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Abstract

Implementing software product lines is a challenging task.
Depending on the implementation technique the code that
realizes a feature is often scattered across multiple code units.
This way it becomes difficult to trace features in source code
which hinders maintenance and evolution. While previous
effort on visualization technologies in software product lines
has focused mainly on the feature model, we suggest tool
support for feature traceability in the code base. With our
tool CIDE, we propose an approach based on filters and
views on source code in order to visualize and trace features
in source code.

1 Introduction

A software product line (SPL) is an efficient means to
create a family of related programs for a domain in prac-
tice [3, 30]. Instead of implementing each program of this
family from scratch, an SPL facilitates systematic reuse by
modeling a domain with features (domain abstractions rele-
vant for stakeholders, typically increments in functionality)
and generating program variants from some assets that are
common to the SPL [19, 3, 12].

Industrial SPLs typically have hundreds of features and
large code bases of thousands or even hundreds of thousands
of lines of code. A problem that is faced by many SPL
implementation techniques is tracing features from the do-
main level (problem space) to their implementation (solution
space) [12]. Often the implementation of a feature is scat-
tered throughout several code units, for example in form of
code fragments annotated with #ifdef directives. The lack of
feature traceability causes several problems in development
and maintenance [1], for example it is difficult to perform
the following maintenance tasks for an individual feature:

• The specification of a feature changes: which code
might be affected?

• A bug is reported in a certain feature: how to find and
understand the feature’s code?

We faced such problems, after decomposing a legacy
application into features: From the Java and C versions
of Oracle’s embedded database engine Berkeley DB1, we
each decomposed several features to make it configurable
as SPL [21, 34]. Berkeley DB (C version) was already con-
figurable to some degree using #ifdef directives. However,
when we tried to understand how some of the existing fea-
tures were manifested in the source code, we needed to
inspect the entire code base.

While there are several solutions to maintain feature trace-
ability – e.g., architecture-based SPLs using frameworks or
components [3], or specialized programming language con-
cepts like feature-oriented programming [31, 4] – they are
mainly used in academia. In practice simple solutions like
conditional compilation with #ifdef or similar directives pre-
vail.

Similarly, tool support and especially visualization tech-
niques can help, but previous research on visualizing SPLs
has mainly focused on the feature modeling and the product
derivation process, e.g., [6, 35, 32]. In current visualization
approaches the SPL’s implementation is usually not consid-
ered.

In this paper, we discuss different approaches to support
developers in understanding and exploring individual fea-
tures by combining several visualization techniques. Specifi-
cally, we propose virtual views on the source code, depend-
ing on a selection of features. We base our implementations
on a tool for implementing SPLs called Colored Integrated
Development Environment (CIDE) which we presented in
earlier work [22]. Although CIDE is a proprietary tool which
maintains a direct mapping between features and their (possi-
bly scattered) implementation, the presented concepts could
easily be adapted to support existing SPLs that already used
#ifdef or similar concepts.

1http://www.oracle.com/database/berkeley-db



2 SPL Implementation Approaches

There are many approaches to SPL implementation. Most
of them can be categorized either as compositional or as
annotative approach [22].

Compositional Approaches. Compositional approaches
implement features as distinct (physically separated) code
units. To generate a product line member for a feature se-
lection, the corresponding code units are determined and
composed, usually at compile-time or deploy-time. There
is a large body of work on feature composition, usually
employing component technologies [38], or specialized ar-
chitectures and languages like frameworks [18], mixin lay-
ers [36, 2], AHEAD [4], multi-dimensional separation of
concerns [39], and aspects [25]. Depending on the concrete
approach or language, the composition mechanism varies
from assembling plug-ins to complex code transformations,
but the general idea of composition as illustrated in Figure 1
is the same.

class Stack {
void push(Object o) {

elementData[size++] = o;
}
...

}

class Stack {
void push(Object o) {

elementData[size++] = o;
}
...

}

refines class Stack {
void push(Object o) {

Lock l = lock(o);
Super.push(o);
l.unlock();

}
...

}

refines class Stack {
void push(Object o) {

Lock l = lock(o);
Super.push(o);
l.unlock();

}
...

}

Base

Feature: Locking

Feature: Statistics

aspect Statistics {
...

}

aspect Statistics {
...

}

class Stack {
void push(Object o) {

Lock l = lock(o);
elementData[size++] = o;
l.unlock();

}
...

}

class Stack {
void push(Object o) {

Lock l = lock(o);
elementData[size++] = o;
l.unlock();

}
...

}

Composition

Figure 1. Composing code units.

The advantage of compositional approaches is that they
provide a direct link between a feature and its implementa-
tion. Thus, they achieve a high degree of feature traceability.
A code unit (e.g., a plug-in or a mixin layer) can be asso-
ciated directly with a feature. Feature code can be found
directly in the code units associated with a feature, it is not
intermixed with code from other features.

However, compositional approaches share the problem
that they are unable to implement SPLs at a fine granular-
ity [22]. For example, they do not support a feature that
needs to change a single line of code in another feature.
Instead they usually build on a rather coarse-grained archi-
tecture. Furthermore, many of them require specialized lan-
guages (breaking the tool chain) or architectural overhead.
If used for legacy applications, they force a new paradigm
or architecture upon existing structures. Therefore, although
compositional approaches are popular in academia, they are
hardly used in industrial projects so far.

Annotative Approaches. In contrast, annotative ap-
proaches implement features with some form of explicit or
implicit annotations in the source code. The prototypical ex-
ample, which is commonly used in industrial SPLs are #ifdef
and #endif statements of the C preprocessor to surround
feature code. Such techniques are also common in commer-
cial SPL tools as pure::variants [5] or Gears [27]. Other
examples of annotative approaches are Frames/XVCL [17],
explict programming [8], Spoon [29], software plans [11],
metaprogramming with traits [40], and aspects using anno-
tations [26].

Annotative approaches all share the problem of feature
traceability. The implementation of a feature is typically
scattered throughout several code units. In some approaches,
features are partly modularized leaving just some annotations
in the code at which feature code is later introduced, while
in others the whole SPL including alternative and mutually
exclusive features are encoded in a single code base. In
Figure 2, we show a shortened excerpt from Berkeley DB in
which the preprocessor is used to achieve variability. Despite
the problem of lacking feature traceability (and others not
relevant for this paper [37]) annotative approaches are com-
monly used in industry because they are a simple technique
without much overhead and because they are less intrusive
with the current design and development process [10].

1 s t a t i c i n t __rep_queue_filedone(dbenv , rep, rfp)
2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 # i f n d e f HAVE_QUEUE
6 COMPQUIET(rep, NULL);
7 COMPQUIET(rfp, NULL);
8 re turn (__db_no_queue_am(dbenv));
9 # e l s e

10 db_pgno_t first , last;
11 u_int32_t flags;
12 i n t empty , ret, t_ret;
13 # i f d e f DIAGNOSTIC
14 DB_MSGBUF mb;
15 # e n d i f
16 // over 100 lines of additional code
17 # e n d i f
18 }

Figure 2. Code excerpt of Berkeley DB.

In this work, we will address the problem of lacking trace-
ability in annotative approaches with additional tool support.
Our aim is to close the gap between compositional and an-
notative approaches by introducing visualization techniques.
Specifically, we introduce views on specific features, which
enable developers to explore a feature’s code as if it was
physically separated. The views support code exploration
and enhance feature traceability.



3 Virtual Separation of Concerns

In this paper, we build on the concept of virtual sepa-
ration of concerns [22]: concerns (and thus including also
features) are not physically separated but just annotated as
in annotative approaches. However, these annotations are
managed and controlled by a tool infrastructure. This tool
infrastructure enables novel concepts of virtual views on the
source code for source code navigation and exploration.

The concept of virtual separation of concerns roots back
to our experience on decomposing legacy applications [21].
For this task, we needed to analyze how feature code was
scattered and tangled in a legacy implementation. In early
discussions, we literally used colored pens on printouts of
code fragments to mark feature code, one color per feature.
As this turned out conveniently, we created a tool called
Colored Integrated Development Environment (CIDE) to
facilitate this otherwise manual approach.

CIDE is built on top of the Eclipse’s Java development
environment. Developers can select fragments of the code
and assign a feature to it. Following the metaphor of pens
on paper, CIDE does not add #ifdef or similar directives to
the source code, but uses the representation layer. It shows
the annotated code fragment with a background color that
represents the feature, see the example in Figure 3. All
annotations are managed within the tool, which enables
new possibilities for visualizations. CIDE is primarily used
as SPL tool; to generate a variant those code fragments
associated with unwanted features are removed.

As #ifdef directives can be nested to specify glue code
between two features (that is only included when both fea-
tures are selected), also colors in CIDE can overlap. If two
or more features are annotated to a code fragment, this is
considered as glue code between those features and only
included in a generated variant if all annotated features are
selected. Typically such glue code is annotated in a nested
form, e.g., the entire class is ‘blue’ and inside one method
or statement is also ‘red’. In the editor, the background
colors of all involved features are blended; we will discuss
implications of this later.

Underlying Structure. A concept that is necessary to un-
derstand how CIDE works and which we later use to imple-
ment our views, is that CIDE enforces disciplined annota-
tions based on the underlying code structure. A developer
cannot annotate arbitrary code fragments – possibly delim-
ited by offset and length – but only structural elements of the
code, e.g., classes, methods, statements or even parameters.
The structure is determined internally by the code’s abstract
syntax tree (AST) as depicted in Figure 4. When a code
fragment is selected, this selection is internally mapped to
the according AST nodes. In our example the underlined
code is mapped to the grayed AST elements.

Figure 3. CIDE Screenshot

1 c l a s s C {
2 void m( i n t p){
3 s1();
4 s2(p,true);
5 }
6 void p() {}
7 }

ClassDeclaration

MethodDeclaration

Name
“m”

Parameter
“int p”

MethodInvk
“s1”

Block

MethodDeclaration

MethodInvk
“s2”

...
ReturnType

“void”

Parameter
“p”

Parameter
“true”

Name
“m”

Figure 4. AST Example.

In an AST, we can distinguish optional nodes and manda-
tory nodes. Optional nodes can be removed without invalidat-
ing the syntax. In Figure 4, we use the FODA notation [19]
and connect optional AST nodes with an empty circle and
mandatory nodes with a filled circle. The class node is op-
tional, so are the method nodes, or the nodes for method
calls and parameters. In contrast the node for return type
or block are mandatory; removing only the return type of
the method would cause an invalid syntax. In CIDE, only
optional AST nodes can be annotated.

Mapping annotations to underlying structures has two
benefits. First, only disciplined annotations are allowed,
which avoids many potential errors like annotating only an
opening but not the closing bracket. These disciplined an-
notations distinguish CIDE from common preprocessors.
Second, the underlying structure can be used for code ma-
nipulations and visualizations. For example, a variant of the



SPL is generated by AST transformations, so developers do
not have to deal with pure syntax elements like the separating
comma between parameters [22].

In the following, we discuss four concepts used by CIDE
to support feature traceability and code exploration in SPLs
though visualization: scaling, views on the file system, and
two forms of views on file content.

3.1 Scaling

In previous work, we have only considered annotating
code fragments inside a file. Inside files, using the underly-
ing AST scales well: It is possible to annotate entire classes,
entire methods, individual statements or even parts of ex-
pressions or parameters.

However, for CIDE to scale for large SPLs, we also need
to consider coarser granularities than file fragments. Often
entire files or even packages (directories) can belong to a
feature. For example, in Berkeley DB (Java version) the
transaction functionality is already modularized to a large
degree in a package. There are still several scattered calls to
the transaction subsystem, however the core implementation
is located in few files. The traditional approach (also for
#ifdef preprocessors) would be to annotate the entire content
of all these files. However, this makes locating feature code
more difficult than necessary, because a developer first has
to look inside these files.

Instead, we add the possibility to annotate files and di-
rectories directly. To maintain the color metaphor, we also
add background colors to files and directories in Eclipse’s
standard project explorer view as shown in Figure 5. For
developers it becomes thus straightforward to recognize that
an entire directory belongs to a feature. This way the color
metaphor scales from smallest code fragments within a file
up to entire directories.

Figure 5. Colors scale from directories to
code fragments

3.2 Views on the File System

When entire files or directories are colored a user can
recognize features without looking into all files. However,
there are still two problems. First, when many files are
involved it can still be tedious to find all files in the directory
structure. Second, when only a code fragment inside a file
is annotated – instead of an entire file – the developer still
won’t find all feature code without looking into all files.

To address these problems, we introduce a filter function-
ality that creates a view on the file system. In order to use
this, the developer has to select one or more features from
the feature model (or a list of features) and press a new filter
button in the standard Eclipse project explorer. When acti-
vated only those directories or files are shown in the project
explorer which contain a file or code fragment annotated
with one of the selected features. Thus, the developer can
trace a feature to all its code fragments.

Note, to select features for a view, a simple list of fea-
tures without further dependencies is sufficient. Although
it is possible to create views on invalid configurations this
way, e.g., show two mutually exclusive features at the same
time, this flexibility might be necessary for certain tasks. For
example, it must be possible to create a view on a single
feature without first having to create a valid configuration
(which might require several other features). Dependencies
between features are only required for the derivation pro-
cess, but not necessarily to provide views for developers.
Nevertheless, CIDE shows an indicator whether the current
selection would also be a valid configuration.

In Figure 6, we show how this is implemented in CIDE:
in the upper ‘Project Explorer’ view there is a new filter
button. When activated only those files that contain code
fragments that are annotated with at least one of the selected
features are shown. Features can be selected from the lower
view (‘Feature List’); when the selection is changed the view
on the file system is updated instantly. For example, when
selecting the transaction feature for Berkeley DB SPL and
activating the filter function (as shown in Figure 6), only
those files with some transaction code are shown, all others
are hidden. It does not only show the ‘txn’ package which is
entirely colored because it contains only code of the transac-
tion feature, but it also shows files from other packages that
contain annotated calls to the transaction system.

3.3 Views on File Content

The filter function is very useful to create views on the file
system structure. However, it only shows which files contain
annotated code fragments. When opening a file in the editor,
we still have to search for all locations. Compared to the
length of the entire file, the annotated code fragment can be
relatively small, e.g., only a single statement or parameter.



Figure 6. A filter creates a view on the file sys-
tem

Therefore, we also provide views on the source code inside
a file.

We experimented with several different versions how to
provide views on a file. We finally implemented two different
solutions. Interestingly, these views correspond closely to
the classification by Heidenreich et al. [14]. The first hides
all features which are not selected and realizes a variant
view, i.e., it shows how a certain variant looks like. The
second solution shows all code of selected features but hides
everything else except some context code that is necessary
understand the location of the code fragment. It can be
classified as realization view that shows the code fragments
realizing a feature [14].

Variant View. Our first implementation allowed hiding all
code fragments that were annotated with any features not
currently selected. This view is very similar to the actual re-
sult of the variant generation process. Consider an example,
where the user selects only the transaction and the logging
feature and opens a file which contains a some transaction
and logging code fragments (e.g., to lock some statements
and log results). In this example, the user sees only the base
code that is not annotated and the transaction and logging
code. All remaining code that is annotated with other fea-
tures is hidden. Still, hidden code fragments are indicated
by a marker (in the color of the hidden code fragment), as
illustrated in Figure 7 for a simple example of a Stack class
with two features. Given that the selected features are a valid
configuration of the feature model, the code in this view

represents a complete variant and could even be compiled.
The functionality to hide code is implemented using

Eclipse’s projection framework, which commonly is used to
fold methods or comments in the Java editor or other editors.
In contrast to code folding, hiding feature code also works
with code fragments inside a line (code folding allows only
to hide entire lines) and a symbol is shown to indicate the
hidden code.

This view can also be used to not only view a variant,
but also to trace a single feature. Therefore, the user would
only select a single feature and would only see the base code
and this feature. The advantage of this approach is that the
‘uncolored’ code which surrounds the feature code is still
present, so it is easy to understand how the feature code
interacts with the SPL. However, at the same time, this is
also a disadvantage, because on most files there is much
‘uncolored’ code so that it might still be tedious to search the
potentially small fragments of feature code. Furthermore, a
second problem is that code that is annotated with two or
more features (overlapping features for glue code) is only
shown when all annotated features are selected for the view.
For example, ‘red code’ inside ‘blue code’ is only shown
when ‘blue’ and ‘red’ are selected, but hidden when only
‘red’ is selected. This might not fit the intuition if a developer
wants to see ‘all transaction code’.

Realization view. The second implementation of a view
on file content addresses the limitations of the first when it
comes to tracing a single feature. First, it does not show all
the ‘uncolored’ code, but only those code fragments neces-
sary to understand the current location. Second, it shows the
entire code annotated with a feature, even if it is annotated
with further features.

This view is more difficult to implement, because we
need to decide which code to hide. For example, when only
a statement in a method is annotated, we cannot hide all
the remaining code, because the developer would not know
in which class or method this single statement is located
(potentially even in a method in an anonymous inner class or
inside a static initializer). This means that we need to show
some context for each location. Determining the context
is the difficult decision and there may be many different
solutions.

Using the distinction between optional and mandatory
nodes in the underlying structure, we found one approach
that provides a satisfactory solution. Actually, given the un-
derlying structure, our algorithm to determine the necessary
context is fairly simple. First, all code fragments annotated
directly with the selected features are shown. Second, all
their parents are shown as well (recursive to the root of the
AST). Third, from every shown node all mandatory child
nodes are shown, but not the optional ones.

Let’s illustrate this algorithm on our initial example in



View/Generation  

Figure 7. View on ‘yellow’ Logging feature hides all ‘blue’ Transaction code.

Figure 4. The second method call in the first method is
shown because it is annotated. Its parent the ‘block’ node is
shown. The first statement in the block is optional, therefore
it is not shown. The block’s parent – the method m – is
shown, including is mandatory children the return type and
name of the method, but not including the optional parame-
ters. Also the method’s parent, the class is shown, again not
including the optional children like the other method. The
resulting view is depicted in Figure 8, it contains neither the
unnecessary method, nor the method’s parameter, nor the
other statement.

A view created with this algorithm is not complete and
could not be compiled. It is much closer to a mixin [7] or par-
tial class in C#, as used in compositional approaches. Only
the necessary context to understand an individual feature is
shown, not an entire compilable variant. Again, the differ-
ence between feature code and context becomes obvious by
the annotation shown as background color.

1 c l a s s C {
2 void m(){
3 s2(p,true);
4 }
5 }

Figure 8. View shows feature and context

In larger files with much uncolored code, the difference is

even more significant. In Figure 9, we show another example,
this time from an (excerpt of an) ANT build script (XML).
The annotated code fragment is only a single line in a long
XML file. In XML files element names are mandatory but
attributes are optional in the underlying structure, thus the
view contains only the necessary elements without attributes
as context.

We found that views created with this algorithm are usu-
ally suitable to show enough context to roughly understand
how the annotated code fragments related to the remaining
code. Still, some fine-tuning is possible which could be
offered as options to the users. For example, it would also
be possible to hide only entire lines that do not contain any
visible code. In this case some more context information like
parameters in methods are visible without making the view
longer in terms of lines of code. Alternatively, we could
show a fixed frame of n lines or statement as context before
or after each fragment of feature code, as in the Unix grep
utility. Furthermore, again markers can be shown in the code
to indicate hidden fragments.

3.4 Summary

To summarize, with views we virtualize the SPL code
in CIDE. Colors are used consistently to represent features,
scaling from entire directories or files to code fragments
of different sizes inside files. While the feature code may



1 <project name=’Release G.’>
2 <description > ... </description >
3 <patternset id="tool.patterns">
4 <include name="modelexplorer*"/>
5 <include name="ant/**/*.jar"/>
6 <include name="applybali2jak*"/>
7 <include name="xak*"/>
8 <include name="infozone*"/>
9 <include name="saxon*"/>

10 </patternset >
11 <target name=’ahead’ ...>
12 <antcall inheritall=’false’ ...>
13 <param name=’dir.source’ ... />
14 </antcall >
15 </target >
16 </project >

1 <project >
2 <patternset >
3 <include name="xak*"/>
4 </patternset >
5 </project >

Figure 9. View on XML fragment and context.

still be scattered across the entire code base, there are sev-
eral mechanisms to create a view for one or more selected
features in order to trace features directly to their code frag-
ments. First, only relevant files are shown in the directory
structure of the project, second, also inside files only rel-
evant parts are shown. This way, feature traceability as
known from compositional approaches can be emulated even
for SPLs that are developed with common annotative ap-
proaches.

4 Discussion

Already in previous work, we used CIDE in a series of
case studies of different size and different languages, e.g., a
small Java SPL for graph algorithms [22], Berkeley DB [22],
documentation and build scripts from the AHEAD tool suite,
SQL grammars, Haskell programs, and an industrial SPL
written in C [23].2 We do not want to repeat these case
studies, however the new possibility to create views raises
several issues that we discuss in the following.

Using colors to represent features. The decision to use
background colors to represent features instead of additional
language constructs like #ifdef has been controversial. There
are several issues which have to be considered.

On the positive side, colors are intuitive to map. In most
editors background colors are not already used to represent
some other information (in contrast to different text styles
like bold or italics or foreground colors). In contrast to
directives like #ifdef, background colors do not obfuscate
the source code or influence the layout of the source code.

However, humans are not able to distinguish and recog-
nize many colors clearly. It would not be possible to map

2CIDE, together with case studies from this and earlier publications are
available on the project’s web site http://wwwiti.cs.uni-magdeburg.
de/iti_db/research/cide/.

a feature A to light red and another feature B to a slightly
darker red, as developers would constantly confuse them. It
is not possible to distinguish more than a handful of features
by colors, which is not enough for the majority of SPLs.
Even worse, handicapped users – e.g., red-green color blind-
ness is quite common affecting 7–10 % of all males – can
distinguish even less colors.

Therefore, it is important to emphasize that colors are
not mapped uniquely (1:1) to features. Already when we
colored features with pens on printouts, we noticed that there
are rarely more than three or four colors on a single sheet of
code. The same applies for editors: on a single screen only
few colors appear at the same time. Therefore, we found that
a repeating list of 12 different colors is sufficient to represent
even large feature models. Additionally the developer may
change the colors for all features. Users do not need to
recognize features from the used colors. Instead they use
colors to determine where feature code begins and ends and
how features are tangled. The concrete names of features
annotated at a code fragment can usually be inferred from
the context or looked up from a tool tip in CIDE.

This way, it is even possible to represent overlapping
colors for glue code by blending the involved colors. For
example, when a class is colored in blue and a method within
is additionally colored in red; the overlapping section is rep-
resented as purple. Again it is only possible to see where the
overlapping sections start and end, but the involved features
can be looked up from a tool tip. Therefore, blending colors
does not pose a limitation to recognizing features.

Integrating existing preprocessors. In our current imple-
mentation CIDE differs from existing preprocessors in that
annotations are mapped to the underlying AST and anno-
tations are not shown with additional keywords but on the
representation layer. There are two ways how annotations
can be stored persistently. In our implementation feature
annotations are also stored separately (for every file there is



a ‘.color’ file that contains the annotations). Alternatively, it
would be possible to store annotations inside the code using
special directives (in the simplest case just with #ifdef ), but
erase them when loaded into the editor.

The first solution of external storage has the advantage,
that existing legacy code must not be modified. Especially
in industry during early adoption of SPL technology this is
an advantage, because the first SPL implementations do not
interfere with ongoing development. However, this approach
binds all developers to an IDE which understands these
annotations and updates them when the code is edited. It is
no longer possible to edit the source code in an external tool
(e.g., notepad or vi) without the possibility to loose or move
annotations.

In contrast, the second solution makes invasive changes
to the source code. When a code fragment with annotations
is saved, these annotations are stored using additional direc-
tives. When loaded again, these directives are parsed, but not
shown to the user. In the editor, again background colors are
used. The advantage of this approach is, that annotated code
can still be viewed and even edited with external editors.
However, this also allows users to change annotations with
external editors which can result in inconsistent annotations,
e.g., annotating code fragments that do not correspond to
optional AST nodes. This would prevent loading the file in
CIDE or generating a variant until the annotation is fixed to
its ‘disciplined’ form.

The advantage of the second solution is, that CIDE can
also be used as visualization techniques for projects which al-
ready use some existing preprocessor mechanism for variabil-
ity (e.g., the C preprocessor, Frames, XVCL, pure::variants,
or Gears). As long as these preprocessor instructions are
used in a disciplined way, CIDE can also be used to provide
views for those projects. The additional instructions are hid-
den and replaced by colors. All presented filters and views
can be used on these projects.

Consistent and editable views. While read-only views
are certainly helpful to explore features in an SPL, editable
views are even more helpful as developers can directly make
changes in the view without first going back to the original
code base. This raises a question of consistency: if code
is inserted while some code is hidden, how does the editor
know where to put this new code?

At this point, the markers that indicate hidden code are
helpful. The markers show where code is hidden, and a de-
veloper can clearly make changes before or after this marker.
When developers delete a code fragment, these markers also
clearly indicate that they delete some hidden code. This way
consistency is ensured, while it is still possible to edit views.

Discipline to annotate entire feature. The idea of adding
tool support or special annotations to navigate code is not

new. For example, in the FEAT tool [33] the developer
manually adds methods or classes to a concern model and
this model can later be used to navigate and explore these
concerns. Similarly, AspectBrowser [13] and JQuery [15]
allow to explore the code with queries that can be created
for certain concerns or features. However, a problem of
these approaches is that there is no incentive for developers
to update the models or queries in these tools. There is no
incentive to add all code fragments that belong to a certain
feature. However, when these models are not updated or
complete the tools are of limited use.

In CIDE this is different. Annotations in CIDE are not
just used for code exploration and understanding. Instead,
annotations are primarily used to generate variants in the
SPL, so that there is a strong incentive to have annotations
updated and complete. Completeness is simply ensured by
the fact that generated variants are compiled and tested in
the normal development process. CIDE’s visualization capa-
bilities are just an additional possibility to use these already
existing annotations in order to support feature traceability
and code exploration.

In a separate line of research, we also focus on how we
can support the developer in checking correctness and com-
pleteness of annotations. For example, we extended Java’s
type system to check that every variant is type-safe, which
already detects many potential inconsistent or incomplete an-
notations [20, 23]. The feature location problem, i.e., to find
features in legacy code, is another area of research which we
want to address with CIDE in future work.

5 Related work

CIDE itself was presented in recent work. We discussed
granularity (inside a file) and the mechanism to use the
underlying AST [22]. We discussed how to extend CIDE
and the underlying structure to other languages including C,
C#, JavaScript, ANTLR, Haskell, and XML [23]. Finally,
we also formalized how to type-check entire SPLs based on
their annotations [20]. In contrast, in this paper we focused
only on the novel contributions of visualization using filters
and views.

Closely related to CIDE are tools to explore and query
legacy applications, most notably FEAT [33], Aspect-
Browser [13], JQuery [15], and Spotlight [11]. The problem
of most of these approaches is that an internal model – which
describes which code fragments belong to which concerns
or features – has to be manually maintained or specified by
an adequate query. As such information is maintained sepa-
rately from the source code, there is little incentive to update
these models or queries. In contrast, CIDE uses annotations
that are already provided in order to generate variants of an
SPL.

Next, there are several approaches that create views on



the source code. A recent and very popular approach is My-
lyn [24], an Eclipse plug-in that creates task-based views
on the source code, most notably on the file system. De-
pending on the task, only relevant files are shown in the
project explorer. Effectively, Mylyn provides a view on the
file system which is based on the context of the current task
(which is collected in an internal model from development
activity). CIDE’s view on the file system was inspired by
Mylyn, but uses feature annotations instead of the task con-
text model. While Mylyn’s model also includes information
about classes and methods, views on file content in the editor
are provided only in a basic form. Mylyn uses Eclipse’s code
folding capabilities: all methods which are not in the current
context are automatically folded.

Beyond views on the file system, there are several ap-
proaches to provide views on the content of a file. Early
approaches reach back to the ideas of program slicing by
Weiser [41], i.e., read-only views showing only relevant code
for a certain control flow, and relational views using an under-
lying database by Linton [28]. More recent approaches are
visual separation of concerns [9] and effective views [16],
which transform the underlying code for different views,
however both are confined to a certain underlying model.
For example, effective views are only provided for a con-
fined specialized programming language to ensure safe trans-
formations and editable views. CIDE’s views on files that
just hide parts of the code are simpler and can be supported
for arbitrary languages, as long as there is an underlying
structure [23].

Finally, in parallel work, Heidenreich et al. [14] intro-
duced the notion of variant views and realization views and
implemented them in their tool FeatureMapper which is sim-
ilar to CIDE. However, FeatureMapper focuses on tracing
features to model elements (e.g., classes or associations in an
UML class diagram) instead of code fragments, thus the dis-
tinction between annotating files and annotating file content
is not necessary. Interestingly, in some views FeatureMapper
also uses colors to represent features in those models.

6 Conclusion

Implementing software product lines is a challenging
tasks. Especially with annotative approaches, e.g., using
#ifdef directives, which are commonly used in industry, the
code that implements a feature can be scattered across several
code units. This makes tracing features difficult, although it
is essential to develop or maintain SPLs.

In this paper, we discussed several extensions to a tool
based annotative approach called CIDE for implementing
SPLs. As with preprocessors code fragments are annotated
with features and removed in order to create variants. How-
ever, we have shown how to use these annotations beyond
only variant generation. With them, we provide views on

the source code to overcome the feature traceability prob-
lem. When developers selects one or more features they
are interested in, only the relevant files that contain some
feature code are shown in the project explorer (view on the
file system). When the developers then open a file, again
only the feature code and necessary context information are
shown (view on a file).

With these views, features can be traced directly to their
implementation. This approach is supported by the fact that
all views are editable and scale from coarse-grained features
implemented by entire packages or files, to features that
are implemented by small scattered code fragments (fine-
grained). If existing annotations using other preprocessor
technologies already exist and they have been used in a
disciplined form, CIDE can even be extended to provide
views for these existing SPLs.

In future work, we intend to evaluate our approach in
an empirical study. Furthermore, we will evaluate different
means to create views on file content empirically, in order to
determine which amount of context is required to understand
feature code in isolation.
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