
Using Collaborations to Encapsulate Features?

An Explorative Study

Martin Kuhlemann, Norbert Siegmund

Faculty of Computer Science

University of Magdeburg

Magdeburg, Germany

{mkuhlema,nsiegmun}@ovgu.de

Sven Apel

Department of Informatics and Mathematics

University of Passau

Passau, Germany

apel@uni-passau.de

Abstract—A feature is a program characteristic visible to an
end-user. Current research strives to encapsulate the implemen-
tation of a feature in a module. Jak is a language extension to
Java that allows programmers to encapsulate implementations
of features in the form of a collaboration. In prior work, we
and others faced problems when using collaborations in Jak and
alike languages with too high expectations, e.g., to encapsulate
widely scattered code of features such as transaction management
in data bases. In this paper, we explore which criteria feature
implementations must fulfill so that they can be encapsulated in
Jak. The criteria that we found decisive are: granularity of code
elements that should be encapsulated in a collaboration, object-
level extension by features, and object-oriented connections of a
feature’s code elements. We finally present a general guideline
when to encapsulate a feature with a collaboration in Jak. Prac-
titioners can now evaluate in advance whether Jak collaborations
are suited to encapsulate their feature or not.

I. INTRODUCTION

Collaboration-based design (CBD) extends object-oriented

design by the concept of a collaboration [1]. A collaboration

is a module that encapsulates code fragments of an object-

oriented program, e.g., statements, members, and classes. A

collaboration can be composed flexibly with other collabora-

tions to obtain complete software products. Usually, the code

of one collaboration implements one complete feature, i.e., a

user-visible program characteristic [2]. By flexibly compos-

ing collaborations, stakeholders can select features of a pro-

gram [1].

Jak is a language that adds the collaboration concept to

Java [1]. In prior work, we and others faced problems when

we tried to encapsulate features with collaborations in Jak and

alike languages, e.g., problems of granularity [3], parameter

passing [4], or code replication [5]. Often the problems were

encountered too late to make an easy design shift so the

developers often refrained from reimplementing the features

and instead tried to circumvent the problems (often with bad

designs [3], [4]). We argue that developers can benefit from

a guideline that describes for which kind of feature Jak col-

laborations are appropriate and for which features they are

not. We propose such a guideline to avoid design flaws and

reimplementation effort.

We conducted a case study and then we developed the

guideline. In this study, we transformed implementations

of a number of features from object-oriented Java code to

collaboration-based Jak code. The features we choose were

implemented using object-oriented design patterns [6].1 We

choose them because their patterns occur in many places con-

tributing to many feature implementations.

We developed general criteria which a feature must fulfill so

that it can be encapsulated properly with a Jak collaboration.

The guiding criteria that we found decisive are: granularity

of code elements related to a feature, object-level extension

by features, and object-oriented connections of features’ code

elements. Based on these criteria we defined a guideline on

how to use Jak-like collaborations. Developers can evaluate

in advance whether collaborations can encapsulate the feature

properly that is to be developed.

II. BACKGROUND:

COLLABORATION-BASED DESIGN WITH JAK

Jak adds support for collaborations to Java [1]. A collab-

oration encapsulates a set of classes and class refinements.

A class refinement encapsulates members, which are added

to classes or wrap methods of classes. Wrapping of methods

allows programmers to add statements to the beginning and

end of methods. The elements encapsulated in a collaboration

can be composed with elements of other collaborations. Com-

posing multiple collaborations finally synthesizes a compilable

program.

In Figure 1, we show the two collaborations Base and

PointObserver. Base contains a class Point. PointObserver con-

tains a class refinement, which adds members and statements

to the previously added class Point. It adds a field observer

and a method setObserver to Point (Lines 7-10). Method setY

of refinement Point (in PointObserver) refines method setY of

class Point of Base, i.e., it adds statements to this method with

an overriding mechanism (Jak’s overriding keyword is Super,

Line 12). The refinement adds the subject role of the Observer

design pattern to Point.

In our study we will analyze granularity of transformations.

For that, we consider member and class introduction as well

1Design patterns are descriptions of recurring development tasks and their
according standard solutions [6]. A pattern instance is code that implements
a pattern. Many Jak implementation approaches for patterns were introduced
before [7]. However in [7], we did not evaluate Jak for implementing features
but just compared mechanisms of Jak-like languages.



Collaboration Base

1 public class Point {
2 private int y;
3 public void setY(int newY) {
4 this.y=newY;
5 }}

Collaboration PointObserver

6 refines class Point {
7 private IObserver observer;
8 public void setObserver(IObserver newO) {
9 observer=newO;

10 }
11 public void setY(int newY) {
12 Super.setY(newY);
13 observer.update();
14 }}

Fig. 1. A sample class refinement in Jak.

as method wrapping coarse-grained transformations and trans-

formations targeting statements or parts of statements as fine-

grained.

III. CASE STUDIES

For different features, we encapsulated code, that imple-

ments a feature, into collaborations – each feature we selected

for our study is implemented using an isolated pattern. For sev-

eral features, we also applied collaboration concepts to reim-

plement the pattern’s solution (e.g., of wrapping). We argue

that the structure of the studied features reoccurs in the struc-

ture of many other features because pattern implementations

occur frequently and expose various shapes. If features are

implemented without design patterns our criteria and guideline

might not match.

Study setup: We encapsulated in collaborations code of

features which are implemented by instances of the Gang-of-

Four design patterns [6]. Specifically, in the three programs

JHotDraw2, Berkeley DB3, and Expression Product Line [8]

we transformed object-oriented implementations of Gang-of-

Four patterns into collaboration-based implementations.4 JHot-

Draw (30K lines of code) is a GUI framework; Berkeley

DB (90K lines of code) is an embedded database engine for

Java; Expression Product Line is an evaluator for mathematical

expressions.

A. Results

We summarize interesting problems encountered during our

study. We group these problems into categories granularity,

data type changes, object-level extension, and object-oriented

connections between code elements:

Granularity: In JHotDraw, an Adapter pattern instance is

used to implement the Undo functionality for deleting figures.

We analyzed different variants to implement this adapter with

2http://sourceforge.net/projects/jhotdraw/
3http://www.oracle.com/database/berkeley-db/je/
4When (a) transforming the whole implementation of a pattern instance

includes repetitive tasks and (b) the effort to perform them all (manually) was
too high then we concentrated on a sub-implementation requiring these tasks
to be performed less often.

Command Adapter Command

Command

+undo

+undo

AdapterCommand

Base

Adapter

Adapter

+undo

transformation

class

collaboration

Base

AdapterLegend

(a) Initial design (b) Var. #1 (c) Var. #2

Fig. 2. Transforming the Adapter instance towards collaborations.

collaborations in which adapter methods are added with re-

finements (1) to an empty adapter class or (2) to the adapted

class. With regard to variant #1 (Fig. 2b), we cannot separate

calls to adapter methods into collaborations, which already en-

capsulate the adapter methods, because the calls were located

in between other statements or were expressions inside other

statements – Jak refinements however only may wrap methods.

As a workaround, we added hook methods (or decomposed

the methods in other cases) such that we can wrap these new

methods. In variant #2 (Fig. 2c), we had to transform adapters

that were composed from superclasses. We ended up with

either few big collaborations, which replicate code, or with

numerous small collaborations with less code replication but

complex inter-dependencies.

Jak does not allow fine-grained extensions, e.g., adding

formal parameters to methods, method calls to arbitrary meth-

ods, or changes to the return type. This caused problems

for implementing instances of the patterns Bridge, Mediator,

Observer, Prototype, and Template Method and hampered us

or prevented us to implement Jak refinements.

Data type changes: To reuse code of an existing implemen-

tation of the pattern Composite, we had to change a field’s

type. Jak does not support such transformation so we changed

the code by hand (we changed a field’s type from Vector to

List). If the transformed code would have been generic [9] our

adjustment would have been less problematic.

Object-level extension: Strategy and State pattern instances

allow developers to choose algorithms for objects of a context

class [6]. In our study, we planned a design where we choose

an algorithm by selecting a collaboration. The selected collab-

oration then should refine the context classes to add the strat-

egy or state implementation statically to them. Unfortunately,

strategy objects are polymorphic and assembled dynamically

with delegation. So we cannot design an individual refinement

which can be selected statically and which comprises one

strategy or state algorithm. Additionally, references to objects

of the pattern’s classes are set to null and tested for null and

code is executed based on this test. These tests require object

semantics and cannot be modeled with Jak-like collaborations.

Hence, the transformations failed for Strategy and State.

For the pattern instance of Singleton, we faced problems

when moving its code into a collaboration (replacing con-

structors with factory methods that are refined to return the

same object at every call). We could not encapsulate all the



BorderDecorator

NodeFigure

+draw

NodeFigure

+draw

BorderDecorator

+draw

NodeFigure

+draw

TextFigure

+draw

TextFigure

+draw

<<decorated>>

Base

TextFigure

+draw

(a) Initial design (b) Transformed CBD

Fig. 3. Transformation of a Decorator instance (simplified).

1 refines class BinaryTreeLeaf implements VisitableNode {
2 public void accept(Visitor visitor) {
3 visitor.visitLeaf(this);
4 }}

(a)

1 refines class LineConnection {
2 public void visit(FigureVisitor visitor) {
3 visitor.visitFigure(this);
4 }}

(b)

Fig. 4. Name conflict prevents reuse for Visitor code.

feature-related code into the collaboration because we could

not determine which code is related to the feature or depends

on the pattern instance respectively. In particular, we could

not determine execution paths which semantically rely on the

pattern instance – a so-called feature mining problem [10].

Object-oriented connections between code elements: The

object-oriented implementation of Decorator allows a decora-

tor object to wrap objects of multiple classes which are con-

nected by inheritance. When turning a decorator class into a re-

finement of a decorated class, we must replicate the refinement

for every decorated class that can be instantiated. In the initial

object-oriented design (Fig. 3a), objects of BorderDecorator

class decorate objects of classes TextFigure and NodeFigure

which both can be instantiated. However, refining both classes

with the decorator’s code (Fig. 3b) applies the decoration twice

accidentally for objects of NodeFigure. Objects of NodeFigure

of which methods are decorated inherit and override methods

of TextFigure which are decorated as well. A super call in the

method NodeFigure.draw then causes the decoration to execute

for TextFigure.draw and for NodeFigure.draw.

When we transformed the object-oriented implementation of

pattern Proxy, more classes remained than we expected. That

is, in the object-oriented design, single proxy objects wrap

objects of different classes but some methods of the proxy ob-

jects do not wrap anything. Proxy methods that wrapped meth-

ods before became refinements of the methods they wrapped.

Methods of the proxy class, which did not wrap anything,

were not removed from the proxy class. But, as collaborations

cannot encapsulate methods outside classes, the proxy classes

remained to encapsulate these connected members. Collabora-

tion names are no qualifiers of encapsulated code and cannot

be used to reference this code.

For the Visitor pattern in our study we tried to reuse refine-

ments, which add accept methods and visitor classes, from an

existing CBD Visitor implementation [7]. However, we failed

reusing because methods and classes have incompatible names

in JHotDraw and the existing implementation. Specifically, we

could not reuse a refinement of class BinaryTreeLeaf (Fig. 4a)

but had to implement a similar refinement for class LineCon-

nection (Fig. 4b). We thus had to introduce a kind of code

replication.

Other patterns: We were able to transform the implementa-

tions of Abstract Factory, Command, Facade, Factory Method,

Flyweight, Interpreter, Iterator, and Chain of Responsibility

to collaborations without new interesting problems. We faced

problems for transforming the Memento instance but they do

not allow us to conclude on the expressiveness of Jak [11].

IV. DISCUSSION

In our case studies, we faced more problems to implement

or encapsulate the features with Jak than we expected:

Granularity: Most of the transformations were problematic

or failed because Jak collaborations could not encapsulate fine-

grained code elements, like formal parameters or method calls.

Extensions to Jak that support fine-grained changes to code

thus appear promising.

Object-level extension: Some patterns target to add a prop-

erty to individual objects. A Jak-like refinement adds a prop-

erty to all objects of a class but not just to individual objects.

We argue that object-level properties conflict with class-level

refinements, and thus CBDs as in Jak inherently cannot en-

capsulate instances of such patterns.

Object-oriented connections between code elements: We

faced problems when different refined classes participate in the

same inheritance hierarchy. We also observed a problematic

balance between complex collaboration dependencies and code

replication. Both are possible fields of future research.

Generally, we found it disturbing that a collaboration name

is not a qualifier usable to reference the collaboration’s code.

To use this code, we put it into publicly accessible classes

(which can be referenced), although members in these classes

are referenced from within one collaboration only. We argue

that there are situations in which implementation details of

a separated pattern instance should only be visible within

the encapsulating collaboration or visible to features which

explicitly extend this collaboration.

The transformations that we performed were simple but

laborious.5 We had to implement these transformations man-

ually because there is no sufficient support to restructure and

transform code of CBDs.

A. Guideline

Now we give a conservative guideline so that developers

can evaluate in advance whether Jak collaborations are suited

to encapsulate a pattern instance. We allow cases in which

Jak collaborations could be appropriate although our guideline

5For some object-oriented implementations the transformation into collab-
orations took up to three days (on average it took a few hours) because we
had to restructure a major part of the program.



denies this issue, i.e., we allow false negatives. We found that

Jak collaborations can encapsulate pattern instances whose im-

plementation (1) is coarse-grained, e.g., whose implementation

involves adding just classes and methods, (2) does not extend

classes connected through inheritance, and (3) does not apply

properties to individual objects of one class only. When pattern

instances are known to become fine-grained, known to extend

connected classes, or known to extend single objects of one

class, Jak collaborations should not be used to encapsulate

them.

V. RELATED WORK

Several researchers proposed languages similar to Jak,

e.g., [12], [13]. Evaluating these languages is possible future

work. We conjecture that the general criteria, which we found,

are decisive to implement features in these languages, too.

Kästner et al. and Ye et al. observed that granularity is a

decisive criterion when encapsulating features in modules [3],

[14]. We confirm these results – we often had to add hook

methods to encapsulate statements of method calls. In addition

to prior work, we identified the criteria of object-oriented

connections and object-level extension to be decisive for en-

capsulating features with Jak collaborations.

In another line of research, Kästner analyzed whether As-

pectJ is suitable for encapsulating features with aspects [15].

In contrast to his work, we concentrated on encapsulating code

of various design pattern instances rather than code of self-

chosen features. We argue to ensure this way that the features,

which we encapsulated, cover the shape of a wide range of

features. In addition, we determined general criteria that decide

when Jak collaborations can encapsulate a feature.

Several researchers proposed to encapsulate design pattern

instances in modules, e.g., [16], [17]. However, they all do

not deal with CBDs and they all do not determine which

general criteria decide language concepts’ applicability. In

prior work [7], we analyzed aspect-based implementations of

patterns [17] and transformed them into Jak implementations.

Here, we reuse the Jak implementation approaches (and tried

to reuse code) side by side with new approaches in non-trivial

programs to develop a general guideline for Jak.

VI. CONCLUSION

Collaborations are intended to encapsulate features in pro-

grams. In a study, we evaluated this aim for a variety of

features implemented by design patterns. We found that col-

laborations can encapsulate some pattern implementations but

not every implementation of collaborating program elements

can be encapsulated with collaborations as in Jak.

By analyzing the problems we found, we identified criteria

which guide whether Jak collaborations are well-suited to

implement a particular feature: (1) the granularity of the code

to encapsulate in a collaboration, (2) object-level extension by

the feature to encapsulate, and (3) object-oriented connections

between code elements of the feature to implement. Based on

these criteria, we presented a guideline when to use collabo-

rations in Jak-like languages in order to encapsulate a feature.

ACKNOWLEDGMENTS

The authors thank Don Batory and Maider Azanza for help-

ful comments on this work. Martin Kuhlemann was supported

and partially funded by the DAAD Doktorandenstipendium,

number D/07/45661. Norbert Siegmund was funded by the

German Ministry of Education and Research (BMBF) in

the ViERforES project (http://vierfores.de/), project num-

ber 01IM08003C. Sven Apel’s work was supported in part

by the German Research Foundation (DFG), project num-

ber AP 206/2-1.

REFERENCES

[1] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise re-
finement,” IEEE Transactions on Software Engineering, vol. 30, no. 6,
pp. 355–371, 2004.

[2] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Software Engineer-
ing Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-90-TR-
21, 1990.

[3] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software prod-
uct lines,” in Proceedings of the International Conference on Software

Engineering, 2008, pp. 311–320.
[4] M. Rosenmüller, M. Kuhlemann, N. Siegmund, and H. Schirmeier,

“Avoiding variability of method signatures in software product lines: A
case study,” in Workshop on Aspect-Oriented Product Line Engineering,
2007, pp. 20–25.

[5] S. Apel, “The role of features and aspects in software development,”
Ph.D. dissertation, Faculty of Computer Science, University of Magde-
burg, 2007.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:

Elements of reusable object-oriented software. Addison-Wesley, 1995.
[7] M. Kuhlemann, S. Apel, M. Rosenmüller, and R. E. Lopez-Herrejon,

“A multiparadigm study of crosscutting modularity in design patterns,”
in Proceedings of the International Conference Objects, Models, Com-

ponents, Patterns, 2008, pp. 121–140.
[8] R. E. Lopez-Herrejon, D. Batory, and W. R. Cook, “Evaluating support

for features in advanced modularization technologies,” in Proceedings

of the European Conference on Object-Oriented Programming, 2005,
pp. 169–194.

[9] S. Apel, M. Kuhlemann, and T. Leich, “Generic feature modules: Two-
staged program customization,” in Proceedings of the International Con-

ference on Software and Data Technologies, 2006, pp. 127–132.
[10] N. Loughran and A. Rashid, “Mining aspects,” in Workshop on Early

Aspects: Aspect-Oriented Requirements Engineering and Architecture

Design, 2002, pp. 12–18.
[11] M. Kuhlemann, “Transforming object-oriented design pattern structures

into layers,” Faculty of Computer Science, University of Magdeburg,
Tech. Rep. 9, 2008.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of AspectJ,” in Proceedings of the European

Conference on Object-Oriented Programming, 2001, pp. 327–353.
[13] S. Herrmann, “Object teams: Improving modularity for crosscutting col-

laborations,” in Proceedings of the International Conference NetObject-

Days on Objects, Components, Architectures, Services, and Applications

for a Networked World, 2002, pp. 248–264.
[14] P. Ye, X. Peng, Y. Xue, and S. Jarzabek, “A case study of variation

mechanism in an industrial product line,” in Proceedings of the Inter-

national Conference on Software Reuse, 2009, pp. 126–136.
[15] C. Kästner, “Aspect-oriented refactoring of Berkeley DB,” Master’s the-

sis, University of Magdeburg, Germany, Mar. 2007.
[16] B. Meyer and K. Arnout, “Componentization: The Visitor example,”

IEEE Computer, vol. 39, no. 7, pp. 23–30, 2006.
[17] J. Hannemann and G. Kiczales, “Design pattern implementation in Java

and AspectJ,” in Proceedings of the International Conference on Object-

Oriented Programming, Systems, Languages, and Applications, 2002,
pp. 161–173.


	Introduction
	Background:Collaboration-Based Design with Jak
	Case Studies
	Results

	Discussion
	Guideline

	Related Work
	Conclusion
	References

