
Proof Composition for Deductive Verification of Software Product Lines

Thomas Thüm∗, Ina Schaefer†, Martin Kuhlemann∗, and Sven Apel‡
∗University of Magdeburg, Germany
†University of Braunschweig, Germany
‡University of Passau, Germany

Abstract—Software product line engineering aims at the
efficient development of program variants that share a common
set of features and that differ in other features. Product lines
can be efficiently developed using feature-oriented program-
ming. Given a feature selection and the code artifacts for each
feature, program variants can be generated automatically. The
quality of the program variants can be rigorously ensured
by formal verification. However, verification of all program
variants can be expensive and include redundant verification
tasks. We introduce a classification of existing software product
line verification approaches and propose proof composition as a
novel approach. Proof composition generates correctness proofs
of each program variant based on partial proofs of each feature.
We present a case study to evaluate proof composition and
demonstrate that it reduces the effort for verification.

Keywords-Software product lines, proof composition, feature-
based verification, JML.

I. INTRODUCTION

A software product line (SPL) is a set of software-
intensive systems that share code [1]. The program variants
of an SPL are distinguished in terms of features [2]. The idea
of software product line engineering is to generate similar
programs from a common code base simply by specifying
the desired features. The quality of the generated program
variants can be rigorously ensured by formal verification.
However, the number of programs that can be generated
from an SPL is up-to exponential in the number of features.
Hence, formal verification of every program using state-of-
the-art verification tools is not feasible [3], [4]. Instead, for
the verification of SPLs, verification effort should be reused
in the same way as with code.

We give an overview of how to reduce the effort in
verifying all programs of an SPL. We classify existing
approaches and argue that there is a need for more sophisti-
cated techniques. Based on these insights, we propose proof
composition as a technique to achieve high reuse and thus
efficiency in the verification of SPLs.

We concentrate on deductive verification in which cor-
rectness proofs are written by humans. Previous work in this
direction used model checking. Both approaches have ben-
efits and are complementary to each other. Model checking
can be applied fully automatically. But with user interaction
and deductive verification we may be able to prove much
stronger properties about SPLs, which cannot be proven
using model checking.

BankAccount

Interest

InterestEstimation

CreditWorthiness DailyLimit

Figure 1. A feature model of an SPL of bank accounts

The idea of proof composition is to create a proof base.
Similarly to a code base, proofs are modularized into parts
that are specific to certain features. Given a particular feature
selection, we do not only generate the program variant, but
additionally, we compose a proof for the program variant
from the partial proofs associated with the features involved.
A proof assistant can check whether the composed proof is
valid and thus verify that the program variant fulfills the
desired specification.

We use an SPL of bank accounts as an illustrative case
study. The SPL is developed using feature-oriented pro-
gramming where the program variants are written in Java.
Program specifications are expressed using the Java Model-
ing Language (JML) [5]. We use Why and Krakatoa [6] to
generate proof obligations for the proof assistant Coq [7].
We analyze and demonstrate how proofs written in Coq can
be composed.

II. BACKGROUND AND MOTIVATING EXAMPLE

In this section, we introduce the concept of SPLs and
present the program variants included in our bank account
product line. We show how the example SPL is implemented
using feature-oriented programming and define how program
properties are specified using design by contract [8].

A. Software Product Lines

An SPL is a set of program variants. SPL engineering is
in particular used for program variants of the same domain,
e.g., the domain of bank account software. The advantage of
SPL engineering is that common code in multiple program
variants can be reused. We distinguish the program variants
of an SPL by their features. A feature is an end-user–visible

1 class Account {
2 //@ invariant balance_non_negative: balance>=0;
3 int balance = 0;
4 //@ ensures balance == 0;
5 Account() {}
6 /*@
7 @ ensures (!(\old(balance)+x >= 0) || \result)
8 @ && ((\old(balance)+x >= 0) || !\result)
9 @ && (\result || balance == \old(balance))

10 @ && (!\result || balance == \old(balance)+x);
11 @*/
12 boolean update(int x) {
13 int newBalance = balance + x;
14 if (newBalance < 0)
15 return false;
16 balance = newBalance;
17 return true;
18 }
19 }
20 class Application {
21 Account account = new Account();
22 void nextDay() {}
23 void nextYear() {}
24 }

Figure 2. Feature module for feature BankAccount

program characteristic [2], e.g., whether a bank account
supports a daily limit for withdrawing money.

Not all combinations of features are meaningful for a
given domain. For example, consider an SPL for the man-
agement of bank accounts. A client may get interest or not
and the software may be able to estimate the interest for the
current year. Having the feature interest estimation without
support for interest at all does not seem useful. Hence, we
need to specify the valid combinations of features for an
SPL, which is usually defined by a feature model. A feature
model [2] documents all features and the constraints between
them, e.g., every feature requires its parent feature.

In Figure 1, we show the feature model of our running
example. The feature BankAccount is present in all program
variants and represents our base implementation. All other
features can optionally be selected, independent of each
other, except that InterestEstimation requires the feature
Interest.

Given the set of features F , a program variant P is
determined by a subset of all features (i.e., P ⊆ F). An SPL
S is a set of program variants Pi, i.e., S = {P1, P2, . . . , Pn}
and S ⊆ 2F . In our example, the features Interest, Credit-
Worthiness, and DailyLimit can be selected independently
of each other resulting in 23 = 8 combinations. Half of
these combinations contain the feature Interest and we can
additionally choose whether the feature InterestEstimation is
contained or not, resulting in 4∗2+4 = 12 program variants.
Already for this small set of features, it is laborious to verify
each program variant separately.

1 refines class Account {
2 final static int DAYLY_LIMIT = -1000;
3 //@ invariant withdraw_in_limit:
4 //@ withdraw >= DAYLY_LIMIT;
5 int withdraw = 0;
6 /*@
7 @ ensures (\old(withdraw)+x >= DAYLY_LIMIT)
8 @ || !\result;
9 @*/

10 refines boolean update(int x) {
11 if (x < 0) {
12 int newWithdraw = withdraw + x;
13 if (newWithdraw < DAYLY_LIMIT)
14 return false;
15 withdraw = newWithdraw;
16 }
17 return original(x);
18 }
19 }
20 refines class Application {
21 /*@
22 @ ensures account.withdraw == 0;
23 @*/
24 refines void nextDay() {
25 original();
26 account.withdraw = 0;
27 }
28 }

Figure 3. Feature module for feature DailyLimit

B. Feature-Oriented Programming

SPLs can be implemented using feature-oriented program-
ming (FOP) [9]. In FOP, we decompose code artifacts into
pieces belonging to individual features, i.e., a class is split
into several files containing some of the fields and methods.
A feature module encapsulates all code artifacts concerning
one feature.

In Figure 2, we present the feature module implementing
feature BankAccount. It contains the classes Account and
Application. Class Account basically consists of a
field saving the balance of the account and a method to
update the balance by a certain value. Method update
ensures that the balance is always positive. The second class
Application holds an object Account and provides two
empty methods that handle the situation when a new day or
new year is reached. These methods are empty, but refined
subsequently by other feature modules.

A further feature module implementing the feature Dai-
lyLimit is shown in Figure 3. It refines the two classes
introduced by feature BankAccount. Specifically, it adds a
constant defining the daily limit, i.e., the highest possible
withdrawal for one day. Furthermore, a new variable to
save the current withdrawal of the day is added. The
method update is refined to store the withdrawal and check
whether it is within the daily limit.

A method defined in a certain feature module may refine
a method from another module by overriding. The keyword
original is used to refer to the extended method (see

Figure 3). The strength of FOP is that the feature modules
can be used in all combinations allowed by the feature
model.

C. Verification using Design by Contract

Critical requirements of programs can be specified using
design by contract [8]. Each class is specified by a set of
class invariants. A class invariant is a condition that must
hold for all methods of the class. This means that if the
invariant holds before executing a method, the invariant still
has to hold after execution. Additionally, methods can be
specified by method contracts, consisting of a precondition
and a postcondition. A method contract is valid if assuming
the precondition before method execution, the postcondition
is established after the execution of the method.

We express specifications of Java program variants using
the Java Modeling Language (JML) [5]. In JML, the key-
word requires defines a precondition, whereas keyword
ensures defines a postcondition. Empty pre- or postcon-
ditions are assumed to be always true and can be omitted.
In pre- and postconditions, JML allows Java expressions,
in which the keyword old references the value of a field
before executing the method and result refers to the
return value of the method. In Figures 2 and 3, examples
for JML specifications are given. For instance, in Figure 2,
Line 2, a class invariant is defined to ensure that the balance
of an account is not negative. In Lines 3 and 4 of Figure 3,
the class invariant requires that the withdraw is within the
daily limit.1

Given a Java program with a specification in terms of JML
annotations, it has to be proven that the program satisfies
its specification. From a JML-annotated Java program, cor-
responding proof obligations in a proof assistant’s language
can be generated. A proof obligation is a theorem consisting
of certain hypotheses and a conclusion referring to the JML
specifications, e.g., that a constructor fulfills all invariants. In
order to establish that the program satisfies the specification,
proofs have to be written for every proof obligation and a
proof assistant can check that the proofs are correct.

III. VERIFICATION OF SOFTWARE PRODUCT LINES

An SPL is a set of programs that share similarities,
which raises the question of how to verify these programs
efficiently. In principle, we could generate all program
variants (24 in our example) and verify their correctness
independently. But, this leads to highly redundant work
as the programs share code and we have to prove several
theorems multiple times. As proving correctness can usually
not be done fully automatically for large programs, an
efficient method to verify all programs of an SPL reduces

1We do not need to force that the daily limit is always smaller than
zero, because Why uses the value of constants directly at the proofs, i.e.,
changing -1000 to a positive integer would invalidate the proofs.

SPL including Specifications

Program Specification

Proof Obligations Proof of Similar Program

Verified Program

Figure 4. Variant-based verification using proof reuse

not only calculation time, but also the man power needed to
interactively prove correctness.

We introduce a classification of approaches for SPL verifi-
cation. We distinguish variant-based and feature-based veri-
fication. The classification is closely related to the scalability
of the approaches with respect to the number of program
variants. Roughly speaking, the effort needed for variant-
based verification is proportional to the number of variants,
whereas feature-based verification growths in the number of
features. Proof composition proposed in this paper can be
classified as feature-based verification.

A. Variant-based Verification

The overall idea of variant-based verification is to generate
all program variants and to verify each variant separately.
In Figure 4, we illustrate this strategy. We start with an
SPL and specifications for all features. Using the software
generator, we can generate a certain program variant and its
specification. Both are the input for a proof obligation gen-
erator. We retrieve a number of theorems which are then to
be proven automatically or interactively. Current approaches
for feature interaction detection [10] are instances of variant-
based verification techniques. Single features are expressed
in a formal specification language, e.g., see [11], and all
pairs of potentially interacting features are checked.

With an increasing number of program variants, variant-
based verification gets too complex. The reason is that we
have to prove certain theorems over and over again, e.g., if
more than one program variant contains the same method
with the same specification. Hence, Bruns et al. presented
an approach to reuse existing proofs across other program
variants [12]. Their approach is based on delta-oriented
programming. They write the proof for a particular program
variant and reuse parts of it for another program variant
by comparing the delta between the source code of both
variants.

Variant-based verification is a generally applicable tech-
nique to verify SPLs. It can also be applied to stand-alone
systems. But, there are several problems with this approach.
How can we reuse the proofs across two or more program

SPL including Specifications and Proofs

Program Specification Proof

Proof Obligations

Verified Program

Figure 5. Feature-based verification using proof composition

variants? What is the best order in which to verify all
program variants? We might find good solutions to these
problems, but a more fundamental problem is that we need
to redo all proofs if the source code or specification of a
certain feature evolves.

B. Feature-based Verification

Feature-based verification aims at efficiently proving the
correctness of all program variants of an SPL. The idea is
to prove properties of features instead of variants to avoid
redundant proof writing. Basically, there are two possibilities
how to infer properties about features.

First, we could create and prove theorems for each feature
and use them to prove the correctness of a program variant.
This approach is pursued in [3], [4], where for each property
that a feature should satisfy, constraints on the behavior of
the other features are generated. If the composed features
satisfy the constraints, the properties of the considered
feature are maintained.

Second, we can write partial proofs as part of each
feature that can be composed to more complex proofs for
program variants. We pursue this novel approach in proof
composition, since it alleviates the need to create additional
specifications for features that have to be established when
the feature modules are composed.

In Figure 5, we illustrate the feature-based verification
process using proof composition. We generate program
variants and specifications based on a feature selection and
use them as an input for the generation of proof obligations.
In addition, we generate correctness proofs for the given
feature selection from the partial proofs in the proof base.
Then, we merge the proof obligations with the generated
proofs, and a proof assistant can check the validity of the
composed proof. In Section IV, we show how proofs for the
proof assistant Coq can be composed from partial proofs.

Feature-based verification appears to be more efficient
than variant-based verification. The reason is that whatever
we can prove for a feature in isolation, has to be proven
only once. Variant-based verification may come to a similar
result, but with more overhead to check whether the same
theorem was already proved in any other variant.

IV. PROOF COMPOSITION

We illustrate proof composition for feature-based verifica-
tion of SPLs using a case study of bank accounts. The aim of
proof composition is to write partial proofs for each feature
and to compose the partial proofs of the selected features to
retrieve the correctness proof of a certain program variant.

Proof composition relies on tools to generate proof obli-
gations from a program and a specification. We use the
tool chain Krakatoa/Why [6] and Coq [7]. The tool Why
is a verification platform providing a language for proof
obligations. Krakatoa is a plug-in for Why that parses a
JML-annotated Java file and produces proof obligations in
the Why language. Using Why, proof obligations can be
exported to several proof assistants. We selected the proof
assistant Coq because of our expertise in Coq.

A proof obligation in Coq consists of several premises and
one conclusion. A manually written proof script transforms
the conclusion into parts that are equivalent to the premises
using proof steps. Coq provides a language for these proof
steps and can verify their correctness. We cannot give here
a full introduction to the proof assistant Coq and refer the
reader to the Coq manual [7]. To follow our arguments, it
is enough to understand the overall structure of a Coq proof
obligation and associated proof.

In Figure 6, we present a proof obligation in Coq retrieved
for the program variant {BankAccount} and a proof written
by ourselves. The proof obligation states that the constructor
of class Account ensures all class invariants, that is, all
invariants hold after object construction. Figure 2 contains
the corresponding JML-annotated Java code. Line 1 in
Figure 6 contains a generated name for the theorem that
is used to relocate the proof, if we change the source code
and regenerate the proof obligations. Lines 2 to 9 describe
premises that can be used to prove the conclusion in Line 10.
The human-written proof steps are surrounded by Proof
and Save.

In Figure 7, we show the same proof obligation for the
program variant {BankAccount, DailyLimit}. It differs three-
fold from the one for the program variant {BankAccount}.
First, we get new premises at the Lines 4 and 11–14. Second,
we have a new conclusion to prove in Line 16. Third, the
Lines 23–28 contain new proof steps proving the additional
conclusion.

For proof composition, we are interested whether proofs
can be modularized into features. Can we assign every proof
step to one feature and generate it only if the feature is
present in a program variant? The proof in Figure 7 can
be modularized as follows. The Lines 24–29 belong to
feature DailyLimit, whereas the Lines 19–23 concern feature
BankAccount. We refer to these parts as partial proofs.

Given the partial proofs for each feature, we now define
how to compose these partial proofs and how this fits into
the tool infrastructure using Krakatoa and Why.

1 (*Why goal*) Lemma cons_Account_safety_po_1 :
2 forall (this_1: (pointer Object)),
3 forall (Account_balance: (memory Object int32)),
4 forall (Object_alloc_table:(alloc_table Object)),
5 forall (HW_1: (valid_struct_Account this_1 0 0

Object_alloc_table)),
6 forall (result: int32),
7 forall (HW_2: (integer_of_int32 result) = 0),
8 forall (Account_balance0: (memory Object int32)),
9 forall (HW_3: Account_balance0 = (store

Account_balance this_1 result)),
10 (* JC_17 *) (balance_non_negative this_1

Account_balance0).
11 Proof.
12 intuition.
13 unfold balance_non_negative.
14 replace Account_balance0 with (store

Account_balance this_1 result).
15 rewrite select_store_eq; trivial.
16 omega.
17 Save.

Figure 6. Constructor of class Account ensures invariants in program
variant {BankAccount}

In Why, proof obligations are located by their names to
support the evolution of software. Assume we have already
written a proof for a particular program and need to apply
changes to this program. In this scenario, Why is able to
regenerate the proof obligations while the hand-written proof
scripts remain untouched.

Hence, we can store partial proofs with their names, and
Why is able to generate the proof obligations for a particular
program variant. In Figure 6, the partial proof for feature
BankAccount consists of Line 1 containing the name and
the Lines 11–17 with the proof steps. In proof composition,
partial proofs are composed based on their names. Partial
proofs with identical names are composed by concatenation.

A. Decomposability of Proofs

So far, we only considered an example proof obligation
when adding a particular feature. Now, we want to sys-
tematically consider all possible cases how a feature can
transform the source code and its specification as well as
the corresponding changes of the proof obligations.

A feature module can add a field with or without an
invariant, a method with or without a method contract, or
refine an existing method. For the refinement of an existing
method, we only allow compatible contracts. A contract A is
compatible to a contract B, if whenever a method m satisfies
A, it also satisfies B. A method refinement usually maintains
the behavior of the overridden method, so the compatibility
between contracts is given. As a result, all proofs relying on
a method’s contract remain valid when refining the method
with a compatible contract.

In the following, we discuss how proof obligations may
change when a new feature is added. We abstract from
technical issues, which we discuss later.

1(*Why goal*) Lemma cons_Account_safety_po_1 :
2forall (this_3: (pointer Object)),
3forall (Account_balance: (memory Object int32)),
4forall (Account_withdraw: (memory Object int32)),
5forall (Object_alloc_table:(alloc_table Object)),
6forall (HW_1: (valid_struct_Account this_3 0 0

Object_alloc_table)),
7forall (result: int32),
8forall (HW_2: (integer_of_int32 result) = 0),
9forall (Account_balance0: (memory Object int32)),
10forall (HW_3: Account_balance0 = (store

Account_balance this_3 result)),
11forall (result0: int32),
12forall (HW_4: (integer_of_int32 result0) = 0),
13forall (Account_withdraw0:(memory Object int32)),
14forall (HW_5: Account_withdraw0 = (store

Account_withdraw this_3 result0)),
15(* JC_45 *) ((balance_non_negative this_3

Account_balance0)
16∧ (withdraw_in_limit this_3 Account_withdraw0)).
17Proof.
18intuition.
19unfold balance_non_negative.
20replace Account_balance0 with (store

Account_balance this_3 result).
21rewrite select_store_eq; trivial.
22omega.
23unfold withdraw_in_limit.
24replace Account_withdraw0 with (store

Account_withdraw this_3 result0).
25rewrite select_store_eq; trivial.
26replace (integer_of_int32 result0) with 0.
27unfold Account_DAILY_LIMIT.
28rewrite int32_coerce; omega.
29Save.

Figure 7. Constructor of class Account ensures invariants in program
variant {BankAccount, DailyLimit}

• Adding a new field without an invariant. We get no
new proof obligations for any class. A new premise
that represents the initialization of the field is added
to the proof obligations for constructors (see Case 2
below).

• Adding a new field with an invariant. We need to
prove for every method and constructor of the class that
the invariant is fulfilled after execution. This changes
proof obligations concerning constructors and existing
methods (Case 3). New proof obligations are generated
in case there were no invariants before (Case 1).

• Adding a new method with or without a contract. No
existing proof obligations are changed. But, if the class
contains invariants or if the method has a contract, we
get new proof obligations that the method fulfills the the
existing invariants or the newly added contract (Case 1).

• Refining a method with a compatible contract. No
existing proof obligations are changed, because we only
allow to refine a method with a compatible contract.
We get new proof obligations to show that the refined
method fulfills the existing invariants and the added
compatible contract (Case 1). A further new proof

obligation is needed to show that the contract is indeed
compatible (Case 1).

We analyzed how proof obligations can change for par-
ticular changes induced by a feature. Now, we go through
all possible changes to proof obligations and consider how
the proofs need to be changed accordingly.
Case 1 New proof obligations. For every newly created

proof obligation, we can write a new partial proof
for the new feature. Proof composition simply
copies it to the proof of the composed program
variant.

Case 2 New premises at proof obligations. A new premise
does not imply a change to the proof steps.

Case 3 New cases at proof obligations. The changed proof
obligations contain a new conclusion for which
we need additional proof steps at the end of the
proof. This can be handled as shown in the above
example, i.e., creating a new partial proof including
these additional proof steps. Proof composition will
concatenate the partial proofs for program variants.

B. Technical Issues

The previous case distinction shows that proof com-
position is generally possible. Next, we want to discuss
some technical problems we faced and give suggestions for
solutions.

First, whenever composing a module introducing a field
with an invariant, it should be added below all other fields.
This simplifies proof composition, since new cases always
appear at the end of proof obligations and new proof steps
can always be added below existing proof steps.

Second, Krakatoa and Why generate names for premises,
assignments, nested expressions, and for the current object.
These names are needed to reference these entities in proof
steps. The problem is that name generation is very fragile in
terms of changes to the source code. Hence, we suggest to
minimize references to generated names, which is possible
to a certain degree. Remaining references can mostly be up-
dated automatically based on the generated proof obligation.

Third, in FOP, refined methods are usually renamed and
the keyword original is replaced by a call to that
renamed method. Since the name of a proof obligation is
generated using a method’s name, we also need to rename
the partial proofs that they still match to the proof obligation.
Fortunately, the renaming of methods is predictable and
renaming partial proofs can be done automatically when
composing proofs.

Fourth, Why requires all proof obligations to be alpha-
betically ordered, but proof composition can easily take the
order into account when composing partial proofs.

V. EVALUATION

Proof composition is a novel approach to reuse proofs in
feature-oriented SPLs by composing them to larger proofs,

i.e., the correctness proofs for a certain program variant.
We created a small case study, which is based on our
running example presented in Figure 1, to evaluate the
practicability of proof composition. In Figures 2 and 3, we
already presented the source code and specification for two
of the five feature modules of our case study. For brevity,
we omit the implementation of the other modules, but they
are similar in size and complexity.

We created hand-written partial proofs for every feature
module, where we omitted the proof obligation including
all premises and the conclusion. Then, we generated every
program variant including its specification in JML and
composed the partial proofs of the features included in the
configuration. We used Krakatoa and Why to generate the
proof obligations into our composed proofs and let Coq
prove the correctness for all program variants.

For an evaluation, we are interested how efficient the
verification using proof composition is. We need to verify
each program variant using Coq, similarly to variant-based
verification. But, for interactive theorem proving the time
needed to check whether a proof is correct is magnitudes
smaller than the time needed to write the proof steps from
scratch. Additionally, checking whether a proof is correct
can be done automatically by a machine, while proof writing
needs a human being. Hence, we can neglect the effort to
check correctness of proofs and focus on proof writing.

We compare the effort of verifying our example SPL
using variant-based and feature-based verification by proof
composition. The effort for proof writing is related to the
number of proof steps, so we introduce the measure lines of
proof (LOP) that is similar to the measure lines of code.2

LOP counts the number of proof steps, e.g., the LOP for
Figure 6 and Figure 7 are 5 and 11, respectively.

Figure 8 shows the LOP of all partial proofs for each
feature module, which is the LOP we wrote by hand for
every feature. Second, we considered all generated program
variants and measured the LOP for every feature, which
is equivalent to the LOP we would need to write using a
variant-based verification.

The variant-based LOP for feature BankAccount is much
higher than the feature-based LOP, because the feature is
included in all program variants and the partial proof is
composed into the correctness proofs for all these variants.
Similarly, since the other features are included in several
program variants, the once hand-written proof for a feature
is generated for several correctness proofs.

It is not always possible to generate the proofs for a
program variant only from the partial proofs for each feature.
For example, one feature may introduce an invariant and
the other feature introduces a new method. Then, we get
an additional proof obligation, if both features are part

2Note that writing a certain amount of proof lines is usually more effort
than writing the same amount of code lines.

BankAccount
Interest

InterestEstimation

CreditWorthiness
DailyLimit

Derivatives
0

100

200

300

400

500 456

336

40 30

288

8
38 42

10 5
48

2

LOP feature-based
LOP variant-based

Figure 8. Variant-based vs. feature-based verfication: lines of proof (LOP)

of the same variant. This problem of structured feature
interactions is well known in FOP. Feature interactions can
easily be detected, since Why generates a proof obligation
for which no proof exists in all variants containing the
feature causing the feature interaction. Our solution is to
create derivatives [13], i.e., small modules that are included,
if and only if two or more other feature modules are
composed. In our example, we created a derivative for the
features Interest and DailyLimit, which is used to compose
the proofs of four program variants.

As a result, we can sum up the proof steps over all
features. The LOP using variant-based verification is 1150
steps in total. The LOP using feature-based verification is
only 143. Hence, by applying proof composition, we reduced
the number of hand-written proof steps by approximately
88%.

VI. DISCUSSION

Using proof composition, we were able to save time in
verifying the correctness of all program variants in our
case study. In order to generalize these results, further case
studies are needed. Case studies may evaluate the potential
of proof composition for other domains or larger code
bases. Especially, it is unclear whether proof composition
can generate proofs automatically for all program variants
in practice. Problems can arise with feature interactions,
i.e., we need to prove something only if two features are
contained in the same configuration.

Our approach is compatible with languages and tools
that use superimposition [14]. This raises the question of
whether proof composition can be used with other SPL
implementation techniques such as delta-oriented program-
ming (DOP) [15] or preprocessors [16]. For DOP, we would
further need to be able to remove proofs or parts of proofs,
e.g., if we remove a field including its class invariant.
This raises the question of how to refer to parts of proofs.
Proof composition will be more complicated for DOP. When

implementing SPLs using preprocessors, we could imagine
that preprocessor macros are used in proof documents as
well.

We discovered several technical problems using Krakatoa
and Why, but we assume that similar problems will arise
for other verification tools. The reason is, that we need to
refer to assignments, expressions, and instances in proofs for
which names have to be generated. These generated names
may change when adding new members to a class.

VII. RELATED WORK

Batory and Börger [17] show how to modularize the
proof that a given Java interpreter is equivalent to the JVM
interpreter for Java 1.0. They modularize the Java grammar,
theorems about correctness, and natural language proofs into
features. In contrast, we focus on (a) Java programs instead
of Java grammars, (b) allow user-defined specifications from
which theorems are generated, and (c) compose machine-
readable correctness proofs that can be verified by a proof
assistant.

The analysis of SPLs is an active research topic. Feature
model analysis [18] aims at finding inconsistencies in feature
models, e.g., whether the feature model constraints are at
all satisfiable. Feature interaction detection determines if
a combination of features causes unwanted or unexpected
behavior [10]. Single features are expressed in a formal spec-
ification language, e.g., see [11], and all pairs of potentially
interacting features are checked.

In most approaches that apply model checking to SPLs,
existing analysis techniques are extended to deal with
optional behavior. For instance, in [19], modal transition
systems are extended by variability operators from deontic
logic. In [20], the process calculus CCS is extended with a
variant operator to represent a family of processes. In [21],
transitions of I/O-automata are related to variants. In [22],
product families are modeled by transition systems where
transitions are labeled with features to compute state reach-
ability modulo a set of features. While these approaches
focus on all program variants at the same time during domain
engineering, there are also approaches generating constraints
that need to be checked for every variant in application
engineering: In [3], [4], a feature-based model checking
technique is proposed relying on generated assumptions for
composed features.

Apart from [17], [12], deductive verification of product
lines is not yet widely considered. In [23], a correctness-by-
construction approach for product lines is proposed where
product features are successively refined as Event-B models.
By refinement proofs, it is ensured that the properties of all
features are preserved.

Type checking SPLs has similar challenges as the verifi-
cation of SPLs. It is not feasible and very redundant to type
check every program variant separately. Product-line–aware
type systems were proposed for feature-oriented [24], [25]

and annotation-based product lines [26], [27]. The idea is
to type check all valid combinations of features at the same
time. Given a type-safe SPL, every program variant that can
be generated is type-safe. For delta-oriented product lines, a
compositional type system exists, which, however, requires
to check an abstraction of each program variant [28].

VIII. CONCLUSION AND FUTURE WORK

The verification of each program variant of an SPL
from scratch is a highly redundant task. We propose proof
composition to generate the correctness proof for every
program variant along with the source code. We compose
proofs from partial proofs of the features involved.

We presented a case study of bank account programs
for which we wrote partial proofs for every feature. Then,
we composed the partial proofs to correctness proof for
every program variant. These proofs were verified using
the Coq proof assistant. Our evaluation showed that proof
composition could reduce the effort of proof writing by 88%.

Future work should evaluate proof composition using
larger case studies, with other tools for proof obligation
generation, and other SPL implementation techniques such
as preprocessors.

ACKNOWLEDGMENT

Apel’s research was supported by the German DFG grants
AP 206/2-1 and AP 206/4-1.

REFERENCES

[1] K. Pohl, G. Böckle, and F. J. van der Linden, Software
Product Line Engineering : Foundations, Principles and
Techniques. Springer, 2005.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study,” Software Engineering Institute, Tech. Rep.
CMU/SEI-90-TR-21, 1990.

[3] H. C. Li, S. Krishnamurthi, and K. Fisler, “Interfaces for
Modular Feature Verification,” in ASE. IEEE Computer
Society, 2002, pp. 195–204.

[4] K. Fisler and S. Krishnamurthi, “Modular Verification
of Collaboration-based Software Designs,” in ESECFSE.
ACM, 2001, pp. 152–163.

[5] G. T. Leavens and Y. Cheon, “Design by Contract with
JML,” 2005. [Online]. Available: http://www.jmlspecs.org/
jmldbc.pdf

[6] Why Development Team, “Why: A Software Verification
Platform,” Website, available online at http://why.lri.fr/; vis-
ited on December 16th, 2010.

[7] Coq Development Team, The Coq Proof Assistant Reference
Manual, LogiCal Project, 2010, version 8.3.

[8] B. Meyer, “Applying Design by Contract,” Computer, vol. 25,
no. 10, pp. 40–51, 1992.

[9] C. Prehofer, “Feature-Oriented Programming: A Fresh Look
at Objects,” in ECOOP, ser. LNCS, vol. 1241. Springer,
1997, pp. 419–443.

[10] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec,
“Feature Interaction: A Critical Review and Considered Fore-
cast,” Computer Networks, vol. 41, no. 1, pp. 115–141, 2003.

[11] S. Apel, W. Scholz, C. Lengauer, and C. Kästner, “Detecting
Dependences and Interactions in Feature-Oriented Design,”
in ISSRE. IEEE Computer Society, 2010, pp. 161–170.

[12] D. Bruns, V. Klebanov, and I. Schaefer, “Verification of
Software Product Lines: Reducing the Effort with Delta-
oriented Slicing and Proof Reuse,” in FoVeOOS, ser. LNCS,
vol. 6528. Springer, 2010, pp. 61–75.

[13] S. Apel and C. Kästner, “An Overview of Feature-Oriented
Software Development,” JOT, vol. 8, no. 5, pp. 49–84, 2009.

[14] S. Apel, C. Kästner, and C. Lengauer, “FeatureHouse:
Language-Independent, Automated Software Composition,”
in ICSE. IEEE Computer Society, 2009, pp. 221–231.

[15] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tan-
zarella, “Delta-Oriented Programming of Software Product
Lines,” in SPLC, ser. LNCS, vol. 6287. Springer, 2010, pp.
77–91.

[16] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze,
“An Analysis of the Variability in Forty Preprocessor-Based
Software Product Lines,” in ICSE. IEEE Computer Society,
2010, pp. 105–114.

[17] D. Batory and E. Börger, “Modularizing Theorems for Soft-
ware Product Lines: The Jbook Case Study,” J.UCS, vol. 14,
no. 12, pp. 2059–2082, 2008.

[18] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated
Analysis of Feature Models 20 Years Later: a Literature
Review,” Information Systems, vol. 35, no. 6, pp. 615–708,
2010.

[19] A. Fantechi and S. Gnesi, “Formal Modeling for Product
Families Engineering,” in SPLC. IEEE Computer Society,
2008, pp. 193–202.

[20] A. Gruler, M. Leucker, and K. Scheidemann, “Modeling
and Model Checking Software Product Lines,” in FMOODS.
Springer, 2008, pp. 113–131.

[21] K. Lauenroth, K. Pohl, and S. Toehning, “Model Checking
of Domain Artifacts in Product Line Engineering,” in ASE.
IEEE Computer Society, 2009, pp. 269–280.

[22] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F.
Raskin, “Model Checking Lots of Systems: Efficient Verifi-
cation of Temporal Properties in Software Product Lines,” in
ICSE. ACM, 2010, pp. 335–344.

[23] M. Poppleton, “Towards Feature-Oriented Specification and
Development with Event-B,” in REFSQ, ser. LNCS, vol.
4542. Springer, 2007, pp. 367–381.

[24] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer, “Type
Safety for Feature-Oriented Product Lines,” ASE, vol. 17,
no. 3, pp. 251–300, 2010.

[25] S. Thaker, D. Batory, D. Kitchin, and W. Cook, “Safe
Composition of Product Lines,” in GPCE. ACM, 2007,
pp. 95–104.

[26] C. Kästner, S. Apel, T. Thüm, and G. Saake, “Type Checking
Annotation-Based Product Lines,” TOSEM, 2011, to appear.

[27] T. Thüm, “A Machine-Checked Proof for a Product-Line–
Aware Type System,” Master’s thesis, University of Magde-
burg, Germany, 2010.

[28] I. Schaefer, L. Bettini, and F. Damiani, “Compositional
Type-Checking for Delta-Oriented Programming,” in AOSD.
ACM, 2011, To appear.

