
Generating Qualifiable Avionics Software:
An Experience Report

Andreas Wölfl*, Norbert Siegmund*, Sven Apel*, Harald Kosch*, Johann Krautlager†, Guillermo Weber-Urbina†
*University of Passau, Germany

Email: {andreas.woelfl, norbert.siegmund, apel, harald.kosch}@uni-passau.de
†Airbus Helicopters S.A.S., Germany

Email: {johann.krautlager, guillermo.weber-urbina}@airbus.com

Abstract—We report on our experience with enhancing the
data-management component in the avionics software of the
NH90 helicopter at Airbus Helicopters. We describe challenges
regarding the evolution of avionics software by means of real-
world evolution scenarios that arise in industrial practice. A
key role plays a legally-binding certification process, called
qualification, which is responsible for most of the development
effort and cost. To reduce effort and cost, we propose a novel
generative approach to develop qualifiable avionics software by
combining model-based and product-line technology. Using this
approach, we have already generated code that is running on
the NH90 helicopter and that is in the process of replacing the
current system code. Based on an interview with two professional
developers at Airbus and an analysis of the software repository
of the NH90, we systematically compare our approach with
established development approaches in the avionics domain, in
terms of implementation and qualification effort.

I. INTRODUCTION

Engineering in the avionics domain is driven by various
legally mandated regulations, dedicated to safety and reliabil-
ity. Prior to the first official flight in a commercial aircraft, a
national certification authority has to inspect the airworthiness
of all components, including airborne computers and software.
This process is called avionics qualification. The acceptance is
strictly related to compliance with international aerospace stan-
dards, such as DO-178: Software Considerations in Airborne
Systems and Equipment Certification [1]. Together with white
papers1 from the Certification Authorities Software Team,
these documents define process completion and functionality
verification with software life-cycle objectives. Depending on
the (safety) criticality of the target system, applicants for
qualification have to meet a specific set of life-cycle objectives,
determined by different Design Assurance Levels2.

In industry, compliance with DO-178 adds about 75%–
150% to the total development costs [2], caused by additional
effort for developing or extending code and documentation for
life-cycle objectives, called qualification assets. By over two
third, the majority of these artifacts relates to software ver-
ification and validation (e.g., establishing bidirectional trace-
ability evidence from system requirements to unit tests) [1].
Developing qualification assets also complicates programming
of the software itself, because many assets must adhere to

1https://www.faa.gov/aircraft/air cert/design approvals/
air software/cast/cast papers/

2Scale with five criticality levels, ranging from level A (most critical) to
level E (least critical), assigned by the national certification authority.

strict coding constraints, such as the prohibition of late binding
or dynamic dispatch. The impact is most significant between
Design Assurance Level D and C. Level C is assigned to
mission-critical software and demands about 30% more budget
and schedule than software at Level D [3].

In this paper, we report on our experience gained in a
cooperation between Airbus Helicopters and the University of
Passau. The key objective of the cooperation was to develop
a highly configurable real-time database management system,
intended for integration in core mission-control applications
in the avionics software of the Nato Helicopter 90 (NH90).
Analogous to product lines in other industry branches [4],
customers in the aviation domain can choose among a large
number of features and configuration options for the airborne
equipment, which requires variability of the avionics software
in the NH90, including the data-management component.

In a first step, we investigated state-of-the-art development
methods used at Airbus Helicopters. There are two basic
approaches to handle variability in qualified avionics soft-
ware: The first approach is to consider a software variant
as separate unit, such that for each variant, the source code
must be implemented and qualified manually. The second
approach is to apply specifically qualified development tools
to automatically generate variant-specific software artifacts.
Based on the findings of a semi-structured interview with two
senior developers at Airbus Helicopters, we found that these
approaches are economically suboptimal implementing data
management in the avionics domain. While an approach of
separately implementing and qualifying software variants does
not scale with an ever increasing number of new requirements,
introducing a qualified development tool causes huge initial
costs for either purchasing a commercial tool or implementing
and qualifying a suitable tool in-house.

Based on our analysis, we propose a novel generative
development approach that addresses the challenges of vari-
ability and software evolution in the context of qualification
demands in the avionics domain. Essentially, we combined the
aforementioned approaches. In a nutshell, using model-based
and product-line technology, we generate tailored system vari-
ants based on declarative specifications written in a domain-
specific language. Furthermore, we ease software verification
and validation by automatically generating qualification assets
in this process. This way, we have a scalable approach in terms
of the number of variants and we keep the initial effort feasible
by supporting the qualification of the generated code instead
of qualifying the tool itself. We integrated our approach into



the tool chain of the NH90 development environment. Our
implementation is fully operational. The resulting software
variants are executable on the target avionics hardware and
currently prepared for qualification at Design Assurance Level
C as part of the next release of the NH90 System Software.

To compare our approach to established development ap-
proaches, we systematically describe the evolution of avionics
software by means of real-world scenarios regarding data
management in the NH90. In detail, we discuss frequency
and severity of functional and non-functional requirements
by combining insights from a developer interview and data
collected from the software repository of the data-management
component of the NH90 System Software. The software repos-
itory contains the problem reports, software change notes, and
engineering change requests of the past 18 years. In the long
run, developers can use our results to assess maintenance effort
in an avionics software project and determine a development
strategy for concrete scenarios.

In summary, we make the following contributions:

• We analyze development approaches applied in the avion-
ics domain regarding practicability and feasibility in terms
of the challenges of data-management and qualification
demands in the avionics domain.

• We report on a developer interview at Airbus Helicopters,
providing insights into the implementation, maintenance,
and evolution of avionics software.

• We present a novel generative development approach
based on model-driven and product-line technology, aim-
ing at the efficient realization of both implementation and
qualification of avionics software.

• We implement our approach as part of the real-time
database management system of the NH90 avionics soft-
ware at Airbus Helicopters.

• We quantitatively and qualitatively discuss our approach
based on real-world evolution scenarios combined with
the analysis of the software repository of the NH90
System Software related to data management.

II. AVIONICS SOFTWARE

In this section, we explain the target avionics software
environment and evolution with a focus on data management.
Furthermore, we characterize general challenges in develop-
ing avionics software and describe established development
approaches with a focus on software qualification.

A. NH90 Avionics Software Evolution and Variability

The software division at Airbus Helicopters develops the
on-board software for federated avionics in the NH90. The
NH90 is a medium sized multi-role helicopter, manufactured
by the NHIndustries consortium. Its operating system consists
of an application framework, called NH90 System Software,
and several application components, called Operational Pro-
cessing Functions. The programming language of the NH90
System Software is Ada3, which has been specifically de-
signed for the application in safety-critical embedded and
real-time systems. The first qualified version of the NH90
System Software was released in 1995, the year of the maiden
flight of the NH90. From the first 2 variants for field- and

3http://www.adacore.com

maritime missions, economical success raised this number
to 11 variants in the early 2000s. From here, obsolescence
led to the introduction of additional hardware architectures,
causing further variation in the software. Today, 45 variants
are deployed on 3 different hardware platforms, shipped to
customers in 14 nations [5].

The helicopter variants differ in their integral equipment
configuration. Complex equipment provides optional features,
from which customers can select arbitrary combinations. It
is also possible that already integrated equipment from a
delivered helicopter is replaced by a functional equivalent that
is manufactured by another company. The effects on the asso-
ciated avionics software are significant. The most frequently
changed area is the combination and the implementation of
Operational Processing Functions, which control or monitor
subsets of the avionic equipment. Some functions rely on the
same data or services, so the presence or absence of Oper-
ational Processing Functions can cause interactions between
individual components, particular, affecting data management
and data-bus scheduling. An amendment in the Operational
Processing Functions regularly requires further adjustments in
the functional capabilities of these components.

The constantly growing number of variants and the result-
ing complexity requires a re-development of major parts of
the NH90 System Software. The primary goal of our endeavor
was to improve extensibility and maintainability of the data-
management component, while providing sufficient perfor-
mance and resource consumption to deploy the software even
on legacy hardware platforms. As part of this re-development
endeavor, Airbus Helicopters initiated the cooperation with the
University of Passau.

B. Data Management in the NH90 System Software

A central component that posed problems regarding the
evolution of variability in the NH90 System Software is the
data-management component. A single avionics computer con-
tains about 10–15 Operational Processing Functions that use
the data-management component to store and process various
data, structured by about 30 entity types4. When we started
the cooperation, data management was implemented as list-
based storage, henceforth called List Management (LSTM).
All data were kept as plain lists of data records. Complex
data-management functionality was left to the individual Op-
erational Processing Functions. With the increase of variability
over time, the developers faced three major problems: First,
relationships between entities were only implicitly present
in the source code of the Operational Processing Functions.
Second, there was no guarantee that referential integrity of the
data is maintained consistently. Third, values of related entities
had to be stored redundantly.

The re-development group at Airbus Helicopters concluded
that the current data-management solution LSTM should be
replaced by a data- and function-centric component. Since
there is no commercial-of-the-shelf product available that
can be qualified according to the Plan for Software Aspects
of Certification5 of the NH90, Airbus Helicopters decided
to pursue an in-house development in cooperation with the

4The complex data types to handle records in the data-management com-
ponent (e.g., Waypoint).

5An agreement between the aircraft manufacturer and the certification
authority concerning certification activities.
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Fig. 1: Code-based development of qualified avionics software

University of Passau, henceforth called Embedded Database
(EDB). To accomplish this goal, we first had to discover the
factors that complicate software development in the avionics
domain.

C. Coding Constraints for Avionics Software

Based on accumulated knowledge gathered over years,
Airbus Helicopters meets high standards with respect to soft-
ware quality and safety, resulting in a large number of non-
functional requirements. A subset of these requirements relates
to qualification, showing compliance with DO-178 for civil-
ian or DOD-STD-2167 [6] for military aviation. Conformity
to these standards makes programming considerably more
difficult and tedious. For reliability assurance in mission-
and safety-critical avionics software, there must be a proof
that program execution and resource consumption are entirely
deterministic and predictable. Depending on the system criti-
cality, heavy non-functional requirements prevail. In the case
of the NH90 System Software, we list some representative
examples of coding constraints, referring to mission-critical
code, qualified at Design Assurance Level C:

• Dynamic programming mechanisms, such as late binding
or dynamic dispatch are prohibited.

• To predict the memory footprint at compile time and to
guarantee faultless resource consumption, memory must
be allocated statically.

• Source code that is never executed in any configuration
has to be completely removed.

• Each line of source code must traceably correspond to a
low-level system requirement.

To get permission for flight, each development artifact must be
approved by designated engineering representatives from the
national certification authority. Next, we explain the current
practice in qualifying avionics software.

D. Qualification of Avionics Software

Software verification and validation is the most integral
part of the qualification process. In this context, DO-178
issues two methods: formal methods and requirement-based
testing. Guidance for formal methods is documented in DO-
333 [7]. It recommends model checking, theorem proving, and
abstract interpretation as approved techniques for formal veri-
fication. By contrast, testing aims at validating the correctness,
completeness, unambiguousness, and logical consistency of
system requirements by running a comprehensive set of tests.
In addition, bidirectional traceability between requirements,
source code, and associated tests has to be established [8].

Independent of verification and validation, two software
development approaches are commonly used in the avionics
domain. In code-based development, both source code and
qualification assets are implemented manually and submitted
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Fig. 2: Tool-based development of qualified avionics software

to the certification authority for individual qualification (Fig-
ure 1). By contrast, tool-based development relies on tool-
generated software artifacts (Figure 2). A generator tool, whose
output is part of the airborne software (in DO-178 as Criteria 1
tool), must be qualified in compliance with the same software
life-cycle objectives at the same Design Assurance Level as the
resulting software itself. The benefit of this tool qualification
is that the output is automatically considered as verified and
validated [9], such that no additional approval is required for
the integration of generated artifacts into the airborne software.

To properly determine the benefits and drawbacks of these
approaches regarding the enhancement of data management in
the NH90, we asked developers to report on their experience
gained in the software development process of the currently
operating component, which we describe next.

III. DEVELOPER INTERVIEW

In this section, we report on the setup, conduct, and results
of an interview with two senior software developers employed
at Airbus Helicopters. The goal was to collect information
on the current data-management component of the NH90
avionics software and implications for our new solution. First,
we list our research questions, followed by a description of
the participants, questionnaire, and conduct. The remainder is
structured by the research questions. The survey follows the
guidelines provided by Jedlitschka and others [10].

A. Objectives

The subject of the interview was the development, main-
tenance, and evolution of the LSTM, the currently operating
data-management component of the NH90 avionics software.
We had the following research questions:

RQ1 How much effort was required to implement and qualify
the initial version of the LSTM?

RQ2 How much effort requires deriving a new LSTM variant?
RQ3 What situations and circumstances cause typical main-

tenance and evolution tasks for the LSTM?

B. Participants

Two senior developers of the software division at Airbus
Helicopters participated in the interview. The first developer
is a senior systems software analyst and developer. During 25
years of professional experience in the aviation domain, he
worked with real-time SCADA systems, supervisory control
software and data acquisition. With 19 years within the NH90
software team, he is one of the leading senior developers
and assists younger engineers with training and knowledge
transfer. He designed and implemented the LSTM and still
maintains it. The second developer has been employed for
more than 20 years in the avionics software domain. He has
built consolidated expertise in the NH90 software team for
more than 10 years. His responsibilities include all areas of



TABLE I: Topics of the semi-structured interview

Objective Topic

RQ1, RQ2 Chronological sequence of the LSTM development
RQ1 Application design
RQ1, RQ2 Functional and non-functional requirements
RQ1, RQ2 Stakeholders of the LSTM in the NH90 System Software
RQ2 Proceedings to add, modify, and delete a list
RQ2, RQ3 Hardware platform and compiler-specific aspects
RQ1 Development approach for unit tests
RQ3 Software bugs
RQ1, RQ2 Procedure to verify and validate a new or modified list
RQ1 Approach to establish traceability
RQ3 Evolution of functional requirements
RQ3 Evolution of non-functional requirements
RQ3 Reasons of emergence of new requirements
RQ3 Decision making for replacing the LSTM with the EDB

the software life cycle, mainly the development of control
applications and the design of the NH90 operating system.

C. Questionnaire and Conduct

The interview was designed as a semi-structured interview.
The topics are outlined in Table I. Besides the efforts for
initial implementation and qualification, we wanted to collect
information on what factors contribute to maintenance and
evolution effort of complex multi-variant avionics software in
industrial practice. We were particularly interested in reasons
and frequency of changes in the software. Our goal was to get
insights into long-term implications and severity of changes
regarding the realization of new and unexpected requirements
in the avionics domain. Therefore, we asked the interviewees
about real-world challenges, solution approaches, and the time
spent on resolving problems. The conversation was conducted
face-to-face at the software division of Airbus Helicopters and
lasted about 4 hours in total.

D. RQ1: How much effort was required to implement and
qualify the initial version of the LSTM?

The LSTM was implemented by hand (code-based de-
velopment). The first qualified release was used for data-
management in 7 NH90 variants. The programming of the
initial version lasted about 18 person months.

”[The requirements] were constantly moving to [...] a year
and a half, really realistically. If you look at the code, it’s
not a huge many thousands of lines, but the concept, well
you have to satisfy the constraints on the requirements.”

For qualification, requirement-based testing was used. As part
of the specified process in DO-178, a preliminary design was
created before programming. This document comprises the
initial software specification, including a mapping of low-
level system requirements to procedures in the implementation.
Traceability evidence as validation asset was built on this
mapping. It is realized by adding annotations in the form
of machine-readable comments to procedure headers. The
completeness and integrity of the traces is then automatically
proved by tools. The interviewees estimated the effort to
create the combination of preliminary design and traceability
evidence at 2.5 person months, which is 10% of the total
development cost. The development of validation assets in
form of functional tests and unit tests was extensive.

”[There are] a lot of [tests], almost as much effort to
develop the Operational Processing Function, [...], I would
say easily 6 months effort, easily”

In summary, the development time for qualification assets of
the initial version amounts to about 8.5 person months.

E. RQ2: How much effort requires deriving a new LSTM
variant?

The LSTM relies on generic software packages. In Ada,
generic units are the instruments to safely implement paramet-
ric polymorphism. A generic package represents a parameter-
ized template for a package whose parameters can be types,
variables, subprograms, and other packages. Each instantiation
conceptually creates a copy of the specification and body of
the generic package, customized due to the actual parameters.
All LSTM variants share the same operational functionality.
They are distinguished by the data dictionary, which is defined
by the absence or presence of certain Operational Processing
Functions in a specific NH90 variant. Each contained entity
type (e.g. Waypoint) is implemented as an independent
list, based on a central generic package. It requires 4 type
definitions and 9 subprograms to define the storage structure.

”Accessing the data is not hard, that is the easy part. The
difficult part is where it gets the data that you would like
to modify. [...] Usually, the operator or the pilot is making
changes to the graphical display, which is representing the
data of one record. [...] This [interaction] is taking the
developer three months, but the instantiation that is just
one day.”

The total cost of deriving a new LSTM variant is the effort
required for adding or modifying the instantiation of lists,
which is 8 person hours per entity type. On a single avionics
computer, the NH90 System Software uses up to 30 different
lists by 10–15 Operational Processing Functions.

F. RQ3: What situations and circumstances cause typical
maintenance and evolution tasks for the LSTM?

Maintenance effort arises from errors and flaws in the
source code. The LSTM head developer reported from source-
code changes due to bug fixes, but estimated the corresponding
costs to be minor.

”[...] if you consider 15 years of experience, your code
keeps getting better. I mean, the software evolved of course,
but not much of changes because of bugs.”

The majority of maintenance and evolution effort for the
LSTM is caused by engineering change requests, which are
requests for system adjustments arising from new functional
or non-functional requirements. The reasons are mainly new
customer requests and changes in terms of on-board equip-
ment. The new system requirements are allocated to software
requirements, triggering development and maintenance activi-
ties for the corresponding components.

In addition to these general situations, we were interested
in concrete scenarios that represent typical maintenance and
evolution tasks in the context of the LSTM. The interviewees
shared a number of actual scenarios, from which we present
three selected examples for unexpected functional and non-
functional requirements with differing severities. Each scenario



describes a real-world problem, the actual solution, and the
time required to resolve it.

Hardware platform: In 2003, a new avionics hardware
platform was introduced for two NH90 core computers. The
new board differed in the number of processors and switched
the processor architecture from CISC to RISC. The compiler
required a version upgrade of the runtime kernel and an
upgrade of the programming language from Ada83 to Ada95.
The change in the architecture led to additional platform-
specific customization options in the LSTM, further increasing
the variability of the code significantly.

”There were some minor complications, but they were
relatively easy to fix. It worked on the host [simulation
computer], but it didn’t work on the target [avionics board],
because the host compiler didn’t change. The fix was done
within a day, but if you start adding the initial analysis to
locate the error and the tests on the target [avionics board],
you can figure 2 weeks. I would say that is very fair.”

The implementation was limited to the generic package for
lists, which avoided further variant-specific modifications.

Memory optimization: Over time, more developers of Op-
erating Processing Functions used the LSTM as central data-
management component. The source code was constantly
extended to support further entity types (i.e., new lists), which
raised a problem related to resource consumption.

”Memory was an issue on the first computers. They have
8MB and you have to get data and executable code in there.
Actually the lists didn’t take up that much code, but it was
an issue [...] with all the communication lists and all the
communication related Operational Processing Functions.”

This issue has been addressed with a clone-and-own approach.
Some of the lists belong to Operational Processing Functions
that realize internal control applications, which handle only
private data. These data are never printed on graphical displays
or transferred to other devices. However, due to the implemen-
tation as generic package, each list allocates data structures
for data-transfer functionality, regardless of whether used or
not. Ultimately, a lesser memory footprint could be achieved
by creating a slimmed-down copy of the original LSTMs
code, in which data structures and functionality related to
data transfer have been removed. The implementation required
approximately 2 person months.

Navigation list: In 2012, the replacement of the data-
management component was initiated. The most important
argument emerged from one engineering change request:

”There was one big effort when the navigation list came,
because there we had to program all the links which are
not in the list generic.”

The mapping of the navigation data to the LSTM was difficult.
It requires multiple entity types that relate to each other. For
example, routes are basically sets of route points, which are
in turn defined by different types of guidance points, such as
airports or hospitals. The architectural design of the LSTM was
never intended to support such complex data dictionaries. This
caused considerable complications regarding data storage and
access, since there is no mechanism for maintaining referential
integrity. To solve this problem, a separate wrapper was added
to the LSTM. It enriches the navigation lists by a proper
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Fig. 3: Asset-based development of qualified avionics software

access interface, which controls data manipulation in terms
of consistency and integrity constraints.

”[...] and this is where an effort came with another year
to implement. It is maybe the set of requirements that is
difficult. You have to re-think your logic and you have to
re-implement this relationship.”

Due to the rigorous programming constraints for mission-
critical avionics software, the code of the solution is strictly
tailored to the specific use case. It cannot be re-used in different
scenarios (i.e., for varying entity types).

G. Key Insights

• The development of qualification assets for the LSTM was
expensive, adding about 8.5 person months to the total
implementation time of 18 person months (45% increase).

• A major maintenance effort arises from the realization of
new functional- and non-functional requirements.

• Long-term stability of system requirements is unlikely.
Customer requests and new equipment hardware demand
constant modifications.

• The severity of new system requirements varies consid-
erably. The technical realization of severe requirements
demands up to 12 person months of additional develop-
ment time, which is an increase of 45% compared to the
initial effort for implementation and qualification of 26.5
person months.

Based on these findings, we started working on an appropriate
solution for data management in the NH90 avionics software.

IV. DESIGN DECISIONS AND INTEGRATION

Rigorous non-functional requirements in combination with
strict coding constraints impose a challenge for a single qualifi-
able implementation of the EDB — the new data-management
solution. These requirements state that the source code of a
variant must be tailored to correspond exactly to the specific
equipment configuration and the accessory hardware–software
co-design of the target system. A variation point is a location
in the software that differs in individual variants of the system.
In the case of NH90’s data management, variation points arise
from various low-level functional requirements, such as the
presence of a table or column with a specific size or data
type. Accordingly, there are many possibilities to derive EDB
variants. As a consequence, an appropriate technical realization
requires a sophisticated re-use strategy.

Next, we compare the two development approaches es-
tablished in the avionics domain regarding their applicability
to multi-variant software systems. In addition, as a core
contribution, we introduce asset-based development as a novel
approach.



A. Assessment of Established Development Approaches

The practicability of a development approach depends on
the combination of implementation, qualification, and main-
tenance effort. To decide whether to use code-based or tool-
based development (see Section II), we compare their trade-
offs regarding initial effort and effort per variant regarding
these three development activities. We define the initial effort
as the effort required for setup and development of the initial
variant.

In code-based development, the initial effort boils down
to the manual implementation and qualification of the first
variant. The approach demands substantial additional budget
and schedule to develop and maintain subsequent variants
by individually adapting or re-implementing source code and
qualification assets. Although the number of software vari-
ants is relatively small (currently 45), multi-variant software
systems based on code-based development are hard to grow,
since each individual variant must be qualified and maintained.
There is no automatic process to obtain certification credit
for unchanged parts of the another software variant. However,
some qualification assets can be re-produced (e.g., the results
of the unit tests of unmodified code).

Tool-based development relies on tool support. The under-
lying generative approach increases quality of the software and
facilitates implementation by generating variants. As no further
assets are required, the costs for deriving additional variants are
reduced to the specification as input for the generator tool. The
disadvantages are huge initial expenses for either purchasing
a pre-qualified commercial tool or developing and qualifying
an appropriate tool in-house.

From an economic point of view, it turned out in our
interview that both code-based and tool-based development
are impractical for the technical realization of the EDB at
Airbus Helicopters. Regarding project parameters, such as the
number of variants, degree of variability, and potential artifact
size, the cost–benefit ratio is unsatisfactory. To overcome these
problems, we propose asset-based development.

B. Asset-based Development

The key idea of asset-based development is to combine
code-based and tool-based development, such that we keep the
initial effort feasible, while reducing the effort of maintaining
and qualifying a growing number of variants (Figure 3). To this
end, we use model-based and product-line techniques to gener-
ate implementation and qualification assets that are used for the
code-based qualification process. That is, instead of qualifying
the code generator, as in the tool-based approach, we generate
assets that substantially reduce the effort for qualifying the
generated source code. Following a model-based approach,
we create a declarative system specification, which is then
automatically transformed by a non-qualified generator tool
to software artifacts and supplementary qualification assets,
such that they are amenable to requirement-based testing in
terms of DO-178. This includes the automatic generation of
functional tests, unit tests at 100% statement coverage, and
traceability evidence to low-level system requirements. These
qualification assets are intended to significantly facilitate qual-
ification for each variant. This way, we obtain benefits from
the generative approach, such as a reduced time-to-market and
software quality, while avoiding the high initial costs for either
purchasing or developing a fully qualified tool in-house. The
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Fig. 4: Overview of the EDB development process

asset-based approach does not violate aerospace standards and
is fully compliant with DO-178 (civilian aviation) and DOD-
STD-2167 (military aviation).

C. Implementation

As illustrated in Figure 4, our approach follows the classic
product-line process [11], dividing the development into do-
main and application engineering. Since data management is
used by developers from various backgrounds and divisions,
we decided to use a specification and configuration mechanism
that is expressive and easy to learn. To this end, we created
a domain-specific language in the form of a set of SysML
metamodels (domain engineering) [12]. It is used to define a
descriptive system specification of a family of EDB variants,
consisting of a data model to determine the storage structure
and a variability model to define equipment-specific varia-
tions. During application engineering, the stakeholder creates
appropriate SysML models according to her requirements
(i.e., equipment and hardware specifications). Thereupon, a
corresponding model transformation is invoked, and a code
generator instantiates the model-transformation rules, based on
source-code templates, with information extracted from the
given SysML models. To compose the source code of the
target EDB variant, the code generator supplements prefab-
ricated database parts with glue code and the resulting code
components of the model transformation.

To facilitate qualification, unit tests, functional tests, and
traceability evidence are derived from the declarative system
specification on the basis of generic test cases, also imple-
mented as source-code templates. The tests require a consistent
and integral database instance of the target EDB variant to
operate on. Therefore, the code generator is connected to a
data generator, which receives a normalized relational database
schema from the data model as input. Then, the data generator
instantiates the schema with randomly generated values ac-
cording to a predefined distribution with respect to foreign-key
integrity and type-specific value ranges (e.g., -90.0 to +90.0
for the type Latitude). The resulting tuples are passed to
the code generator, which is now aware of a consistent and
integral database instance. Finally, the source code to fill a
test instance as well as associated functional tests, unit tests,
and traceability evidence are generated.

In terms of tooling, we decided to use open-source software
only. It is required by law that the manufacturer of an aircraft
is capable to maintain the software across the entire life cycle.
Mainly due to its very long-term support, we used PolarSys
[13], an open-source tool suite for embedded, model-based,
mission- and safety-critical systems. We applied PolarSys to
cover all tasks of domain engineering and application engi-
neering. With the modeling component Papyrus, we specified
the domain-specific language as well as an initial instance



of a data model and a variability model. We implemented
the model-transformation rules using the component Acceleo,
which requires OCL [14] as meta-language for the source-code
templates. Ultimately, we created 24 templates for 12 logical
components of the EDB, 9 templates for test cases, and 2
templates to generate test instances. This way, we generated
fully qualifiable EDB variants in the programming languages
Ada83 and Ada95. Overall, our approach relies on standard
techniques, but combined in a novel way to face the data-
management challenges in the avionics domain.

A generated variant of the EDB is already integrated as
the new data-management component in the software of the
Mission Tactical Computer of the NH90. Mainly, it handles
complex data related to area navigation and radio communi-
cation.

V. DISCUSSION AND PERSPECTIVES

In this section, we compare code-based and asset-based
development by means of the example of the LSTM (old data-
management component) and the EDB (new data-management
component). To this end, we systematically review the evo-
lution using the real-world scenarios reported in the devel-
oper interview (see Section III). We categorize the scenarios
according to their severities. For each of the categories, we
describe the proceedings for the technical realization of the
subject, once in context of the LSTM and once in context
of the EDB. This way, we discuss weaknesses and strengths
of code-based and asset-based development. Since there is no
comparable data-management component implemented with
tool-based development, an analysis of the tool-based approach
remains subject to further work.

A. NH90 Maintenance Data

To learn about the frequency of maintenance and evolution
tasks regarding data management, we collected maintenance
data of the NH90 avionics software from two sources. First,
we accessed the software repository of two core avionics
computers of the NH90. Second, we analyzed the source-
code files of the data-management component of the same two
avionics computers. The software repository contains entries
of over 18 years, from 1996 until 2014. For each entry, there
is a short description of the issue, the current status, the date
of creation, and the date of the last modification. The data set
is divided into three subsets:

• Problem Report (PR): describes a situation in which a
software component is not working as intended. PRs are
initiated by engineers, managers, or software developers
to inform project members (including customers) about
problems in the source code. Typically, PRs are raised if
a problem is of inter-divisional interest, for example, if it
occurs on the software test bench or at test flights.

• Engineering Change Request (ECR): describes a request
to adjust the software. ECRs arise from new system
requirements, feature requests from customers or devel-
opers, and changes in the aerospace standards.

• Software Change Note (SCN): documents a software
modification at a technical level. SCNs are linked to the
causing PRs or ECRs in a many-to-many relationship.

As a second source, we examined procedure headers of the
source-code files of the same two avionics core computers.

The headers are auto-generated by the version-control system
and include a full revision history of the target procedure.
We parsed 10,768 source-code files, containing 1,812,289
procedure headers with 24,907,787 revisions in total. In 42.7%
(10,647,287) of the annotations, we were able to extract a ref-
erence to an SCN, which relates these revisions to maintenance
and evolution. The remaining revisions are related to progress
in the development process. We transformed the data in both
repositories into a unified format, stored them in a database,
and joined them on the SCN identifier. This way, we enriched
the data in the software repository with file-level information.
By means of the folder structure of the source-code files, we
were able to assign entries in the software repository to logical
software components. Ultimately, we identified PRs, ECRs,
and SCNs related to data management. We start our discussion
with a comparison of initial effort of LSTM and EDB.

B. Comparison of Initial Effort

From the developer interview, we learned that the initial
effort of implementing and qualifying the LSTM amounts to
26 person months, which is about 4,160 person hours. For
the EDB, we estimate 4,848 person hours in total: 3,736
person hours development time and 1,112 person hours for
adaptation, deployment, and integration at Airbus Helicopters.
The majority of effort required to develop the EDB was
spend by the first author on the implementation of model-
transformation rules (i.e., source-code templates). At first, we
experienced a significant overhead in programming in OCL.
This overhead decreased rapidly with growing experience,
such that we could implement templates in OCL as fast as
source code in Ada. In this context, asset-based development
involved a 17% higher initial effort due to the integration and
familiarization of development tools.

In the next four subsections, we describe exemplary events
and examine their effects on the evolution of the data-
management component of the NH90 from the perspective of
both systems. The discussion aims at establishing a descrip-
tive and explorable model to assess and identify factors that
influence maintenance and evolution in the avionics domain.
All figures are meant as an illustration of the events and their
corresponding effects, not for quantitative prediction.

C. Deriving Software System Variants

To derive a new variant of the LSTM, the set of supported
entity types has to be tailored manually by removing, changing,
or adding lists in the source code. As reported in the developer
interview, one extension demands about 8 person hours of
development time. By contrast, the EDB does not demand any
modifications in source code. Each extension is performed in
the declarative system specification (i.e., in the SysML mod-
els). To remove, change, or add an entity type, corresponding
model elements have to be added to the data model and applied
with stereotypes configuring variant-specific properties. As
we first created a new data model similar to the entities of
the LSTM, it required 2 person hours of development time.
Naturally, this value depends on the size and complexity of the
data schema and may vary in different scenarios. The model
transformation to obtain the source code of the target variant
is performed within seconds.

Figure 5 shows the extrapolation of development time
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Fig. 5: Effort to modify the set of entity types

to derive a new variant of the LSTM and of the EDB. The
y-axis depicts the total time for providing source code and
qualification assets in person hours. The x-axis covers the
number of extensions in the set of entity types. The values
of both systems start with an offset for the initial effort and
grow in relation to the required development time. The ratio
is illustrated as �(generic inst), in the case of the LSTM,
and �(data model), in the case of the EDB. In this scenario,
code-based development outperforms asset-based development
for a long time. We assume that the break-even point will not
be reached until the end of the life cycle of the NH90. Up to
now, the LSTM was extended to support 30 additional entity
types.

D. Code Re-Use with Clone And Own

The developers at Airbus resolved two issues in the life
cycle of the LSTM by applying clone and own as a re-
use strategy. The scenario memory optimization from the
developer interview (see Section III) falls into this category.
The approach was used to deploy a solution to a subset of the
instantiated lists. For this purpose, the generic package of the
LSTM was copied and adapted to satisfy the requirement.

The clone-and-own approach has two major drawbacks,
which we illustrate in Figure 6. The y-axis depicts the total
development time for implementation and qualification, with
an offset for initial effort. The x-axis represents progress in
evolution. The grey areas illustrate the two phases where a
new requirement was realized using clone and own.

As a first drawback, in addition to the effort required to per-
form a code change, copied source code must also be qualified,
which involved about 320 person hours for each case in the
LSTM. These efforts are illustrated with �(clone and own) as
sharp increase in development time. For the EDB, the effort is
reduced to perform the actual code changes. Contrary to code-
based development, asset-based development transforms model
elements to source code. This way, we exploit the generative
approach to add or remove functionality by integrating con-
ditional units directly into the generic application logic (i.e.,
introducing new variation points), instead of adapting a code
clone manually.

Regarding memory optimization as a what-if scenario in the
context of the EDB, unnecessary data structures or procedures
would be encapsulated as conditional units, which would be
present in the target source code only if the functionality is in-
cluded in the declarative system specification of a desired vari-
ant. Due to the automatic generation of unit tests and functional
tests, adjustments in terms of qualification assets are reduced to
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Fig. 6: Effort required to realize evolution tasks by clone and own

the specification of generic test cases. Whenever functionality
is removed, as in memory optimization, no additional effort
for qualification is required. Overall, we approximate the total
development time for the technical realization of this scenario
for the EDB at about 80 person hours.

As a second negative effect of using a clone-and-own
approach, we identified increased costs related to maintenance
and evolution after cloning. This situation occurs if a PR or
ECR concerns code clones. Let us assume, we found changes
that were performed in original source-code files as well as
in two clones A and B. Analyzing the software repository of
the NH90 in this hindsight, we found 14 intersecting SCNs
in the original system and clone A, 5 intersecting SCNs in
the original system and clone B, and no intersecting SCNs
in clones A and B. We identified such additional effort in 19
cases. We added up the time intervals of these intersecting
SCNs and determined the ratio to the sum of the time interval
of all SCNs in the original system (74 found). This way,
we estimate the overhead in development time for the 19
intersecting SCNs related to the clone-and-own approach in
the LSTM at 24%. We illustrate this effect as an increased
slope after cloning in Figure 6.

In summary, asset-based development improves mainte-
nance and evolution in terms of code re-use regarding two
aspects: It reduces the effort required to realize changes with
conditional units and code generation, and it entirely eliminates
the drawbacks arising from using a clone-and-own approach.

E. Software Changes in Generic Parts vs. Specific Parts

So far, we have considered only non-severe requirement
changes, which were realized in the LSTM by means of a mod-
ification of the generic package, as in the scenario hardware
platform (see Section III). Severe requirement changes, as in
the scenario navigation list (see Section III), however, require
a specific solution. To explore the factors of maintenance
and evolution effort related to changing generic and specific
parts of the source code, we analyzed the implementation
of the LSTM in this regard. As generic part, we considered
each line of source code that is re-used either by parametric
polymorphism in a generic package or by clone and own. We
assume that the remaining lines of code constitute specific
functionality, which consider the specific part.

Overall, we parsed 57,181 revisions in the generic part
of the LSTM. 21,907 (38.3%) of the revisions contain an
SCN and thus are considered as relevant for maintenance and
evolution. In total, we identified 90 SCNs, which are related to
94 PRs and 10 ECRs. The effort for these tasks is basically the
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Fig. 7: Effort required to realize a severe evolution task

same for code-based and asset-based development, since the
technical realization affects the generic part of the software and
the qualification assets to equal shares (i.e., generic packages
of the LSTM and source-code templates of the EDB).

Analogously, we analyzed the specific part of the LSTM.
It contains 165,278 revisions in total, where 83,023 (50.2%)
are relevant for maintenance and evolution. In total, we iden-
tified 536 SCNs, related to 474 PRs and 97 ECRs. With 6
times more SCNs targeting specific parts, our data indicate
a considerable increase in occurrences of software changes
related to maintenance and evolution than in the generic
part. Regarding the number of revisions, which has increased
by a factor of 3, the frequency of software changes in the
specific part of the LSTM is doubled compared to the generic
part. In particular, there is an exceptionally higher number
of ECRs (almost factor 10). This shift shows the increased
significance of realizing new requirements in specific variants
of the considered software. Next, we discuss the scenario
navigation list from the developer interview as representative
example for the severity of changes of this kind.

The interviewees explained that the navigation-list require-
ment was realized in the LSTM by implementing a wrapper
around the instantiation of navigation lists with an additional
interface for data access, to maintain referential integrity and
consistency. For the EDB, this scenario required the adaption
of the domain-specific language to specify a model element
that relates entity types in the declarative system specification.
To this end, we used instances of SysML::Association to link
SysML::Blocks — the model elements that represent entity
types in the data model. We realized this complex requirement
by implementing conditional units that were integrated in the
source-code template for query processing.

Regarding qualification, we defined a generic test set that
covers the additional functionality. We integrated it into the
same template to automatically generate suitable test cases,
amenable for requirement-based testing. Finally, these test
cases have been automatically instantiated with valid data from
the data generator, to create actual unit tests and functional
tests compliant to DO-178.

Figure 7 compare the development time required to realize
the scenario navigation list in the context of the LSTM and the
EDB. The axes are as in Figure 6. The grey area illustrates
the phase in which a new requirement arose. The effort for
realizing this severe requirement in the LSTM is illustrated
with �(navigation list) as a stark increase in development
time. The developers of the LSTM estimated the effort at
about 12 person months in total, that is 1,432 person hours.

The ratio of required effort associated to qualification is the
same as for new developments, which was estimated in the
interview at about 45%. In the case of the EDB, we estimate
the development time to 504 person hours, where 24 person
hours are spent on extending the domain-specific language,
400 person hours to develop model-transformation rules, and
80 person hours to define and implement the set of test cases.

In summary, asset-based development can reduce the effort
and cost for implementation and qualification compared to
code-based in a severe scenario, such as navigation list, by
almost two third, which may compensate the higher initial
effort that is required by asset-based development.

F. Lessons Learned

Answering the question of whether code-based, tool-based,
or asset-based development is the most suitable approach
for a specific subject matter depends on an estimation of
the initial effort and a detailed assessment of potential tasks
related to maintenance and evolution. In safety-critical appli-
cation domains, where the software has to pass a qualification
process, strict coding constraints often demand a tailored
solution for a specific problem. Our analysis demonstrates the
potentially high severity of maintenance and evolution tasks
in these domains. Real-world scenarios considering severe new
requirements have shown that the technical realization requires
up to one third of the initial development cost. However,
the efficiency of a development approach depends on the
parameters of the target system. If the system requirements are
stable or changes are very unlikely, code-based development
may still outperform asset-based development. In cases where
maintenance and evolution is likely, such as in the data-
management of the NH90, asset-based development appears to
be an efficient and practical development approach. Regarding
tool-based development, further studies are required to explore
its application in software systems, in which maintenance and
evolution contribute to a majority of the effort.

VI. THREATS TO VALIDITY

Our approach to assign source-code files to logical software
components based on the folder structure might unintentionally
exclude files, which threatens internal validity. It is possible
that semantically related source-code files are located in differ-
ent folders. The PRs, ECRs, and SCNs of these files might have
been mismatched. However, through personal communication
with a senior developer who is familiar with the system as
a whole, we have been informed that the source files of the
LSTM as subject matter of our study are well encapsulated
and not scattered over multiple folders or packages.

A second threat to internal validity arises from our assump-
tion that our data basis is free of defective entries. After man-
ually reviewing the textual description of all affected entries
(PRs, ECRs, and SCNs), we could not find any duplicates,
but we cannot guarantee that the repository does not include
invalid items (e.g., PRs that could not be replicated).

Regarding external validity, one could argue that insights
gained from an interview of two developers cannot be used to
justify general statements. Nonetheless, one of the interviewees
is the head developer of the data-management component and
has, much like the second interviewee, decades of experience
in the field of avionics software engineering. Furthermore, their



approximation of the ratio of effort for implementation and
qualification of the LSTM, as case example of a complex
avionics software, agrees with the results of previous work
[15] (coding makes up 16%, where unit tests, functional tests,
and design reviews sum up to 9% of the total development
costs of military avionics software).

VII. RELATED WORK

As a first systematic report on achieving benefits from
adopting product-line technology in complex avionics soft-
ware, Sharp suggested a logical pattern-driven design to facil-
itate the integration of predefined components in the avionics
software in the context of the Bold Stroke Initiative at the
Boeing Company [16]. A similar approach was proposed by
Ganesan et al. at the NASA Goddard Space Flight Center.
The authors use a layered architecture to re-use modules,
configurable for mission-specific needs in the Core Flight
Software (software platform for NASA missions) [17]. Both
approaches rely on product-line engineering to build hardware-
and mission-specific variants of the avionics software. The
authors focus on exploring domain and application design
rather than facilitating the development process by addressing
the challenges of qualification that prevail in the avionics
domain.

Regarding the application of model-based methods in the
aerospace industry, Batory et al. suggest GenVoca, a domain-
independent model for hierarchical systems as compositions
of reusable components, to create a reference architecture for
avionics software synthesis [18]. Similar to the work of Sharp
and Ganesan et al. the authors present lessons learned in
applying model-based techniques to improve the application
design, but do not target qualification. Hovsepyan et al. report
on an enhancement of the development life cycle at Space
Applications Services by means of a model-based development
process to establish traceability of system requirements across
the phases of the V model [19]. In the work of Dubois et al. at
the Thales Group, model-based methods have been applied in
the form of a domain-specific language in SysML to support
domain engineering in context of product-line engineering in
the CEASAR project [20]. Analogous to Hovsepyans work,
Dubois et al. used models for maintaining traceability of
system requirements to application components, but they do
not target code generation or qualification. Delange et al.
[21] propose model-based engineering to capture architecture
requirements using the AADL modeling language. Their ap-
proach exploits AADL models to validate non-functional re-
quirements, such as resource dimensioning through simulation,
but they did not consider qualification obligations.

There are model-based and generative approaches to de-
velop software systems based on the ARINC 6536 specification
[22]. Horvth et al. [23] discuss model-driven engineering as
an approach to systematically develop configuration data. A
similar strategy is described by Choi et al. [24]. They present
a tool to generate XML configuration files for an ARINC 653
compliant operating system. In contrast to our approach, the
authors apply code generation to derive configuration assets,
not qualification assets.

With Matlab Simulink7 and Esterel SCADE8, there are two
6A standard for space and time partitioning in avionics operating systems
7http://de.mathworks.com/products/simulink/
8http://www.esterel-technologies.com/products/scade-suite/

commercial products that can be considered as the de facto
standard tool set for tool-based development. Both provide
model-based design and code-generation capabilities. Esterel
SCADE was successfully applied at Airbus to develop the
software for the flight control computers of multiple aircrafts,
such as the Eurocopter EC 135/155 and the Airbus A340/500
[25]. The share of automatically generated code was 70%,
which reduced the change cycle time by a factor of 3 to 4
compared to manual coding. Both projects showed compliance
to Design Assurance Level A. However, these tools aim at
generating source code for the most critical components of a
system and require a model-based specification at a very low
level of abstraction, which is inappropriate to handle complex
data-management functionality.

Bridges et al. and Dorodwsky et al. describe the successful
application of a generative approach at Airbus Helicopters
without applying commercial tools [5] [26]. They use tool-
based development based on an in-house tool chain based on
a fully qualified code generator. It produces software artifacts
for low level components of the NH90 System Software, such
as the real-time tasking model, processor allocation, and raw
data I/O. The authors identified qualification as key factor, but
did not provide any details on the process.

VIII. CONCLUSION

In our experience report, we described the enhancement
of the data-management component of the NH90 helicopter
at Airbus Helicopters. In a semi-structured interview with two
professional developers, we gained deep insights into the in-
dustrial practice of developing qualified avionics software. We
found that established development approaches are not feasible
to cope with the challenges of realizing data management in
such an highly sensitive environment.

To address problems regarding implementation and qual-
ification effort, especially in the face of software evolution,
we propose asset-based development as a novel generative
approach to develop avionics software. Using model-based
and product-line technology, we successfully implemented the
Embedded Database, a software product line and a generator
infrastructure to generate fully qualifiable variants of real-time
embedded database management systems, which is already
integrated in the NH90 development environment to replace
the former system.

By a systematic comparison of the former data-manage-
ment component and our solution, we identified significant
improvements when using asset-based development, in terms
of flexibility and efficiency of realizing tasks related to main-
tenance and evolution. Discussing a number of real-world evo-
lution scenarios with data collected from the NH90 software
repository and the developer interview, we demonstrated the
likelihood and the potential severity of these tasks, and we
identified the main cost drivers of evolution. Finally, our results
are not restricted to data management in the avionics domain
and may help developers to choose a suitable development
strategy in domains where qualification plays a key role.
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