
Mixin-Based Aspect Inheritance

Sven Apel, Thomas Leich, and Gunter Saake

Department of Computer Science
University of Magdeburg, Germany

email: {apel,leich,saake}@iti.cs.uni-magdeburg.de

Abstract. Introducing mixin-based inheritance to AOP improves the
capabilities of aspects to implement incremental designs. Since it en-
hances the inheritance mechanism with more flexibility, it is a key tech-
nology to reuse, compose, and evolve aspects in a step-wise manner over
several development stages (step-wise aspect refinement). The introduc-
tion of mixin capabilities to aspects leads to the unification of the aspect’s
structural elements with respect to step-wise refinement, i.e. in a chain
of refining aspects every element (methods, pointcuts, advice) can be
refined by subsequent elements without knowing the exact type of the
enclosing aspect. In this context we introduce anonymous calls to parent
pointcuts as well as named advice, a unification of advice and methods.
Making these extensions to aspects, aspect refinement enables the pro-
grammer to implement higher-order aspects – aspects that modify other
aspects. Furthermore, we show how to tame aspects using a bounded
aspect quantification based on the knowledge of incremental designs. We
contribute an extended AspectJ grammar, its formal semantics, as well
as an implementation approach based on program transformation.

1 Introduction

Aspect-oriented programming (AOP) is a powerful programming paradigm to
implement and evolve complex software in a modular a way [1]. In concert with
classes, aspects localize, separate, and modularize certain kinds of crosscutting
concerns. Without aspects, the implementation of such concerns would be scat-
tered over and tangled with the implementation of other concerns.

This paper aims at several issues that arise from relating AOP and incremen-
tal software development. Incremental software development (a.k.a. step-wise re-
finement) is a fundamental development approach to software engineering [2–5].
The successive adding of new program elements permits to break down complex
software into manageable pieces (modules). These subsequently added elements
are called refinements and are implemented in different stages of the develop-
ment and evolution of the software product. This methodology promotes reuse,
customization, and maintenance and follows directly the prominent principle of
separation of concerns [3].

Several recent studies have revealed that current AOP mechanisms – despite
their advantages – are not well suited to be simply integrated into the methodol-
ogy of incremental software development: Aspects are problematic with respect

apel
Textfeld
Technical Report Nr. 10/2005 of the University of Magdeburg, Germany

to changing and evolving software [6, 7]. Inadvertent side effects of applying as-
pects may result in a difficult to comprehend or even unpredictable behavior [8].
Furthermore, it is well-known that aspects are less reusable in context of in-
cremental designs [7, 9] and they are problematic w.r.t. modular reasoning [10,
11]. In a recent study we explained how aspects are related to program features
and why aspects should be integrated into well known programming techniques,
e.g. collaborations, design patterns, components [12, 13]. In summary, we demon-
strated that aspects and features are not competitive but merely are symbiotic
techniques to structure software at different scales, i.e. aspects modularize cer-
tain kinds of crosscutting concerns whereas features organize collaborations of
classes and aspects at a higher level of abstraction.

In order to integrate aspects into the methodology of incremental software
development, we proposed the notion aspect refinement [14]. Aspect refinement
is a methodology to incrementally evolve aspects in layered architectures using
step-wise refinement. Whereas our former work aims at the architectural integra-
tion of aspects and features in context of feature-oriented program families, this
paper proposes an explicit implementation of these concepts, but with a broader
focus on incremental software development. In order to implement aspect re-
finement we introduce in this paper the notion of mixin-based inheritance [15]
– known from the object-oriented world – to AOP. Common aspect languages
as AspectJ already support a limited form of aspect inheritance. But the novel
notion of mixin-based aspect inheritance allows the programmer to flexibly al-
ter the inheritance relationships between aspects and therewith the refinement
chain that has evolved over several development stages. Mixin-based inheritance
is a central technique to implement aspect refinement. Introducing mixin-based
aspect inheritance provides the required flexibility for composing, reusing, and
evolving aspects that is necessary to implement and handle highly customizable,
incremental designs, i.e. program families. Although we focus in our considera-
tions on extending AspectJ 1, our results are applicable to other AOP languages.

Aspect refinement and mixin-based aspect inheritance are highly related to
other approaches that aim at step-wise refinement and AOP, i.e. the AHEAD
model for large-scale compositional programming [5] and Caesar that supports
multi-abstraction and layered aspect components [16]. We believe that our ap-
proach is fundamental to the integration of AOP and incremental software devel-
opment. In a detailed discussion of related work we show the close relationship,
the differences, as well as the synergetic potential of integrating our ideas into
AHEAD and Caesar.

The notion of aspect refinement and the introduction of mixin-based inheri-
tance unify aspects and classes with respect to incremental designs. This unifi-
cation leads to the opportunity to refine structural elements of aspects similar
to those of classes. Known from classes, a refining aspect can add new fields and
methods, but also new pointcuts and advice. Moreover, an aspect can extend
methods of parent aspects by overriding their methods, adding code, modifying
arguments, and calling the parent method. Specifically, code can be added be-

1 http://eclipse.org/aspectj/

fore, after, and around a parent method. Besides those well-known mechanisms,
we propose also to refine structural elements specific to aspects, particularly
refining pointcuts and advice.

In order to implement the refinement of advice, we propose to unify advice
and methods. This idea is adopted from classpects [17] but has a different focus.
We do not intend to unify classes and aspects in the sense that they can be
uniformly instantiated and invoked. Merely, we introduce the notion of named
advice that unifies invocations of methods and advice invocations inside aspects.
Since named advice are first class entities, programmers can refine them similar
to other structural elements, e.g. methods. Thus, it becomes possible to treat all
aspect’s structural elements equally with respect to refinement.

Having all these extensions to AspectJ, we are able to implement higher-order
aspects: A child aspect may modify or extend a previous aspect by refining its
structural elements. Furthermore, the integration of aspects into the incremen-
tal development style allows for implementing a novel kind of bounded aspect
quantification that reduces unpredictable effects in evolving designs.

In this paper we make the following contributions:
– We review certain shortcomings of aspect techniques to implement incre-

mental designs.
– We present the notion of mixin-based aspect inheritance in order to imple-

ment step-wise aspect refinement.
– We explain how to implement mixin-based inheritance in AspectJ-like lan-

guages as well as corresponding mechanisms for refining aspects, methods,
pointcuts, and named advice.

– We present a bounding mechanism for aspect quantification that exploits
the layer structure of incremental designs.

– We give a formal description of a grammar that extends AspectJ, its formal
semantics, as well as an approach for extending AspectJ based on program
transformation.

2 Aspect Refinement

This section briefly discusses problems of aspects when integrated into incremen-
tal designs. Afterwards, we describe the notion of aspect refinement and how it
addresses these problems.

2.1 Problems of Aspects in Incremental Software Development

Aspects have numerous strengths with regard to localization, separation, and
modularization of crosscutting concerns. However, at this point we want to dis-
cuss the weaknesses of current AOP languages in seamlessly integrating aspects
into incremental designs. Our considerations extend several recent studies on
this field [6–8, 13, 12, 14].

Aspect inheritance. In most AOP languages, aspects look like classes. The
have similar structural elements but add also some new ones, i.e. pointcuts and

advice. Interesting for this article is that aspects may inherit from other aspects
(and classes). Inheritance is known as a concept for reusing and non-invasively
refining parent classes (and aspects) [18]. In the OOP community an extension
to common inheritance was proposed in order to increase the compositional flexi-
bility, called mixin-based inheritance [15]. In contrast to delegation and dynamic
binding, common inheritance dictates a fixed refinement hierarchy. Mixin-based
inheritance overcomes this tension by moving the selection of the parent to com-
position time. This increases reusability in different contexts, allows for incre-
mental refinement, and improves customizability. Unfortunately, current AOP
languages do not support mixin composition of aspects.

Constrained aspect extension. Using common aspect inheritance in As-
pectJ an aspect has to be declared as abstract to be able to be refined. This
means that adding a child aspect requires the programmer to modify the parent
aspect. This and similar requirements2 cause a fundamental problem of AspectJ-
like languages with regard to incremental software development. Implementing
an aspect in a particular development stage forces the programmer to decide
whether the aspect would be refined in a later stage. Unfortunately, this cannot
always be anticipated by the programmer. Thus, the programmer is in a seri-
ous dilemma. Declaring the aspect as abstract makes it necessary to add later
at least one conrete child aspect. But this may not happen and hence the as-
pect does not work. If the programmer decides to declare an aspect as concrete
(without modifier) he prevents the later refinement of this aspect. In our ap-
proach of mixin-based aspect inheritance we address this problem by permitting
refinements of concrete aspects.

Unpredictable behavior. Aspects provide a powerful mechanism for specify-
ing and determining sets of join points which the aspects bind to. Unfortunately,
this does not fit to the idea of step-wise refinement and incremental designs.
These approaches to software development structure software in different lay-
ers that build up on one another. Layers that represent development stages are
restricted to affect only those layers of previous development stages [4]. Unfortu-
nately, aspects do not care about this natural order. Often aspects inadvertently
affect features of later development stages. This circumstance is directly respon-
sible for unpredictable effects that occur when new classes are added to the
architecture and previous aspects interfere with these new elements. The key
problem is that programmers cannot anticipate such interactions. This is not a
matter of bad design but directly related to the aspect binding mechanism [7,
6]. Current mature aspect languages usually bind aspects based on syntactic
information that is less reliable against subsequent changes. This violates the
principle of information hiding. Furthermore, there are no sophisticated mecha-
nisms to bound and control aspects. However, some first studies partly address
these issues, e.g. [11, 19, 10, 7, 20].

2 For example, refining a pointcut in AspectC++ requires to declare the parent point-
cut as virtual.

Advice is not first-class. Pointcuts specify the set of join points an aspect
is woven to. Advice execute code at the matched join points. Rajan and Sullivan
state that advice are unnecessary different from other structural elements of
aspects [17]. Advice is invoked implicitly when a pointcut matches. This prevents
other advice or methods to invoke them explicitly. Thus, advice is the only
unnamed structural element of aspects. Instead, fields, methods, and pointcuts
are named entities that can be referred to by others entities. Therefore, in [17]
a unification of classes and aspects is proposed that also includes a unification
of advice and methods. In this approach advice can be invoked like methods.
We argue that this unification is crucial for implementing aspect refinement and
mixin-based inheritance in AOP languages.

2.2 Step-Wise Refinement of Aspects

In order to map aspects to the methodology of incremental software develop-
ment we proposed the notion of aspect refinement [14]. In a preliminary study
we focused mainly on the AHEAD architectural model [5] for implementing
feature-oriented program families and aspectual mixin layers [13] as component
technique. In this work we now generalize these ideas to all kinds of incremen-
tal designs. We argue that the notion of aspect refinement does not necessarily
depend on features, collaborations, or program families, but merely is a funda-
mental concept for incremental development using aspects.

Since we want to integrate the paradigm of AOP into the methodology of
developing software incrementally, it is natural to refine also aspects incremen-
tally. Thus, aspects – as with all other software artifacts – evolve over time,
from development stage to development stage. This view is consistent with the
principle of uniformity that predicts that every kind of software artifact is re-
fineable [21]. An advantage of this view is that several ideas of class refinement
can be mapped directly to aspects, e.g. extending methods, introducing mem-
bers, etc. But more interesting is the fact that it becomes possible to refine also
aspect-specific constructs, in particular pointcuts and advice, which opens the
door to a novel dimension of aspect reuse.

Incremental development example. Figure 1 depicts an example that is
used in the remaining article to explain our ideas. It consists of four steps shown
in four subfigures (I-IV). Each development step is explained in terms of its
AspectJ code and in diagram form. Refinements introduced in a particular de-
velopment stage are highlighted bold. Weaving is displayed by dashed arrows.
I. In the initial class hierarchy a Fifo buffer stores a set of data items. Fifo

provides a put and a get method for storing and retrieving data items.
II. In a subsequent step we introduce a synchronization aspect that locks the

access to the put and get methods of Fifo via lock and unlock.
III. Furthermore, we add a Stack class that has to be synchronized, too. Stack

is derived from Fifo and the synchronization aspect is refined to match
also the methods of Stack (push, pop). This step shows that it could be
meaningful to refine aspects. In this example the refining aspect extends the

set of intercepted method calls for synchronization by overriding and reusing
the parent pointcut.

IV. Finally, we introduce Socket that uses Fifo and Stack objects. We limit the
set of matched join points to those that are inside the control flow of Socket.
This is implemented as an aspect refinement that restricts the join point set.

The example clarifies the usefulness of refining aspects in a step-wise manner over
several development stages; but it makes also some of the discussed weaknesses
clear, e.g. only abstract aspects can be refined. Nevertheless, aspect refinement
is a logical consequence of incremental software development mapped to AOP.
Refinements can be implemented in numerous ways, e.g. inheritance, wrappers,
filters, common AOP mechanisms. However, mixin-based inheritance has certain
strengths that qualify it for implementing refinements and, therewith, for solving
the mentioned problems. Several studies on mixins and OOP indicate its success
in this respect [22–25].

1 class Fifo {
2 Vector buf = new Vector ();
3 void put(Item e) { buf.add(e); }
4 Item get(int i) { return (Item)buf.get(i); }
5 }

Fifo

Item
(I)

1 abstract aspect FifoSync {
2 pointcut syncPC () : execution(* Fifo.get (..)) ||
3 execution(* Fifo.put (..));
4 Object around() : syncPC () {
5 lock (); Object res = proceed (); unlock ();
6 return res;
7 }
8 }

Sync

Fifo

Item

(II)

1 class Stack extends Fifo {
2 void push(Item i) { super.put(i); }
3 Item pop() { return super.get(buf.size() - 1); }
4 }
5 abstract aspect StackSync extends FifoSync {
6 pointcut syncPC () : FifoSync.syncPC () ||
7 execution(* Stack.pop ()) ||
8 execution(* Stack.push ());
9 }

Stack

Sync

Sync

Item

Fifo

(III)

1 class Socket {
2 void receive () {
3 Fifo fifo = new Fifo ();
4 Stack stack = new Stack (); /∗ . . . ∗/
5 }
6 }
7 aspect SyncSocketsOnly extends StackSync {
8 pointcut syncPC () : StackSync.syncPC () &&
9 cflow(execution(* Socket .*(..)));

10 }

Stack

Fifo

Sync

Sync

Sync

Socket

Item

(IV)

Fig. 1. An incremental development example (AspectJ code).

3 Mixin-Based Inheritance for Aspects

This section introduces mixin-based aspect inheritance. First we review the orig-
inal approach of mixin-based inheritance; then we show how it can be adopted
for implementing refinements of aspects. Specifically, we explain the different
opportunities to refine aspects such as adding fields and methods, extending ex-
isting methods, refining pointcuts and advice. We emphasize the last two because
they are crucial for aspect refinement.

3.1 Mixin-Based Inheritance and Program Refinements

Program refinements (refinements for short) add new, or alter and extend exist-
ing functionality. In context of OOP that means adding new fields and methods
as well as extending existing methods. Inheritance is an appropriate mechanism
to implement incremental program refinements [18]. Different object-oriented
languages use different mechanisms for inheritance [15]. Mixin-based inheritance
introduced by Bracha and Cook [15] is a more flexible approach to inheritance.
They introduce the notion of mixins that can be parameterized with parent
classes. Mixins are abstract subclasses that extend a family of parent classes.
That means they can be applied to different classes implementing reusable ex-
tensions and are therefore qualified to implement refinements. Mixin composition
is also called instantation of mixins and should not be confused with instantiat-
ing a class to get an object. The resulting composition that forms the final class
is called inheritance chain or refinement chain. Figure 2 shows a set of mixins
and four generated refinement chains.

The Jak language – Refinements for Java. Jak extends Java with mixin
capabilities. It is part of the AHEAD Tool Suite for large-scale compositional
programming and step-wise refinement [5]. Jak serves as our archetype for en-
hancing a language with constructs for implementing refinements via mixins. We
adopt its constructs and map them to aspects. Refinements are declared using
the refines keyword. Figure 3 depicts Fifo (Line 1) and a refinement (Line 5)
that introduces a maximum size (Line 6). The refinement extends put with a
check of the current size against the maximum size (Lines 7-9). It can be seen

A A

CB

A A

B

D

C

D
D

C
B

A

mixins

set of mixins different refinement chains

Fig. 2. Composing mixins in different ways
to form alternative refinement chains.

1 class Fifo {
2 void put(Item e) { }
3 Item get(int i) { }
4 }
5 refines class Fifo {
6 static int max = 100;
7 void put(Item e) {
8 i f (fill < max)
9 super.put(e);

10 }
11 }

Fig. 3. Refinements in Jak.

that in contrast to common subclassing a Jak mixin (that is an abstract sub-
class) has no explicit name (Line 5). It simply implements a refinement to Fifo.
Although, in the original approach mixins are named entities we consider only
unnamed mixins for implementing refinements. The advantage of mixins is that
different refinements (to Fifo) can be composed to a compound class (the final
Fifo class) in different permutations. The names of the mixins do not matter.

Mixin-based inheritance is more flexible than common inheritance. A pro-
grammer can select a set of program refinements and compose them to form a
final class (compound class). In the remaining paper we use mixin-based inheri-
tance to implement incremental refinements of aspects. Each mixin of a refine-
ment chain corresponds to a particular development stage. We further assume
that mixins are composed at compile time.

3.2 Aspects and Mixin Composition

Introducing mixin capabilities to aspects means that a programmer can compose
aspects via mixin-based inheritance. Thus, aspects can refine other aspects by
adding and extending functionality. To express aspect refinements we adopt the
syntax of the Jak language. Hence, aspects as well as their refinements have
equal names. Figure 4 shows a synchronization aspect (Line 1) and a refinement
(Line 5) that adds a new field and that extends the locking methods to count
the number of threads that access the locked critical section. Refinements are
distinguished based on their affiliation to development stages.

The semantics of such mixin-based inheritance is as follows. An aspect to-
gether with all of its refinements constitute the final aspect that is woven once
to the final program. Hence, the elements of the refinement chain have to be
composed. A possible implementation is to translate mixin-based inheritance
into common aspect inheritance: Aspect refinements are implemented as (non-
abstract) subaspects of their parents. Section 6 explains those and alternative
transformations in more detail.

With such kind of mixin-based inheritance one does not need to declare the
parent aspect as abstract. This might seem to be of no great advantage but this
eliminates the dilemma to anticipate subsequent added features.

3.3 Adding Members and Extending Methods

Aspects may extend parent aspects by adding new members. Figure 4 depicts
an aspect and a refinemet that adds a field (Line 6), a pointcut (Line 9), and
an advice (Lines 10-12). Known from classes, aspects may also extend existing
methods. An extension to a method overrides, adds some code, and usually calls
the extended method (Lines 7,8).3 Refining aspects is in parts already supported
by common aspect inheritance but without the flexibility of mixin composition
and anonymous refinements.
3 Notice that a second way to refine a method is to use the common pointcut-advice-

mechanism. However, this is out of scope of this paper.

1 aspect Sync {
2 void lock() { /∗ locking access ∗/ }
3 void unlock () { /∗ unlocking access ∗/ }
4 }
5 refines aspect Sync {
6 int threads;
7 void lock() { threads ++; super.lock (); }
8 void unlock () { threads --; super.unlock (); }
9 pointcut syncPC () : execution(* Fifo.get (..)) || execution(* Fifo.put (..));

10 Object around() : syncPC () {
11 lock (); Object res = proceed (); unlock (); return res;
12 }
13 }

Fig. 4. Adding members and extending methods.

3.4 Pointcut Refinement

When inheriting from a parent aspect a child aspect can override and extend the
parent pointcuts. Hanenberg et al. propose several design patterns that utilize
those techniques to improve reusability and extensibility of aspects, e.g. compos-
ite pointcut, pointcut method, template advice [26].

Recall our example aspect that synchronizes calls to Fifo (cf. Fig. 1). For
this aspect we defined two refinements, an aspect that extends this set by all
method calls to Stack (III) and an aspect that constrains the set of join points to
calls that originate from Socket (IV). Both aspects were derived using common
aspect inheritance. They override the parent pointcut and define the new one by
reusing the parent pointcut (syncPC) and by adding new pointcut expressions
that extend or constrain the set of matched join points. Hence, the child aspects
reuse the parent aspect’s functionality for synchronization. Recall that applying
these two refinements extends the synchronization aspect and does not create
two new aspects. Only the final compound aspect is woven to the target program.

In common AspectJ parent pointcuts have to be accessed by their full-
qualified name, e.g. FifoSync.syncPC. Thus, the programmer is forced to hard-
wire the parent and the child aspect. This tight coupling decreases reusability.
Having mixin-based inheritance the child aspect does need to know the con-
crete parent aspect. Figure 5 depicts the synchronization aspect for Fifo and
our refinements regarding Stack and Socket, but now using mixin-based aspect
inheritance. This example clarifies an important advantage of mixin-based aspect
inheritance related to pointcut reuse. Using the super keyword the programmer
can refer to the parent’s pointcut without knowing its exact type at implementa-
tion time. This improves flexibility in composing, reusing, and evolving aspects.
Figure 6 shows how a pointcut triggers a corresponding advice (I). Refining that
pointcut alters the triggering mechanism (II): the most refined pointcut triggers
the connected advice, albeit the advice was defined in a parent aspect.

3.5 Advice Refinement

Before explaining advice refinement it is necessary to introduce the notion of
named advice.

1 aspect Sync {
2 pointcut syncPC () : execution(* Fifo.get (..)) || execution(* Fifo.put (..));
3 Object around() : syncPC () { /∗ synchronization code ∗/ }
4 }
5 refines aspect Sync {
6 pointcut syncPC () : super.syncPC () || execution(* Stack .*(..));
7 }
8 refines aspect Sync {
9 pointcut syncPC () : super.syncPC () && cflow(execution(* Socket .*(..)));

10 }

Fig. 5. Altering the set of locked methods via pointcut refinement.

triggers
advice

 pointcut syncPC() : execution(* Fifo.*(..));
 Object around() : syncPC() {...}
}

aspect Sync {

aspect

(I) triggers
advice

refines
pointcut

refines aspect Sync {
 pointcut syncPC() : super.syncPC() ||

}

aspect Sync {
 pointcut syncPC() : execution(* Fifo.*(..));
 Object around() : syncPC() {...}
}

execution(* Stack.*(..));

refinement

aspect

(II)

Fig. 6. The most refined pointcut triggers the connected advice.

Named advice. In order to refine advice in subsequent development stages,
they must be named first-class entities. Unfortunately, advice in AspectJ-like
languages are explicit but cannot be referred from other entities, e.g. other advice
or methods, by name or reference. Rajan and Sullivan argue that this causes a
fundamental asymmetry between OOP and AOP [17]. Although advice have a
similar aim as methods, i.e. executing some functionality, they cannot be treated
as methods. They are invoked implicitly when a pointcut matches.

In order to overcome this tension we propose named advice. Named advice are
named first-class entities of aspects. They can be overridden and referred to from
a child advice in order to refine its functionality. This enables the programmer to
reuse and evolve advice over several development stages. Having named advice
all structural elements of aspects can be refined in the same way (by using the
super keyword).

Figure 7 depicts and synchronization aspect that contains a named advice
(Lines 3-7). It consists of a name (syncMethod) and a binding to a pointcut
(syncPC). We call this advice binding (Line 3). Additionally, for every named
advice an associated method must be defined in the same aspect – called advice
method (Line 4-7). Consequently, the advice method has an equal name and
signature as the named advice.

In case of an around advice the corresponding method may use the super
keyword to call the advised join point, e.g. invoking an advised method call
(Line 5).4 This is different from AspectJ that uses the proceed keyword. We de-

4 An advised join point is accessed via super followed by the name of the advice.

1 aspect Sync {
2 pointcut syncPC () : execution(* Fifo .*(..));
3 Object around syncMethod () : syncPC ();
4 Object syncMethod () {
5 lock (); Object o = super.syncMethod (); unlock ();
6 return o;
7 }
8 }

Fig. 7. The notion of named advice.

cided for super to have a unique mechanism for referring to the refined methods,
pointcuts, and advice. This also includes the advised join points.

In advice methods the full runtime API of AspectJ is available, e.g. thisJoin-
Point. This can be achieved by passing information transparently from named
advice to advice method. In the rest of the paper the meaning of named advice
also includes the associated advice methods.

Refining named advice. By introducing named advice to AspectJ we can
refine advice of parent aspects. Figure 8 depicts an aspect that refines our syn-
chronization aspect shown in Figure 7 by extending its named advice, i.e. its
advice method syncMethod is overridden and the number of threads is counted.
Within the refining aspect the advice is handled as an advice method (Lines 2-
5) and is extended accordingly using the super keyword (Line 3). Notice that
always the most refined advice method is invoked by an bound pointcut.

1 refines aspect Sync {
2 Object syncMethod () {
3 threads ++; Object o = super.syncMethod (); threads --;
4 return o;
5 }
6 }

Fig. 8. Refining named advice.

Refining advice methods that refer to around advice yields some interesting
issues regarding the meaning of super. In a base aspect – where a named around
advice is introduced for the first time – the super call inside an advice method
means accessing the advised join point. In an refined advice method calling super
means calling the parent advice method. Figure 9(I) shows a named around
advice, i.e. the advice methods as well as to pieces of refining advice that use
this calling pattern. Each advice method calls its parent method except those
methods that have no parent; those methods call the advised join point directly.
We call this calling pattern super-call-pattern. It is similar to the CLOS function
call next method that iterates over all methods of the refinement chain [27].

During our investigations in named advice we explored a different alternative
calling pattern. This alternative pattern keeps the proceed keyword to access
the advised join point. Therefore, we call it proceed-call-pattern. Refinements of

 ...
 super.syncMethod();
 ...
}

void syncMethod() {

 ...
 super.syncMethod();
 ...
}

void syncMethod() {

 ...
 super.syncMethod();
 ...
}

void syncMethod() {

...

fifo.get();
...

(I)

...

fifo.get();
...

 ...
 super.syncMethod();

}

void syncMethod() {

 ...

 ...
}

void syncMethod() {

 ...
 super.syncMethod();

}

void syncMethod() {

 proceed();

 proceed();

 proceed();

(II)

Fig. 9. super -call-pattern vs. proceed-call-pattern.

advice methods may either use super to call the parent advice method or use
proceed to directly access the advised join point (see Fig. 9(II)). This allows every
advice method of a refinement chain to access the advised join point. We do not
prefer this alternative pattern because it introduces more complexity due to two
different call mechanisms, proceed and super. Moreover, the possibility to access
ancestors of a refinement chain that are different from the direct parents violates
the principle of step-wise refinement. In order to keep our language extension as
simple as possible, we prefer the super -call-pattern.

4 Bounding the Quantification of Aspects

In order to decrease the unpredictability of aspects as well as to increase the
aspect’s reusability, Lopez-Herrejon and Batory propose a novel approach to as-
pect composition [7]. They model aspects as functions that operate on programs.
Applying several aspects to a program is modeled as function composition. In
this way the scope of aspects is restricted to a particular stage in a program’s
development. Such bounded quantification of aspects follows an important prin-
ciple of incremental software development: Layers (in our case aspects) should
only affect and interfere layers of previous development stages. It has been ar-
gued that current AOP languages do not respect this principle because it is not
possible to distinguish between different development stages [7].

With aspect refinement and mixin-based aspect inheritance it is possible for
the first time to implement such bounded quantification: Since we know for each
aspect and for each refinement to which development stage it belongs we can
determine to which program elements the are permitted to bind.

However, our model differs from the one proposed Lopez-Herrejon and Ba-
tory. They assume that aspects that implement different features are woven
immediately to a program. That is a straightforward way for incrementally re-
fining a program via aspects. In our approach we propose something additional
(we also support their approach): We do not only add aspects incrementally, but
also refine aspects incrementally. That means we use (mixin-based) inheritance

to extend existing aspects. Whereas the former approach weaves the aspects im-
mediately, ours weaves the most refined version only (the final compound aspect).
Their approach is similar to adding classes incrementally; ours is analogous to
refining classes incrementally via inheritance.

Without aspect refinement, bounding aspects is straightforward: aspects are
woven exclusively to those program parts that where implemented in previous
development stages. In our extended approach things are different. The overall
refinement chain, e.g. all Sync aspects, forms a final aspect that is applied to
the composed program. In fact, the refinement chain reflects but also hides the
evolution of the overall aspect. We argue that at each development stage the
current aspect (the leaf of the chain) should only affect code of previous stages.
That means that not only each aspect but also each of its constituting evolu-
tionary steps (its refinements) should only affect those program parts that are
already known at their implementation time. This results in a final compound
aspect that contains the overall functionality, but without allowing its fragments
(the particular refinements) affecting subsequent added code.

In [14] we show how such bounded quantification – implemented in Fea-
tureC++5 a feature-oriented and aspect-oriented language extension to C++
– improves the reusability of aspects as well as their refinements and decreases
their unpredictable behavior. For implementing our bounding mechanism we
restructure the pointcut expressions of the aspects and their refinements: Re-
structured pointcuts match only a constrained set of join points, in particular
all desired join points except those that originate from subsequent development
stages. However, this study is only a first step because we considered only a lim-
ited set of pointcuts. Therefore, we omit a further discussion of implementing this
bounding mechanism in this paper. A more detailed analysis for restructuring
rules and their impact is part of further work.

5 Syntax and Semantics

In order to define our language extension in an unambiguous and consistent way
we give a specification of its syntax and semantics.

5.1 Grammar of an AspectJ Extension

Figure 10 lists our grammar rules that extend the native AspectJ LALR(1)
grammar described in [28]. Those rules that are highlighted by an underline are
novel; all others are references to native AspectJ.

Rule 1 introduces the refines keyword as prefix to aspect declarations. Thus,
it refers to the native AspectJ rule for declaring aspects (〈aspect declaration〉).
Rule 2 and 3 extend the AspectJ’s pointcut mechanism with the ability to access
the parent pointcuts via the super keyword. Rule 2 is an extended version of its
AspectJ counterpart that combines common unary pointcuts with super calls

5 wwwiti.cs.uni-magdeburg.de/iti db/fcc/

〈aspect ref declaration〉 ::= ‘refines‘ 〈aspect declaration〉 (1)

〈unary pointcut expr〉 ::= 〈basic pointcut expr〉
| ‘!‘ 〈unary pointcut expr〉
| 〈super pointcut opt〉 (2)

〈super pointcut opt〉 ::= ‘super.‘Identifier ‘(‘〈formal param list opt〉‘)‘ (3)

〈advice declaration〉 ::= 〈modifiers opt〉〈advice spec〉〈throws opt〉 ‘:‘

〈pointcut expr〉〈method body〉
| 〈modifiers opt〉〈named advice spec〉〈throws opt〉 ‘:‘

〈pointcut expr〉‘;‘ (4)

〈named advice spec〉 ::= ‘before‘ Identifier‘(‘〈formal param list opt〉‘)‘ (5)

. . .

Fig. 10. An LALR(1) grammar for mixin-based aspect inheritance.

(〈super pointcut opt〉). Rule 3 defines the syntax of such super calls. Rule 4 and 5
introduce named advice. In order to be downward compatible to native AspectJ,
Rule 4 accepts besides the novel named advice also the common unnamed advice.
Rule 5 defines the syntax of named advice. It is assumed that for each named
advice an associated advice method is defined. Furthermore, the named advice
and the advice method must have the same signature.

5.2 Formal Semantics

We use a set of rewriting / reduction rules in order to define the formal seman-
tics of our AspectJ language extension. As a basis, we use a simplified subset
of the AspectJ grammar (adopted from [29]) because the original grammar in-
cluding our extension would be too complex. In order to define the semantics
we introduce a set of reduction rules that extend the semantics of AspectJ [29].
These reduction rules are formulated using abstract syntax and reduce our added
constructs to native constructs described in the AspectJ’s operational semantics.

Simplified abstract syntax. We introduce a simplified and trimmed-down
set of abstract grammar rules in order to provide a basis for a formal definition of
the semantics of our language extension. Figure 11 shows our rules that build up
on the grammar specification given in [29, 30]. The new rules concern aspects,
pointcuts, and named advice. We use the following conventions for metavari-
ables used in the rules: Variables written in capital letters represent the main
language constructs. They are the non-terminal symbols of our grammar and
range over particular kinds of declarations. Metavariables in lower case letters
are placeholders for program variable names. Keywords (terminal symbols) are
highlighted in bold letters.

The metavariables used in the grammar are reserved to their particular types,
e.g. we use c1, . . . , cn for referring to class names or S to range over statements.
~X means an ordered set and X̄ an unordered set of elements. Furthermore, we
use x and y for referring to program variables as well as ~x and ~y for a sequence
of variables, e.g. for expressing an argument list.

Simple classes (C) have a name (c1), a parent (c2), and consist of a set
of methods (M̄)6. Inheritance is expressed using <:. The expression c1 <: c2

means that class c1 inherits from class c2. Methods (M) have a name, a re-
sults type (cr), a set of arguments (~c ~x), and execute a set of statements (~S).
~c ~x means a sequence of arguments with its particular types: c1 x1, . . . , cn xn.
Statements (S) are not further explained. We assume a standard set, e.g. new,
return, etc. (see [29] for a comprehensive list). Aspects (A) contain methods (M̄),
pointcuts (P̄), and advice (Z̄). Besides aspects also aspect refinements can be
declared (R). Refining aspects cannot inherit from other aspects. The parent is
determined by the order of the refinement chain. Pointcuts (P) have a name (p),
a set of arguments (~c ~x), and a set of pointcut expressions (Φ)7. In contrast
to AspectJ we add the possibility to access the parent pointcuts via super. For
the sake of simplicity, we consider only disjunctions.8 Advice (Z) have either
names (z) and do not own bodies or they are unnamed and have a body. Both
types of advice expect a set of arguments (~c ~x) and have a result type (cr). For
each named advice an advice method with the same name and signature must
be defined. Unnamed advice are included to be compatible to native AspectJ.
The advice keyword abstracts over all three possible advice types: before, after,
and around (see [29]).

Classes : C ::= class c1 <: c2 {M̄}
Methods : M ::= cr m(~c ~x) {~S}
Statements : S ::= new | return | . . .
Aspects : A ::= aspect a1 <: a2 {M̄, P̄ , Z̄}
Refinements R ::= refines aspect a {M̄, P̄ , Z̄}
Pointcuts : P ::= pointcut p(~c ~x) : Φ ∨ super::q(~c ~y)
PointcutExpr. Φ ::= false | ¬φ | φ ∨ φ′ | call(c :: m)

Advice : Z ::= cr advice z(~c ~x) : p | cr advice(~c ~x) : p {~S}

Fig. 11. Abstract syntax of the extended AspectJ grammar

Reduction rules. In order to describe the semantics precisely, we extend the
operational semantics of AspectJ by a set of reduction rules, i.e. we add three
new rules to the existing set that describe the reduction to native rules. In order
to determine the behavior of an AspectJ program that includes our extensions
one has to apply the reduction rules depicted in Figure 12. These can be reduced
to native rules explained in [29].

6 For brevity, we omit other elements as fields or nested classes
7 For the time being, we consider only call pointcuts
8 Conjunctions can be created using DeMorgan and the negation.

Rule R-1 reduces an aspect refinement to a native aspect a1 that inherits
from a parent aspect a2. It is presumed that such parent aspect exists. In other
words, an parent aspect with n refinements is translated to an aspect with n
child aspects. The order of the inheritance chain is inferred from the order of
the refinement chain.

Rule R-2 reduces a pointcut p, i.e. its pointcut expression φ and an addi-
tional super call to a parent pointcut q. As mentioned before we consider only
disjunctions. The resulting pointcut accesses the parent pointcut using its fully
qualified name a2::q, with a2 as parent aspect that contains the pointcut q. We
omit the pointcut arguments because they remain unchanged. A precondition
for such reduction is that a parent aspect a2 contains an fitting pointcut q.

Rule R-3 defines the reduction of named advice to native advice. For each
named advice it is presumed that an advice method exists with an equal name
and the same signature. The named advice z is simply transformed into a na-
tive advice that calls the associated advice method m. It is presumed that the
programmer has defined a method m with equal name and signature ~c ~x. In the
resulting advice body this method is called and the results are returned. This
notation follows the grammar specification of Featherweight Java [30] where
method bodies are defined as return value of an expression. We omit a detailed
specification of the passed parameters because these depend on the use in the
advice body, e.g. if one does not use the thisJoinPoint object we do no need to
pass it to the advice body.

aspect a1 {. . .}
refines aspect a1 {. . .} → aspect a2 <: a1 {. . .}

(R-1)

aspect a2 {. . . q . . .}
aspect a1 <: a2 {. . . p . . .}

pointcut a1::p : φ ∨ super::q → pointcut a1::p : φ ∨ a2::q
(R-2)

cr m(~c ~x) {. . .} z = m

cr advice z(~c ~x) : p(~c ~x) → cr advice(~c ~x) : p(~c ~x) {return m(~x)}
(R-3)

Fig. 12. Reduction rules.

6 Extending AspectJ

In order to prove the applicability of our approach we present a program trans-
formation approach that translates code written in our extended AspectJ to
native AspectJ code.

6.1 Mixin Transformation to native AspectJ

As our formal semantics description dictates, mixin-based aspect inheritance
is transformed to common aspect inheritance. Each mixin is transformed to a
common aspect that inherits from its parent based on the composition order. The
order is inferred from the input of the aspect weaver. Furthermore, our semantics
specification states that all super keywords found in pointcut expressions are
translated to the corresponding types of the parent aspects. Named advice is
translated into advice that calls the associated method that executes the advice
code. Furthermore, all necessary parameters are passed to the method as well as
the AspectJ runtime objects and further context information.

Figure 13 shows an example aspect (Lines 1-7) and a refinement (Lines 8-
17) connected via mixin-based aspect inheritance. The base aspect contains two
methods (Line 2,3), a pointcut (Line 4), and a named advice with advice method
(Lines 5-6). The child aspect adds a field (Line 9) refines the parent methods
(Lines 10,11), the parent pointcut (Line 12), and the parent advice (Line 13-16).
In all three cases we use the super keyword to access the parent entities.

1 aspect Sync {
2 void lock() { /∗ lock access ∗/ }
3 void unlock () { /∗ unlock access ∗/ }
4 pointcut syncPC () : execution(* Fifo .*(..));
5 Object around syncMethod () : syncPC ();
6 Object syncMethod () { /∗ synchronization code ∗/ }
7 }
8 refines aspect Sync {
9 int threads;

10 void lock() { threads ++; super.lock (); }
11 void unlock () { threads --; super.unlock (); }
12 pointcut syncPC () : super.syncPC () || execution(* Stack .*(..));
13 Object syncMethod () {
14 /∗ advice code ∗/
15 return super.syncMethod ();
16 }
17 }

Fig. 13. An aspect with refinement using mixin-based inheritance.

For simplicity we assume that aspects and their different refinements are
located in different file system directories. Each directory reflects a particular
development stage and contains the corresponding aspects (and classes). Assum-
ing that the base aspect is located in the directory Base and the refinement in
the directory Ext, Figure 14 shows both aspects transformed into native AspectJ
aspects. The transformation consists of the following steps:
1. The synchronization aspect and its refinement are transformed into two na-

tive aspects that contain the name of the source directory in their names in
order to distinguish them (Line 1,10). Except the leaf of the refinement chain
all aspects are declared as abstract – in our example only the base aspect.

2. The lock and unlock methods and their refinements remain unchanged (Lines 2,3
and 12,13).

1 abstract aspect Sync_Base {
2 void lock() { /∗ lock access ∗/ }
3 void unlock () { /∗ unlock access ∗/ }
4 pointcut syncPC () : execution(* Fifo .*(..));
5 Object around() : syncPC () {
6 return syncMethod(thisJoinPoint);
7 }
8 Object syncMethod(JoinPoint thisJoinPoint) { /∗ synchronization code ∗/ }
9 }

10 aspect Sync_Ext extends Sync_Base {
11 int threads;
12 void lock() { threads ++; super.lock (); }
13 void unlock () { threads --; super.unlock (); }
14 pointcut syncPC () : Sync_Base.syncPC () || execution(* Stack .*(..));
15 Object syncMethod(JoinPoint thisJoinPoint) {
16 /∗ advice code ∗/
17 return super.syncMethod(thisJoinPoint);
18 }
19 }

Fig. 14. Translating mixin-based inheritance to common inheritance.

3. The syncPC pointcut of the base aspect is moved one-to-one to its native
counterpart (Line 4). The syncPC pointcut of the refining aspect is tran-
formed to a AspectJ compatible version (Line 14): the super keyword is
replaced by the name of the parent aspect, in our case Sync Base

4. The named advice of the base aspect and its connected method are trans-
formed to a native advice (Lines 5-7) and a simple method (Line 8). The
advice calls this method and passes necessary runtime objects to its scope
(Line 6). The signature of the method and the passed arguments depend
on the signature of the pointcut, e.g. which variables are needed inside the
advice, and the needed runtime objects, e.g. thisJoinPoint. In our example
only join point information is passed.

5. The refined advice method syncMethod (Lines 15-18) gets an extended sig-
nature that allows to pass the runtime objects as well as pointcut-specific
arguments, e.g. target objects, to the advice code.

6.2 An Alternative Transformation – JamPack Composition

A drawback of the above explained transformation of a refinement chain into an
inheritance hierarchy are the performance penalties and the overhead regarding
the memory consumption. An aspect with n refinements results in n + 1 native
aspects that form the resulting inheritance chain. Even if the refinements imple-
ment only a very small delta to the existing functionality, for each delta a new
aspect is introduced. In the worst case, refining a method or advice results in n
calls upward along the inheritance chain.

To eliminate such penalties, Batory et al. propose an alternative composi-
tion mechanism for mixin classes, called JamPack composition [5]. Mapping it
to aspects means that an aspect and all of its refinements are merged into one
final aspect at source code level. We call such aspect flattened ; Jampack compo-
sition is different from mixin composition where a inheritance chain of aspects

is generated. However, in both case only one final aspect instance is woven to
the target program.

JamPack composition can be implemented by merging pointcuts using logi-
cal operators and by concatenating and wrapping the code of methods and ad-
vice. This composition mechanism would yield better performance and memory
consumption characteristics compared to our proposal. However, the JamPack
composition makes it hard to debug the generated code because the origin of
code fragment is not traceable. We argue that for the development phase our pro-
posed composition (mixin-based inheritance into inheritance) is more intuitive
and helps the programmer to understand the effects of refinements. For produc-
ing a release version the JamPack composition approach would be appropriate,
especially for resource-constrained systems.

6.3 Implementation

Currently, we have implemented our ideas on aspect refinement and mixin-based
inheritance (except named advice) in FeatureC++ [12, 13], an feature-oriented
and aspect-oriented language extension to C++. In this paper we focused on As-
pectJ because it is better known in the community and it is a more mature aspect
language. We already extended the abc – an extensible AspectJ compiler [31] –
with mixin-based aspect inheritance, i.e. the possibility to implement refinements
to aspects. Named advice as well as pointcut refinement are the next steps to be
implemented.

7 Related Work

Higher-order pointcuts and advice. Our notion of aspect refinement is
related to higher-order pointcuts and advice proposed by Tucker and Krish-
namurthi [32]. They integrate advice and pointcuts into languages with higher-
order functions and model them as first-class entities. Pointcuts can be passed to
other pointcuts as arguments, and therewith modified, combined, and extended.
In this point our approach of aspect and pointcut refinement is similar. We can
combine, modify, and extend pointcuts by adding subsequent refinements.

Due to the opportunity to refine named advice we can also modify and extend
advice using subsequent advice. This corresponds to higher-order advice that
expect advice as input and return a modified advice. Our named advice can be
passed to other advice – usually to the child advice that refines the parent (input)
advice. Thus, refining a named advice is like passing an advice to a higher-order
advice.

Aspect refinement and AHEAD. We originally proposed the notion of
aspect refinement [14] in the context of feature-oriented program families and
AHEAD – an architectural model for large-scale program composition [5]. The
AHEAD model proposes to perceive software as a collection of features that
satisfies the requirements of stakeholders. Features do not only consist of source

code but of all artifacts that contribute to the feature, e.g. documentation, test
cases, design documents, makefiles, etc. Each feature is represented by a contain-
ment hierarchy, a directory that maintains a subdirectory structure to organize
its artifacts. Composing features means composing containment hierarchies and
to its end composing corresponding artifacts, e.g. composing two program frag-
ments. Hence, for each artifact type a distinct composition operator (denoted
by +) is provided.

A exceptional quality of the AHEAD model is that features and their com-
positions are described by algebraic equations, e.g. Prog = Buffer + Sync + Log.
This declarative style allows for compositional reasoning and algebraic equation
optimization [5].

In context of the AHEAD model, mixin-based aspect inheritance is simply a
composition operator that is invoked when aspects (and their refinements) of dif-
ferent development stages are composed. Hence, it corresponds to the class com-
position operator that composes classes using common mixin-based inheritance.
Since our aspects and their refinements can be composed externally without
modifying code9, they best fit the AHEAD approach of algebraic equation-based
composition.

In order to integrate aspects and features in the sense of the AHEAD model,
we proposed aspectual mixin layers (AMLs) [13, 12]. The synergetic effects of
aspects, features, and incremental design methodology are an improvement over
common incremental designs based on classes and common AOP, e.g. the cross-
cutting modularity is improved [13]. Aspect refinement based on mixin-based
aspect inheritance is a key technology to implement and improve AMLs and
integrate features and aspects.

Aspect refinement and Caesar. Caesar supports componentization of as-
pects by encapsulating virtual classes as well as pointcuts and advice in collabo-
rations. These are hidden behind aspect collaboration interfaces that decouple an
aspect’s implementation from its binding to a target program. Bindings them-
selves are collaborations that adapt the aspect’s implementation to a application
context. This on-demand remodularization (aspectual polymorphism) improves
aspect reuse. Bindings are applied statically at object creation time or during the
dynamic control flow. Different aspects can be composed via their collaboration
interfaces. This is implemented using mixin composition. Besides this, collabo-
rations can be refined using pointcuts. Due to its embedding in classes (family
classes), collaborations of virtual classes can be used polymorphically [33].

Although aspect refinement and mixin-based aspect inheritance are not di-
rectly related to Caesar, integrated in a component technique as AMLs it become
arguably interesting to compare them to Caesar. Both, Caesar and AMLs are
based on collaborations which represent the basic building blocks and both in-
tegrate AOP concepts. A main advantage of AMLs is that they have AHEAD
as an architectural model; Caesar makes no statement about such a model.
Hence, AMLs can revert to several advantages of AHEAD: beside classes and

9 For example, mixins implemented in C++ have to be instantiated inside a program.

aspects also other kinds of software artifacts may be included in a feature; fea-
tures are described and composed via algebraic equations and checked against
domain-specific design rules. This opens the door to automatic algebra-based
optimization and compositional reasoning.

A main difference of AMLs and Caesar is that with AMLs aspects are in-
tegrated into collaborations whereas with Caesar the collaborations themselves
are understood as aspects (or aspect components that contain pointcuts and ad-
vice). With Caesar it is not possible to refine these pointcuts and advice. Thus,
higher-order aspects as proposed in this paper are not supported. Furthermore,
Caesar chooses a different approach to bound and control aspects: Aspects can
be explicitly deployed to bound them to a certain scope. Instead, our bounding
mechanism operates behind the scenes by exploiting the natural order of the
incremental design, i.e. the order of the development stages. However, we ar-
gue that the ideas of refining pointcuts and named advice as well as a bounded
quantification can be integrated into Caesar in order to evolve aspects over time
in a reliable and consistent way.

We believe the difference of AMLs and Caesar originates from their differ-
ent focuses. The philosophy of AMLs is to incrementally build product lines
by layering collaborations of aspects and classes. Aspects affect mainly code
inside a stack of collaborations in order to implement (1) homogeneous cross-
cutting concerns that extend a parent feature at different points with the same
new functionality, (2) features that highly depend on the runtime control flow
(dynamic crosscutting), and (3) features with a structure that is different from
the structure of the parent feature. In all three cases aspects and their com-
position and modularization mechanisms perform better than traditional OOP
mechanisms, i.e. mixin-based inheritance. AMLs do not focus on adapting (a
stack of) collaborations to a particular application context and do not support
polymorphic collaborations, that are design goals of Caesar.

Caesar proposes also a layer structure to incrementally develop aspect com-
ponents. But it aims at – besides others – on-demand remodularization of these
layered aspects in order to prepare them for weaving to external code. Caesar’s
collaborations (aspect components) are first-class and their composition is done
within source code. This prevents compositional reasoning and an optimization
based on algebraic equations.

Unifying advice and methods. Rajan and Sullivan propose classpects that
combine capabilities of aspects and classes to unify the design of layered module
systems [17]. A classpect simply associates for each advice a method that is
executed for advising a particular join point. Moreover, classpects unify aspects
and classes with respect to instantiation which is not addressed by our approach.

A second approach for unifying methods and advice is proposed by Lopez-
Herrejon et al. [7]. Although they do not aim at a unification at language level
they propose an interesting mechanism, called pure advice. Pure advice is a
named advice that replaces the advice body with a call to a method that is
introduced to a target class. It simply introduces a name to advice and further
separates the advice declaration of its definition. Mapping this methodology

to our approach an inheriting child aspect may extend a parent advice by (1)
overriding the named parent advice or (2) by overriding the associated method.

To our opinion pure advice are less elegant compared to the classpects advice
because there are two associated names: the advice name and the called method
name. This make the code unnecessary complex and leads to the question which
of both to override. Therefore, our approach of named advice is mostly influenced
by classpects.

Generic aspects. Several recent approaches enhance aspects with genericity,
e.g. Sally [34], Generic Advice [35], LogicAJ [36], Framed Aspects [37]. This im-
proves reusability of aspects in different application contexts. Aspect refinement
and mixin-based aspect inheritance provides a alternative way to customize as-
pects, i.e. by composing the required refinements. However, ideas on generic
aspects can combined with our approach.

AspectJ design patterns. Hanenberg and Unland discuss the benefits of
inheritance in the context of AOP [38, 26]. They argue that aspect inheritance
improves aspect reuse. To underpin their claims they propose different design
patterns that exploit structural elements specific to AspectJ. Their patterns
pointcut method, composite pointcut, and chained advice suggest to refine point-
cuts in subsequent development steps to improve customizability, reusability and
extensibility. Due to its flexibility mixin-based inheritance can enhance these
patterns by simplifying the composition of aspects. The pattern template advice
can be simplified using named advice because it becomes possible to directly
refine advice. Mixin-based aspect inheritance is the logical next step towards
compositional inheritance for aspects [15].

AOP and modular reasoning. A couple of work tries to tackle the prob-
lem of aspects and their unpredictable behavior from another side. Aspect-ware
interfaces [10] and open modules [11] support modular reasoning by encapsulat-
ing explicitly the interactions between two concerns. This reduces unpredictable
aspect/feature interactions but also reduces the flexibility to implement unantic-
ipated features. Our approach is different because we aim at incremental designs
that allows us to assign aspects to development stages. Hence, a bounded quan-
tification can exploit the implicit knowledge of the evolutionary design. This
avoids a lot of explicit specifications and formulated constraints to be provided
by the programmer.

8 Conclusion

The introduction of mixin-based inheritance to AOP yields several benefits.
Firstly, it unifies classes and aspects with regard to incremental software de-
velopment. The composition of classes and aspects takes place at compile-time.

Mixin-based aspect inheritance increases the ability to flexibly alter the re-
finement chain of aspects and therefore offers a way to customize aspects. Hence,
it is an improvement of simple aspect inheritance. Mixin-based aspect inheritance

is an elegant way to implement aspect refinement in incremental designs. More-
over, our AspectJ-based implementation is an AHEAD composition operator for
aspects. Aspect refinements can be seen as higher-order aspects and may also
improve Caesar’s abilities to refine and evolve aspects in a controlled mannor.

The introduction of mixin-based inheritance leads to the unification of meth-
ods and advice. This means that all structural elements of aspects can be subject
of subsequent refinements, including pointcuts and named advice. All parent en-
tities can be accessed uniformly via the super keyword. By allowing concrete
aspects to be refined the programmer does not need to anticipate subsequent
refinements. We believe that this work can help to understand and experiment
with aspects to implement incremental designs.

A further benefit of composing aspects based on their affiliation to a devel-
opment stage and a corresponding layer is that the quantification of aspects can
be bound in order to decrease the unpredictability of aspects. This enhances the
capabilities of aspect to be used in incremental designs.

However, the notion of aspect refinement and its implementation using mixin-
based aspect inheritance has some limitations and drawbacks. Aspect refinement
and mixin-based inheritance seems to be useful only in incremental designs. That
means the programmer and the aspect weaver have to know the affiliation of ar-
tifacts to development stages. We believe that incremental software development
is fundamental and will gain momentum in the future. Furthermore, we want to
emphasize that our mechanisms are most effective in large software systems that
demand for compositional reasoning. Besides this general limitation also some
open issue remain:
– How pointcuts and named advice fit polymorphism and virtuality?
– Currently, we left out static crosscutting as intertype declarations.
– We do not addressed access modifiers, e.g. public or private, for named ad-

vice, advice methods, and pointcuts.
– An important point is to explore useful design patterns of mixin-based aspect

inheritance.
– A further interesting topic is to explore the deeper relationship of higher-

order aspects and the algebraic description of aspect refinement.
In future work we intend to integrate an extended AspectJ into the AHEAD

Tool Suite. In doing that a programmer may implement and refine program fami-
lies using classes and aspects, both integrated in features. Such features would be
an instance of our proposal of AMLs – with Java and AspectJ as base languages.
In this context we also plan to implement the discussed bounded quantification
that bounds aspects based on their affiliation to development stages. Further-
more, we want to extend our preliminary analysis of pointcut restructuring.

Acknowledgments. We thank Don Batory and Roberto Lopez-Herrejonn for
their comments on drafts of this paper. This research is sponsored in parts by
the German Research Foundation (DFG), project number SA 465/31-1.

References

1. Kiczales, G., et al.: Aspect-Oriented Programming. In: Proceedings of European
Conference on Object-Oriented Programming. (1997)

2. Wirth, N.: Program Development by Stepwise Refinement. Communications of
the ACM 14 (1971)

3. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
4. Parnas, D.L.: Designing Software for Ease of Extension and Contraction. IEEE

Transactions on Software Engineering SE-5 (1979)
5. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE

Transactions on Software Engineering 30 (2004)
6. Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Pro-

gramming and Aspects. In: Proceedings of International Symposium on Founda-
tions of Software Engineering. (2004)

7. Lopez-Herrejon, R., Batory, D., Lengauer, C.: A Disciplined Approach to Aspect
Composition. In: Proceedings of ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation. (2006)

8. McEachen, N., Alexander, R.T.: Distributing Classes with Woven Concerns: An
Exploration of Potential Fault Scenarios. In: Proceedings of International Confer-
ence on Aspect-Oriented Software Development. (2005)

9. Gybels, K., Brichau, J.: Arranging Language Features for more robust Pattern-
based Crosscuts. In: Proceedings of International Conference on Aspect-Oriented
Software Development. (2003)

10. Kiczales, G., Mezini, M.: Aspect-Oriented Programming and Modular Reasoning.
In: Proceedings of International Conference on Software Engineering. (2005)

11. Aldrich, J.: Open Modules: Modular Reasoning about Advice. In: Proceedings of
European Conference on Object-Oriented Programming. (2005)

12. Apel, S., et al.: FeatureC++: On the Symbiosis of Feature-Oriented and Aspect-
Oriented Programming. In: Proceedings of Generative Programming and Compo-
nent Engineering. (2005)

13. Apel, S., Leich, T., Saake, G.: Aspectual Mixin Layers: Aspects and Features in
Concert. In: Proceedings of International Conference on Software Engineering.
(2006)

14. Apel, S., Leich, T., Saake, G.: Aspect Refinement and Bounding Quantification in
Incremental Designs. In: Proceedings of Asia-Pacific Software Engineering Confer-
ence. (2005)

15. Bracha, G., Cook, W.: Mixin-Based Inheritance. In: Proceedings of European Con-
ference on Object-Oriented Programming and International Conference on Object-
Oriented Programming Systems, Languages and Applications. (1990)

16. Mezini, M., Ostermann, K.: Conquering Aspects with Caesar. In: Proceedings of
International Conference on Aspect-Oriented Software Development. (2003)

17. Rajan, H., Sullivan, K.J.: Classpects: Unifying Aspect- and Object-Oriented Lan-
guage Design. In: Proceedings of International Conference on Software Engineer-
ing. (2005)

18. Taivalsaari, A.: On the Notion of Inheritance. ACM Computing Surveys 28 (1996)
19. Ostermann, K., Mezini, M., Bockisch, C.: Expressive Pointcuts for Increased Mod-

ularity. In: Proceedings of European Conference on Object-Oriented Programming.
(2005)

20. Lieberherr, K.: Controlling the Complexity of Software Designs. In: Proceedings
of International Conference on Software Engineering. (2004)

21. Batory, D., Liu, J., Sarvela, J.N.: Refinements and Multi-Dimensional Separation of
Concerns. In: Proceedings of International Symposium on Foundations of Software
Engineering. (2003)

22. Apel, S., Böhm, K.: Towards the Development of Ubiquitous Middleware Product
Lines. In: ASE Workshop on Software Engineering and Middleware. (2005)

23. Cardone, R., et al.: Using Mixins to Build Flexible Widgets. In: Proceedings of
International Conference on Aspect-Oriented Software Development. (2002)

24. Batory, D., Thomas, J.: P2: A Lightweight DBMS Generator. Journal of Intelligent
Information Systems 9 (1997)

25. Batory, D., et al.: Creating Reference Architectures: An Example from Avionics.
In: Proceedings of Symposium on Software Reusability. (1995)

26. Hanenberg, S., Schmidmeier, A.: Idioms for Building Software Frameworks in
AspectJ. In: AOSD Workshop on Aspects, Components, and Patterns for Infras-
tructure Software. (2003)

27. DeMichiel, G., Gabriel, R.P.: The Common Lisp Object System: An Overview. In:
Proceedings of European Conference on Object-Oriented Programming. (1987)

28. Hendren, L., et al.: The abc Scanner and Parser, Including an LALR(1)
Grammar for AspectJ. Programming Tools Group, Oxford University. (2004)
http://abc.comlab.ox.ac.uk/documents/scanparse/.

29. Jagadeesan, R., Jeffrey, A., Riely, J.: A Calculus of Untyped Aspect-Oriented Pro-
grams. In: Proceedings of European Conference on Object-Oriented Programming.
(2003)

30. Igarashi, A., Pierce, B.C., Wadler, P.: Featherwieght Java: A Minimal Core Calcu-
lus for Java and GJ. ACM Transactions on Programming Languages and Systems
23 (2001)

31. Avgustinov, P., et al.: abc: An Extensible AspectJ Compiler. In: Proceedings of
International Conference on Aspect-Oriented Software Development. (2005)

32. Tucker, D., Krishnamurthi, S.: Pointcuts and Advice in Higher-Order Languages.
In: Proceedings of International Conference on Aspect-Oriented Software Devel-
opment. (2003)

33. Ernst, E.: Family Polymorphism. In: Proceedings of European Conference on
Object-Oriented Programming. (2001)

34. Hanenberg, S., Unland, R.: Parametric Introductions. In: Proceedings of Interna-
tional Conference on Aspect-Oriented Software Development. (2003)

35. Lohmann, D., Blaschke, G., Spinczyk, O.: Generic Advice: On the Combination of
AOP with Generative Programming in AspectC++. In: Proceedings of Generative
Programming and Component Engineering. (2004)

36. Kniesel, G., Rho, T., Hanenberg, S.: Evolvable Pattern Implementations Need
Generic Aspects. In: Proceedings of ECOOP Workshop on Reflection, AOP and
Meta-Data for Software Evolution. (2004)

37. Loughran, N., Rashid, A.: Framed Aspects: Supporting Variability and Configura-
bility for AOP. In: Proceedings of International Conference on Software Reuse.
(2004)

38. Hanenberg, S., Unland, R.: Using and Reusing Aspects in AspectJ. In: OOPSLA
Workshop on Advanced Separation of Concerns in OO Systems. (2001)

