concepts, including Aspectual Mixin Layers. Finally, we present
a case study to clarify the benefits of FeatureC++ and its AOP ex-
tensions.

1 Introduction

Feature-Oriented Programming (FOP) [4] is an appropriate technique to cope
with the problems of the software crisis [10]. This is documented by successful
case studies, e.g. [3, 1, 5, 6]. Current research on modern programming paradigms
such as FOP focuses on Java. AHEAD and the AHEAD Tool Suite (ATS)1 are
prominent examples [4]. Although used in a large fraction of applications like op-
erating systems, realtime and embedded systems, or databases and middleware
C/C++ is rarely considered. Current solutions for C++ utilize templates [27],
simple language extensions [25], or C preprocessor directives. These approaches
are complicated, hard to understand, and not applicable to larger software sys-
tems. This motivated, this article presents FeatureC++2 a language proposal
for FOP in C++. Besides basic concepts, known from other FOP languages,
1 http://www.cs.utexas.edu/users/schwartz/Hello.html
2 http://wwwiti.cs.uni-magdeburg.de/iti db/forschung/fop/featurec/

FeatureC++ exploits useful concepts of C++, e.g. multiple inheritance or
templates, to name a few.

Further contributions of this article are our investigations in the symbiosis of
FOP and Aspect-Oriented Programming (AOP) [14]. In this regard, our consid-
erations are not restricted to C++. FeatureC++ acts only as a representative
FOP language. At first, we discuss some well-known problems of FOP, in par-
ticular the lack of crosscutting modularity [22]. We argue that some features of
AOP can help to solve these problems. Mainly the ability to implement dynamic
crosscutting and the avoidance of method shadowing, as well as the growing
acceptance, motivates us to choose AOP. We see several promising approaches
for this symbiosis (as we will explain): Aspectual Mixins, Aspectual Mixin Lay-
ers, and Wildcard-based Refinements. We discuss the pros and cons of these
approaches and the consequences for the programmer.

A further benefit of FeatureC++ is the solution of different problems of
object-oriented languages, namely (1) the constructor problem [26, 12], which
occurs when minimal extensions have to be unnecessarily initialized, (2) the
extensibility problem [13], which is caused by the mixture of class extensions
and variations, and (3) hidden overloaded methods in C++, which are hindering
for step-wise refinements (as we will explain).

Based on these considerations, we present our prototypical implementation
of FeatureC++, which is based on the PUMA code transformation system3.
We explain how to utilize PUMA to implement FeatureC++ and give an
overview on already implemented language features. To implement AOP ex-
tensions, we utilize AspectC++ [29], an aspect-oriented language extension to
C++. We discuss Aspectual Mixin Layers as our preliminary AOP extension
and give an overview of Aspectual Mixins and Wildcard-based refinements as
well as consequential implementation issues.

Finally, we introduce a case study and explain how to use FeatureC++.
Moreover, we discuss its advantages compared to common FOP approaches by
example.

The remaining article is structured as follows: Section 2 gives necessary back-
ground information. In Section 3, we introduce the language elements of Fea-
tureC++, and in Section 4 AOP-specific extensions. Afterwards, Section 5
presents our first prototypical implementation and discusses open questions. In
Section 6, we discuss a case study. Finally, Section 7 reviews related work and
Section 8 concludes the paper.

2 Background

Pioneer work on software modularity was made by Dijkstra [11] and Parnas [24].
Both have proposed the principle of separation of concerns that suggests to
separate each concern of a software system in a separate modular unit. According
to this papers this leads to maintainable, comprehensible software that can easily
be reused, configured, and extended.
3 PUMA: http://ivs.cs.uni-magdeburg.de/˜puma/

AOP was introduced by Kiczales et al. [14]. The aim of AOP is to separate
crosscutting concerns. Common object-oriented methods fail in this context [14,
9]. The idea behind AOP is to implement so called orthogonal features as as-
pects. This prevents the known phenomena of code tangling and scattering. The
core features are implemented as components, as with common design and im-
plementation methods. Using join point specifications, an aspect weaver brings
aspects and components together.

FOP studies feature modularity in program families [4]. The idea of FOP is to
build software by composing features. Features are basic building blocks, which
satisfy intuitive user-formulated requirements on the software system. Features
refine other features incrementally. This step-wise refinement leads to a lay-
ered stack of features. Mixin Layers are one appropriate technique to implement
features [27]. The basic idea is that features are often implemented by a collab-
oration of class fragments. A Mixin Layer is a static component encapsulating
fragments of several different classes (Mixins) so that all fragments are com-
posed consistently. Mixin Layers are an approved implementation technique for
component-based layered designs. Advantages are a high degree of modularity
and an easy composition [27]. AHEAD is an architectural model for FOP and
a basis for large-scale compositional programming [4]. The AHEAD Tool Suite
(ATS), including the Jak language, provides a tool chain for AHEAD based on
Java.4

3 FeatureC++ Language Overview

FeatureC++ is a C++ language extension to support FOP. The following
paragraphs give an overview of the most important language concepts.

3.1 Introduction to Basic Concepts

class A class B class C

layer 1

layer 2

layer 3

Fig. 1. Example stack of Mixin
Layers.

To implement FeatureC++, we have
adopted the basic concepts of the ATS: Fea-
tures are implemented by Mixin Layers. A
Mixin Layer consists of a set of collaborating
Mixins (which implement class fragments).
Figure 1 depicts a stack of three Mixin Lay-
ers (1 − 3) in top down order. The Mixin
Layers crosscut multiple classes (A−C). The
rounded boxes represent the Mixins. Mixins
that belong to and constitute together a com-
plete class are called refinement chain. Refinement chains are connected by ver-
tical lines. Mixins that start a refinement chain are called constants, all others
are called refinements. A Mixin A that is refined by Mixin B is called parent
Mixin or parent class of Mixin B. Consequently, Mixin B is the child class or

4 http://www.cs.utexas.edu/users/schwartz/Hello.html

child Mixin of A. Similarly, we call Mixin Layers that are refined parent layers
and the refining layers child layers. In FeatureC++ Mixin Layers are repre-
sented by directories of the file system. Therefore, they have no programmatic
representation. Mixins are represented by included source files. An equation file
specifies which features are required for a configuration. Using the feature names
the directory search path is browsed to find the corresponding directories (Mixin
Layers). Those Mixins found inside the directories are assigned to be members
of the enclosing Mixin Layers.

3.2 Syntax of Basic Language Features

To reuse approved language concepts and to increase the users acceptance, Fea-
tureC++ adopts the syntax from the ATS intern Jak language [4]. The fol-
lowing paragraphs introduce the most important language concepts:

Constants and Refinements. Each constants and refinement is implemented
as a Mixin class inside exactly one source file (.fcc-file). Constants form the root
of refinement chains (see Fig. 2, Line 1). Refinements refine constants as well as

1 class Buffer {
2 char *buf;
3 void put(char *s) {}
4 };
5 refines class Buffer {
6 int len;
7 int getLength () {}
8 void put(char *c) {
9 i f (strlen(c) + len < MAX_LEN)

10 super::put(c); }
11 };

Fig. 2. Constants and refinements.

1 class Buffer {};
2
3 // two buffer variations
4 class FileBuffer : Buffer {};
5 class SocketBuffer : Buffer {};
6
7 // buffer extension : sync . support
8 refines class Buffer { Lock lock; };

Fig. 3. Deriving variations vs. exten-
sions.

other refinements. They are declared by the refines-keyword (Line 5). Usually,
they introduce new attributes (Line 6) and methods (Line 7).

Overriding Methods. Refinements can override methods of their parent classes
(see Fig. 2, Line 8). To access the overridden method the super -keyword is used
(Line 10). Super refers to the type of the parent Mixin. It has a similar syntax
to the Java super -keyword, and has similar meaning as the proceed -keyword of
AspectJ and AspectC++.

3.3 Advanced Language Features

Solving the Extensibility Problem. FeatureC++ solves the extensibility
problem [13]: implementation added to a class by creating a new subclass leaves
the class’ existing subclasses outdated. It is caused by the divergence of variation
and extension. Imagine an abstract buffer class with several subclasses, e.g., File-
Buffer, SocketBuffer. These classes are buffer variations. If one wants to extend

(by subclassing) the buffer class using common C++, e.g., by synchronization
support, the buffer variations (the other subclasses) are not affected.

FeatureC++ solves the extensibility problem as follows: extensions are ex-
pressed as refinements whereas variations are derived using common inheritance.
The variations FileBuffer and SocketBuffer, depicted in Figure 3, inherit from
the most specialized form of Buffer (in our example the synchronized buffer)
regardless of their position and the position of the extension in the refinement
chain. This facilitates the easy localized extension of (abstract) classes and the
attended automatic extension of all variations.

Constructor Propagation. FeatureC++ solves the constructor problem [26,
12]: in common object-oriented languages, e.g., Java and C++, constructors are
not inherited automatically and have to be redefined for each subclass. The idea
of FOP is to refine exiting classes by many minimal extensions. In almost all
cases these extensions do not need explicit new initializations. FeatureC++
solves the constructor problem by propagating all constructors of parent classes
to their subclasses. That means, that all defined constructors of a refinement
chain are available in the resulting generated class.

3.4 C++-Specific Language Features

In the considerations so far, we have introduced features that are adopted from
Jak. The following language features are novel to FOP and exploit C++ capa-
bilities:

Multiple Inheritance. Multiple inheritance is a powerful concept of object-
oriented languages. Figure 4 depicts a buffer refinement that adds synchroniza-
tion and logging support using multiple inheritance. The corresponding function-
ality is implemented by inheriting from Semaphore and Logging and overriding
the buffer functions.

Class and Method Templates. Although, FeatureC++ provides Mixin
Layers not all generic problem solutions can be expressed sufficiently. Conse-
quently, FeatureC++ supports class and method templates. Figure 5 depicts
a buffer refinement, that uses a template parameter to determine the storage
data type at instantiation time.

Overloaded Method Propagation. In contrast to Java, standard C++ does
not allow to access overloaded methods of a base class. The code snippet de-
picted in Figure 6 would produce an error: The put method of Buffer is hidden
from external access. In case of object-oriented programming, this is not a big
problem, but using FOP this becomes more serious. As mentioned, the key idea
of FOP is to successively refine programs by minimal extensions. Following this
paradigm, it is often the case that methods are overloaded. Using C++, the
programmer has to redefine and delegate calls to overloaded methods explicitly,

1 refines Buffer : public
2 Semaphore , Logger {};

Fig. 4. Refining a buffer with
synchronization and logging
support.

1 refines template <class T> class Buffer {
2 void push(T &) {}
3 T& pop() {}
4 };

Fig. 5. Declaring a refinement as template.

1 class Buffer { void put(int i) {} };
2
3 class StringBuffer : public Buffer {
4 void put(char *string) {} };
5
6 int main() {
7 StringBuffer buf;
8 buf.put (4711);
9 }

Fig. 6. Accessing overloaded methods from extern is pro-
hibited in C++.

or alternatively to qualify the overloaded method with the using keyword. Fea-
tureC++ overcomes this tension by propagating all overloaded methods to the
refining layers respectively.5

Further Language Features. C++ supports a lot of language features which
are not available in Java. Currently, we support refinements of destructors and
structs. Furthermore, we redefine the keyword this to additionally provide access
to the type of the enclosing Mixin. this::Buffer refers to the type of the current
position in the refinement chain, instead of the type of the composed class.

Grammar Overview. Table 1 summarizes the grammar of FeatureC++.
We understand the rules as extension to the C++ grammar rules.

rules description

layer <layer name> declares the name of the enclosing Mixin Layer

refines <class declaration> refines constants or refinements

super:: refers to the type of the parent Mixin

super::<method name> invokes a method of the parent class

super::<attribute name> accesses an attribute of the parent class

this::<class name> refers to the class type of the current layer

Table 1. FeatureC++ grammar overview.

5 We discuss to introduce a keyword (propagate) to enable and disable automatic
propagation of inherited overloaded methods.

4 Aspect-Oriented Extensions

FOP has several well-known problems in crosscutting modularity [22]. In this
contribution we focus on the problems presented in the following section and
discuss the potential benefits of AOP.

4.1 Problems of FOP

No Support for Dynamic Crosscutting: FOP does not support the modu-
lar implementation of dynamic crosscuts. A Mixin Layer is a static crosscut
that refines multiple implementation units. It is applied at instantiation time
and is independent of the control flow at runtime. Feature binding specifica-
tions such as ”bind feature A to all calls to method m that are in the control
flow of method c and only if expression e is true” cannot be expressed. In-
stead, using the cflow and if pointcuts, AOP allows to bind aspects in such
a way.

Hierarchy-Conform Refinements: Using FOP, feature refinements depend
on the structure of their parent features. Usually, a feature refines a set of
classes, adds, and overrides methods. Each affected class, method, or at-
tribute must be refined explicitly. In fact, the programmer is forced to con-
struct his features similar to the existing features. This becomes problematic
if new features are implemented at a different abstraction level. We clarify
this by an example (see Sec. 6). As basic feature we consider a stock informa-
tion broker. This feature should be refined by a pricing feature. Whereas the
broker is expressed in terms of stock information, requests, brokers, clients,
and database connections, the pricing feature is expressed using the intuitive
producer-consumer-pattern. FOP is not able to change the abstraction level
accordingly [22]. Instead, AOP is able to implement non-hierarchy-conform
refinements by using wildcards in pointcut expressions.

Excessive Method Shadowing: The problem of excessive method shadowing
occurs when a feature crosscuts a large fraction of existing implementation
units. For instance, if a feature wants to add multi-threading support, it has
to override lots of methods to add synchronization code. Mostly this code
redundant, e.g. setting lock variables. AOP deals with this problem by using
wildcards in pointcut expressions to specify a set of target methods (join
points).

Interface Extensions: The problem of interface extension frequently occurs
in incremental designs. Often a programmer adds only a delta to an existing
feature by overriding existing methods. Some of such extensions demand
for an extended interface of the overridden methods. For instance, a client-
server application that allows to send messages between client and server
shall be refined by a session protocol. Intuitively, a programmer refines the
client’ send method to implement the session protocol. In some situations,
the programmer has to pass a session id to the send method. This leads to an
extended interface of the overriding methods. Indeed, using some workaround

this problem can be solved. But AOP with its pointcut mechanism is much
more elegant.

4.2 Combining FOP and AOP Concepts

In the following, we present our investigations in solving the above discussed
problems and present three approaches that adopt AOP language concepts.

1 refines class Buffer% {};
2
3 refines class Buffer {
4 void put %(...) {} };

Fig. 7. Two Wildcard-Based Mixins.

Wildcard-Based Refinements. Our
first idea, to prevent a program-
mer from excessive methods shad-
owing and hierarchy-conform refine-
ments were Wildcard-Based Refine-
ments. The key idea is to refine a whole
set of parent Mixins instead of refining
one Mixin by another one only. Such
sets are specified by wildcards. Figure 7 shows two Mixins that use wildcards to
specify the Mixins and Methods they refine. The unspecified sub-strings are de-
noted by ’%’. The first Mixin refines all classes that start with ”Buffer” (Line 1).
The second refines all methods of Buffer that start with ”put” (Line 3). The
meaning of the first type of refinement is straightforward: The term Buffer%
has the same effect as one creates a set of new refinements for each found Mixin
that matches the pattern (Buffer%).

Using wildcards in method refinements yields some difficulties. If a program-
mer uses only wildcards to match methods, with a fixed signature, e.g. void
put%(char *c), the refining method can access these arguments and call the par-
ent methods by super. In case of an unspecified argument list, e.g. void put%(...),
the refining method does not know the arguments of the parent methods. In this
case a reflective API can help. Lohmann et al. show how to preserve static type
checking in reflectively accessing arguments [17].

Wildcard-based Mixins are similar to static introductions of AspectJ and
AspectC++. However, they can be seamlessly integrated into Mixin Layers and
support the FOP paradigm.

Aspectual Mixin Layers. The key idea behind Aspectual Mixin Layers is to
embed aspects into Mixin Layers. Each Mixin Layer contains a set of Mixins
and a set of aspects. Doing so, Mixins implement static and hierarchy-conform
crosscutting, whereas aspects express dynamic and non-hierarchy-conform cross-
cutting. In other words, Mixins refine other Mixins and depend, therefore, on
the structure of the parent layer. These refinements follow the static structure of
the parent features. Aspects refine a set of parent Mixins by intercepting method
calls and executions as well as attribute accesses. Therefore, aspects are able to
implement dynamic crosscutting and non-hierarchy-conform refinements.

Figure 8 shows a stack of Mixin Layers that implements some buffer function-
ality, in particular, a basic buffer with iterator, a separated allocator, synchro-
nization, and logging support. Whereas the first three features are implemented

Buffer Iterator Allocator Lock

Allocator

Buffer Iterator

LogConsole LogAspect

Buffer

Log

Sync

Base

Alloc

Fig. 8. Implementing a logging fea-
ture using Aspectual Mixin Layers.

Buffer Iterator Allocator Lock

Allocator

Buffer Iterator

LogConsole

LogConsole

LogAspect

LogAspect

Buffer

ExtLog

Log

Sync

Base

Alloc

Fig. 9. Refining an Aspectual Mixin
Layer.

as common Mixin Layers, the Logging feature is implemented as an Aspectual
Mixin Layer. The rationale behind this, is that the logging aspect captures a
whole set of methods that will be refined (dashed arrows). This refinement is
not hierarchy-conform and depends on the runtime control flow (dynamic cross-
cutting). Moreover, the use of wildcard expressions prevents the programmer of
excessive method shadowing. Without, Aspectual Mixin Layers the programmer
has to override all target methods explicitly.

A further highlight of Aspectual Mixin Layers is that, aspects can refine other
aspects by using the refines keyword. To access the methods and attributes of
the parent aspect, the refining aspect uses the super -keyword. Figure 9 shows
an Aspectual Mixin Layer that refines the logging aspect by additional join
points to enhance the set of refined methods. Beside this, the logging console
(implemented as a Mixin) is refined by additional functionality, e.g. a different
or extended output format.

Aspects can not only refine the methods of parent aspects, but also of point-
cuts. This allows to easily reuse and extend of existing join point specifications
(as in the logging example).

To express aspects in Aspectual Mixin Layers we adopt the syntax of As-
pectC++. Figure 10 depicts an aspect refinement that extends a logging feature,
including a logging aspect. It overrides a parent method in order to adjust the
output format (Line 2) and refines a parent pointcut to extend the set of target
join points (Line 3). Both is done using the super -keyword.

1 refines aspect LogAspect {
2 void print () { changeFormat (); super:: print (); }
3 pointcut log() = call("% Buffer ::put (...)") || super::log();
4 };

Fig. 10. Aspect embedded into a Mixin Layer.

Aspectual Mixins. The idea of Aspectual Mixins is to apply AOP language
concepts directly to Mixins. In this approach, Mixins refine other Mixins as with
common FeatureC++ but also define pointcuts and advices (see Fig. 11). In
other words Aspectual Mixin are similar to Aspectual Mixin Layers but integrate

pointcuts and advices directly into its Mixin definition. In the following, we
discuss some important differences:

1 refines class Buffer {
2 int length () {}
3 pointcut log() = call("% Buffer ::%(...)");
4 };

Fig. 11. Combining Mixins and AOP elements.

The subset of the Mixin, which implement AOP elements, is called aspectual
subset of the overall Mixin. This combination reveals some interesting issues:
Using Aspectual Mixins the instantiation of aspects is triggered by the overall
Mixin instances. Regarding the above presented example, the buffer Mixin and
its aspectual part are instantiated as many times as the buffer. This corresponds
to the perObject qualifier of AspectJ. However, in many cases only one aspect in-
stance is needed. To overcome this problem, we think of introducing a perObject
and perClass qualifier to distinguish these cases. This, however, introduces a sec-
ond problem: If an aspect, part of an Aspectual Mixin, uses non-static members
of the overall Mixin it depends on the Mixin instance. In this case, it is forbidden
to use the perClass qualifier. FeatureC++ must guarantee that class-bound
Aspectual Mixins, especially their aspectual subset, only access static members
of the overall Mixin instance. In case of instance-bound Aspectual Mixins this is
not necessary.

4.3 Discussion

All three approaches provide solutions for some problems of FOP. Whereas
Wildcard-Based Mixins only solve the problem of hierarchy-conform refinements,
method shadowing, and interface extensions (due to reflective access), the Aspec-
tual Mixin and Aspectual Mixin Layer can solve all stated problems. However,
the Aspectual Mixin approach yields some problems regarding the instantiation.
Moreover, it is currently not clear if the mixture of aspectual and Mixin subsets
leads to deeper problems. At the current state, Aspectual Mixin Layers are the
only implemented variant (see Sec.5).

A further highlight of all three AOP extensions is a specific bounding mech-
anisms that supports a better incremental design. Originally it was proposed by
Lopez-Herrejon and Batory [19]. They argue that with regard to program family
evolution, features should only affect features of former development stages. Cur-
rent AOP languages, e.g. AspectJ and AspectC++, do not follow this principle.
This decreases aspect reuse and complicates incremental design. In contrast to
common AOP languages, all discussed extensions follow this principle. See Sec-
tion 5 for a detailed discussion of this bounding mechanism used in Aspectual
Mixin Layers.

Finally, we want to emphasize that all three approaches are not specific to
FeatureC++. All concepts can be applied to Jak/AHEAD and AspectJ, as
well as similar languages.

5 Prototype Implementation

.fcc.fcc.fcc

.cc.cc.cc

.o.o.o
Binaries

PUMA

C++
Compiler

AspectC++
Preprocessor

FeatureC++
Preprocessor

Sources
FeatureC++

AC++ / C++ Sources
Transformed

Fig. 12. Overview of FeatureC++ implementation.

Extending C++ to support FOP a modified syntax is needed. Since the
difference of C++ and FeatureC++ is relatively small, it is appropriate to
utilize a source-to-source transformation. FeatureC++ is implemented as a
C++ preprocessor and uses PUMA for code transformation. The input Fea-
tureC++ code is transformed into native C++ code in case of mixins and
into AspectC++ code in case of Aspectual Mixin Layers. Figure 12 depicts the
overall architecture. This section introduces PUMA and how PUMA is used to
implement FeatureC++.

5.1 PUMA

PUMA (PURE Manipulator) is a library that provides functions for scanning
and parsing C++ code [28]. Based on the resulting abstract syntax tree (AST)
one can analyze and manipulate the code structure in a high-level way. The modi-
fied AST can be saved to disk as header and source files. Currently, PUMA is used
to implement AspectC++, an aspect-oriented language extension of C++ [29].

5.2 Using PUMA to Extend C++

To support FOP in C++, we have to extend the syntax of C++. At first, we
have modified the scanner to introduce new keywords, e.g. refines, super, etc.
Furthermore, we have extended the grammar of C++ by creating a new gram-
mar file and generating a parser using Lemon6. Doing so, PUMA is enabled
to parse FeatureC++ sources and build a FeatureC++ AST. The set of
source files is specified by an input equation file7. It contains the names of the
features as well as their desired arrangement. The order of the features is im-
portant to infer the right arrangement of the refinement chains. To transform

6 http://www.hwaci.com/sw/lemon/lemon.html
7 The term ”equation file” is adopted from AHEAD. It defines ordered feature collec-

tions as algebraic expressions.

FeatureC++ sources into C++ sources the AST is restructured. A propri-
etary transformation unit, which is the core of FeatureC++, analyzes the
FeatureC++ AST, looks for FeatureC++-specific keywords, and substi-
tutes them by C++-specific counter parts. Note that these transformations are
not trivial because the FeatureC++ keywords cannot be mapped to C++
keywords one-to-one. In fact, the transformation often depends on global knowl-
edge of the FeatureC++ code structure and affects a lot of code positions, e.g.
to introduce includes or forward declarations. After the transformation step the
restructured AST is saved to disk as headers and source files. As with Jak [4],
it is possible to transform each Mixin of a refinement chain to a separate C++
class or to merge all Mixins into one composed class. Whereas the first approach
supports debugging and maintainability, the latter generates small and fast code.
In every case, the resulting native C++ code can be compiled by every standard
conform C++ compiler. In case of AOP extensions, the aspect code is trans-
formed and passed to the AspectC++ compiler, which generates C++ code as
well (see Sec. 5.3).

Example. To further clarify the transformation process, we explain it by our
buffer example (see Fig. 13). Scanning this code snippet the FeatureC++
compiler detects the tokens depicted in Figure 14.

1 class Buffer {};
2 refines class Buffer
3 : Semaphore {};

Fig. 13. Basic and Syn-
chronization feature.

1 Layer Base: "class", "Buffer", "{", "}", ";"
2 Layer Sync: "refines", "class", "Buffer", ":",
3 "Semaphore", "{", "}", ";"

Fig. 14. Token lists of the Base and Sync features.

Out of the scanned token lists and the FeatureC++ grammar specification
FeatureC++ creates two ASTs, each for a layer. Figure 15 shows the AST of
the buffer base and the corresponding token list. Since the base buffer class
includes no FeatureC++-specific language features the AST is C++ conform.
That does not mean that it will not be transformed. At least the name will

Tokens

AST

Buffer { }/* ... */ /* ... */class

Token "class"

ClassDefSpec BaseSpecList

SimpleName

Token "Buffer"

Token "{"

ClassDef

Token "}"MembList

Fig. 15. AST of a simple Buffer class (Base feature).

be changed (Buffer → Buffer Base). This is necessary because all member of a
refinement chain have the same name. In C++ this leads to an error. Therefore,
we change the names depending on their enclosing layers: Mixin →Mixin Layer.
Figure 16 depicts the AST of the synchronization feature (Sync). One can see

that the AST contains FeatureC++ specific nodes, e.g. node RefinesDef and
token refines. In the transformation step the ASTs are restructured as follows:

Tokens

AST

Buffer { }/* ... */ /* ... */class

Token "class"

BaseSpecList

SimpleName

Token "Buffer"

Token "{" Token "}"MembList

Token "refines"

RefinesDef

refines

ClassDefSpec

Fig. 16. AST of a Buffer refinement (Sync feature).

The restructuring starts from the base layer and follows the order of the layer
stack. In the AST of the base layer only the name is substituted (Buffer →
Buffer Base). Additionally, in the AST of a refinement the refines keyword is
substituted by an inheritance declaration (refines Buffer → class Buffer Sync :
public Buffer Base). Obviously, the knowledge of the base layers is necessary to
substitute the class names. In case of multiple inheritance the other base classes
are applied to the resulting list of parent classes (BaseSpecList). Figure 17
depicts the transformed C++ conform AST of the Sync-refinement. One can see

Tokens

AST

Token "{"

SimpleName

Token "Buffer_Sync"

class

Token "class"

ClassDefSpec

Buffer_Sync : public Buffer_Base { }/* ... */

Token "}"MembList

SimpleNameToken "public"Token ":"

BaseSpecList

ClassDef

Token "Buffer_Base"

Fig. 17. Transformed AST of a Buffer refinement (Sync).

that the resulting token list follows the C++ standard.
After this transformation step the ASTs are written to C++ source files. All

generated classes are embedded into a namespace. The namespace gets the name
of the configuration, specified by the file name of the input equation file, e.g.
BufferConf.equation creates the namespace BufferConf. The use of namespaces
allows to use different configurations out of the same layer repository, e.g., Buffer-
Conf1::Buffer, BufferConf2::Buffer, etc.

5.3 Some Implementation Issues

In the following, we discuss some special issues of the FeatureC++ implemen-
tation.

Extensibility Problem. FeatureC++ solves the extensibility problem as fol-
lows: extensions are expressed as refinements and variations using inheritance.
The implementation is straight forward: Names of declared types are trans-
formed, by substituting them with a combination of type name and layer name,

but instantiations of types remain unchanged. Recall the buffer example depicted
in Figure 3. Figure 18 depicts the transformed C++ code.8 One can see that

1 class Buffer_Base {};
2 class FileBuffer : Buffer {};
3 class SocketBuffer : Buffer {};
4 class Buffer : public Buffer_Base {};

Fig. 18. Transformed C++ code of buffer
variations and extensions.

1 Buffer :: Buffer(char *buf) :
2 Buffer_Base(buf) {};
3 void Buffer ::put(int i) {
4 Buffer_Base ::put(i); }

Fig. 19. Refinement with gener-
ated put method.

the variants of the buffer inherit not from the buffer basis but from the most
specialized buffer (the extended buffer).

Method and Constructor Propagation. Implementing method and con-
structor propagation is relatively trivial. FeatureC++ scans all Mixins (their
ASTs) for constructors and overloaded methods. All found constructors and all
overloaded methods are applied to the corresponding child mixins. This is done
by the transformation of the corresponding ASTs. The generated constructors
and methods call the counterparts of the parent classes. Figure 19 shows the
generated code of a buffer refinement. The method put is generated automati-
cally.

Aspectual Mixin Layers. To implement Aspectual Mixin Layers we utilize
AspectC++ [29]. The key feature of Aspectual Mixin Layers is to define as-
pects inside a Mixin Layer. Mainly, these aspects are handled by AspectC++.
AspectC++ gets the aspects in form of source files as input and transforms
the already generated C++ code (generated out of the common Mixin) using
the aspect specifications accordingly. However, before aspects are passed to As-
pectC++ some modifications take place:
1. names of aspects are substituted (similar to Mixins)
2. class names with explicit namespace identifier are perceived as external

classes, e.g. std::string is not substituted
3. refines- and super -keywords are substituted
4. pointcut expressions are transformed, to match only the classes of the un-

derlying (parent) layers and the current layer
(1) The names are substituted to indicate that the aspects belong to Mixin
Layers and to avoid name conflicts. (2) Class names with explicit namespace
identifiers are interpreted as external types. Therefore no name substitution
is needed. (3) All occurrences of refines and super are translated similar to
common Mixins. In case of refined pointcuts the super -keyword is substituted
by the refined parent pointcut.9 (4) To avoid the problem of poincuts that refer
to features of future development stages [19] aspects only affect classes of the

8 Note the depicted classes have to be ordered before compiling (class Buffer have to
declared at the second position).

9 Note in common AspectC++ child pointcuts shadow parent pointcuts.

parent layers. To achieve this bounding mechanism the user declared pointcuts
must be restructured: Type names inside pointcuts are translated to match only
the types of the current and the parent layers. Each pointcut which contains a
type name is translated into a set of new pointcuts that refer to all type names
of the parent classes. Imagine the synchronization aspect, depicted in Figure 20,
is part of a Mixin Layer Sync that has two parent layers (Base, Log) and several
child layers. FeatureC++ transforms the aspect and the pointcut as depicted
in Figure 21.

1 aspect SyncAspect {
2 pointcut sync() :
3 call("% Buffer ::add (...)");
4 }

Fig. 20. A simple pointcut ex-
pression.

1 aspect SyncAspect_Sync {
2 pointcut sync() :
3 call("% Buffer_Sync ::add (...)")
4 || call("% Buffer_Log ::add (...)")
5 || call("% Buffer_Base ::add (...);
6 }

Fig. 21. Transformed pointcut.

6 A Case Study

This section presents a case study to clarify the use of FeatureC++. In par-
ticular, it gives insight in how to implement Aspectual Mixin Layers. We choose
the stock information broker example, adopted from [22], in order to point to
the benefits of Aspectual Mixin Layers compared to common FOP approaches.
In particular, we show how FeatureC++ overcomes the problems discussed in
Section 4.

Stock Information Broker. A stock information broker provides information
about the stock market. The central abstraction is the StockInformationBroker
(SIB) that allows to lookup for information of a set of stocks (see Fig. 22).
A Client can pass a StockInfoRequest (SIR) to the SIB by calling the method
collectInfo. The SIR contains the names of all requested stocks. Using the SIR,
the SIB queries the DBBroker in order to retrieve the requested information.
Then, the SIB returns a StockInfo (SI) object, which contains the stock quotes,
to the client.

StockInformationBroker
collectInfo(...)

DBBroker
getStock()

StockInfoRequest
getStocks()

StockInfo
getQuote()
addQuote()

Client
run(...)

<<uses>>

<<creates>>

<<creates>>

<<uses>>

Fig. 22. Stock Information Broker.

All classes are implemented as classes (constants) and are encapsulated by a
Mixin Layer (see Fig. 23). In other words, this Mixin Layer implements a basic
stock information broker feature (BasicSIB).

1 class StockInformationBroker {
2 DBBroker m_db;
3 public:
4 StockInfo &collectInfo(StockInfoRequest &req) {
5 string *stocks = req.getStocks ();
6 StockInfo *info = new StockInfo ();
7 for (unsigned int i = 0; i < req.num (); i++)
8 info ->addQuote(stocks[i], m_db.get(stocks[i]));
9 return *info; }

10 };
11
12 class Client {
13 StockInformationBroker &m_broker;
14 public:
15 void run(string *stocks , unsigned int num) {
16 StockInfo &info = m_broker.collectInfo(StockInfoRequest(stocks , num));
17 ... }
18 };

Fig. 23. The basic stock information broker (BasicSIB).

Pricing Feature as Mixin Layer. Now, we want to add a Pricing feature that
charges the clients account depending on the received stock quotes. Figure 24
depicts this feature implemented using common FOP concepts. Client is refined
by an account management (Lines 16-23), SIR is refined by a price calculation
(Lines 2-5), and SIB charges the clients account when passing information to
the client (Lines 10-12).

There are several problems to this approach: (1) The Pricing features is
expressed in terms of the structure of the BasicSIB feature. This problem is
caused because FOP can only express hierarchy-conform refinements. It would
be better to describe the Pricing feature using abstractions as product and
customer. (2) The interface of collectInfo was extended. Therefore, the Client
must override the method run in order to pass a reference of itself to the SIB.
This is an inelegant workaround and increases the complexity. (3) The charging
procedure of the clients cannot be altered depending on the runtime control
flow. Moreover, it is assigned to the SIB which is clearly not responsible for
this function. (4) An hypothetical accounting functionality that traces and logs
the transfers (not depicted) suffers from excessive method shadowing because all
affected methods, e.g. collectInfo, price, balance, etc., have to be shadowed.

Pricing Feature as Aspectual Mixin Layer. Figure 25 depicts the pricing
feature implemented by an Aspectual Mixin Layer. The key difference is the
Charging aspect. It serves as an observer of calls to the method collectInfo.
Every call to this method is intercepted and the client is charged depending on
its request. This solves the problem of the extended interface because the client
is charged by the aspect instead by the SIB. An alternative is to pass the client’

1 refines class StockInfoRequest {
2 float basicPrice ();
3 float calculateTax ();
4 public:
5 float price ();
6 };
7
8 refines class StockInformationBroker {
9 public:

10 StockInfo &collectInfo(Client &c, StockInfoRequest &req) {
11 c.charge(req);
12 return super:: collectInfo(req); }
13 };
14
15 refines class Client {
16 float m_balance;
17 public:
18 float balance ();
19 void charge(StockInfoRequest &req);
20 void run(string *stocks , unsigned int num) {
21 StockInfo &info = super:: m_broker.collectInfo (*this ,
22 StockInfoRequest(stocks , num));
23 ... }
24 };

Fig. 24. The pricing feature using FOP (Pricing).

reference to the extended collectInfo method (not depicted). In both cases, the
Client does not need to override the run method.

A further advantage is that the charging of client’ accounts can be made
dependent to the control flow (using the cflow pointcut). This makes it possible
to implement the charging function variable. In this context, the method shad-
owing is prevented by using wildcard expressions in pointcuts, e.g., for capturing
calls to all methods which are relevant for price transfer (accounting feature for
tracing and logging transfers). Finally, our example shows that using Aspectual
Mixin Layers we were able to refine only these classes that play the roles of
product (SIR) and customer (Client).

Summary. Although the stock information broker example is very simple, it re-
veals the benefits of FeatureC++ and Aspectual Mixin Layers. FeatureC++
has all advantages of common FOP approaches. Furthermore, it is able to handle
dynamic crosscutting, interface extensions, non-hierarchy-conform refinements,
and excessive method shadowing. Table 2 summarizes these advantages.

7 Related Work

Work in several areas is related to this contribution: programming support for
FOP, solutions for specific problems of object-oriented languages, AOP-related
techniques, as well as the combination of AOP and FOP.

Programming support for FOP. One appropriate way to implement fea-
tures of program families in a modular way are Mixin Layers [27]. Mixin Layers
can be implemented using C++ templates [27], P++ [25], Jak [4], and Java
Layers [7]. The Jiazzi component model [21] and the Delegation Layers [23] are

1 aspect Charging {
2 pointcut collect(Client &c, StockInfoRequest &req) =
3 call("% StockInformationBroker :: collectInfo(StockInfoRequest &)")
4 && args(req) && that(c);
5
6 advice collect(c, req) : after(Client &c, StockInfoRequest &req) {
7 c.charge(req); }
8 };
9

10 refines class StockInfoRequest {
11 float basicPrice ();
12 float calculateTax ();
13 public:
14 float price ();
15 };
16
17 refines class Client {
18 float m_balance;
19 public:
20 float balance ();
21 void charge(StockInfoRequest &req);
22 };

Fig. 25. The pricing feature using Aspectual Mixin Layers (Pricing).

problem solution example

interface
extensions

method interception, argument passing
by aspects

the pricing aspect passes the
clients reference to the SIB

hierarchy-
conformity

refine only structure relevant Mixins;
other are modified by aspects

refines Client as customer and
SIR as product

dynamic
crosscutting

use specific pointcuts (cflow, etc.) charge clients depending on its
runtime state

method
shadowing

wildcards in pointcut expressions match all methods with price
transfer

Table 2. Advantages of FeatureC++ Aspectual Mixin Layers.

related and can express Mixin Layers. Jiazzi components can be composed as
binaries. Delegation Layers are composable at runtime, but in current it lacks
adequate language support.

Solutions for specific problems of object-oriented designs. The con-
structor problem was first mentioned by Smaragdakis et al. [26]. Java Layers
solve it by automatic constructor propagation from parent to child classes [7].
Similarly, Eisenecker et al. utilize static C++ meta-programming [12].

Several approaches solve the extensibility problem, introduced by Findler et
al. [13]: Java Layers [7], ATS Mixin Layers [4], Jiazzi [21], Delegation Layers [23].

Aspect-Related Techniques. AspectJ [15] and AspectC++ [29] are promi-
nent aspect-oriented language extensions to Java and C++. They focus on fea-
ture modularity using aspects and static weaving. Mezini et al. [22] and Lopez-
Herrejon et al. [18, 19] discuss the drawbacks of current aspect bounding mech-
anisms, in particular, no module boundaries, no feature cohesion, etc. Fea-
tureC++ overcomes most of these tensions.

Hyper/J supports multi-dimensional separation of concerns for Java [30].
This approach to software development is more general than that of Fea-
tureC++ because it addresses the evolution of all software artifacts, including
documentation, test cases, and design, as well as code. Hyper/J focuses on the
adaptation, integration, and on-demand remodularization of Java code. How-
ever, Hyper/J has several similarities to AHEAD [2]. As FeatureC++ can be
embedded into AHEAD, it is an appropriate alternative to Hyper/J.

FOG is a C++ language extension to define one class several times in order
to compose them compile-time [31]. These different definitions can be interpreted
Mixins that implement together one target class.

Combining AOP and FOP. Several approaches aim to combine AOP
and FOP. Mezini et al. show that using AOP as well as FOP standalone lacks
crosscutting modularity [22]. They propose CaesarJ for Java as a combined ap-
proach. Similar to FeatureC++ CaesarJ supports dynamic crosscutting using
pointcuts. In contrast to FeatureC++ CaesarJ focuses on aspect reuse and on-
demand remodularization. Aspectual Collaborations, introduced by Lieberherr et
al. [16] encapsulate aspects into modules with expected and provided interfaces.
The main focus is similar to CaesarJ. Colyer et al. propose the principle of de-
pendency alignment : a set of guidelines for structuring features in modules and
aspects with regard to program families [8]. They distinguish between orthogonal
and weak-orthogonal features/concerns. Loughran et al. support the evolution
of program families with Framed Aspects [20]. They combine the advantages of
frames and AOP in order to serve unanticipated requirements.

8 Conclusion

This paper has presented FeatureC++, a novel language for FOP in C++.
FeatureC++ supports language concepts similar to the most FOP languages.
Moreover, it supports novel concepts, e.g. multiple inheritance and generic pro-
gramming support, known from common object-oriented languages. After a short
description of problems of FOP languages in implementing program families
we have proposed three ways to solve them: Wildcard-Based Mixins, Aspectual
Mixin Layers, and Aspectual Mixins. All these approaches are independent of
FeatureC++. They combine AOP and FOP features to enhance the crosscut-
ting modularity of FeatureC++. In particular, we support pointcuts, advices,
and wildcards. After a discussion of their pros and cons we have presented an
overview of our prototypical implementation. Most of the presented language
concepts are already implemented. Currently, Aspectual Mixin Layers are the
only implemented AOP extension. One can download a preliminary version of
FeatureC++ at our web site10. Using the case study of a stock information
broker we have shown that Aspectual Mixin Layers increase the crosscutting
modularity significantly.

10 http://wwwiti.cs.uni-magdeburg.de/iti db/forschung/fop/featurec/

References

1. D. Batory et al. Creating Reference Architectures: An Example from Avionics. In
Symposium on Software Reusability, 1995.

2. D. Batory, J. Liu, and J.N. Sarvela. Refinements and Multi-Dimensional Separation
of Concerns. ACM SIGSOFT, 2003.

3. D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Soft-
ware Systems with Reusable Components. ACM Transactions on Software Engi-
neering and Methodology, 1(4), 1992.

4. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE Transactions on Software Engineering, 30(6), 2004.

5. D. Batory and J. Thomas. P2: A Lightweight DBMS Generator. Journal of
Intelligent Information Systems, 9(2), 1997.

6. R. Cardone et al. Using Mixins to Build Flexible Widgets. In Proc. of AOSD,
2002.

7. R. Cardone and C. Lin. Comparing Frameworks and Layered Refinement. In Proc.
of ICSE, 2001.

8. A. Colyer, A. Rashid, and G. Blair. On the Separation of Concerns in Program
Families. Technical report, Computing Department, Lancaster University, 2004.

9. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

10. E. W. Dijkstra. The Humble Programmer. CACM, 15(10), 1972.

11. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

12. U. W. Eisenecker, F. Blinn, and K. Czarnecki. A Solution to the Constructor-
Problem of Mixin-Based Programming in C++. In GCSE’2000 Workshop on C++
Template Programming, 2000.

13. R. Findler and M. Flatt. Modular Object-Oriented Programming with Units and
Mixins. In Proc. of the 3rd Int. Conf. on Functional Programming, 1998.

14. G. Kiczales et al. Aspect-Oriented Programming. In Proc. of ECOOP, 1997.

15. R. Laddad. AspectJ in Action – Practical Aspect-Oriented Programming. Manning
Publication Co., 2003.

16. K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual Collaborations: Combining
Modules and Aspects. The Computer Journal (Special issue on AOP), 46(5), 2003.

17. D. Lohmann, G. Blaschke, and O. Spinczyk. Generic Advice: On the Combination
of AOP with Generative Programming in AspectC++. In Proc. of GPCE, 2004.

18. R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for Features in
Advanced Modularization Technologies. In Proc. of ECOOP, 2005.

19. R. E. Lopez-Herrejon and D. Batory. Improving Incremental Development in As-
pectJ by Bounding Quantification. In Software Engineering Properties and Lan-
guages for Aspect Technologies, 2005.

20. N. Loughran et al. Supporting Product Line Evolution with Framed Aspects. In
Workshop on Aspects, Components and Patterns for Infrastructure Software (held
with AOSD), 2004.

21. S. McDirmid and W. Hsieh. Aspect-Oriented Programming in Jiazzi. In Proc. of
AOSD, 2003.

22. M. Mezini and K. Ostermann. Variability Management with Feature-Oriented
Programming and Aspects. ACM SIGSOFT, 2004.

23. K. Ostermann. Dynamically Composable Collaborations with Delegation Layers.
In Proc. of ECOOP, 2002.

24. D. L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE
Transactions On Software Engineering, SE-5(2), 1979.

25. V. Singhal and D. Batory. P++: A Language for Large-Scale Reusable Software
Components. In Workshop on Software Reuse, 1993.

26. Y. Smaragdakis and D. Batory. Mixin-Based Programming in C++. In Proc. of
GCSE, 2000.

27. Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM Transactions
on Software Engineering Methodology, 11(2), 2002.

28. O. Spinczyk. Aspektorientierung und Programmfamilien im Betriebssystembau.
Lecture Notes in Informatics (LNI) – Dissertations, 2003.

29. O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: An Aspect-
Oriented Extension to C++. In Proc. of Conf. on Technology of Object-Oriented
Languages and Systems, 2002.

30. P. Tarr et al. N Degrees of Separation: Multi-Dimensional Separation of Concerns.
In Proc. of ICSE, 1999.

31. E. D. Willink and V. B. Muchnick. An Object-Oriented Preprocessor Fit for C++.
IEEE Proc. on Software, 147(2), 2000.

