
Family-Based Deductive Verification
of Software Product Lines

Thomas Thüm
University of Magdeburg

Germany

Ina Schaefer
University of Braunschweig

Germany

Sven Apel
University of Passau

Germany

Martin Hentschel
University of Darmstadt

Germany

ABSTRACT
A software product line is a set of similar software products
that share a common code base. While software product
lines can be implemented efficiently using feature-oriented
programming, verifying each product individually does not
scale, especially if human effort is required (e.g., as in in-
teractive theorem proving). We present a family-based ap-
proach of deductive verification to prove the correctness of
a software product line efficiently. We illustrate and eval-
uate our approach for software product lines written in a
feature-oriented dialect of Java and specified using the Java
Modeling Language. We show that the theorem prover KeY
can be used off-the-shelf for this task, without any modi-
fications. Compared to the individual verification of each
product, our approach reduces the verification time needed
for our case study by more than 85 %.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication; D.2.13 [Software Engineering]: Reusable Soft-
ware—Domain engineering

General Terms
Reliability, Verification

Keywords
Product-line analysis, software product lines, program fam-
ilies, deductive verification, theorem proving

1. INTRODUCTION
A challenging task in software engineering is to develop

reuse strategies for software. Software product-line engi-
neering aims at reuse across similar software products [13,
14]. A software product line is a set of software-intensive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GPCE’12, September 26–27, 2012, Dresden, Germany.
Copyright 2012 ACM 978-1-4503-1129-8/12/09 ...$15.00.

systems that share a common code base [13]. The prod-
ucts of a software product line are distinguished in terms of
features. A feature is an end-user-visible program character-
istic [20]. Generative programming is an approach to imple-
ment product lines such that each product can be derived
automatically based on a feature selection [14]. We illus-
trate our approach using feature-oriented programming, an
instance of generative programming, in which features are
made explicit in design and code [29, 8].

Software reuse increases the dependability of software, if
the behavior of reused software is specified explicitly [19].
Design by contract is a technique to formally specify the be-
havior of software along with source code [27]. In essence,
programmers annotate methods with contracts. A contract
consists of preconditions the caller needs to ensure and post-
conditions the caller can rely on. The Java Modeling Lan-
guage (JML) supports contracts in Java, which can be used
for documentation generation, runtime assertion checking,
and deductive verification [11]. We focus on deductive veri-
fication of JML contracts using the theorem prover KeY [9].

Software product lines challenge existing verification tech-
niques [33, 24, 6, 12, 32]. A simple strategy to verify a
software product line is to generate and verify each prod-
uct separately—pursuing a product-based strategy [33]. But
this strategy often leads to highly redundant verification
tasks, and scales only for product lines with a small num-
ber of products. Especially for interactive theorem prov-
ing, a product-based strategy does not involve only redun-
dant computations, but also redundant human interaction
for completing the verification. Apart from that, it is often
not even possible to generate all software products, due to
their large number, as for example, for the Linux kernel [31].

A recent idea is to apply verification to the product-line’s
code base (instead of to all generated products) in order
to omit redundant analyses—pursuing a family-based strat-
egy [33]. Family-based strategies have been proposed for
the analysis and verification of software product lines using
type checking and model checking [33]. In principle, there
are two family-based approaches: First, a new tool is built or
an existing verification tool is adapted to incorporate both
the code base and variability [15, 16, 24, 12]. Second, the
whole software product line is encoded as a single meta-
product in the input language of an existing verification tool
using variability encoding [28, 6]; the metaproduct simulates
the behavior of all individual products of the product line in
question. We use the second approach as it does not involve
to build new verification tools —which need to be trusted—

and apply variability encoding to program verification by
theorem proving. In summary, we make the following con-
tributions:

• We propose the first family-based, deductive verifica-
tion approach that operates on the product line’s code
base, and that takes variability into account.

• We discuss and illustrate how to apply variability en-
coding to programs or libraries; previous work has fo-
cused on stand-alone applications only [6].

• We apply variability encoding not only to code, but
also to specifications; we translate the specifications
given for each feature into a metaspecification contain-
ing the specification of all products.

• By means of a case study, we demonstrate how to use
the theorem prover KeY as-is to verify software prod-
uct lines and evaluate the efficiency of our approach.

2. BACKGROUND
In this section, we introduce the underlying concepts of

our approach. We describe how feature models specify valid
combinations of features, and how feature-oriented program-
ming can be used to develop software product lines.

2.1 Feature Model
We distinguish the products of a software product line by

means of features, but not all combinations of features may
lead to valid products. For example, a software product line
may support different platforms such as Linux and Windows.
When modeling these platforms as features, it is often invalid
to select both features for the same product.

A feature model is a hierarchical structure defining all fea-
tures of a product line and their valid combinations [20].
Each feature may have subfeatures that are either optional,
mandatory, or belong to a group. Common group types
are alternative (exactly one of the subfeatures needs to be
selected) and or (at least one of the subfeatures needs to
be selected) [7]. Whenever a feature is selected, its parent
feature is selected, as well.

Example. As a running example, we use a product line
of banking software. Each product of this product line is
a software to manage a bank account, but products differ
in the individual features they provide. In Figure 1, we il-
lustrate the features and their valid combinations. Feature
BankAccount provides a rudimentary bank account storing
the current balance. Feature Overdraft indicates whether
the bank allows their customers to withdraw more money
from the account than actually available, if the resulting
negative balance is within an overdraft limit. Feature Inter-
est states whether the customer gets interests, and feature
InterestEstimation provides a calculation of the expected in-
terest for the current year. Feature CreditWorthiness allows
the bank to assess whether a customer may get a credit of a
certain amount. Finally, feature DailyLimit allows the bank
to limit the daily withdrawal. All features can be combined
arbitrarily except that feature InterestEstimation requires
feature Interest. Hence, the feature model describes 24 valid
combinations of features (i.e., 24 products). �

For automated reasoning, feature models can also be rep-
resented using propositional formulas [7]. A boolean variable

BankAccount

Overdraft Interest

InterestEstimation

CreditWorthiness DailyLimit

Legend:

Optional

Figure 1: A feature model specifying the valid com-
binations of features in a product line of banking
software.

is used for each feature, and the propositional formula eval-
uates to true, if and only if the combination of features is
valid. Every relation between a feature and its subfeatures
is translated into a propositional formula, which are then
conjoined to a large formula representing the whole feature
model [7]. We give a propositional formula for our example:

BankAccount

∧ (Overdraft⇒ BankAccount)

∧ Interest⇒ BankAccount

∧ (CreditWorthiness⇒ BankAccount)

∧ (DailyLimit⇒ BankAccount)

∧ (InterestEstimation⇒ Interest)

2.2 Feature-Oriented Programming
The aim of feature-oriented programming is to enable de-

velopers to automatically generate products of a software
product line based on a selection of features [29, 8]. A key
concept is to make features explicit in design and code in
terms of feature modules (one module per feature). In a
Java world, a feature module is a set of classes and class
refinements covering the implementation of a certain fea-
ture. A class refinement refines an existing class by adding
new members such as methods and fields, and by apply-
ing method refinements. A method refinement overrides an
existing method. A software product is generated by com-
posing the feature modules according to a given feature se-
lection [8]. Typically, there is a total order of all feature
modules for composition.

Example. In Figure 2, we show the code of three feature
modules for our running example (ignore comments in source
code for now). Feature module BankAccount introduces two
standard Java classes. Class Account stores the current bal-
ance of a bank account and enables to withdraw or deposit
money using method update(), as long as the balance re-
mains positive. For brevity, class Application only stores
one object of type Account and provides method nextDay(),
which is assumed to be called once at midnight.

Feature module Overdraft refines the value of the constant
OVERDRAFT_LIMIT in class Account to permit the account
holder to overdraw his account up to a balance of −5.000
e. Composing this feature module with feature module
BankAccount replaces the definition of the constant.

Feature module DailyLimit refines class Account to store
the total withdraw of the day. It provides a new imple-
mentation of method update() calling the original method
using keyword original (Line 47). When composing all

three feature modules, the method introduction from fea-
ture BankAccount is renamed, and the keyword original is
replaced by a call to the renamed method. Class Applica-

tion is refined to reset the withdraw every day. �

3. FEATURE-BASED SPECIFICATION
The theorem prover KeY enables a user to verify that a

given Java program fulfills its JML specification.1 As we
want to verify software product lines using KeY, we need an
approach to specify the intended behavior of the entire soft-
ware product line, not only of a single product. In previous
work, we discussed several approaches for the specification
of software product lines [35]. Here, we use explicit contract
refinement, because it is expressive and intuitive for pro-
grammers familiar with feature-oriented programming [35].
We illustrate how JML is used for the specification of object-
oriented Java programs. Then, we discuss how we extend
JML for the specification of feature-oriented Java programs.

3.1 JML for Object-Oriented Programming
The idea of design by contract is to enrich programs with

specifications, given in a formal language, that can be pro-
cessed by tools [27]. In object-oriented programming, design
by contract can be used to specify the intended behavior
of methods in terms of method contracts and class invari-
ants. A method contract is basically a pair of precondition
and postcondition. The precondition states what the caller
needs to ensure and the method can rely on; the postcondi-
tion states what the method needs to ensure and what the
caller can rely on. A class invariant formulates properties
that the constructor needs to establish and that all methods
of a class need to maintain, except those methods explicitly
marked as helper methods by the programmer.

JML enables the specification of method contracts and
class invariants in Java. JML specifications are defined in-
side special comments to ensure that standard Java tools
such as editors and compilers can still be used [25]. The
syntax of JML is similar to the syntax of expressions in
Java, but contains further keywords identifying precondi-
tions, postconditions, and invariants, amongst others.

Example. We give examples of invariants and postcondi-
tions in the feature module BankAccount shown in Figure 2.
This feature module contains standard Java classes with
JML annotations. In Lines 3–4, we define an invariant stat-
ing that the balance is within the overdraft limit. In Lines 7–
10, we define a postcondition for method update specifying
how the balance is altered. Line 21 defines an invariant stat-
ing that field account must always be initialized. �

3.2 JML for Feature-Oriented Programming
In feature-oriented programming, a feature module may

also contain class and method refinements, raising the ques-
tion how to write a JML specification for them. According
to explicit contract refinement [35], a refinement of a class
may introduce new invariants to this class and a method
refinement may refine existing contracts in a similar man-
ner as method implementations can be refined. We extend

1More precisely, KeY enables the verification of Java Card
programs (a subset of Java programs) with some extensions
such as support for strings.

1 class Account { BankAccount
2 final static int OVERDRAFT_LIMIT = 0;
3 //@ invariant balance >=
4 //@ OVERDRAFT_LIMIT;
5 int balance = 0;
6 /∗@
7 @ ensures (!\result ==>
8 @ balance == \old(balance))
9 @ && (\result ==>

10 @ balance == \old(balance) + x);
11 @∗/
12 boolean update(int x) {
13 int newBalance = balance + x;
14 if (newBalance < OVERDRAFT_LIMIT)
15 return false;
16 balance = newBalance;
17 return true;
18 }
19 }
20 class Application {
21 //@ invariant account != null;
22 Account account = new Account();
23 void nextDay() {}
24 }

25 refines class Account { Overdraft
26 final static int OVERDRAFT_LIMIT =
27 −5000;
28 }

29 refines class Account { DailyLimit
30 final static int DAILY_LIMIT = −1000;
31 //@ invariant withdraw >= DAILY_LIMIT;
32 int withdraw = 0;
33 /∗@
34 @ ensures \original
35 @ && (!\result ==>
36 @ withdraw == \old(withdraw))
37 @ && (\result ==>
38 @ withdraw<=\old(withdraw));
39 @∗/
40 boolean update(int x) {
41 int newWithdraw = withdraw;
42 if (x < 0) {
43 newWithdraw += x;
44 if (newWithdraw < DAILY_LIMIT)
45 return false;
46 }
47 if (!original(x))
48 return false;
49 withdraw = newWithdraw;
50 return true;
51 }
52 }
53 refines class Application {
54 //@ ensures account.withdraw == 0;
55 void nextDay() {
56 original();
57 account.withdraw = 0;
58 }
59 }

Figure 2: Three feature modules of our bank ac-
count product line: BankAccount, Overdraft, and
DailyLimit.

JML by the keyword original that may be used only in pre-
conditions and postconditions of method refinements. When
composing feature modules and their JML specification, key-
word original is replaced by the precondition or postcon-
dition of the original method, respectively.

Example. The features Overdraft and DailyLimit in Fig-
ure 2 refine the specification of feature module BankAccount.
Feature Overdraft refines the invariant shown in Lines 3–
4 indirectly, by changing the constant OVERDRAFT_LIMIT.
Thus, the selection of feature Overdraft, does not only influ-
ence program execution, but also the specification. Feature
DailyLimit adds an invariant to class Account stating that
the total withdrawal of the day is within the limit (Line 31).
The postcondition of the refinement of method update()

states that the total withdrawal of the day is updated cor-
rectly, and that the postcondition of the original method is
maintained (Lines 34–38). The refinement of method next-

Day() is annotated with a postcondition ensuring that the
withdrawal has been reset (Line 54). �

4. FAMILY-BASED VERIFICATION
The underlying idea of our approach is to generate a me-

taproduct for a given software product line that contains
the implementation and specification of every feature, and
thus can simulate every product. We propose to verify the
metaproduct (family-based) instead of verifying all products
separately (product-based). From the verification of the me-
taproduct, we can conclude that every product of the prod-
uct line fulfills its specification. Similar approaches were
successful for model checking [28, 6].

For verification, we need to trust in the verification tool.
Hence, we want to use the theorem prover KeY as-is, so the
metaproduct must be a Java program with JML specifica-
tions (nonetheless representing all products of the software
product line). This way, we can rely on an existing theorem
prover known from single-system engineering, but we have
to guarantee that the metaproduct is constructed correctly.

In the following, we describe how to generate a metaprod-
uct from a set of feature modules, feature specifications, and
a feature model.

4.1 Variability Encoding of Feature Modules
The transformation of feature modules into a metaproduct

(a.k.a. product simulator) was proposed by Apel et al. [6],
which we adapt for our purpose. For each feature, a new
variable is introduced, indicating whether the feature is se-
lected or not. The feature variable is then used to switch
between different behaviors depending on the selection of
the feature. In feature-oriented programming, we select and
compose features before compile time, but the metaproduct
contains the code of the whole product line and uses dy-
namic branching (i.e., Java’s if-then-blocks) to cover the
behavior of all feature combinations.

All feature modules of the product line are composed by
merging class introductions with their respective class re-
finements (the algorithm is described elsewhere in detail [6]).
The non-trivial case is how to handle method refinements,
because the method body of a refined method depends on
the feature selection. In a nutshell, we generate a distinct
method for every method introduction and method refine-
ment, where refined methods are renamed to distinguish
them in the resulting metaproduct. At the beginning of

each method refinement, we add a dynamic branch check-
ing whether the corresponding feature of the refinement is
selected or not. If the feature is selected, we continue with
the implementation that this feature has introduced for the
method, and if not, we call the original method (i.e., the
previous method refinement, if existent, or the method in-
troduction, otherwise).

Example. Figure 3 illustrates an excerpt of the metaprod-
uct generated based on the feature modules shown in Fig-
ure 2. Class Account contains the fields balance, withdraw,
OVERDRAFT_LIMIT, and DAILY_LIMIT, as defined in respec-
tive feature modules. Method update(), defined in feature
module BankAccount, is renamed (Lines 14–21). In the re-
finement of method update(), defined originally in feature
module DailyLimit, a new branching statement is added as
first statement (Lines 50–63). If feature DailyLimit is not
selected, the original method is called and then the method
returns. Otherwise, the method is executed as defined in
feature module DailyLimit. �

Similarly to Kästner et al. [21], we assume type unifor-
mity for all feature modules. That is, (a) all valid combina-
tions of feature modules are well-typed and (b) the compo-
sition of all feature modules is well-typed. The first condi-
tion is necessary as only well-typed programs can be veri-
fied. The second condition is necessary as mutually exclusive
features may introduce incompatible classes or class refine-
ments, which may cause type errors in the metaproduct.
For example, two mutually exclusive feature modules may
introduce a field to a certain class with the same name but
of incompatible types. In this case, the metaproduct is ill-
typed, even though every valid product is well-typed. The
problem can be solved by renaming based on a variability-
aware type system [2]. However, mutually exclusive features
introducing incompatible types are rare in feature-oriented
product lines [3], and did not occur in our case study.

Furthermore, we assume that there is no name shadow-
ing in the resulting metaproduct. Name shadowing can
occur when a field of a class has the same name as a lo-
cal variable (lexical shadowing) or if a field is defined in a
class and its superclass (inheritance-based shadowing). For
an example consider Figure 2 again: if method nextDay()

in feature module DailyLimit would declare a variable ac-

count, then the statement in Line 57 would access the local
variable instead of field account. With name shadowing, a
certain statement can have different meanings depending on
the feature selection, but only one meaning in the metaprod-
uct. That is, the metaproduct does not cover the behavior of
all products. Fortunately, name shadowing can be detected
statically. However, it is part of future work to handle name
shadowing in metaproducts correctly.

4.2 Variability Encoding of Specifications
Since we want to formally verify whether the metaprod-

uct fulfills its specification, we also need to transform the
specifications given for each feature module into one large
metaspecification. The metaspecification must be a valid
JML specification with respect to the metaproduct, such
that we can use the theorem prover KeY for verification.

Method contracts are always generated together with their
method introduction or method refinement. Furthermore,
class invariants are also included in their respective class.

1 class Account {
2
3 // SOURCE CODE FROM FEATURE BankAccount
4
5 //@ invariant balance >=
6 //@ OVERDRAFT_LIMIT;
7 int balance = 0;
8 /∗@
9 @ ensures (!\result ==>

10 @ balance == \old(balance))
11 @ && (\result ==>
12 @ balance == \old(balance) + x);
13 @∗/
14 boolean /∗@ helper @∗/
15 update$$BankAccount(int x) {
16 int newBalance = balance + x;
17 if (newBalance < OVERDRAFT_LIMIT)
18 return false;
19 balance = newBalance;
20 return true;
21 }
22
23 // SOURCE CODE FROM FEATURE Overdraft
24
25 final static int OVERDRAFT_LIMIT =
26 FeatureModel.overdraft ? −5000 : 0;
27
28 // SOURCE CODE FROM FEATURE DailyLimit
29
30 final static int DAILY_LIMIT = −1000;
31 //@ invariant FeatureModel.dailyLimit
32 //@ ==> withdraw >= DAILY_LIMIT;
33 int withdraw = 0;
34 /∗@
35 @ ensures !FeatureModel.dailyLimit==>
36 @ (!\result ==>
37 @ balance == \old(balance))
38 @ && (\result ==>
39 @ balance == \old(balance)+x);
40 @ ensures FeatureModel.dailyLimit ==>
41 @ ((!\result ==>
42 @ balance == \old(balance))
43 @ && (\result ==>
44 @ balance == \old(balance)+x))
45 @ && (!\result ==>
46 @ withdraw == \old(withdraw))
47 @ && (\result ==>
48 @ withdraw <= \old(withdraw));
49 @∗/
50 boolean update(int x) {
51 if (!FeatureModel.dailyLimit)
52 return update$$BankAccount(x);
53 int newWithdraw = withdraw;
54 if (x < 0) {
55 newWithdraw += x;
56 if (newWithdraw < DAILY_LIMIT)
57 return false;
58 }
59 if (!update$$BankAccount(x))
60 return false;
61 withdraw = newWithdraw;
62 return true;
63 }
64
65 }

Figure 3: Metaproduct including metaspecification
for the class Account defined in feature BankAccount
and its two class refinements from the features Over-
draft and DailyLimit as shown in Figure 2.

Thus, every method of the metaproduct will have the same
specification as defined in the respective feature.

The resulting specifications are not yet valid JML speci-
fications as they may contain references to refined precon-
ditions or postconditions using the keyword original (e.g.,
as in Figure 2, Line 34). Hence, we replace every occurrence
of original by the refined precondition or postcondition,
respectively. The order of replacement is important; it is
necessary to start with method introductions and then to
continue with every method refinement in the refinement
chain (recall, there is a total order of feature modules).

The specifications retrieved using this procedure are valid
JML specifications, but do not consider variability (i.e., spec-
ifications do not depend on the feature selection). However,
our approach for the specification of feature modules actu-
ally supports the definition of specifications that are only
satisfied when a certain feature is selected. Hence, we pro-
pose to use the feature variables introduced for implemen-
tation also in the specifications. The resulting metaproduct
does then also contain a metaspecification, against which we
can check the correctness of the metaproduct.

Before replacing occurrences of the keyword original, we
need to apply some additional rewritings. First, every class
invariant inv introduced in feature module f is rewritten to
the implication f ⇒ inv to indicate that the invariant inv
is assumed only to hold if feature f is selected. Similarly,
every precondition pre and postcondition post is replaced by
f ⇒ pre and f ⇒ post, respectively. A simple optimization
is to keep each specification as-is that is specified in a core
feature. A core feature is a feature that is included in every
product and thus its specification must be fulfilled by every
product.

But so far, the semantics of method contracts in the me-
taproduct is not the same as for the feature modules. For in-
stance, given that we have a method introduction mi in fea-
ture module f and a method refinement mr for mi in feature
module g. If the feature variable for g has the value false,
precondition and postcondition of the resulting method al-
ways evaluate to true. Hence, there are essentially no pre-
condition and postcondition the method and caller can rely
on, but we may have defined precondition and postcondi-
tion for mi in feature module f . Thus, it is also necessary
to specify the contract if a certain feature is not selected.

Consequently, we propose to generate method contracts as
follows. Given precondition pre and postcondition post of a
certain method refinement defined in feature module f , we
transform the precondition into (f ⇒ pre)∧(¬f ⇒ pre′) and
the postcondition into (f ⇒ post) ∧ (¬f ⇒ post′), in which
pre′ refers to the precondition and post′ to the postcondition
of the original method. If there is no original method (i.e.,
for method introductions), only precondition f ⇒ pre and
postcondition f ⇒ post are generated for the metaproduct.

Example. The metaproduct shown in Figure 3 also con-
tains its metaspecification. The invariant from feature mod-
ule DailyLimit is transformed into an implication stating
that it is established only if feature DailyLimit is selected
(Lines 31–32). In contrast, the invariant from feature mod-
ule BankAccount is not transformed into an implication, be-
cause feature BankAccount is a core feature and its specifi-
cation must be fulfilled by all products (Lines 5–6). For the
same reason, the contract of the method introduction up-

date() is copied as-is. The only change is that this method is
annotated with the keyword helper to indicate that it does

not need to fulfill class invariants. Note that all renamed
methods must be marked as helper methods, because they
are not intended to fulfill all class invariants.

The transformation for the contract of method refinement
update(), defined in feature module DailyLimit, is more
complex. We generate two postconditions stating the be-
havior for products containing the feature DailyLimit and
those not containing it. If feature DailyLimit is not selected,
the method guarantees the original postcondition as defined
in feature module BankAccount. Hence, we copy the post-
condition from method update$$BankAccount() (Lines 35–
39). Otherwise, if feature DailyLimit is selected, the method
guarantees the contract as defined in feature module Dai-
lyLimit, in which we need to replace the keyword original

by the postcondition from method update$$BankAccount()

(Lines 40–48). �

4.3 Variability Encoding of Feature Models
We illustrated how to transform feature modules and their

specifications into a metaproduct, but we ignored how to ac-
tually initialize the variables representing each feature with
values true or false. The idea is to initialize the feature
variables nondeterministically at runtime. Consequently, a
static verification tool cannot make assumptions on the fea-
ture selection and thus verifies all possible combinations [6].

In Java, the point where the program starts may not be
unique. For example, a Java program may have several main
methods in different classes. Alternatively, we may also want
to verify a Java library and basically every static method or
constructor may be the entry point of the program. Our
solution is to use Java’s class loading for nondeterministic
initialization of feature variables. We add a class containing
all feature variables. When this class is accessed for the first
time, the class is loaded and random values are assigned
to each feature variable, to make sure that the values are
arbitrary. Hence, verification tools cannot rely on particular
values and all feature combinations are verified.

Finally, our metaproduct should cover only the products
of our software product line defined in the corresponding
feature model. So far, we would try to verify all combina-
tions of features, which may fail as certain features are not
designed or intended to be compatible. To overcome this
limitation, we check whether the random feature selection
is valid by transforming the feature model into an invariant
consisting of a propositional formula.

Example. In Figure 4, we illustrate the class that encodes
our example feature model. Feature variables are modeled as
static fields and initialized in a static constructor using ran-
dom values. The dependencies between features are modeled
using a propositional formula, which is encoded as a Java ex-
pression (Lines 16–21). If the random initialization is invalid
according to the feature model, the program is terminated
(Lines 11–12). Otherwise, we can assume the feature model
as an invariant (Line 2). �

5. EVALUATION
We applied our approach to the verification of a product

line of bank accounts, which we discussed already partially
in previous sections as our running example.2 Next, we de-
scribe our tool setting, the actual case study, and our results.

2The source code of all feature modules is available online:
http://spl2go.cs.ovgu.de/

1 public class FeatureModel {
2 //@ static invariant fm();
3 public final static boolean
4 bankAccount, overdraft,
5 interest, interestEstimation,
6 creditWorthiness, dailyLimit;
7
8 static {
9 bankAccount = random();

10 //initialization of other variables
11 if (!fm())
12 System.exit(1);
13 }
14
15 /∗@ pure @∗/ boolean fm() {
16 return bankAccount
17 && (!overdraft||bankAccount)
18 && (!interest||bankAccount)
19 && (!creditWorthiness||bankAccount)
20 && (!dailyLimit||bankAccount)
21 && (!interestEstimation||interest);
22 }
23
24 private static boolean random() {
25 return Math.random() < 0.5;
26 }
27 }

Figure 4: Variability encoding of the feature model
given in Figure 1.

MonKeY.
The theorem prover KeY can be used to prove that a Java

program fulfills its JML specification [9]. KeY comes with
a graphical user interface that allows a user to select and
prove that each method fulfills its method contract including
specified class invariants. The user is able to inspect proof
obligations that KeY generates for a given Java program
with JML specification. To verify a proof obligation, the
user can apply inference rules to split the proof obligation
or to transform it into assumptions, whereas KeY checks
that each rule application is admissible. Furthermore, KeY
uses heuristics to find proofs automatically. But, due to
the undecidability of the underlying verification problem,
we cannot conclude that there is no proof if KeY is not able
to find one. Thus, the interactive mode is helpful when KeY
is not able to complete a proof automatically.

The workflow in KeY is cumbersome, if a user wants to
verify the correctness of the overall program. The reason is
that while many proof obligations can be proved automat-
ically using KeY, the user needs to select every proof obli-
gation manually. To improve usability, we implemented the
tool MonKeY as a batch-mode extension for KeY.3 MonKeY
gets a Java program with JML specification as input and
uses KeY to try to prove every proof obligation automati-
cally. The output of MonKeY is a table containing all proof
obligations stating whether they are proved or not, and if
proved, the time needed for proving and the proof complex-
ity in terms of nodes and branches. MonKeY minimizes the
user interactions required to prove the correctness of the
overall program assuming that proofs can be found auto-
matically. If MonKeY fails to complete a proof, the user can
interactively complete the proof using KeY.

3http://www.key-project.org/download/\#monkey

1 5 10 15 20 Metaproduct
0

5

10

Products

T
im

e
in

se
co

n
d

s
Deductive verification

Parsing and type checking

Figure 5: Time needed to verify each product sepa-
rately (left bars), and the time needed to verify the
metaproduct (right bar).

Verifying the Bank Account Product Line.
The feature diagram given in Figure 1 describes the bank

account product line that we verified in our case study. We
implemented six feature modules (excerpts shown in Fig-
ure 2) that can be used to generate 24 different products
with corresponding specifications. We transformed all fea-
ture modules, their specifications, and the feature model
into a single metaproduct. Then, we verified the metaprod-
uct using MonKeY. The verification was time-consuming as
our initial feature specifications and feature modules con-
tained several errors. Finally after fixing all errors, we were
able to prove all contracts automatically.4

After completely verifying the metaproduct, we generated
and verified each product for comparison. All products have
been verified fully automatically. In particular, we did not
find any errors in specifications or implementations that the
verification of the metaproduct missed (i.e., the metaprod-
uct generation is correct). For the metaproduct and all prod-
ucts, we measured the time needed for automatic verification
and the complexity of the resulting proofs.

Verification Time.
In Figure 5, we show the time needed to verify all 24

products. We measured all values using MonKeY and dis-
tinguish between the time needed (a) for parsing and type
checking the JML-annotated Java program and (b) for au-
tomatically proving all contracts. We used a notebook with
Intel Core i7-2620M 2.70 GHz processor and 8 GB RAM.
We computed average values on ten runs to avoid computa-
tion bias. The verification time per product ranges between
1 s and 6.3 s. Overall, verifying all products separately took
83.5 s. In contrast, verifying our metaproduct took only
12.3 s. Thus, our approach saves more than 85 % of com-
putation time for the bank account product line.

In Figure 6, we compare the overall effort of family-based
verification with that of product-based verification when
the number of features grows. To assess how the effort

4We used the following parameters for verification that
MonKeY passes to KeY: method_treatment=expand, de-
pendency_contracts=on, query_treatment=on, and arith-
metic_treatment=defops.

2 (2) 3 (4) 4 (8) 5 (12) 6 (24)

0

20

40

60

80

Number of features (number of products)

T
im

e
in

se
co

n
d

s

Family-based verification

Product-based verification

Figure 6: Time needed for family-based verification
compared to product-based verification.

changes when adding new features, we measured subsets of
our bank account product line. We generated and measured
all products and the metaproduct for the features BankAc-
count and DailyLimit. Then, we iteratively added the re-
maining features in the following order and repeated our
measurements: CreditWorthiness, Interest, InterestEstima-
tion, Overdraft. With the product-based approach, the veri-
fication time almost doubles with every new feature and thus
induces an exponential effort in the number of features. In
contrast, the effort for our family-based approach appears to
be rather linear in the number of features. Hence, for large
software product lines, our approach may save even more
than 85 % of the verification effort.

Proof Complexity.
In Figure 7, we illustrate the complexity of the proof obli-

gations in terms of proof steps (called nodes in KeY) and
proof branches. The number of proof steps represents the
number of inference rules applied to prove a certain proof
obligation. The number of branches indicates how often a
proof obligation was split into more than one other proof
obligation (a.k.a. case distinction). The most complex proof
for the metaproduct took 3.4 s to prove and incorporates
1350 proof steps and 26 branches. The most complex proofs
for the products took up to 1.4 s each and incorporates up
to 607 proof steps and 20 branches. So, the number of proof
steps for the metaproduct is twice as high as for the most
complex product, while the number of branches is about the
same as for the most complex product.

6. DISCUSSION
In our approach, we use all feature modules as input to

generate a metaproduct, which is then used for verification.
The problem with verifying generated code is that the user
may need to understand the generated code. This is not nec-
essary for automatic theorem proving, but when user inter-
action is required. This is a limitation of our approach, but
this limitation also applies to the standard product-based
approach, in which every generated software product is ver-
ified separately. It would be useful if theorem provers could
be used directly for verifying feature modules, but this is not
possible with current theorem-prover technology. We tried

0 200 400 600 800 1,000 1,200 1,400
0

10

20

Proof steps (nodes)

P
ro

o
f

b
ra

n
ch

es
Metaproduct

All products

Figure 7: Proof complexity of proof obligations for
products and the metaproduct.

to alleviate this limitation by making the transformation
into a metaproduct as easy and intuitive as possible.

A general problem with variability encoding for verifica-
tion of product lines is that verification problems can become
large. Basically, it may happen that the verification of each
product is possible within certain memory restrictions, but
the verification of the metaproduct is impossible. One ad-
vantage of design by contract in this respect is that we can
actually verify a program by proving that every method ful-
fills its method contract including specified class invariants.
Similarly, with our approach, the verification of a software
product line consists of many small proof obligations for ev-
ery method. But still, the proof for a certain method in
the presence of variability is usually harder than verifying
the method of a single product. While in the worst case a
method may be refined by every feature resulting in complex
proof obligations, our experience is that such methods are
rare [35]. First, most methods are only introduced and not
refined at all [35]. Second, if a method is refined, then there
are usually just a small number of refinements [4].

Similarly, method contracts for the metaproduct can get
complex due to the transformation. But again, the situa-
tion that all features refine the very same method is rare [4,
35]. Furthermore, not every method refinement does actu-
ally refine the contract [35]. While we cannot generalize the
results from our case study to any software product line, our
experiences suggest that the complexity of method contracts
and the resulting proof obligations is manageable.

The theorem prover KeY and also many other JML-based
verification tools introduce some restrictions on the pro-
grams that can be verified. The reason is that all used
classes must be specified in JML, which is a problem when
using classes from the Java standard library. So far, only
parts of the Java standard library have been specified [11].
But, there is better support for Java Card programs, since
the Java Card library is almost fully specified [11]. In our
case study, we had to provide the method signature for
java.io.Math.random() to make it available in KeY.

Alternative features according to the feature model may
have contradictory specifications in terms of contracts or in-
variants. Our approach to generate the metaproduct can
actually handle contradictory specifications. Basically, this
is achieved by transforming each specification into an impli-

cation based on the selection of the according feature (see
Section 4). Thus, even if two specifications contradict each
other, the generated specifications do not contradict each
other when the according features are alternative according
to the feature model. Hence, the specifications of alternative
features can also be proved using our approach.

Our family-based approach of deductive verification is not
designed for type checking of software product lines. KeY
is able to detect type errors such as dangling method refer-
ences in Java programs as well as in JML specifications. By
checking our metaproduct in KeY, we are not able to detect
all type errors, because all methods contained in any fea-
ture module are contained in the metaproduct. Thus, our
approach should be combined with type checking of the soft-
ware product line. Fortunately, type errors can be efficiently
detected for software product lines [2, 21].

7. RELATED WORK

Variability Encoding for Model Checking.
Variability encoding has been proposed for family-based

model checking of software product lines [28, 6]. Post and
Sinz use variability encoding (configuration lifting) to verify
Linux device drivers implemented with C and preproces-
sor directives using the bounded model checker CBMC [28].
Similarly, Apel et al. use variablity encoding for feature
modules written in C to apply the symbolic model checker
CPAchecker [6]. Contrary to this work, they verify pro-
grams with a single main method as the sole program entry
point. We showed how to encode the feature model for Java
programs with multiple main methods or even Java libraries.

JML for Feature-Oriented Programming.
In previous work, we investigated the formal specifica-

tion of feature-oriented programs using contracts defined
in JML [35]. We presented and discussed five specifica-
tion approaches for feature-oriented programming and com-
pared them regarding strictness, expressiveness, complexity,
and their ability to avoid specification clones. By means
of case studies, we found that method refinements often
require the refinement of contracts, and that the refine-
ment of invariants can and should be avoided. Furthermore,
we proposed proof composition for deductive verification of
feature-oriented programs [34]. Contrary to this work, (a)
we aimed at interactive theorem proving using the proof as-
sistant Coq, and (b) we focused on composing proof scripts
rather then making the verification tool variability-aware.
Proof composition is not a family-based approach, as proof
scripts are written for every feature and must be checked
using the verification tool for every product. Finally, we
used JML for the detection of feature interactions pursuing
a product-based approach based on ESC/Java2 [30].

Contracts for Delta-Oriented Programming.
Contracts have also been discussed for delta-oriented pro-

gramming [10, 17]. Delta-oriented programming can be seen
as an extension of feature-oriented programming, in which
feature modules (delta modules) can also remove classes,
methods, and fields. Bruns et al. show how to verify each
product separately by reusing verification effort of previ-
ously verified products using delta-oriented slicing [10]. But
still, every product needs to be generated and verified, even

if the overall verification effort is reduced. Contrary to our
approach, verification still involves redundant computations,
because only one verified product is used for the verification
of each product. Hähnle and Schaefer present a deductive
verification approach relying on the Liskov principle [17].
They used the abstract behavioral specification language
to specify delta modules. Their compositional verification
principle enables the verification of each delta in isolation
and the conformance checking of all delta modules using a
family-based approach.

Contracts for Aspect-Oriented Programming.
In the last decade, design by contract has been applied to

aspect-oriented programming [23, 36, 26, 22, 1]. The aspect-
oriented around advice is similar to feature-oriented method
refinement, thus aspect-oriented programming can be seen
as a superset of feature-oriented programming [5]. The com-
munity working with aspect-oriented programming focuses
on modularity rather then variability. Thus, the absence of
aspects is usually not considered, while optional features in
feature-oriented programming are essential for variability in
software product lines. Using these approaches for the ver-
ification of software product lines usually requires to gener-
ate and verify each combination of aspects separately in a
product-based fashion. Contrary, our main goal is to avoid
redundant verification and thus to save verification effort.

Contracts for Context-Oriented Programming.
Context-oriented programming is used by Hirschfeld et al.

to implement dynamic contract layers [18]. Context-oriented
programming can be used to implement variability, whereas
the feature selection (context) can be changed at runtime.
Context-oriented programming is similar to feature-oriented
programming as method implementations depend on a cer-
tain context. In feature-oriented programming, the feature
selection is fix and must be known at compile-time already.
The idea of dynamic contract layers is that runtime assertion
checking is extended such that contracts can be activated or
deactivated during runtime. They assign contracts to con-
texts, which is similar to our definition of contracts for each
feature, but they do not tackle variability.

8. CONCLUSION
The success of software product-line engineering depends

not only on efficient implementation techniques, but also on
efficient analysis techniques. We present a family-based ap-
proach to verify software product lines using theorem prov-
ing. Our approach avoids redundant verification tasks, by
making the verification tool aware of the variability.

We presented how to apply variability encoding to feature
modules written in Java and their corresponding JML spec-
ifications. We showed how to generate a metaproduct that
simulates the behavior of all products and a correspond-
ing metaspecification describing the intended behavior of
all products. We evaluated our approach by means of a
case study using the theorem prover KeY. We compared our
family-based approach with a product-based approach ver-
ifying each product separately and found that verification
time can be reduced by more than 85 %.

In future work, we want to generalize our approach to
product lines that are not type uniform or that may contain
name shadowing, and to further JML language constructs.

Furthermore, we will formalize the generation of metaprod-
uct and metaspecification to prove soundness and complete-
ness of our approach. Finally, we plan to investigate other
specification approaches for feature modules and different
techniques for metaproduct generation.

9. ACKNOWLEDGMENTS
We thank Richard Bubel for comments on earlier drafts

and for assisting us with KeY. We gratefully acknowledge
our beneficial discussion with Erik Ernst. Schaefer’s work
is supported by the German Research Foundation (DFG –
SCHA 1635/2-1). Apel’s work is supported by the German
Research Foundation (DFG – AP 206/2, AP 206/4, and LE
912/13). Hentschel’s work is supported by the European
Union (EU – FP7-231620 HATS).

10. REFERENCES
[1] S. Agostinho, A. Moreira, and P. Guerreiro. Contracts

for Aspect-Oriented Design. In Proc. Workshop
Software Engineering Properties of Languages and
Aspect Technologies (SPLAT), pages 1:1–1:6, New
York, NY, USA, 2008. ACM.

[2] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer.
Type Safety for Feature-Oriented Product Lines.
Automated Software Engineering, 17(3):251–300, 2010.

[3] S. Apel, C. Kästner, and C. Lengauer.
Language-Independent and Automated Software
Composition: The FeatureHouse Experience. IEEE
Trans. Software Engineering (TSE), 2012. To appear.

[4] S. Apel, S. S. Kolesnikov, J. Liebig, C. Kästner,
M. Kuhlemann, and T. Leich. Access Control in
Feature-Oriented Programming. Science of Computer
Programming (SCP), 77(3):174–187, 2012.

[5] S. Apel, T. Leich, and G. Saake. Aspectual Feature
Modules. IEEE Trans. Software Engineering (TSE),
34(2):162–180, 2008.

[6] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and
D. Beyer. Detection of Feature Interactions using
Feature-Aware Verification. In Proc. Int’l Conf.
Automated Software Engineering (ASE), pages
372–375, Washington, DC, USA, 2011. IEEE.

[7] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In Proc. Int’l Software
Product Line Conference (SPLC), pages 7–20, Berlin,
Heidelberg, New York, London, 2005. Springer.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Trans. Software
Engineering (TSE), 30(6):355–371, 2004.

[9] B. Beckert, R. Hähnle, and P. Schmitt, editors.
Verification of Object-Oriented Software: The KeY
Approach. Springer, Berlin, Heidelberg, New York,
London, 2007.

[10] D. Bruns, V. Klebanov, and I. Schaefer. Verification of
Software Product Lines with Delta-Oriented Slicing.
In Proc. Int’l Conf. Formal Verification of
Object-Oriented Software (FoVeOOS), pages 61–75,
Berlin, Heidelberg, New York, London, 2011. Springer.

[11] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R.
Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll.
An Overview of JML Tools and Applications. Int’l J.
Software Tools for Technology Transfer (STTT),
7(3):212–232, 2005.

[12] A. Classen, P. Heymans, P.-Y. Schobbens, and
A. Legay. Symbolic Model Checking of Software
Product Lines. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 321–330, New York, NY,
USA, 2011. ACM.

[13] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, Boston, MA,
USA, 2001.

[14] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
ACM/Addison-Wesley, New York, NY, USA, 2000.

[15] A. Fantechi and S. Gnesi. Formal Modeling for
Product Families Engineering. In Proc. Int’l Software
Product Line Conference (SPLC), pages 193–202,
Washington, DC, USA, 2008. IEEE.

[16] A. Gruler, M. Leucker, and K. Scheidemann. Modeling
and Model Checking Software Product Lines. In Proc.
IFIP Int’l Conf. Formal Methods for Open
Object-based Distributed Systems (FMOODS), pages
113–131, Berlin, Heidelberg, New York, London, 2008.
Springer.

[17] R. Hähnle and I. Schaefer. A Liskov Principle for
Delta-oriented Programming. In Proc. Int’l Conf.
Formal Verification of Object-Oriented Software
(FoVeOOS), pages 190–207, Karlsruhe, Germany,
2011. Technical Report 2011-26, Department of
Informatics, Karlsruhe Institute of Technology.

[18] R. Hirschfeld, M. Perscheid, C. Schubert, and
M. Appeltauer. Dynamic Contract Layers. In Proc.
ACM Symposium on Applied Computing (SAC), pages
2169–2175, New York, NY, USA, 2010. ACM.

[19] J.-M. Jézéquel and B. Meyer. Design by Contract:
The Lessons of Ariane. IEEE Computer,
30(1):129–130, 1997.

[20] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
1990.

[21] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type
Checking Annotation-Based Product Lines. Trans.
Software Engineering and Methodology (TOSEM),
21(3), 2012. To appear.

[22] S. Katz. Aspect Categories and Classes of Temporal
Properties. In Trans. Aspect-Oriented Software
Development, pages 106–134, Berlin, Heidelberg, New
York, London, 2006. Springer.

[23] H. Klaeren, E. Pulvermueller, A. Rashid, and
A. Speck. Aspect Composition Applying the Design
by Contract Principle. In Proc. Int’l Symposium
Generative and Component-Based Software
Engineering (GCSE), pages 57–69, Berlin, Heidelberg,
New York, London, 2001. Springer.

[24] K. Lauenroth, K. Pohl, and S. Toehning. Model
Checking of Domain Artifacts in Product Line
Engineering. In Proc. Int’l Conf. Automated Software
Engineering (ASE), pages 269–280, Washington, DC,
USA, 2009. IEEE.

[25] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
Design of JML: A Behavioral Interface Specification
Language for Java. SIGSOFT Softw. Eng. Notes,
31(3):1–38, 2006.

[26] D. H. Lorenz and T. Skotiniotis. Extending Design by
Contract for Aspect-Oriented Programming.
Computing Research Repository (CoRR),
abs/cs/0501070, 2005.

[27] B. Meyer. Applying Design by Contract. IEEE
Computer, 25(10):40–51, 1992.

[28] H. Post and C. Sinz. Configuration Lifting: Software
Verification meets Software Configuration. In Proc.
Int’l Conf. Automated Software Engineering (ASE),
pages 347–350, Washington, DC, USA, 2008. IEEE.

[29] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proc. Europ. Conf.
Object-Oriented Programming (ECOOP), pages
419–443, Berlin, Heidelberg, New York, London, 1997.
Springer.

[30] W. Scholz, T. Thüm, S. Apel, and C. Lengauer.
Automatic Detection of Feature Interactions using the
Java Modeling Language: An Experience Report. In
Proc. Int’l Workshop Feature-Oriented Software
Development (FOSD), pages 7:1–7:8, New York, NY,
USA, 2011. ACM.

[31] R. Tartler, D. Lohmann, J. Sincero, and
W. Schröder-Preikschat. Feature Consistency in
Compile-Time-Configurable System Software: Facing
the Linux 10,000 Feature Problem. In Proc. Europ.
Conf. Computer Systems (EuroSys), pages 47–60, New
York, NY, USA, 2011. ACM.

[32] T. Thüm. Verification of Software Product Lines
Using Contracts. In Magdeburger Informatik Tage
(MIT), 2012. To appear.

[33] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann,
I. Schaefer, and G. Saake. Analysis Strategies for
Software Product Lines. Technical Report
FIN-004-2012, School of Computer Science, University
of Magdeburg, Germany, 2012.

[34] T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel.
Proof Composition for Deductive Verification of
Software Product Lines. In Proc. Int’l Workshop
Variability-intensive Systems Testing, Validation and
Verification (VAST), pages 270–277, Washington, DC,
USA, 2011. IEEE.

[35] T. Thüm, I. Schaefer, M. Kuhlemann, S. Apel, and
G. Saake. Applying Design by Contract to
Feature-Oriented Programming. In Proc. Int’l Conf.
Fundamental Approaches to Software Engineering
(FASE), pages 255–269, Berlin, Heidelberg, New York,
London, 2012. Springer.

[36] J. Zhao and M. C. Rinard. Pipa: A Behavioral
Interface Specification Language for AspectJ. In Proc.
Int’l Conf. Fundamental Approaches to Software
Engineering (FASE), pages 150–165, Berlin,
Heidelberg, New York, London, 2003. Springer.

