
Optimizing Non-functional Properties of Software
Product Lines by means of Refactorings

Norbert Siegmund, Martin Kuhlemann, Mario Pukall
Department of Computer Science

University of Magdeburg
Magdeburg, Germany

Email: {nsiegmun,mkuhlema,pukall}@ovgu.de

Sven Apel
Department of Informatics and Mathematics

University of Passau
Passau, Germany

Email: apel@uni-passau.de

Abstract—Today, software product line engineering concen-
trates on tailoring the functionality of programs. However, we and
others observed an increasing interest in non-functional proper-
ties of products. For example, performance, power awareness,
maintainability, and resource consumption are important non-
functional properties in software development. Current product
line techniques have the potential to flexibly optimize non-
functional properties. In this paper, we present our vision of
optimizing non-functional properties in software product lines.
We show how such an optimization can be achieved using
refactorings and present first results of a case study.

Index Terms—software product lines; non-functional proper-
ties; product derivation;

I. INTRODUCTION

Software product lines (SPLs) are used to generate a variety
of related programs that are tailored to specific use cases [1],
[2]. By reusing assets in different variants (i.e., programs),
SPLs achieve a rapid product deployment and reduce costs.
To generate a tailor-made variant, a stakeholder selects the
features (functionality) according to her requirements. This
way, users can avoid an overhead in functionality for a variant
such as a full featured database system in an embedded system.
However, tailoring the variant regarding functionality alone
is often not sufficient. In practice, non-functional properties
(NFP) gain momentum. Power awareness, as a non-functional
property, is a promising research field [3], [4]. In Green
IT, alternative implementations of special algorithms such as
sorting [5], are developed to reduce power consumption. Non-
functional properties are especially important in the field of
resource-constrained systems in which binary size and mem-
ory consumption are limiting factors. These heterogeneous
non-functional requirements often lead to a redevelopment of
already existing functionality.

Software product line engineering has been proven to be
useful to tailor a variant for functional and non-functional
requirements without the negative impact of redeveloping large
parts of a software. Variability provided by an SPL should
enable the generation of variants that are equal with respect
to functionally but differ in their non-functional properties. To
this end, SPLs should provide alternative implementations of
the same functionality that are optimized for specific NFPs.
For instance, by implementing a feature in different ways,

e.g., a performance optimized variant and a footprint opti-
mized variant of a feature. These implementations introduce
new variation points in the SPL to be exploited during the
configuration process [6], [7].

Our aim is to provide differently optimized variants of an
SPL based on a single architecture which is different from
other approaches [8], [9]. The positive effect of having a
single architecture is that software evolution and maintain-
ability is easier. While the general idea of optimizing NFPs
includes also the selection of alternative implementations, in
this paper, we focus on refactorings. Refactorings are changes
in the structure of source code without altering the program
semantics [10]. We categorize suitable refactorings according
to their influence on non-functional properties in Section
III-0a. For example, refactoring Inline Method can increase
the performance, however, it might also have a negative effect
on binary size. Based on our categorization, a user chooses
suitable refactorings that optimize the source code during the
configuration process. Each refactoring is defined in a single
module, called refactoring feature module (RFM) [11], and
is applied based on the configuration process. This way we
can change a variant according its non-functional properties
independently of the compiler or programming language, e.g.,
by decreasing the binary size by selecting the Pull up Method
refactoring or by increasing the performance through Method
Inlining. We make the following contributions: (a) We present
an overview of tasks that are required to optimize NFP of SPL
variants. (b) We show a concrete optimization technique based
on refactorings including a proof of concept.

II. VISION

The configuration of an SPL is guided by a feature model.
A feature model is created by a domain engineer to define
the features of the SPL [12], [13]. Using a feature model as
the basis for the variant configuration, it should be possible to
optimize NFP of the desired variant. Before a variant can be
optimized for an NFP, we have to provide mechanisms that
allow a user to measure and configure the property. This is
a non-trivial task because the properties are heterogeneous in
their nature. For example, even though we can easily measure
the binary size of individual features and can aggregate these
values for a specific variant, it is difficult to measure Security



and Reliability. The reason is that it is difficult to define
a metric for those properties and even harder to find a
meaningful aggregation function in order to compare different
variants.

There are some models in literature that classify non-
functional properties across the software life cycle [14], [15].
Whereas these classifications provide a good overview of
possible non-functional properties, they are insufficient for our
needs. In order to enable the configuration of such properties,
we need a new classification in which each class provides dif-
ferent measurement techniques and configuration mechanism.
In [6], we presented three classes of non-functional properties.
The first class, called Directly Assigned Properties, contains
the properties that cannot be quantified. This is the case for
Security or Reliability, for which a domain expert cannot
define comparable values. These properties can be seen as
non-functional features because their configuration completely
correspond to the common feature selection. However, not
every NFP can be represented as a single non-functional fea-
ture, e.g., the footprint of features.The missing quantification
affects the optimization and configuration because we have no
comparable values, we cannot define optimizations. However,
we can hint the user to features that have a positive or negative
impact on the required NFP; we directly assign the property
to corresponding features in the feature model.

For the category Inferred Properties, we can measure the
influence of a feature regarding a property, e.g., the influence
of a feature on the binary size of a variant. Using different
user-defined metrics, we can measure or estimate values for
single features and annotate these values to the corresponding
feature in the feature model. This allows us to compute
in advance the aggregated value for a variant which, for
example, can be used to compute the influence of differently
selected alternative implementations of a single feature. As a
result, a user can define objective functions for desired non-
functional properties and an optimizer can then select the best
configuration. For example, a user might want to minimize the
Power Consumption and keep the footprint below 200 KBytes.
Considering V is the set of all valid variants of an SPL and
Footprint represents the binary size of a variant whereas Power
the power consumption respectively. Then she could define the
following objective function to derive the optimal variant vopt:

vopt = vi ⇔ vi(Power) ≤ vj(Power)

∧vi(Footprint) < 200KB ∧ vi,j ∈ V ∧ i, j ∈ N ∧ i 6= j

The last category covers Runtime Properties which emerge
only in a running variant. This makes these NFPs difficult
to measure because we first have to configure, compile, and
run a candidate variant in order measure its NFPs. Prominent
examples of Runtime Properties are Performance and Memory
Consumption. Due to the measurement effort, we propose
the configuration process to incrementally reduce the number
of candidate variants so that only a few variants have to be
executed [6].

A. Configuration of Non-functional Properties

The configuration of a variant begins with a user’s feature
selection. This step defines the functionality a variant has to
provide. During the next step, a stakeholder selects the features
that improve a non-functional property (category Directly
Assigned Properties). Although, such a selection is only an
extension of the feature selection phase, it is important for the
optimization of non-quantifiable properties. A tool can support
the stakeholder in this phase by highlighting and grouping
suitable features. Thus, the difference between step 1 and 2 is
the reason for the feature selection, i.e., a user selects features
for purpose of required functionality in step 1 and in step 2 for
NFP-optimizing features. During the subsequent step, a user
defines constraints regarding non-functional properties, e.g., a
variant must not exceed a footprint more than 200 KBytes.
These constraints reduce the number of possible acceptable
variants, which is important for the measurement of Runtime
Properties. Afterwards, a user can define an objective function
for optimizing a certain property. Based on such a function, the
respectively best implementations are automatically selected
for runtime measurements.

Whereas in current approaches, the configuration of a
variant’s functionality constitutes the end of optimization, we
apply further optimizations through refactorings. We apply
refactorings that have an impact on non-functional properties
but do not alter the functionality. These refactorings, defined
by a developer or automatically generated during the configu-
ration, can be seen as additional configuration options of the
SPL for improving desired NFPs. User defined refactorings
can then be selected in step 2. When a refactoring is not part of
the SPL but would contribute to the desired NFP, we generate
an RFM accordingly. In Section III, we present in detail which
refactorings can be automatically applied to improve a certain
variant and where manually defined refactorings should be
used.

To realize our vision, we have to extend the common
SPL development process [13]. In Figure 1, we provide an
overview1 of such an enriched development process. In the
upper part, the usual SPL development process is shown. It
starts with the domain analysis in which features are identified
and the granularity of the variability is specified. Developers
continue to implement the defined features. Different tech-
niques are possible which also impact the configuration and
optimization of NFPs.

SPLs are often implemented with preprocessor statements
like #IFDEFS in C and C++ or with components. Also
new techniques, e.g., aspect-oriented programming [16] and
feature-oriented programming (FOP) [17], [18] can be used.
FOP is a technique to encapsulate feature code in distinct
feature modules (FM) (see Figure 1). By selecting features in
the product derivation step, the corresponding feature modules
are composed to create the desired product. We propose to
add a new concurrent process which focus on non-functional

1Note, that the SPL development is usually separated in domain and
application engineering.



Inline Method

RFM

Core SPL

Feature DExtract Method

Feature B

Feature C

Feature A
FMFMFM FM

FMFM

Domain Analysis Implementation Product Derivation

FM

Alternative 
Implementations

Assigned
Inferred
Rutime

Non-functional 
Properties

Categories

RFM
RFM

Refactoring Feature 
Modules

Feature Modules

Fig. 1. SPL development including the optimization of non-functional properties.

properties. An additional development team is responsible
to identify important properties for the domain, to develop
alternative implementations, and to define refactorings (in-
side RFMs) for these properties. The development of such
additional feature models is separated from the common
implementation of functionality, e.g., the implementation of
alternatives for a new customer with specific needs in a NFP.
This way, the development of functionality is independent
from the optimization of NFPs. With such an enriched product
line engineering approach, we can improve the maintainability
of the SPL’s source code (separated feature modules for
different NFPs). Additionally, we can decrease time-to-market,
because one engineering team focuses on the functionality
while another team is responsible for tailoring the SPL vari-
ants regarding NFP requirements or target systems. As the
presented additional process does not affect the common SPL
development, existing SPLs can adapt this methodology.

B. Measurement Framework

Due to the large area in which SPLs can be applied, metrics
for the same NFP can often not be reused across different
SPLs. Commonly, a domain has a strict specification for NFPs
and the corresponding metrics. For example, Performance
metrics in the area of database management systems are often
evaluated with benchmarks whereas the same property, e.g.,
in SOA, is often expressed in terms of system response time.
The metrics and corresponding optimizations, we have already
implemented and tested, are specific to the actual domain, but
we need a general methodology that allows users to integrate
their own specific metrics and aggregation functions.

Based on this insight, we claim that a framework for
measuring and aggregating NFPs is required in which SPL
developers can plug in their domain specific metrics. The
framework should provide basic functions that measures in-
dividual features (Inferred Property) or variants (Runtime
Property) based on these metrics. Inside a plugin, a developer
can use an existing tool (e.g., for measuring the cyclomatic
complexity), of a program or feature. The framework could

pass automatically each feature into the plugin which in turn
can pass the feature to the desired measurement tool. The
results can then be annotated to the respective feature in a
feature model. To aggregated the values of different features
for a variant the plugin must also define an aggregation
function, e.g., for cyclomatic complexity it might be the
”maximum”. During the configuration, a user can now define
a constraint to keep the complexity below a certain number.
Using the aggregation function, variants that cannot fulfill
this requirement are removed. We use a first implementation
of this framework for our refactorings in order to generate
refactorings based on user-defined metrics.

We have given an overview how non-functional properties
are related to SPLs. We described a classification to highlight
that the optimization and configuration of non-functional prop-
erties require different methodologies and reflected some op-
timization possibilities. In the following section, we present a
new technique that does not affect the architecture of a variant,
i.e., the selected features and feature modules. Therefore, this
technique can be used on top of already existing approaches
and provides further opportunities to tailor a variant according
non-functional properties.

III. OPTIMIZING NFPS WITH REFACTORINGS

Refactorings alter the structure of source code without
changing the application behavior [10]. Depending on the
type of refactoring, different non-functional properties can
be affected. For example, the Inline Method refactoring can
improve the execution time because it replaces the method
call with the body of the called method. A recent study has
shown that removing delegation can improve the performance
of a program by 50% [19].

Applying refactorings provides new optimization possibili-
ties to a user. We want to exploit these possibilities and select
refactorings according to the given optimization goals. Besides
such an optimization, a further advantage of this approach is
compiler and platform independence because the refactorings
are applied to the source code of a variant. Furthermore,



developers are not forced to implement their SPL in a par-
ticular way, e.g., coding guidelines defined by a customer can
be realized after development. The developers can define the
refactorings seperately and keep the core architecture of the
SPL stable for maintenance. Besides the definition of refac-
torings by the developers, it should be possible to generate
refactorings according to a certain metric. For example, if a
user wants to optimize the performance with a given metric
for method inlining, a tool should automatically select suitable
refactorings or generate them if they do not already exist in
the SPL.

Given these requirements, we developed a technique to
define and reuse refactorings in SPLs like feature modules.
Refactoring feature modules (RFMs) integrate refactorings
with feature-oriented programming (FOP) [11]. The goal of
both techniques, RFM and FOP, is to successively transform a
base program. Whereas modules in FOP transform the func-
tionality of the base program, RFMs transform the structure of
the base program. Once defined or generated, RFMs become
user-selectable features in a feature model.

The main focus of RFMs so far was in program integra-
tion [11]. RFMs are defined by the programmer as part of
the product line design and selected by the user in order to
overcome incompatible structure of a variant with an external
application. For instance, to reuse an existing library in a client
application, classes of this library might need to be renamed
in order to be compatible [11].

We use RFMs to manipulate non-functional properties.
While RFMs can be defined and selected manually for integra-
tion purposes, their manual definition and selection becomes
unfeasible when they should adapt NFPs. The reason is that,
to improve the NFP Performance, potentially hundreds or
thousands of RFMs must be defined and selected, of which
each inlines one method (Inline Method refactoring).

a) Selection of Refactorings: There are numbers of
refactorings described in literature. Our study builds on the
refactorings defined by Martin Fowler [10]. In a first step, we
analyzed the refactorings and came up with an approximated
influence on NFPs for every refactoring. The analysis based
on the known influence of different program executions when
applying different refactorings, e.g., removing setter methods
can result in less compiler instructions and thus may improve
the performance. We plan to evaluate in a detailed case study
the influence of the most common refactorings. The results are
given in Table 1. Note, that applying a refactoring can improve
or degrade a property but does not have to. We need additional
metrics, e.g., those for method inlinings used in compilers, to
achieve the desired effect. In the following, we describe the
results of our analysis exemplary for some NFP:

• Performance. To reduce the execution time for method
calls a programmer can apply refactorings like Inline
Method, Inline Class, Remove Middleman. This is done
by replacing a call with the called method’s body. The
method call is removed but the same actions happen
as before, so performance is improved. However, when
methods grow too large, this results in cache mismatches

of the processor [20]. These mismatches arise because
the method is too large to fit in the cache completely and
instead must be reloaded, which increases the execution
time. To overcome such problems different metrics exist,
e.g., for compilers to achieve the best performance.

• Footprint. The footprint of an application is the sum
of the footprint of each compiled file. For Java, we
measure the class files that contain intermediate byte
code. By removing (setting) methods or code clones (e.g.,
by transforming members to parent classes using Pull up
Field or Pull up Method refactorings), the footprint can
be reduced. Note, that these refactorings often have only
a small influence to shrink the binary size. In contrast, for
example inlining methods in multiple other methods may
result in an expanded footprint. This must be considered
when footprint constraints are defined.

• Coding styles. Coding styles are important if products
are sold as source code libraries to multiple customers
where each customer has its own styling guideline.
There are different tools that check the validity of code
against coding rules, e.g., Checkstyle2. For such rules,
refactorings (e.g., Extract Method or Rename Method)
can be automatically generated and applied on demand.
Although, this approach might be a possible way to pass
a program validator, the maintainability for developers
will rather be decreased because of generated names for
methods and variables. A possible solution are developer-
defined RFMs that are selected on demand. With RFMs
functional requirements of an SPL are separated from
non-functional requirements, e.g., different code guide-
lines of different customers. A variant can be quickly
adapted to fit the needs of new customers when existing
RFMs are reused.

We have collected some possible use cases for optimizations
using refactorings. The suitability of each refactoring depends
on the program and on the quality of the metric that defines
which refactorings have to be used. Both types of usage,
generation and manual definitions are required. Automatically
generated refactorings are useful if a high number of refac-
torings is necessary. Manually implemented RFMs should be
used if developers knowledge is necessary and soft properties
like ”Readability” must be improved.

IV. PROOF OF CONCEPT

Currently, we are developing a tool which tackles the fol-
lowing requirements: (a) configuration of a variant regarding
functionality and Directly Assigned Properties, (b) definition
of objective functions for NFPs, (c) automated selection of op-
timal implementations regarding NFPs, and (d) the definition,
selection, and appliance of RFMs. The NFP optimizer sup-
ports SPLs implemented with feature-oriented programming
(FeatureC++ [21] and JAK [18]). In [6], we have shown a
possible solution to compute an optimal selection of alternative

2http://checkstyle.sourceforge.net/



Non-functional property Improve Decrease

Performance Inline Method, Inline Class, Remove Middleman, Remove
Setting Method, Replace Delegation with Inheritance, Re-
place Temp with Query, Inline Temp

Encapsulate Field, Extract Class, Extract Method, Form Tem-
plate, Introduce Assertion Method, Hide Delegate, Replace
Inheritance with Delegation, Self Encapsulate Field, Change
Unidirectional to Bidirectional, Decompose Conditional

Footprint Collapse Hierarchy, Pull up Constructor Body, Pull up
Field, Pull up Method, Remove Middleman, Remove Setting
Method

Decompose Conditional, Encapsulate Field, Extract Class,
Extract Interface, Hide Delegate, Inline class, Inline Method,
Inline Temp, Introduce Assertion, Introduce Explaining Vari-
able, Push down Field, Push down Method, Remove Assign-
ments to Parameters, Self Encapsulate Field

Styling Guidlines and
Code Metrics

Extract Method, Replace Conditional with Polymorphism,
Replace nested Conditional with Guard Clauses, Extract
Method, Create Template Method, Consolidate Duplicate
Conditional Fragments

Inline Method, Replace Exception with Test, Inline Method

Readability Extract Class, Extract Subclass, Extract Superclass, Inline
Method

Collapse Hierarchy, Consolidate Conditional Expression, De-
compose Conditional, Encapsulate Field, Extract Method,
Hide Delegate, Inline Class

Object Size Inline Temp

TABLE I
OVERVIEW OF REFACTORINGS AND THEIR INFLUENCE ON NON-FUNCTIONAL PROPERTIES.

implementations for the NFPs Cyclomatic Complexity, Foot-
print, and Performance without using refactorings. We extend
the tool to support our approach by using RFMs. After the
derivation of a variant, the user has now the opportunity to
further improve a certain non-functional property. Currently,
we only support Performance, however, in future we will
provide optimizations for additional NFPs.

After a variant is configured, we use JastAdd3 to analyze
the abstract syntax tree of the composed variant. In particular,
we search for methods where refactorings can be applied
in order to improve performance. We additionally analyze
where inlinings might be reasonable, e.g., method calls in
loops. However, we exclude methods that are polymorphic and
recursive, as inlining those methods is not yet implemented.
The output of this analysis is a list of candidate methods (see
left part of Figure 2).

Such a listing is interesting for stakeholders with pro-
gramming skills because methods can be manually marked
for inlining where a positive effect can be foreseen. This
is the same as the inline keyword in C or C++.4 However,
normally a user defines a metric that defines when methods
should be inlined, see top right in Figure 2. This enables a
compiler-independent definition of an inlining metric and has
therefore effects independent of the underlying system. After
defining refactorings beneficial for NFPs of SPL variants, we
compute and generate (or reuse existing) RFMs to reach the
optimization goals. The selected refactorings are shown to the
user (right part of Figure 2). Subsequently, the tool applies
the RFMs and compiles the new variant. The performance
of the synthesized product is measured and compared to the
performance of the product without refactorings. Although, we
currently support only inline method refactorings, the results
in Figure 3 show that we achieve performance improvements

3http://jastadd.org
4The inline keyword is used in front of method declarations to force the

compiler to inline the method.

for certain cases (when we applied RFMs, we never produced
an inferior result compared to the non-optimized variant).

b) Case Study: We present our first results for the
optimization of NFP using RFMs. For our case study, we used
the micro benchmark presented in [19], which implements a
delegation chain.

After the analysis, the system came up with 980 possible
methods for inlining. We defined a metric to restrict the
method size to 1000 statements and the maximal inline depth
to 10. Applying more sophisticated metrics that cover more
setup possibilities, e.g., preferred inlining in loops, is left for
future work. Our tool computed 120 Inline Method refactor-
ings based on our metric. As no RFMs were present in the
SPL before, our tool generated all of them. After applying
these RFMs, we measured the performance 10.000 times to get
significant data. The results are given in Figure 3. The X-axes
shows the intervals for time needed to pass the performance
test. For each interval, we counted the number of executions
which are depicted in the Y-axis. In the result, the execution
times were significantly better with our optimizations than
without. We found that refactorings can be successfully ap-
plied to an already optimized variant to further improve an
NFP. The refactorings have also an influence on the footprint
property. In the unoptimized version the sum of all class files
requires 705,569 bytes whereas the variant optimized using
refactorings consumes 833,021 bytes. We see our assumptions
according the influence of refactorings to NFPs approved and
expect additional optimization benefits if more refcatorings are
supported.

V. RELATED WORK

Product derivation tools try to guide the user through the
whole derivation process. There are commercial tools like
pure::variants [22] and Gears [23] that contain mechanisms to
maintain and develop an SPL as well as scientific tools [24],
[25], [26]. These tools allow developers to create feature
models and guide users through the configuration process with



Fig. 2. Generating and applying refactorings in the NFP optimizer tool.

0

1000

2000

3000

4000

5000

6000

N
u
m
b
er
 o
f M

e
a
su
re
m
e
n
ts

Time needed in ns

Performance Measurement
RFMs

Original

Fig. 3. Results for measuring a variant with and without RFMs.

special visualization techniques. Neither the measurement of
non-functional properties nor the optimization for NFPs is
supported for SPLs.

Benavides et al. [27], [28] presented a technique based
on Constraint Satisfaction Problems (CSP) solvers to seek
an optimal variant. The solver evaluates values attached to
features in the feature model and then computes an optimal
configuration for a small number of features. White et al. [7],
[29] extended this approach to resolve resource constraints in
the variant selection process. For large scale problems they
propose a Filtered Cartesian Flattening to approximate a good
variant. We see both approaches promising for an integration,
e.g., for selecting optimal feature modules. However, we
further provide an optimization technique based on RFMs and
a framework to measure the values needed for optimization.

Other approaches use model-driven engineering techniques

to generate different architectures optimized for certain quality
attributes. In [8] components can be differently connected and
interfaces are generated to obtain a valid program with mod-
ified quality attributes. Kim et al. [9] propose a framework,
called DRAMA, which captures the requirements of users.
Based on these requirements, different architecture styles,
e.g., Layers or Model View Controller, can be applied to
improve or degrade a NFP. The framework can also compare
alternative implementations and chose the one with the best
quality attributes. This approach is similar to our configuration
of optimal implementations. We additionally include user
selectable refactorings on source code level to further optimize
a variant for NFPs and the measurement of NFPs.

Smith [30] uses correctness-preserving transformations in
his tool Kids to improve the performance of a program. These
transformations are similar to refactorings. Unlike Smith’s



transformations, RFMs can be seamlessly integrated into the
SPL development process because RFMs represent reusable
modules that can be described like features. Critchlow et
al. [31] present an approach to use refactorings to change the
architecture in order to improve certain quality attributes. They
consider refactorings not at source code level but at architec-
ture level to flexibly change the components architecture of a
variant. We focus on refactorings that are applied to the source
code and after a variant is created.

The Skoll project [32] targets on testing and measuring
applications with large configuration spaces. The project tries
to overcome the problem of having a huge amount of products
by using a large number of users that share their computation
power. For measuring runtime properties, this might be a
suitable approach. However, the effort is very high and it will
not scale with a large SPL. Our refactoring feature modules
can be applied independent from the variant space.

Zhang et al. propose to use Bayesian Belief Network in
order to analyze and predict non-functional properties based
on the experience of the development of similar products and
domain experts [33], [34]. The knowledge is captured and
used for the development of new products to achieve suitable
decisions for optimizing a certain non-functional property.
This approach targets on architectural design and decisions
during the design phase. Our approach can be applied after an
SPL is developed and is therefor independent of architectural
decisions.

VI. CONCLUSION

We presented our vision of optimizing non-functional prop-
erties (NFPs) of variants of software product lines (SPLs).
We outlined difficulties in measuring and configuring NFPs
and motivated the need for a framework that allows users
to plugin their own metrics. Based on the measured values,
our tool selects alternative implementations to optimize certain
NFPs. We presented a new approach for optimization based
on refactoring feature modules (RFMs). RFMs, defined by
developers or automatically generated, are part of the SPL and
can be selected like features to further improve NFPs. First
results based on automatically generated Method Inline refac-
torings show that performance improvements can be achieved.
In future work, we will support additional refactorings to
further increase performance. In addition, we will support the
optimization of other NFPs. Our long term goal is to provide
a framework for which developers can implement plugins that
optimize NFPs.

ACKNOWLEDGMENT

Norbert Siegmund is funded by the German Ministry of
Education and Science (BMBF), project 01IM08003C. Mario
Pukall is funded by German Research Foundation (DFG),
project SA 465/31-2. Apels work is supported in part by
DFG project #AP 206/2-1. The presented work is part of the

ViERforES5, RAMSES6, and FeatureFoundation7 projects.

REFERENCES

[1] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[2] C. W. Krueger, “New methods in software product line development,”
in Proceedings of the International Software Product Line Conference
(SPLC). IEEE Computer Society, 2006, pp. 95–102.

[3] R. Jain, D. Molnar, and Z. Ramzan, “Towards understanding algorithmic
factors affecting energy consumption: Switching complexity, random-
ness, and preliminary experiments,” in Proceedings of the Workshop on
Foundations of Mobile Computing. ACM Press, 2005, pp. 70–79.

[4] C. Bunse, H. Höpfner, S. Roychoudhury, and E. Mansour, “Choosing the
”best” sorting algorithm for optimal energy consumption,” in Proceed-
ings of the International Conference on Software and Data Technologies
(ICSOFT), 2009, pp. 199–206.

[5] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis, “JouleSort:
A balanced energy-efficiency benchmark,” in Proceedings of the 2007
International Conference on Management of Data. ACM Press, 2007,
pp. 365–376.

[6] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, and
G. Saake, “Measuring non-functional properties in software product lines
for product derivation,” in Proceedings of the 15th International Asia-
Pacific Software Engineering Conference (APSEC). IEEE Computer
Society, 2008, pp. 187–194.

[7] J. White, D. C. Schmidt, E. Wuchner, and A. Nechypurenko, “Automat-
ing product-line variant selection for mobile devices,” in Proceedings
of the International Software Product Line Conference (SPLC). IEEE
Computer Society, 2007, pp. 129–140.

[8] P. O. Rossel, D. Perovich, and M. C. Bastarrica, “Reuse of architectural
knowledge in SPL development,” in Proceedings of the 11th Interna-
tional Conference on Software Reuse (ICSR). Springer-Verlag, 2009,
pp. 191–200.

[9] J. Kim, S. Park, and V. Sugumaran, “Drama: A framework for domain
requirements analysis and modeling architectures in software product
lines,” Journal of Systems and Software, vol. 81, no. 1, pp. 37 – 55,
2008.

[10] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[11] M. Kuhlemann, D. Batory, and S. Apel, “Refactoring feature modules,”
in Proceedings of the International Conference on Software Reuse, 2009,
pp. 106–115.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Software Engi-
neering Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-90-
TR-21, 1990.

[13] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[14] J. A. Mccall, P. K. Richards, and G. F. Walters, “Factors in software
quality. Volume I. Concepts and definitions of software quality.” Gen-
eral Electric CO Sunnyvale California, Technical Report ADA049014,
November 1977.

[15] “Software engineering - Product quality, Part 1: Quality model,” 2001.
[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-

M. Loingtier, and J. Irwin, “Aspect-oriented programming,” in Pro-
ceedings of the European Conference on Object-Oriented Programming
(ECOOP), ser. Lecture Notes in Computer Science, vol. 1241. Springer
Verlag, 1997, pp. 220–242.

[17] C. Prehofer, “Feature-oriented programming: A fresh look at objects,” in
Proceedings of the European Conference on Object-Oriented Program-
ming (ECOOP), ser. Lecture Notes in Computer Science, vol. 1241.
Springer Verlag, 1997, pp. 419–443.

[18] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” IEEE Transactions on Software Engineering (TSE), vol. 30,
no. 6, pp. 355–371, 2004.

[19] S. Götz and M. Pukall, “On performance of delegation in Java,” in
Proceedings of the International Workshop on Hot Topics in Software
Upgrades. ACM Press, 2009, pp. 1–6.

5http://vierfores.de
6http://wwwiti.cs.uni-magdeburg.de/iti db/forschung/ramses/
7http://www.fosd.de/ff



[20] J. Dean and C. Chambers, “Towards better inlining decisions using
inlining trials,” in Proceedings of the ACM conference on LISP and
functional programming. ACM, 1994, pp. 273–282.

[21] S. Apel, T. Leich, M. Rosenmüller, and G. Saake, “FeatureC++: On
the Symbiosis of Feature-Oriented and Aspect-Oriented Programming,”
in Proceedings of the International Conference on Generative Pro-
gramming and Component Engineering (GPCE), ser. Lecture Notes in
Computer Science, vol. 3676. Springer Verlag, Sep. 2005, pp. 125–140.

[22] D. Beuche, H. Papajewski, and W. Schröder-Preikschat, “Variability
Management with Feature Models,” Science of Computer Programming,
vol. 53, no. 3, pp. 333–352, 2004.

[23] Big Lever, “Gears,” http://www.biglever.com.
[24] D. Streitferdt, M. Riebisch, and I. Philippow, “Details of formalized

relations in feature models using OCL,” in International Conference
on Engineering of Computer-Based Systems (ECBS). IEEE Computer
Society, 2003, pp. 297–304.

[25] G. Botterweck, D. Nestor, A. Preußner, C. Cawley, and S. Thiel,
“Towards supporting feature configuration by interactive visualization,”
in Proceedings of Workshop on Visualisation in Software Product Line
Engineering, 2007, pp. 125–131.

[26] E. Cirilo, U. Kulesza, and C. P. de Lucena, “A product derivation
tool based on model-driven techniques and annotations,” Journal of
Universal Computer Science, vol. 14, no. 8, pp. 1344–1367, 2008.

[27] D. Benavides, A. Ruiz-Cortés, and P. Trinidad, “Automated reasoning
on feature models,” in Advanced Information Systems Engineering: 17th
International Conference, CAiSE 2005, ser. Lecture Notes in Computer
Science, vol. 3520. Springer Verlag, 2005, pp. 491–503.

[28] D. Benavides, S. Segura, P. Trinidad, and A. R. Cortés, “FAMA:
Tooling a Framework for the Automated Analysis of Feature Models,”
in Proceedings of the Workshop on Variability Modelling of Software-
intensive Systems (VaMoS), 2007, pp. 129–134.

[29] J. White, B. Dougherty, and D. C. Schmidt, “Selecting highly optimal
architectural feature sets with filtered cartesian flattening,” Journal of
Systems and Software, vol. 82, no. 8, pp. 1268–1284, 2009.

[30] D. R. Smith, “Kids: A semiautomatic program development system,”
IEEE Trans. Softw. Eng., vol. 16, no. 9, pp. 1024–1043, 1990.

[31] M. Critchlow, K. Dodd, J. Chou, and A. van der Hoek, “Refactoring
product line architectures,” in International Workshop on Refactoring:
Achievements, Challenges, and Effects, 2003, pp. 23–26.

[32] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt, and
B. Natarajan, “Skoll: Distributed continuous quality assurance,” in
Proceedings of the International Conference on Software Engineering
(ICSE), 2004, pp. 459–468.

[33] H. Zhang, S. Jarzabek, and B. Yang, “Quality prediction and assess-
ment for product lines,” in Advanced Information Systems Engineering
(CAiSE). Springer, 2003, pp. 681–695.

[34] H. Zhang and S. Jarzabek, “A bayesian network approach to rational
architectural design,” International Journal of Software Engineering and
Knowledge Engineering, vol. 15, no. 4, pp. 695–718, 2005.


