
PIGGYBACK META-DATA PROPAGATION IN DISTRIBUTED HASH
TABLES

Erik Buchmann, Sven Apel, Gunter Saake
University of Magdeburg, Germany

{buchmann|apel|saake}@iti.cs.uni-magdeburg.de

Keywords: Peer-to-Peer data structures, meta-data propagation, Mixin Layers, Aspect-oriented Programming.

Abstract: Distributed Hashtables (DHT) are intended to provide Internet-scale data management. By following the
peer-to-peer paradigm, DHT consist of independent peers and operate without central coordinators. Conse-
quentially, global knowledge is not available and any information have to beexchanged by local interactions
between the peers. Beneath data management operations, a lot of meta-data have to be exchanged between the
nodes, e.g., status updates, feedback for reputation management or application-specific information. Because
of the large scale of the DHT, it would be expensive to disseminate meta-data by peculiar messages. In this
article we investigate in a lazy dissemination protocol that piggybacks attachments to messages the peers send
out anyhow. We present a software engineering approach based onmixin layers and aspect-oriented program-
ming to cope with the extremely differing application-specific requirements.The applicability of our protocol
is confirmed by means of experiments with a CAN implementation.

1 INTRODUCTION

Distributed hashtables (DHT) are able to manage
huge sets of (key,value)-pairs and cope with very
high numbers of parallel transactions. DHTs are a
variant of distributed data structures which follow
the peer-to-peer (P2P) paradigm. In particular, they
consist of many autonomous nodes, there is no cen-
tral coordinator and global knowledge is not avail-
able. Examples of DHTs are Content-Addressable
Networks (CAN) (Ratnasamy et al., 2001a), Chord
(Stoica et al., 2001), Pastry (Rowstron and Druschel,
2001) or P-Grid (Aberer, 2001). Characteristic DHT
applications are distributed search engines, reposito-
ries for the semantic web or dictionaries for web ser-
vices; cf. (Gribble et al., 2001) for an exhaustive list.

However, DHTs work well only if some meta-
information are present on proper peers, e.g., are ad-
jacent nodes alive and which tuples are managed by
them. Furthermore, some information belong to man-
agement or optimization issues of the DHT. For ex-
ample, load balancing mechanisms may depend on
data about the average load of all peers. Finally,
application-specific knowledge have to be spread over
the network, e.g., information about the synchroniza-
tion of work in distributed web-crawlers. Most meta-
data items have a small footprint, are not needed in
time, old ones becomes obsolete, and the number of

data items is really large. In addition, the importance
of data items for a certain node depends from various
factors, e.g., the workload of the node that issued it, or
the distance (Kleinberg, 2000) to the addressee. Sum-
ming up, propagation by peculiar messages would
lead to a very high network traffic. Therefore, re-
lated techniques known from distributed databases
(epidemic protocols etc.) can not be applied.

In this article we present a generic protocol that
piggybacks meta-data attachments to existing mes-
sages that the peers send out for data management
purposes, i.e., we use a variant oflazy dissemina-
tion (Rodrigues and Pereira, 2004; Boyd et al., 2005).
Based on the peer a message is forwarded to, each
peer selects a limited number of data items it deems to
be important for the receiving peer, and attaches them
to the message. On the other hand, each peer decides
to keep data items from incoming messages or not. If
the number of items exceeds the limit, a replacement
algorithm removes the most dispensable data items.
The broad spectrum of potential application scenarios
leads to a wide range of requirements for meta-data
dissemination protocols, e.g., small footprint, selec-
tive forwarding or time-constraints (cf. Sec. 2). Dif-
ferent strategies for item caching and dissemination
as well as their combinations lead to different results
regarding the behavior of DHTs (cf. Sec. 5). Fur-
thermore, we have observed that strategies sometimes

differ only in some details, e.g., a threshold or some
additional constraints. Thus, our implementation
is based on modern software engineering methods,
namelyAspect-oriented Programming (AOP)(Kicza-
les et al., 1997) andmixin layers(Smaragdakis and
Batory, 2002). Furthermore, we discuss their advan-
tages and disadvantages in terms of reusability, con-
figurability and extensibility especially for the do-
main of DHTs. We evaluate our protocol on top of
a CAN implementation by experiments. The exper-
iments exemplarily compare different dissemination
strategies. Our results verify that the software engi-
neering approach allows to build variants of the pro-
tocol which meet the requirements of many different
applications.

The remainder of this paper has the following struc-
ture: After investigating in the characteristics of meta-
data in Section 2, we describe our piggyback meta-
data propagation protocol in Section 3. Section 4
presents our implementation based on mixin layers
and Aspect-oriented Programming, and Section 5 fea-
tures an experimental evaluation. This is followed by
a conclusion in Section 6.

2 CHARACTERISTICS OF
META-DATA IN DHTs

DHTs provide the data management operations of
a hashtable, in particularput andget. All operations
are addressed by a certain key. Each peer is responsi-
ble for a zone of the key space, and knows some other
peers. Variants of DHTs primarily differ in the topol-
ogy of the key space and the contact selection. Each
peer forwards any operation it cannot perform on its
own zone to a contact whose zone is closer to the key.
The way a node determines a closer peer depends on
the topology of the key space. DHTs similar to Chord
(Stoica et al., 2001) or CAN (Ratnasamy et al., 2001a)
organize as a circular key space in one or multiple di-
mensions, which is distributed among all nodes. Here,
the peer forwards a message depending on the Euclid-
ean distance of the zones to the key of the operation.
In contrast, DHTs based on search trees like P-Grid
(Aberer, 2001) map each node to a certain subtree-
ID, and query forwarding follows subtrees with cor-
responding ID-prefixes. Usually, all DHT operations
are performed by invokinglog(n) peers.

The absence of global knowledge makes it chal-
lenging to design DHT applications. There are two
straightforward ways to bypass the problem: (1) set-
ting up all necessary information at startup-time, and
(2) disseminating information by flooding the DHT.
But while (1) limits the range of applications, (2)
limits the performance of the DHT. Before present-
ing our dissemination scheme, we want to investigate

common characteristics1 of meta-data items used in
DHTs. Meta-data are used on three levels:

Meta-data of the DHT itself. DHTs forward mes-
sages between peers responsible for certain zones.
Therefore each peer needs to know a proper set of
contacts that changes whenever peers join or leave.
Thus, status information regarding zone boundaries
and contact information have to be updated. The
source of information is the new peer or the peer that
takes over the zone of a retiring peer. The addressee
can be neighbors of that peer (CAN, Chord), nodes
which follow a certain distribution (cf. (Kleinberg,
2000)) or other peers (Chord, P-Grid). Status updates
need toreach the addressee in time, but they arein-
frequentandirregularly generated.

Data related to enhancements of the DHT. There
are many different enhancements to the standard
DHTs which require different meta-data. These in-
formation arenot needed in time, and havevarious
creators and receivers. For example, load balancing
(Rao et al., 2003) may take place in DHTs by forward-
ing messages along idle paths, reorganizing the key
space or changing the number of replicas of under-
or overloaded zones. Here, each peer requires infor-
mation about the average load (which may be rather
old) and more recent data about the load of all of its
contacts. Load information are disseminated at steady
rates.

Application-specific meta-data. The application
on top of the DHT may use the meta-data distribu-
tion scheme as well. For example, in a distributed
web crawler application the peers notify others about
the partitions of the WWW which they have already
crawled. A further example are keep-alive statements
in distributed groupware scenarios.

Summing up, nearly any application comes with
different requirements for a meta-data dissemination
protocol. The differences concern the origin of the
data item, the addressee and the frequency the data
items are generated. Some applications require meta-
data in time while others do not. This leads to two
important insights: (1) There is a strong demand for
a cheap protocolthat satisfies the needs of many dif-
ferent applications, and works at smaller costs than
the traditional flooding protocols. With cost we refer
to the amount of network traffic, execution time and
memory consumption. (2) The number of required
protocol variants is very large. However, the variants

1Each application comes with its very own set of re-
quirements. Thus we cannot come up with a comprehensive
list of features.

only differ in some details. From an algorithmic per-
spective, shipping information for load balancing is
similar to the dissemination of contact information.
Thus we require aflexible architecturewhich allows
the developers to assemble the protocol from a set
of well-defined, disjunct and reusable software frag-
ments.

3 PIGGYBACK META-DATA
PROPAGATION IN DHTs

This section describes our dissemination protocol.
The protocol is intended to save resources by attach-
ing meta-data to the messages a peer sends out any-
how. This promises to be advantageous:
• The ratio ofuser data / protocol overheadwill be

improved, in comparison to the use of dedicated
messages. The data items are attached to existing
messages, thus additional protocol headers, routing
addresses etc. are omitted. This is important for in-
formation with a small footprint.

• Routing and handling efforts can be reduced by
bundling multiple small data items to a single mes-
sage, that can be forwarded as a whole. By using
existing messages as container for meta-data, there
is no additional routing overhead at all.

Data structures. We now shortly introduce the re-
quired data structures. We use Java for our implemen-
tation. Each node is represented by a classPeer. Each
peer has the ability to send and receive messages by
invoking the instance methodssend(Msg, Peer)and
recv(Msg). Each message implements the interface
Msg. Messages contain the addresser and addressee
of the message, and type-specific information like
query results. Each peer maintains aCachecontain-
ing the meta-data items it is aware of. The cache of-
fers methods for updating the content with entries at-
tached to incoming messages, replacing surplus meta-
data items and attaching items to messages. Meta-
data items are administered in a classMetaData. Each
MetaData-object contains the user data, and informa-
tion about the creator and the creation time. In addi-
tion, it can carry further information depending on the
protocol variant which is actually used.

Overview. The piggyback protocol works as fol-
lows: each peer stores all data items it has generated
in its own cache. As soon as a message containing
a set of attachments arrives, all attachments are ap-
pended to the cache. If the number of meta-data items
in the cache exceeds the limit, a certain algorithm re-
moves the most dispensable items. In the following,

we will refer to that group of algorithms ascaching
strategies.

When a peer is about to forward a message, it de-
termines a subset of meta-data items from the cache
which contains the items that are approximately most
important for the receiver of the message, or should
be forwarded in the direction of the receiver, respec-
tively. This class of decision algorithms will be re-
ferred asdissemination strategies.

There are various possible strategies to decide
which item have to be removed from the cache or
which ones have piggybacked to messages. Tables 1
and 2 show some prominent examples. Note that not
all of them are meaningful in any DHT variant and
in any application scenario. We will come up with a
showcase evaluation of some of the strategies imple-
mented in a CAN in Section 5.

Caching
Strategy

Description

Random The peer replaces its cache entries randomly.

FIFO The entries will be replaced which joined the cache at

first. This is useful in settings where little numbers of

entries should be forwarded to many nodes.

Oldest First The cache entries with the oldest creation date will be

replaced first. The strategy disseminates the most re-

cent items if its number exceeds the transport capacity

of the nodes.

Kleinberg-

replacement

(Kleinberg, 2000) tells us that a well-chosen set of

contacts improves the routing performance on a large

scale. Here, a node which is close in units of the key

space (e.g., a neighbor) is in the contact list of a cer-

tain other with a higher probability than a distant node.

The caching strategy reflects this: The entries are re-

placed so that the receivers of the remaining ones fol-

low a Gaussian distribution.

Most

Attached

Here, the peer counts how many times a certain cache

entry is transferred. Often-attached entries are replaced

first.

Table 1: Descriptions of the implemented caching
strategies.

Discussion. Our meta-data dissemination scheme is
intended to serve as a cheap lazy dissemination layer
on top of a DHT. It does not send out new messages;
thus the number of messages the data items can be
attached to is limited. Further limits are the maximum
numberc of attachments carried by a single message,
and the size of the caches. On the other hand, the
protocol is stressed by the rater new data items are
generated.

Assume the query processing take place in rounds.
In each round each of then peers in the DHT issues
and answers one query, and forwardsf messages on
average. The query points are distributed randomly

Dissemination
Strategy

Description

Simple Entries are attached randomly.

LIFO The entries which are appended last will be trans-

ferred first. The strategy strongly prefers recent

cache entries, and send old ones only if there is free

transport capacity.

Remember

Receiver

The peer ships each entry exactly one time to each

of its neighbors, except for peers which have already

sent the entry to the peer. This strategy reduces the

number of duplicate transmissions.

Directed

Forwarding

The peer attaches items so that the distance to its

originator always increases. This is an adoption of

the greedy routing strategy used in the CAN.

Kleinberg

distribution

Entries are selected according to the distance be-

tween the peer which has created the item and the

receiver of the message (Kleinberg, 2000).

CAN-flooding The strategy exploits the structure of the CAN to

transfer a cache entry to each node with a mini-

mum of entries sent repeatedly to the same node

(Ratnasamy et al., 2001b). A node that receives a

message from a neighbor in dimensioni forwards

it in the opposite direction of that neighbor, and in

dimensions1 · · · (i − 1).

P-Grid

flooding

This strategy adapts the idea of CAN-flooding to the

P-Grid. Here, entries are forwarded along the edges

of the routing tree.

Table 2: Descriptions of the implemented dissemina-
tion strategies.

over the key space. In this settings, the overall trans-
port capacity of our protocol isT = n·f ·c

r
. Suppose

each peer maintains a set ofk contacts, and the dis-
semination strategy is intended to ship status updates
the peer has generated to each of them. Then the fol-
lowing holds:f ·c = k ·r. Now assume we use a CAN
(Ratnasamy et al., 2001a) implementation with ad-
dimensional key space. In CANs, each node main-
tains at least2 k = 2 · d contacts, and each node for-
wardsf = d

4 · n
1

4 messages. Here, the maximum
number of status updates a peer can disseminate in
each round isr = c

8 ·n
1

4 . Thus, in CANs consisting of
at least 4096 nodes, a single attachment piggybacked
on each message allows for disseminating one status
update per round for free to all of the neighbors. Cal-
culations for other DHT variants yield similar results.

4 ARCHITECTURE, DESIGN AND
IMPLEMENTATION

The spectrum of potential applications and target
platforms as well as their requirements and character-

2In a CAN where peers join and leave frequently, the
join-protocol results in a irregularly fragmented key space.

istics is extremely broad and diverse. Furthermore,
we have observed that strategies often differ only
in details, e.g., a threshold or some additional con-
straints. Out of these considerations we derived fol-
lowing requirements on the implementation and inte-
gration of strategies:
1. The implementation and integration of (new)

caching and dissemination strategies must be as
easy as possible.

2. It should be possible to integrate more than one
caching as well as dissemination strategy.

3. Different caching strategies must be combinable
with different dissemination strategies.

4. Strategy code implements a special-purpose con-
cern and should therefore be modularized and sep-
arated from the core DHT implementation.

5. A developer should be able to create new strategies
out of existing ones with minimal effort.
To meet these requirements we have investigated

in a novel architecture. It makes use of the software-
engineering concepts of AOP and mixin layers.

Aspect-oriented Programming. AOP was first in-
troduced by (Kiczales et al., 1997). The aim of AOP
is to separate crosscutting concerns. It is well known
that theseparation of concernsleads to maintain-
able, comprehensible, reusable and configurable soft-
ware (Kiczales et al., 1997). Common object-oriented
methods fail in this context (Kiczales et al., 1997;
Czarnecki and Eisenecker, 2000). The idea behind
AOP is to implement so called orthogonal features as
aspectsseparately. The core features are implemented
as components, as with common design and imple-
mentation methods. An aspect weaver brings aspects
and components together.

For our implementation we have usedAspectJ3, a
language extension to Java. Mainly, we have used As-
pectJ to separate the code for the caching and dissem-
ination strategies from the core implementation of the
DHT. The left side in Figure 1 depicts a schematic de-
sign of several dissemination and caching strategies
implemented as aspects. It can be seen that the as-
pects are separated clearly. This allows us to design
a generalized protocol implementation, which does
not depend on the DHT which is actually used, and
increases the reusability and the ability of plugging
strategies.

Mixin Layers. During the design phase we have
observed that we need often only small modifications
of the caching and dissemination strategies to spec-
ify different protocol characteristics. For example,
from the algorithmic point of view the caching strat-
egy random differs from FIFO only in the order the

3www.aspectj.org

Aspect
Weaver

Aspect

Aspect

use

Composition

use

Composition

Composed
Dissemination StrategyAspect

Dissemination

Generatorcompose

Mixin Layer

Mixin Layer

Mixin Layer

Dissemination Layers

Composed
Caching StrategyAspect

Caching
Mixin Layer

Mixin Layer

Mixin Layer

Caching Layers

weave

Core Implementation
P2P System

...
CAN Chord P−Grid

select

select

Figure 1: Generating and applying strategies using mixin layers
and AOP.

Experiment
Logging

FIFO
Caching

Random
Dissemination

Base

NoRedundant
Entries

TimeStamped
MetaData

Dissemination
Strategy

Dissemination
Strategy

Caching
Strategy

Meta
Data

Caching
Strategy

Cache
MetaData

Cache
MetaData

Meta
Data

Dissemination
Strategy

Caching
Strategy

Meta
Data Cache

MetaData MetaData
List

Figure 2: Stack of mixin layers for FIFO
Caching and Random Dissemination.

items are removed. Furthermore, some features are
common for many strategies, e.g., to keep track of the
peer a certain item was already sent to. Implementing
a new strategy in form of a separate aspect for each
variant would be inefficiently and errorprone, because
approved code is not reused. Therefore, we have
decided to combine the approach of Aspect-oriented
strategies with a mixin layer-based implementation.

A mixin layer is a static component encapsulat-
ing fragments of several different classes (mixins) so
that all fragments are composed consistently. Mixin
layers are an approved implementation technique for
component-based layered designs. Advantages are
the high degree of modularity and the easy compo-
sition (Smaragdakis and Batory, 2002).

We have used mixin layers to implement the vari-
ants of the different caching and dissemination strate-
gies and theAHEAD Tool Suite4 to automatize the
configuration and generation process. Doing, so we
had to decompose the mechanisms for caching and
dissemination into fine-grained layers. Based on this
design we are able to compose these layers to gen-
erate different strategy variants. AOP is then used
to apply the configured strategies to the core of the
DHT. Figure 1 depicts the schematic overview of
configuring and applying strategies to the DHT: At
first, a generator (here theAHEAD Composer) com-
poses the strategies according to a (user) specification.
Then, the composed strategies are applied to the DHT
core using aspects and theAspectJ Weaver. Using
mixin layers, we do not need multiple aspects. In-
stead, we need only two of them: one for applying
the caching strategies and the other for applying the
dissemination strategies. Figure 2 depicts the stack
of mixin layers implemented for random dissemina-
tion and FIFO caching. The enclosing grey boxes
are the mixin layers. The included rounded boxes
are the inner mixin classes. The figure depicts only

4http://www.cs.utexas.edu/users/schwartz/Hello.html

the inheritance relations between the inner classes.
Other relations (e.g. associations) as well as refer-
ences to external classes are omitted. TheBaselayer
includes the needed data structures:MetaData, to
provide a base for application specific data,MetaDat-
aCachefor storing the cached meta-data,MetaDataL-
ist to attach meta-data to messages, as well as the
strategy base classes (interfaces)CachingStrategyand
DisseminationStrategy. Tangible strategies (in our ex-
ample random dissemination and FIFO caching) im-
plement these interfaces to provide the desired algo-
rithm. The layerTimeStampedMetaDatarefines the
MetaDatabase by adding time stamps to each meta-
data object. The layerNoRedundantEntriesprevents
the meta-data cache and the messages from storing
equal meta-data objects.ExperimentLoggingcreates
the logging dump which we used to analyze our ex-
periments.

The advantage of using mixin layers is that we can
easily derive and combine new variants of strategies.
To introduce a new caching strategy we have to im-
plement the interfaceCachingStrategy. Doing so, we
can remove the currently used strategy and apply the
new one. In this way we can easily combine caching
strategies with dissemination strategies. Furthermore,
we are able to reuse the base data structures as well
as existing strategy implementations. Imagine a prox-
imity FIFO caching strategy which combines FIFO
caching with the contact information of the peer. This
might be useful in order to limit the range of meta-
data to the contacts of a peer. If a cache entry was
generated by an immediate contact, the caching strat-
egy is FIFO. If not, the cache entries are dropped. The
proximity FIFO caching strategy reuses the overall
code of the simple FIFO strategy.

5 EVALUATION

Our evaluation is divided into two parts: The first
one is intended to show that our protocol framework
and our software engineering approach is working
as envisioned. Therefore, we have used a CAN im-
plementation of our own, and have extended it by
several caching and dissemination strategies; and we
will come up with a detailed description of a simple
one. The second part proves that the protocol itself
meets the requirements for a meta-data dissemination
scheme. Here we assembled all meaningful proto-
col variants from the strategies we have realized for
the first part, and evaluated it by the means of experi-
ments.

Evaluating the software design. The CAN imple-
mentation we have used for evaluation implements
all features of the originally proposed protocol (Rat-
nasamy et al., 2001a) as well as some proprietary
features (Buchmann and Böhm, 2004a; Buchmann
and B̈ohm, 2003). For our experiments we have im-
plemented the dissemination strategiesRandom, Di-
rected Forwardingand CAN-flooding. In addition,
we realized the caching strategiesSimpleandFIFO.
Table 1 and 2 gives a short description. We expect
that AOP will be useful for the separation and the
easy plugging and combination of strategy code. A
feature-oriented view and mixin layers should help to
implement strategies highly configurable.

We start with the caching strategy. Here, the strat-
egy ”Random”, which is shown in Figure 3, serves as
a simple example. It collects the meta-data of incom-
ing messages to update the peers cache (MetaData-
Cache). Thereby it chooses the message entries as
well as replaces older cache entries randomly. The
random caching aspect (Line 1) introduces for each
Peera cache for storing meta-data objects (Line 2,3).
The aspect intercepts calls to the methodPeer.recvto
get access to incoming messages (Line 5-7). The at-
tachments of each incoming message are used to up-
date the peers meta-data cache (Line 11). The actual
implementation of the caching strategies is encapsu-
lated in theput method. We omit the detailed dis-
cussion of the random caching algorithm because its
implementation is straight forward.

Figure 4 depicts a dissemination aspect (Line 1)
for the dissemination strategy ”Simple”. It uses the
cached meta-data to disseminate them through the
DHT by attaching them to outgoing messages ran-
domly (cf. Tab. 2). At first a list for attaching meta-
data objects is introduced to all messages (Line 2,3).
Moreover, the aspect intercepts all calls to the method
Peer.sendwhich sends all outgoing messages (Line 5-
7). Doing so, the aspect has access to these mes-
sages and can add the peers cached meta-data ob-
jects (Line 8). The methodpiggyBackencapsulates

1 aspec t RandomCachingAspect {

2 MetaDataCache Peer.m_meta_data =

3 new MetaDataCache();

4

5 be fo re(Peer peer, Msg msg) :

6 t a r g e t(peer) && args(msg) &&

7 c a l l(* Peer.recv(Msg)) {

8 put.(peer.m_meta_data,

9 msg.m_meta_data)); }

10

11 vo id update(Peer peer, MetaDataList mlist) {

12 / / r e p l a c e s t h e e n t r i e s o f a pe e rs cache

13 /∗ . . . by a random l i s t ∗ / }

14 }

Figure 3: The random caching aspect

the actual dissemination strategies (Line 10). In our
case the strategy chooses a random set of cached
meta-data (Line 14) and attach them to the outgoing
messages (Line 11,12).

1 aspec t RandomDisseminationAspect {

2 MetaDataList Msg.m_meta_data =

3 new MetaDataList();

4

5 be fo re(Peer peer, Msg msg) :

6 t a r g e t(peer) && args(msg) &&

7 c a l l(* Peer.send(Msg)) {

8 piggyBack(peer, msg); }

9

10 vo id piggyBack(Peer peer, Msg msg) {

11 msg.attach(getRandomList(msg,

12 peer.m_meta_data)); }

13

14 LinkedList getRandomList(Msg msg,

15 MetaDataCache cache) {

16 /∗ r e t u r n s a random l i s t o f i t e m s∗ / }

17 }

Figure 4: The random dissemination aspect.

The advantages of modularizing and separating
caching and dissemination strategies from each other
and from the core implementation of the underlying
CAN is that they can easily be applied to and re-
moved from the CAN. Furthermore, one is able to
combine different variations of caching and dissem-
ination strategies (cf. Sec. 5). Finally, the maintain-
ability and comprehensibility of the CAN core code
and the separated caching and dissemination strate-
gies is preserved.

We have implemented all mentioned caching and
dissemination mechanisms using the combined ap-
proach (AOP + mixin layers). Mainly, we have in-
vestigated in this approach to get insight how mod-
ern software engineering methods can be exploited to

achieve modular, reusable, extensible and customiz-
able software component especially for distributed
(P2P) Systems. Our results are positive: We have
observed that the separation of special concerns like
the caching and dissemination of meta-data leads to
maintainable and comprehensible code. AOP and As-
pectJ are appropriate to separate code of special cross-
cutting concerns. Mixin layers allow to decompose
the strategies functionalities into modular combinable
building blocks (cf. Fig. 2). They support config-
urable, reusable and extensible implementations. The
combined approach reduces the complexity of imple-
menting new strategy variants and combinations and
therefor the expenditure of time.

The implemented mixin layers and aspects are
reusable in other DHTs because the rely only on a
simple interface containing the methodssendandre-
ceive. These are available in most DHTs and other
unstructured P2P systems.

Evaluating the protocol We now want to show that
our meta-data dissemination protocol is working, and
is applicable to various settings. Due to the lack of
space, we limit our evaluation to three showcase ex-
periments investigating in the characteristics of the
dissemination strategiesRandom, Directed Forward-
ing andCAN-floodingand the caching strategiesSim-
pleandFIFO.

All experiments are performed on a cluster of 32
loosely coupled Linux workstations equipped with 2
GHz CPU, 2 GB RAM and Fast Ethernet. We run ex-
periments with a four-dimensional CAN consisting of
10,000 peers issuing 1,000,000 randomly distributed
queries (see (Buchmann and Böhm, 2004b) for an ex-
haustive description of our experimental setup.) All
evaluations are based on rounds. In one round each
peer issues and answers one query. The cache size is
set to 100 elements, and each message piggybacks up
to 10 meta-data items. At the beginning, each peer
owns one initial meta-data item.

 0
 1

 2
 3

 4
 5

Rounds
 2

 4
 6

 8
 10

 12

Number of nodes

 0.2

 0.4

 0.6

 0.8

 1

Ratio of items

Figure 5: Item dispersion among the contacts.

At first we investigate in the suitability of our proto-
col for status updating. Here it is important to publish
information about the state of a node to its contacts

(cf. Sec. 2). We have used the CAN-flooding dis-
semination strategy and the cache strategy FIFO. See
(Ratnasamy et al., 2001b) for a detailed description
of CAN-flooding. In CANs, the number of contacts
approximately follows aχ2-distribution; in our four-
dimensional setting the most nodes have 9 contacts.
Figure 5 shows the distribution of meta-data items.
The z-axis shows the ratio of meta-data items which
are known by a certain number of nodes at a given
time. For example, all items are known by one node
at round 0, and approximately the half of the items
are known by 9 nodes at round 5. The figure indicates
that the majority of the items have reached the con-
tact after at most 2 rounds. By considering that the
protocol ships such information for free, this is a very
positive result.

The next experiment examines the number of dupli-
cates sent by different dissemination strategies. Ob-
viously, due to the limited transport capacity ship-
ping many duplicates decreases the effectiveness of
the protocol. On the other hand, it would improve
the fault tolerance and the time to reach an adjacent
(in terms of hops between the nodes) node. Con-
sider the CAN-flooding dissemination strategy for ex-
ample. Here, having a single failure near the cre-
ator of an item could prevent a large fraction of the
CAN from obtaining it. Figure 6 shows a comparison
of the dissemination strategies random, directed for-
warding and CAN-flooding in respect to the number
of duplicates sent within 5 rounds. For example, af-
ter 5 rounds directed forwarding has transferred 1%
of all items more than times 500 to peers which al-
ready received them. It is obvious that the CAN-
flooding strategy comes with the lowest number of
duplicates. In a CAN where all zones have the same
size, the number of duplicates would be zero. In re-
ality, the join-protocol leads to zones with different
sizes. Here, a few items are sent more than 500 times
to the same nodes twice. In contrast, it is surpris-
ing that the random dissemination strategy results in
less duplicates than directed forwarding. The expla-
nation is that directed forwarding prefers a few items
for each direction.

 1e−04

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000

R
at

io
 o

f i
te

m
s

Number of duplicates after 5 rounds

Random
Directed forwarding

CAN flooding

Figure 6: Duplicate items transferred within 5 rounds.

This leads to the question: how long does it take to
send items to a certain number of nodes? We address
this issue in the next experiment. Again, we use the
three different dissemination strategies. But now we
measure the time the items need to reach an arbitrar-
ily chosen number of 20 different nodes. We would
expect that the majority of items will be transferred
to the other nodes within one or two rounds, while
a few number of items will need a very long time.
The result of our experiment is shown in Figure 7.
Because it utilizes the underlying CAN forwarding
scheme to obtain a complete covering of all zones,
CAN-flooding is the only strategy we have measured,
that disseminates all items to at least 20 nodes within
less than 5 rounds. However, by considering the be-
ginning of the curve, random and directed forwarding
are much faster. These strategies ship1/3 of all items
to 20 nodes within the first1/4 round, while CAN-
flooding requires a half round. Thus, in applications
where items would be useless if they do not reach its
destinations very quick, directed forwarding promises
to be an applicable strategy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10
Rounds

Random
Directed forwarding

CAN flooding

A
cc

um
ul

at
ed

 r
at

io
 o

f i
te

m
s

Figure 7: Time to disseminate an item to 20 nodes.

6 CONCLUSIONS

This article investigates in a novel lazy dissemina-
tion protocol for various DHT variants. The protocol
allows to disseminate information free of charge, if
they are not needed in time and have a small foot-
print. Our approach of combining mixin layers and
AOP leads to highly configurable, modularized and
separated strategy implementations. This combina-
tion makes it possible to cope with the wide spectrum
of application requirements. Because of the limited
space, we have shown only a few showcase experi-
ments. However, all of our experiments indicate that
our protocol is working as envisioned. In the future
we want to examine our protocol in-depth on the ba-
sis of a specific application.

REFERENCES

Aberer, K. (2001). P-Grid: A Self-Organizing Access
Structure for P2P Information Systems.LNCS, 2172.

Boyd, S. et al. (2005). Gossip Algorithms: Design, Analysis
and Applications. InProceedings of the 24th Infocom.

Buchmann, E. and B̈ohm, K. (2003). Effizientes Routing
in verteilten skalierbaren Datenstrukturen. InProc. of
the 10th BTW.

Buchmann, E. and B̈ohm, K. (2004a). FairNet - How to
Counter Free Riding in Peer-to-Peer Data Structures.
In Proc. of the 12th CoopIS.

Buchmann, E. and B̈ohm, K. (2004b). How to Run Ex-
periments with Large Peer-to-Peer Data Structures. In
Proc. of the 18th IPDPS.

Czarnecki, K. and Eisenecker, U. W. (2000).Generative
Programming: Methods, Tools, and Applications. Ad-
dison Wesley.

Gribble, S. D. et al. (2001). The Ninja Architecture for Ro-
bust Internet-Scale Systems and Services.Computer
Networks, 35(4).

Kiczales, G. et al. (1997). Aspect-Oriented Programming.
In Proc. of the ECOOP97.

Kleinberg, J. (2000). The Small-World Phenomenon: An
Algorithmic Perspective. InProc. of the 32th STOC.

Rao, A. et al. (2003). Load Balancing in Structured P2P
Systems. In2nd Int. Workshop on Peer-to-Peer Sys-
tems.

Ratnasamy, S. et al. (2001a). A Scalable Content-
Addressable Network. InProc. of the ACM SIG-
COMM Conf.

Ratnasamy, S. et al. (2001b). Application-Level Multicast
Using Content-Addressable Networks.LNCS, 2233.

Rodrigues, L. and Pereira, J. (2004). Self-Adapting Epi-
demic Broadcast Algorithms. InFuDiCo II: S.O.S.
Survivability, Italy.

Rowstron, A. and Druschel, P. (2001). Pastry: Scalable, De-
centralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems. InInt. Conf. on Distrib-
uted Systems Platforms.

Smaragdakis, Y. and Batory, D. (2002). Mixin Layers: An
Object-Oriented Implementation Technique for Re-
finements and Collaboration-Based Designs.ACM
Transactions on Software Engineering Methodology,
11(2).

Stoica, I. et al. (2001). Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications. InProc. of
the SIGCOMM.

