
Passau University

Department of Informatics and Mathematics

Master’s Thesis

An Extensible Compiler
for Feature-Oriented Programming in Java

Author:
Sergiy Kolesnikov

First Supervisor:
Dr.-Ing. Sven Apel
Second Supervisor:
Prof. Dr. Christian Lengauer

February 21, 2011

Abstract

Feature-oriented software development (FOSD) is a paradigm for develop-
ing large software systems. Fuji, an extensible compiler, supports feature-
oriented programming in Java. It does not rely on source-to-source transla-
tion but generates standard bytecode, which can be executed on any speci-
fications-compliant Java virtual machine. This allows feature-oriented soft-
ware developers to benefit from such techniques as type checking or access
control, which are indispensable in standard Java compilers. Fuji is based
on the JastAddJ compiler. One of JastAddJ’s main development goals is
easy extensibility. Thus extensibility is inherent in Fuji. This property of
our compiler allows building other tools on its basis and experiment with
alternative designs. In this thesis we describe the architecture and design of
Fuji, as well as several extensions we implemented showing the extensibility
of our compiler.

Contents

1 Introduction 4
1.1 Feature-Oriented Software Development 5

1.1.1 Phases of the FOSD Process 6
1.2 JastAddJ Java Compiler . 8
1.3 About this Thesis . 11

2 Design and Implementation 12
2.1 Fuji’s Architecture . 12
2.2 Processing SPL Structure . 12

2.2.1 Java Project Structure vs. Java-based SPL Structure . 12
2.2.2 Implementation of the SPL Structure Processing 14

2.3 Superimposition of Abstract Syntax Trees 17
2.3.1 Superimposition Rules 20
2.3.2 Implementation of the AST Superimposition 23

2.4 Summary . 24

3 Fuji Extensions 26
3.0.1 Feature-Oriented Access Modifiers 26
3.0.2 Access Analyzer . 27
3.0.3 Introduces and References Relations 27
3.0.4 Source-to-Source Translation 28

4 Evaluation 29
4.1 Output-Based Testing . 29
4.2 Example Software Product Lines 30

4.2.1 Testing Environment 32

5 Conclusion 33

2

3

1 Introduction

Software has the tendency to grow during its lifecycle. Many application
programs, for example, text processors or web browsers, start as relatively
simple programs with decent functionality. In the course of further develop-
ment, they grow to complex software systems. The main cause for this is
the desire of the developers to satisfy the needs of as many programs’ users
as possible. These needs often vary radically, so that it becomes harder and
harder to fulfill them all in one product. Moreover, the maintenance of the
product becomes difficult because of the complexity of the design and mere
amount of code to be managed.

Let us illustrate the problem on an example of a web browser. Sup-
pose a user works with a certain browser on its desktop. It is obvious, that
she would prefer to use the same browser on her smart phone because of
mere convenience. The difference between computing platforms1 may pose
a great problem to the developers. In the worst case it would require vast
changes in the browser code and would result in several product variants
to be maintained. This example with different platforms, each having lim-
ited resources, compared to desktops, is highly relevant today, as mobile and
embedded computer devices become ubiquitous.

A user may also require additional functionality, like a fully-fledged down-
load manager, a news feed reader, a multimedia player for web page embed-
ded multimedia. Another one may go without this additional functionality
for the sake of simplicity. Thus we end up with multiple end products again.
Multiply their number with the number of supported platforms and you will
get the amount of product variants our imaginary web browser developers
have to design, implement and maintain. During its lifecycle the browser
evolves to a family of products, each offering to its users a custom-tailored
solution. Such a family of products is called Software Product Line (SPL) [2].

We took a web browser as an example, but it is not only application soft-
ware that is required to offer custom-tailored solutions. Operating system
kernels or server software like database management systems often repre-
sent SPLs these days. For example, for the Linux kernel a special language
and a software framework were developed to manage variability and config-
ure single variants. Such additional development requires a great amount
of extra effort, parallel to the development of the product, and the results
are often project specific, i.e. cannot be easily reused by other not related
projects. Thus it is a great challenge to design, develop and maintain SPLs

1Computing platform is a combination of hardware architecture, operating system and
available software libraries / runtime environment.

4

with classical development methods. The need for new software engineering
and programming concepts that help developing SPLs is gets stronger with
every day.

There exist multiple software development concepts like stepwise and in-
cremental software development, aspect-oriented software development, com-
ponent-based software engineering, that were successfully applied to develop
SPLs. All of them have their benefits and drawbacks. Feature-oriented soft-
ware development is a new general paradigm that has many benefits of the
mentioned concepts and aims at making the development of software product
lines easier.

1.1 Feature-Oriented Software Development

Feature-Oriented Software Development (FOSD) is a development paradigm
that takes into account the main problems and peculiarities of designing, im-
plementing and maintaining SPLs. The key concept of the paradigm is the
concept of a feature. A feature is a unit of functionality of a software sys-
tem that satisfies a requirement, represents a design decision, and provides a
potential configuration option [2]. On creating a product, a developer imple-
ments a set of features. Thereby she considers existing or potential customer
requirements, makes some user visible designer decisions and encapsulates
all these in features. When a sufficient set of features is finished, a customer
can choose a subset of them and a custom-tailored end product, a variant,
can be automatically generated for him. In terms of FOSD, a collection of
all valid variants that can be generated from the set of features is called an
SPL.

The development process described above has three beneficial properties,
which originate for the use of the feature concept: enhanced structure, im-
proved reuse of the components and ease of variation. Developers structure
the design and code of a product with the help of features, the features can
be reused in different variants, adding features to or removing them from a
variant allows easy adjustment of the end product to customer needs.

Speaking of features one distinguishes between problem space and solu-
tion space [2]. In the problem space a feature describes a requirement on the
resulting product and its behavior, e.g., the browser has an integrated down-
load manager. In the solution space a feature describes how the requirements
are satisfied and the requested behavior is implemented, e.g., these and these
classes implement a download manger using those and those techniques. One
of the main objectives of FOSD is to ensure a clean mapping of a feature in
the problem spaces to a feature in the solution space through all the phases
of the FOSD process, as illustrated in Figure 1. We will discuss these phases

5

Figure 1: Problem to Solution Space mapping

in the next section.

1.1.1 Phases of the FOSD Process

The FOSD process is divided into four phases [2]:

1. Domain analysis;

2. Domain design and specification;

3. Domain implementation;

4. Product configuration and generation.

Domain analysis In domain analysis, developers deal with a problem
space. They decide which features belong to the problem space, how they
relate to each other, and how they can be organized. In other words they
define and structure the problem space. For this task the concept of a feature
model was introduced. A feature model describes relationships and depen-
dencies for a set of features belonging to a certain domain. A commonly used
notation for feature models is the treelike feature diagram notation. Figure
2 depicts a standard example, representing a product line of cars. The root
of the diagram is the concept being modeled. The descendants of the root
are features, which developers decided to take into the problem space. The
edges between the nodes describe relations between the features. For exam-
ple, feature Gasoline, describing a gasoline engine, is part of the more general
feature Engine. Additional graphical elements on the edges describe further
constraints, e.g., the filled circle on the edge from Car to Engine denotes,
that every car variant must have an engine. The leafs of the tree represent
features that will be directly mapped to the features in the solution space,
because of the mentioned clean mapping property of the FOSD process. Due

6

Figure 2: Feature model diagram

to the fact that feature diagrams are more comprehensible to a non-technical
user, developers can present them to the customers. A customer can choose
the features she wants in the end product and the developer can easily find
the corresponding features in the solution space. The chosen features are
then automatically composed to a custom-tailored end product.

Domain Design and Specification During domain design and specifi-
cation phase, developers define the architecture of a software system. For
this purpose formal specification languages like UML are often used. In the
FOSD community there has not been much work in this field and proposed
solutions have many open issues [2].

Domain Implementation In domain analysis, developers deal with a so-
lution spaces. They develop features that satisfy some requirements and
implement certain behavior. One of the main goals here is to achieve a one-
to-one correspondence with the features defined during the domain analysis.

There exist two approaches to introduce the concept of features during
the domain implement phase: the annotative approach [13] and the compo-
sitional approach [13]. The idea of the first approach is to annotate the in-
formation about the features in the code, so that different features are mixed
in one code module. This can be achieved by a well-known mechanism of
source code preprocessing, which is known to be one of the advantages of
this approach. For example, C developers can use #ifdef directives in the
code to annotate features and then run the C-preprocessor on it to generate
variants. The disadvantage of this approach is that features are scattered
across multiple code modules, and this can complicate their comprehension.

Using the second approach, developers define individual features in sep-
arate modules, which can then be composed to an end product. There
are several implementations of the compositional approach. For example,

7

the AHEAD tools suite [6] introduces the Jak language that extends Java
with feature-oriented mechanisms. Another tools suite, called Feature-
House, implements language independent feature modularity based on at-
tribute grammars [3]. It means that no changes must be made to the syn-
tax of the corresponding language to make it feature aware. At the same
time, the language Independence of FeatureHouse is the reason for its
disadvantages. For example, a feature-oriented type system or access control
mechanisms cannot be implemented, because of the lack of language specific
information during the feature composition process. One of the goals of this
thesis is to overcome this restriction with respect to the Java programming
language. We trade language independence for more flexibility in the field of
semantic error checking, in particular type checking.

Product Configuration and Generation Product Configuration and
Generation is the last and the key phase of the FOSD process. The vision is
that a non-technical customer can be easily involved into the configuration
process, where she can express her requirements, and then a custom-tailored
variant is generated automatically.

The configuration step poses a problem, because complex relations be-
tween multiple features of a large SPL can be hardly tracked by a human.
Tool support in feature selection was introduced to solve this problem. There
are such tools like GUIDSL2, pure::variants3, FeatureIDE4 and CIDE5.

Once we have a valid feature selection, a variant can be generated. A
mechanism for variant generation that is based on superimposition was used
in the course of this work and will be introduced and explained further in
the text.

1.2 JastAddJ Java Compiler

This section presents the JastAdd Extensible Java Compiler (JastAddJ) [9],
which we used as basis for the Fuji compiler that was developed in the course
of this work. JastAddJ was built using JastAdd compiler frame work [10].
The framework utilizes the concepts like object-orientation, inter-type dec-
larations, declarative rewrites, and attribute grammars, including support
for reference attributes, nonterminal attributes and circular attributes [10].
These declarative features are the key to the extensibility of JastAddJ. The
authors demonstrate JastAddJ’s extensibility by first building a Java 1.4

2http://www.cs.utexas.edu/~schwartz/ATS/fopdocs/guidsl.html (17.02.2011)
3http://www.pure-systems.com/pure_variants.49.0.html (17.02.2011)
4http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/ (17.02)
5http://www.fosd.de/cide (17.02.2011)

8

http://www.cs.utexas.edu/~schwartz/ATS/fopdocs/guidsl.html
http://www.pure-systems.com/pure_variants.49.0.html
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
http://www.fosd.de/cide

compiler and then extending it to a Java 1.5 compiler. The specification of
Java 1.5 introduced many new language constructs and concepts like generics,
enums, the enhanced for-statement, autoboxing, varargs and others. There-
fore, the extending of the Java 1.4 compiler was not a trivial task at all.

JastAddJ can compile programs with more than 100K LOCs. The com-
pile times are within a factor of three compared to javac. For a research tool
these absolutely acceptable characteristics.

The four main components of JastAddJ are the Java 1.4 front end and
back end and the Java 1.5 front end and back end. The back ends are
extensions of front ends and reuse their code. The same is true for the Java
1.5 components, which are built as extensions of the corresponding Java 1.4
components. The same approach can be used to build further extensions.

Every main component is built of four major parts: an abstract grammar
defining the structure of abstract syntax trees (AST); behavior specifications
defining the behavior of the objects constituting the AST; a context-free
grammar defining how source code is parsed into ASTs; and a bootstrap
program that is run by the user.

A special JastAdd language is used to specify the abstract grammar and
the behavior. Based on these specifications, the JastAdd tool generates an
object-oriented class hierarchy. This hierarchy is then used in the compiler
to represent an AST. To parse source code an external Java-based parser
must be used. JastAddJ uses Beaver6, a Java LALR(1) parser generator, to
generate the parser.

JastAddJ’s components may reuse other components by just including
their abstract grammars, behavior, and context-free grammars into Jas-
tAdd’s compiler generation process. Figure 3 is a general illustration of
this process.

Internally, JastAddJ represents a program as an AST. The AST itself is
built of Java objects. The class and composition hierarchy of these objects
is defined by the abstract grammar mentioned above. The behavior of the
objects is defined in aspect-oriented modules (aspects) and is implemented
with the help of methods. These methods represent the AST attributes.
These attributes are used to solve all compilation tasks. For example, the
task of finding a method declaration corresponding to a method call is imple-
mented in the attribute decl, which belongs to the AST node representing
this method call. A developer can write additional aspects that extend the
behavior of AST nodes. Due to the usage of attributed AST and reference
attributes7 no additional data structures, like symbol tables, are needed.

6http://beaver.sourceforge.net (last access 16.02.2011)
7Attributes that reference other AST nodes.

9

http://beaver.sourceforge.net

Figure 3: JastAdd generation architecture

The AST is the only data structure used in the compiler. It contains all the
needed information about the compiled program and implementation of all
compilation tasks.

To implement Fuji we used aspects intensively and extended JastAddJ’s
Java 1.4 front end. Our extension does not rely on JastAddJ’s 1.5 front end,
therefore the Java 1.5 extension can be easily excluded from the compiler
generation process and we get a Fuji version for Java 1.4. This confirms
again the high level of extensibility and modularization of JastAdd-based
compilers. These properties are also inherited by Fuji.

In the remainder of this section, we illustrate the usage of aspects for
extending the behavior of an AST node. As an example we take one of the
tasks Fuji must fulfill during the compilation process. The task is to find out
if a method declaration contains a special original-call8. For this purpose we
have to extend the behavior of the AST node representing a method body,
which is defined in the JastAddJ’s Java 1.4 front end.

Listing 1 shows an excerpt from the front end’s abstract grammar defining
the composition and class hierarchy of the corresponding AST nodes9. The
definition states that an AST node for a method declaration has children
nodes representing method modifiers, return type, the name of the method,
a set of parameters, and a block of code.

To implement the task of finding an original-call we define an aspect in a

8The meaning of the original-call is not important here and will be explained later in
Section 2.3.1

9We left out some elements for the sake of simplicity.

10

1 MethodDecl : := Mod i f i e r s TypeAccess <ID : Str ing>
2 ParameterDeclarat ion ∗ Block ;

Listing 1: Abstract grammar for method declaration

separate file. The text of the aspect is shown in Listing 2. The aspect adds
the hasOriginal attribute to the AST node representing a method body.
As mentioned above the AST attributes are represented in the AST by java
methods. On traversing an AST during a compilation process, we can call
the hasOriginal() method on a MethodBody node and it will return true

if the contains an original-call.

1 aspect MethodComposition {
2 public boolean Block . ha sOr ig ina l () {
3 for (Stmt s : getStmtList ()) {
4 // check i f the s ta tement con ta in s the o r i g i n a l−c a l l
5 // i f yes , re turn t r u e
6 }
7 return fa l se ;
8 }
9 }

Listing 2: Aspect implementing hasOriginal attribute.

1.3 About this Thesis

The contribution of this thesis is a successful development of Fuji compiler
that supports feature-oriented programming in Java. In contrast to other
feature-oriented tools, Fuji does not rely on a source-to-source transformation
but is a fully-fledged compiler that produces standard Java bytecode. This
opens up new possibilities in the field of semantic error checking, and type
checking in particular. Moreover, its design allows easy modification for
building other tools on the basis of Fuji. In the course of this work, we build
several tools using Fuji’s extension mechanism.

The remainder of this thesis is structured as follows:

• In Section 2, we introduce the architecture and design of our compiler
and discuss its implementation details.

• In Section 3, we describe Fuji’s extensions developed in the course of
this work.

• In Section 4, we present the evaluation results and testing methods.

• In Section 5, we conclude the thesis.

11

2 Design and Implementation

This section describes the architecture, conceptual design and implementa-
tion details of Fuji. First we present the architecture of the compiler to
outline its main parts and show their interconnections. In the following step
we compare the structures of a typical Java project and a typical SPL. This
comparison allows us refine the compiler’s architecture and explain which
parts of JastAddJ must be modified or extended and why. Following this
top-down design strategy, we analyze each of the Fuji’s essential parts and
finally describe the concrete implementation.

2.1 Fuji’s Architecture

Fuji is based on the JastAddJ Java compiler. JastAddJ’s architecture follows
the classical compiler design and consists of a front end and a back end [1].
Because of the fundamental differences in a structure of a typical Java-based
SPL and a normal Java project, which are explained in Section , we extended
JastAddJ’s front end. We build an adapter that presents an SPL to the Jas-
tAddJ’s front end as if it were a normal Java project. This allows us to reuse
the most of JastAddJ’s front end code to build abstract syntax trees (ASTs)
for a variant. Then Fuji performs the composition of generated ASTs, which
corresponds to feature composition in terms of feature-orientation. The com-
posed ASTs are fully compatible with ASTs produced by the unmodified
JastAddJ’s front end and can be immediately passed to the back end for
bytecode generation. Alternatively the ASTs may be given to one of Fuji’s
extensions for further processing. The extensions can be easily added to the
compiler using provided extension mechanisms. The described architecture
is illustrated in Figure 4.

2.2 Processing SPL Structure

2.2.1 Java Project Structure vs. Java-based SPL Structure

The top level element of a typical Java project is a package. A package can
contain other packages as well as classes and interfaces. In a file system a

Figure 4: Fuji’s Architecture

12

Figure 5: Structure of an example SPL

package is normally represented by a directory. Classes and interfaces are
represented by files. A typical SPL implemented using the concept of com-
positional approach introduces a new structural element, namely a feature
module [13]. This structural element encapsulates the code that implements
a feature of the SPL and corresponds to a directory in the file system. Ev-
ery feature module of a Java-based SPL can contain packages, classes and
interfaces constituting a containment hierarchy [7]. An SLP structure can
be represented by a tree, where all the feature modules of the SPL are sib-
lings and have the same parent, namely the root of the SPL, see Figure 5.
JastAddJ’s front end is unaware of feature modules. Thus we implemented
a modification that allowed the front end to work with Java-based SPLs.

To identify further modifications, needed because of the differences in
project structures, let us consider collaboration diagrams [14]. A collabo-
ration diagram can be used to visualize feature-oriented program design.
Besides representing the structure of an SPL, a collaboration diagram shows
relationships between the elements of an SPL. Figure 6 show a collaboration
diagram of a simple SPL. From the object-oriented point of view the SPL
consists of the class A and its subclass B, which are both part of the package
p. From the feature-oriented point of view The SPL consists of features F1
and F2. These features decompose the core object-oriented design adding
new elements, roles. Feature F1 decomposes class A into two roles, A1 and

13

Figure 6: Collaboration diagram

A2. The role A1 is also called a base role and the role A2 is called a refine-
ment role. The refinement A2 refines the base A110. The class B consists
of only one base role B1. All roles of a feature collaborate together intro-
ducing a new functionality encapsulated by the feature. In a file system one
role is represented by one source file. The source files for a base role and
all its refinements have the same name. Thus our example SPL will have
three source files: SPL/F1/p/A.java (base), SPL/F2/p/A.java (refinement),
SPL/F2/p/B.java (base). The presented feature-role and base-refinement
relationships between structural elements of an SPL are important for the
compilation process and must be implemented in Fuji.

Another important element of an SPL is a features file11. The file is used
to identify a variant. It contains a list of the feature module names the
variant must contain. The feature modules are listed in the order in which
they should be composed.

2.2.2 Implementation of the SPL Structure Processing

In the previous section we showed, that the original JastAddJ’s front-end
must be extended, so that it can work with the structure of an SPL. We
implemented the extension in the fuji.SPLStructure class. In the following
the functioning of this class will be described.

10e.g. by adding a new method
11also called expression file

14

On instantiation, SPLStructure class gets two parameters, the pathname
of the SPL root directory and the pathname of the features file. Based
on this information SPLStructure builds an internal representation of the
SPL in three consecutive steps. The resulting representation contains all the
information about the SPL structure and relationships between its elements,
that is required for further processing.

The steps for building the internal representation are:

1. Parse the feature file and determine the pathnames of feature modules.

2. Build role groups.

3. Calculate dependency graphs.

These are described in detail below.

Parse the feature file A feature file contains a feature choice, i.e. a
list of the feature module names, which describes a variant of the SPL to
be compiled. Besides, it specifies the order in which the features must be
composed. The format of the features file is simple. The name of each
feature module is specified on a separate line. The feature on the first line
is the base feature. It will be composed with the feature specified on the
second line and so on. Lines starting with the special character # as first
non-blank character are interpreted as comments and ignored. On parsing
a features file, we also check if the directories corresponding to the listed
feature modules exist. It is an error, if a specified feature module does not
have a corresponding directory. The result of a successful parsing process is
a list of the feature module canonical pathnames. The pathnames are placed
in the same order as they were listed in the features file. This list is used in
the next step, as well as in the further compilation process.

Build role groups In Section 2.2.1 we showed how features decompose a
class into elements called roles. In the current step all the roles belonging
together12 are detected and grouped to role groups. A role group is later com-
posed according to predefined composition rules and then compiled resulting
in a Java class file.

To find related roles we search through the feature module directories
determined in the previous step. All the roles belonging together have iden-
tical pathnames relative to its feature module directories and can be grouped
based on this property. The feature module directories are searched in the

12i.e. a base role and all its refinement roles

15

same order in which they are returned by the previous step. Thus the first
role found is guaranteed to be the base role and the remaining roles are its
refinements and must be composed in the order they were found.

We model a role with the RoleGroup class. An instance of this class
contains a pathname of the base role, pathnames of all its refinement roles,
selected by the given feature choice, as well as additional utility methods and
fields used in the next step.

Calculate dependency graphs In the early development versions of Fuji
we parsed the source code for all the role groups of the currently processed
variant at once and then started the composition and compilation procedures.
For the relatively big SPLs like GUIDSL13 and Prevayler13 this led to “out
of memory exceptions” during the compilation process. The high memory
consumption was caused by the way JastAddJ models an AST of the source
file internally, namely, by representing each AST element as an object. For
big SPLs this led to a vast number of objects to represent the AST and ended
in “out of memory exceptions”. To compile GUIDSL, for example, we had to
set the size of the JVM’s14 memory allocation pool to 3GB. That was clearly
impractical and we looked for ways to optimize memory usage.

Our solution of the memory problem is based on dependency graphs. De-
pendency graphs identify parts of the SPL’s source code15 which can be
parsed and compiled separately. Formally a dependency graph G = (V,E)
is a directed graph, where nodes (v ∈ V) represent role groups, and directed
edges (e ∈ E) represent references between the role groups. A directed edge
e = (R1, R2) ∈ E from the role group R1 to the role group R2 exists if and
only if the source code of the role group R1 uses (references) the type defined
in the source code of the role group R2. We also say that R1 depends on R2,
because R1 can only be compiled together with R2. This compilation re-
quirement follows from JastAddJ’s method of operation, in particular, from
the implementation of the semantic error checking.

We build a dependency graph for an arbitrary role group R as follows.
First we add R to the graph. Then we add all the role groups R directly
depends on. In the next step we add all direct dependencies of the groups
added in the previous step. We repeat the last step until no new groups can
be added to the graph. The resulting graph will contain all the role groups
R depends on directly or indirectly. This is the minimal set of role groups
that must be compiled simultaneously with R.

13see Section 4.2 for discussion of example SPLs
14Java Virtual Machine, an execution environment used to execute Java programs.
15more precisely role groups

16

As we are able to map from a role group to corresponding source files16,
having a role group and the corresponding dependency graph we can eas-
ily find out a subset of files, which can be parsed, composed and compiled
independently from the rest.

It should also be considered that a role group may be present in several
dependency graphs. This would lead to multiple unnecessary compositions
and compilations of the same role group. To prevent this we add the des-
tination directory for class files to JastAddJ’s classpath by default. This
ensures that a role group is composed and compiled only once. If an already
compiled role group is required, the corresponding class file is loaded by Jas-
tAddJ automatically. SUN’s Java 5.0 compiler does not add the destination
directory for class files to classpath by default, so this Fuji’s behavior must
be considered non-standard. Though, we have not observed any problems
that could have emerged from this modification.

Still the worst case scenario is possible, where a role group depends17 on all
the other role groups of the SPL. In this case the corresponding dependency
graph will contain all the role groups of the SPL and we end up with parsing,
composing and compiling all the SPL’s source files at once again.

To cope with this problem we sort all the dependency graphs by the
number of their nodes and start the composition and compilation process
with a graph having the smallest number of nodes. The intention is to
compose and compile as few role groups at once as possible. This way,
processing of the graph mentioned in the worst case scenario is efficient,
because most of its role groups have been certainly compiled already. Thus
only few role groups will be composed and compiled, and the rest of the
groups required for their compilation will be loaded from the corresponding
class files.

Altogether the approach described in this section is less memory consum-
ing than our early implementations. This is confirmed by tests. Using the
described approach all the example SPL’s18 compile with 128MB19 reserved
for the JVM’s memory allocation pool.

2.3 Superimposition of Abstract Syntax Trees

For composing feature artifacts20 Fuji applies a concept of superimposition [5].
In this approach the composition of software artifacts is done by composing

16see Section 2.2.2
17directly or indirectly
18see Section 4.2 for discussion of example SPLs
19128MB is the default value for SUN’s Java compilers.
20packages, roles, types, methods, fields. . .

17

their respective substructures. For example, superimposition of two Java
source files representing roles ends in one Java source file, which contains the
result of composing the structural elements of the files, e.g., types, methods,
fields.

The structure of a feature is represented by a feature structure tree (FST).
All the feature’s artifacts to be composed correspond to nodes in the FST.
Each node of an FST has a name and a type. The notion of “type” in the pre-
vious sentence must not be confused with Java’s types like java.lang.Object.
It rather describes the syntactical category the artifact belongs to: “a method”,
“a field”, “a compilation unit. . . ” The nodes are divided into terminals and
non-terminals.

Non-terminal nodes are inner nodes of an FST and their subtrees are
subject to the recursive superimposition process. Two non-terminal nodes
are superimposed by merging into one node, but only if their names and
types are equal. The outcome of the superimposition is a non-terminal node
with the same name and type as its source nodes. The substructure of the
node is the result of superimposing the substructures of the source nodes.

Terminal nodes are leafs of an FST. Two terminal nodes with the same
names and types can be superimposed only if a superimposition rule de-
scribing the process of their composition was defined. The outcome of the
superimposition is a terminal node. Superimposition rules are application
dependent and describe how the content of the terminal nodes must be com-
posed. It must be noted that describing an artifact as a terminals is often
a designer decision and is not always forced by a programming language de-
sign [13]. In our case we have to be compatible with FeatureHouse, so
the terminal node definitions were taken from that implementation and will
be described in the next section.

A node that does not have a partner for superimposition is just added as
a child to the node resulting from superimposition of its parent.

To illustrate the process let us take a Java-based example with features
F1 and F2. Suppose the features contain only one package and one file,
so that we have the following artifacts in a filesystem: F1/p/A.java and
F2/p/A.java. The content of the source files is listed below.

The two features are composed by superimposing their corresponding
FSTs, denoted by ’•’. The superimposition starts from the root and descends
recursively resulting in a new FST as shown below.

The source code of the artifacts and the corresponding FSTs is shown in
Figure 7.

As we can see the FST nodes representing classes are non-terminals.
Thus they are merged to single non-terminal node. Each feature declares
a field. The nodes representing the fields are both terminals and have dif-

18

1 // f e a t u r e F1
2 package p ;
3 c l a s s A {
4 i n t f i e l d = 7 ;
5 void method{
6 System . e x i t (1) ;
7 }
8 }

• •

1 // f e a t u r e F2
2 package p ;
3 c l a s s A {
4 i n t a n o t h e r f i e l d = 14 ;
5 void method{
6 System . p r i n t l n (” Ref ined ! ”) ;
7 }
8 }

= =

1 // r e s u l t
2 package p ;
3 c l a s s A {
4 i n t f i e l d = 7 ;
5 i n t a n o t h e r f i e l d = 14 ;
6 void method{
7 System . p r i n t l n (” Ref ined ! ”) ;
8 }
9 }

Figure 7:

ferent names. Therefore both nodes are added to the resulting FST. The
feature F2 refines the method declared in feature F1 and effectively replaces
its implementation. Thus the nodes representing the methods are composed
according to a superimposition rule, which say that the node of the feature
F2 must be add to the resulting FST and the node of the feature F2 must
be left out.

Concluding the discussion of superimposition we have to note that a lan-
guage of the composed artifacts must satisfy the following properties [5]:

1. The substructure of a feature must be hierarchical, i.e., a general tree.

2. Every structural element of a feature must have a name and type that

19

become the name and type of the node in the FST.

3. An element must not contain two or more direct child elements with
the same name and type.

4. Elements that do not have a hierarchical substructure (terminals) must
provide superimposition rules, or cannot be superimposed.

Java of course satisfies the listed properties [3].
Often an FST can be seen as a simplified Abstract Syntax Tree (AST) [3].

Thus we can say that two features of a Java-based SPL can be composed by
superimposing the ASTs of their code artifacts. This leads to the fact that
the existing Java tools (i.e. parsers) can effectively be reused in building
a feature-oriented Java compiler, by making them aware of the differences
described in Section 2.2.1. By superimposing two ASTs we get a new AST,
which can also be processed by existing code21, provided we have not intro-
duced some incompatibilities. This considerations justify one more time the
choice to build Fuji on the base of an existing Java compiler and explain
some decisions made while designing Fuji.

2.3.1 Superimposition Rules

In this section we define a superimposition rule for each type of terminal
nodes. We implemented these rules in Fuji. The rules are compatible with
those implemented in FeatureHouse. FeatureHouse is a general archi-
tecture for software composition [3]. It provides facilities for feature compo-
sition of Java SPLs and uses the concept of superimposition. We also used
the example SPLs from this project to test Fuji22.

The FST node types used in these descriptions correspond exactly to the
AST node types produced by Fuji’s parser. Each description begins with
the type of an FST node and an optional short description, then reveals
how the name of the node is determined and ends with an explanation of
the corresponding composition process. A terminal node may have different
superimposition rules, if it is allowed in both class and interface declaration.
If a rule is only applicable in either class or interface declarations this is
stated in the rule. Otherwise it is applicable to both.

ImportDecl (interface). Import declarations are introduced in Java code
by the import keyword. These terminal nodes are never composed, so their
names are not important. They are just added to the resulting AST.

21e.g. code for bytecode generation
22see Section 4.2

20

SuperInterfaceIdList (interface). A list of superinterfaces of the given in-
terface is introduced in Java code by the extends keyword. An interface can
have only one such list, so the name of the node is not important. On compo-
sition, two lists are concatenated and all duplicate elements are eliminated.
The resulting list is added to the target AST.

FieldDeclaration. Field declarations are treated equally for class and in-
terface declarations. The name of a field declaration node is a concatenation
of its value type and the field name. This means that two fields having
the same type and name will be composed. The field declaration from the
refinement AST is added to the resulting AST and the other one is ignored.

MethodDecl (interface). Method declarations in an interface are just sig-
natures and do not provide any implementation. The name of a method
declaration is a concatenation of its return type, method name and param-
eter types in the textual order. All the method declarations of the ASTs to
be composed are added to the target AST. If a base AST and a refinement
AST each contain a method with the same name, this will lead to a target
AST containing two identical method declarations. According to the Java
language specification an interface may not contain two identical method dec-
larations [12]. Thus this error condition will be intercepted by JastAddJ’s
error checking and we don’t have to implement additional checks.

ModifierList. Modifier lists may contain different modifiers like access
modifiers, static, final and others. A node cannot have multiple modifier
list children, thus the name is not important for this node type. Composition
of two modifier lists is done by adding the refinement list to the target AST
and ignoring the base list.

There is a difficulty introduced by the above rule in combination with
access modifiers. If a programmer does not want to change the access mod-
ifier of a refined element23, then she simply omits the access modifiers in
the declaration of the corresponding refinement element. In Java, omitting
access modifiers is syntactically equivalent to setting the accessibility of the
method to default access24. This fact may cause problems during compo-
sition. Consider a situation where the base method accessibility is set to
private and the refinement method has an empty access modifier list. The
compiler cannot decide what the intention of the programmer is. Does she
want to apply the accessibility defined in the base method (private) or does
she want the accessibility of the resulting member to be extended to default
access? By analyzing the existing SPLs we used for testing, we concluded
that the common semantics behind omitting access modifiers is to preserve

23e.g.: a method, field or any other language construct allowing access modifiers
24The method is accessible only within the package it is defined in.

21

the accessibility defined in the base method. Thus we implemented the rule
accordingly. Note that there still exists a problem in this context. Extending
the accessibility of a member from private to package by refining it is not
possible. Additional research is needed to find a practically sound solution
for this problem, but this is outside the scope of this work.

Another consideration is that refining method access modifiers may change
the type of biding the method uses. For example, a private method uses
static binding. A refining, that changes method’s access to public, makes it
use dynamic binding. In combination with inheritance, this might lead to
unexpected changes in program behavior. A programmer must be aware of
this fact.

SuperClassAccess (class). This node defines the super class of the current
class declaration. It is introduced by the extends keyword in Java source
code. Its name is the name of the super class type (i.e. java.util.Vector).
During composition the refinement node is added to the resulting AST and
the base node is ignored.

ImplementsList (class). This list contains the names of all interfaces im-
plemented by the class and is introduced in code by the implements keyword.
A class may not have multiple nodes of this type. The rule for this node type
is identical to that of SuperInterfaceIdList.

MethodDecl (class). The name of a method declaration in a class is a
concatenation of its return type, method name and parameter types in the
textual order. The composition process of two method declaration nodes
depends on the presence of the original-call in the body of the refinement
method. (1) If original-call is present, both nodes are added to the target
AST, and the original-call is replaced by a call to the base method.25 (2)
If original-call is not present, the refinement node is added to the resulting
AST, and the base node is ignored. Note that the original-call is not a
special syntax. Syntactically it is a valid method call. For example, an
original-call to a refined method that requires two arguments would look
like original(param1, param2);. On composition, Fuji replaces it by the
call to the base method, e.g., base method(param1, param2);. Thus no
modifications have been done to the standard Java syntax to incorporate
this behavior. The only restriction introduced by this rule is that original
may not be used as a method name.

ConstructorDecl (class). Constructors are a special case of method dec-
larations in classes and are composed in the same way. The only difference
is that a programmer is not allowed to make an original-call inside a con-
structor. The original-call is added automatically during the composition to

25Renaming of the base method is done here to prevent a name conflict.

22

every refinement constructor as the very first statement. These guaranties,
that the code inside refined constructors, that normally does some important
initializations, is always executed.

InstanceInitializer (class). Instance initializers are unnamed code blocks
inserted directly under a class declaration. A class may have multiple such
blocks. Thus the composition is done just by adding all the initializers from
the base and the refinement AST to the target AST.

StaticInitializer (class). Static initializers are a special case of instance
initializers. The code blocks are preceded by the static keyword. These
nodes are composed in the same manner as instance initializers.

The above list describes all the terminal nodes for Java and their super-
imposition rules used in Fuji. The implementation details of the superimpo-
sition are discussed in the next section.

2.3.2 Implementation of the AST Superimposition

In Section 2.2 we described how Fuji processes the Structure of an SPL and
builds a list of dependency graphs. Each such graph contains role groups
that can be composed and compiled independently from role groups in other
dependency graphs. As we mentioned before, a role group represents all
roles constituting a class or interface, which were selected for compilation
of the current variant. A role group also contains all information needed
for composing its member roles. This information is primarily the paths to
the source files inside the SPL structure, which implement the correspond-
ing roles and the order in which the roles must be composed. To compose
the roles we apply the concept of superimposition, which we have described
above.

We implemented the composition in the fuji.Composition class and in
some additional aspects. Composition class is the context of the strategy soft-
ware pattern [11]. It is initialized with an instance of the SPLStructure class
and an instance of the Main class. SPLStructure provides role groups and
Main plays the role of the client in the strategy pattern. It also implements
a factory method [11] for creating concrete composition strategies. Strategy
pattern allows us to easily add new composition strategies that might imple-
ment different sets of superimposition rules. The implementation of concrete
composition strategies will be discussed later in this section.

The method getASTIterator() of Composition returns an iterator over
composed AST. Each call to the next() method of the iterator initiates a
composition of the current role group and returns the resulting AST. The
following steps describe in detail the process initiated when the client calls
next() on the iterator:

23

1. Get next role group from SPLStructure.

2. Initialize the front end of JastAddJ.

3. Feed the source files of the role group to the front end.

4. Get ASTs for each of the source files (each representing a role) from
the front end.

5. Use a concrete composition strategy provided by the client to compose
the ASTs pairwise.

6. Return the resulting AST to the client.

Consider that the resulting AST is absolutely compatible with an AST
expected by the JastAddJ back end. Thus the AST can be immediately
checked for semantic errors and then be given to the JastAddJ back end,
which will generate byte code from the AST and save it in a class file.

The last component to be discussed is the composition strategy. Each
strategy implements a set of superimposition rules. The process of superim-
position is implemented with the help of the visitor pattern [11]. A compo-
sition strategy visits the nodes of the base and refinement ASTs in parallel
and applies the superimposition rules encoded in the visit-methods. Using
aspect-oriented capabilities of JastAdd, we modularized the implementation
of the visitor pattern in one aspect. New composition strategies can be eas-
ily added by adding the implementation of the corresponding visitor to the
aspect. We used this extension capability of the pattern to implement one
of Fuji’s extensions (see Section 3.0.3).

2.4 Summary

Let us summarize the presented material to get a complete view of the com-
pilation process.

The feature-oriented design of an SPL decomposes java compilation units
into roles. The first task Fuji solves, while compiling a variant of the SPL, is
to build a representation of the variant structure, where roles belonging to the
same compilation units are gathered into role groups. To decrease memory
consumption we use dependency graphs to find out sets of role groups, which
can be compiled independently from the rest of the role groups. Then we
start the processing of roles with a set that contains the smallest number of
role groups, and reuse the already compiled groups in the following cycles.
The processing itself begins with building an AST for each role. For this
task Fuji uses JastAddJ’s front end. In the next step the ASTs belonging

24

to one role group are composed to one AST. The composition is performed
using the concept of superimposition. Application of design patterns allowed
us to implement the composition in a clean and clear way and made the
algorithm and the superimposition rules easily interchangeable. The result
of the superimposition, an AST, is then passed to the JastAddJ’s back end,
which generates Java bytecode and saves it in a java class file. The composed
ASTs may also be processed in other ways. Some examples are presented in
the next section.

25

3 Fuji Extensions

The extensibility features of JastAddJ provided by the JastAdd framework
and the design of Fuji allow easy addition of different compiler extensions. In
the following we describe several extensions we implemented in the course of
this master’s thesis. All described extensions can be invoked using command
line arguments while starting Fuji.

3.0.1 Feature-Oriented Access Modifiers

This extension implements the concept of feature-oriented access modifiers,
which tackles the problem of absence of a well-defined access control model
for FOP. The Java access control model cannot guarantee the encapsula-
tion of feature code. This can lead to unexpected program behaviors and
accidental type errors. To address the problem three new access modifiers
were proposed: program, subsequent and feature [4]. These modifiers ex-
tend the Java’s access control model and can be used in combination with
standard access modifiers to provide missing encapsulation to feature code.

In Fuji’s implementation of the concept the usage is restricted to class
and interface members. The program modifier is the default one. If this
modifier is used or no FOP modifiers are specified, then the member can
be accessed by any feature. The behavior described by the extended access
control model in this case is equivalent to the original one26. The subsequent
modifier allows access to the member only to the code that comes from the
same feature as the accessed member or any subsequent feature regarding
the composition order. The feature modifier restricts access to the code
that is situated in the same feature as the accessed member.

The novel access modifiers introduce three new keywords into the lan-
guage’s syntax. We modified JastAddJ’s scanner and parser specifications to
incorporate those modifications. Then, using aspects, we extended the type
system of the compiler to implement the extended access control model.

After addition of the new access modifiers, program, subsequent and
feature became reserved keywords. Thus these keywords cannot be used as,
for example, method or field names. This restriction cannot be guaranteed
for SPLs written by the authors not aware of the novel modifiers. Still
we wanted Fuji to be able to compile such SPLs. The introduction of the
modifiers has required changes in the scanner and parser specifications. These
specifications are used by the JastAdd framework to generate our compiler.
Therefore we could not implement different behavior in our compiler with
the help of a command line switch, like we did it for other extensions. We

26i.e. the one without the additional modifiers.

26

provided two scanners, two parser specifications and an ANT27 build script
that allows a user to build two Fuji versions, one with and one without novel
modifiers.

3.0.2 Access Analyzer

Access analyzer is an extension developed in the conjunction with the pre-
vious one. We used it to automatically analyze multiple example SPLs and
identify code where the use of the feature-oriented code could be appropriate.
The results were presented in [4].

The extension searches the ASTs produced by the front end for member
access.28 Then the corresponding member declarations are found. Based on
the type information of the accesses and the declaration, the access analyzer
calculates the most restrictive object-oriented and feature-oriented modifiers
under which the identified member-accesses are still legal.

Further evaluation showed that, using the modifiers calculated by the ac-
cess analyzer, a higher level of feature code encapsulation could be achieved [4].

3.0.3 Introduces and References Relations

A feature interaction is a situation where a generated variant shows unex-
pected behavior when two or more features are used together rather than in
isolation. The standard example is a phone with two service features: call
waiting and call forwarding. If a phone implements both features, it has to
decide what to do with an incoming call. If it waits, the functionality of
call forwarding will be broken; if it forwards, the functionality of call waiting
will be broken. Feature interactions may have significant impact on the be-
havior of a generated SPL variant, while program designers and users may
stay unaware about them and only confront the consequences. Thus feature
interaction poses one of the main problems in the feature-oriented software
development [8].

The extension presented here is used to deliver data for studying such
feature interactions. In one mode it analyzes the ASTs of an SPL and reports
which language construct29 is introduced by which feature. In another mode
it reports which language constructs are used (referenced) by which features.
This data can be processed further to find out feature interactions.

Note that we analyze the ASTs for the whole SPL and not for a single
variant, i.e. we inspect at all SPL features at once. To build such ASTs

27Apache Ant is a software tool for automating software build processes.
28i.e. method invocations and field accesses
29i.e. class, interface, method or filed

27

we had to introduce new superimposition rules. Usage of appropriate design
patterns in Fuji’s design allowed us to easily add the new set of rules and
switch between them using command line arguments.

Another consequence of building an AST of the whole SPL is the in-
creased memory consumption. We cannot apply the technique we used to
decrease memory consumption30, because it relies on reusing of the already
compiled parts. However, the ASTs produced by the new set of composition
rules are often erroneous regarding Java type rules and, therefore, uncompil-
able. For example, multiple declarations of the same method may be present
in one class, if multiple features have alternative implementation of the same
method. The increased memory consumption might be problematic for ana-
lyzing big SPLs, because it may reach 3GB and more.

3.0.4 Source-to-Source Translation

This extension translates the code of a given variant into normal Java code
that can be compiled by a normal java compiler. Fuji works here in the way
similar to that of FeatureHouse, which does source-to-source translation
too, but with one major difference: Fuji will report all the semantic errors
it has found in the code and their exact positions in the original source
code. Whereas using FeatureHouse the user will get compiler error messages
pointing to the translated code and not to the original one.

We implemented this extension because JastAddJ’s back end produced
inconsistent bytecode for several of our example SPLs. The inconsistencies
appeared due to several bugs in the back end31 and resulted in unexpected
run time exceptions during program execution.

30See Section 2.2.2, Calculate dependency graphs.
31See our bug reports #39 and #41 at http://bugs.jastadd.org (last access on 7

Feb. 2011)

28

http://bugs.jastadd.org

4 Evaluation

In this section we evaluate our compiler. To test Fuji we wrote 33 mini-
SPLs that were used for output-based testing and regression tests. Besides,
we chose 10 SPLs of different size from the SPL collection of the Feature-
House project to test compatibility with FeatureHouse and evaluate Fuji
on bigger SPLs with real-life functionality, e.g., a UML editor, a data com-
pression library. In the following we describe the obtained results.

4.1 Output-Based Testing

Every time we implemented new functionality in Fuji, e.g., a new superim-
position rule or the feature-oriented access modifiers, we wrote a mini-SPL
that implemented a use case invoking this new functionality. The mini SPLs
fulfilled a dual purpose. On the one hand they performed as unit tests that
tested the introduced functionality. On the other hand they acted as regres-
sion tests that have the purpose to discover regressions. Software regression
is a defect in an existing functionality introduced by a freshly added func-
tionality, patch or any other code change.

The testing method we used is output-based. We compared error mes-
sages of the compiler or messages produced by the compiled variants of mini-
SPLs with expected output. If the produced output matched the expected
one, the test was considered as passed.

For regression tests to be effective, they have to be run systematically after
every more or less significant code change. Otherwise, it would be difficult
to determine which code modification caused a particular regression. With
growing number of tests, running every one of them manually after every
code change became more and more time consuming. To automate the test
execution and result evaluation, we wrote a testing frame work. The frame
work is implemented in Bash scripting language and uses standard GNU tools
like find and diff. Every mini-SPL has a run-scripts and a file containing
expected output. The run-script knows how to build and run a variant
and which compiler command line arguments to use. The run-script also
saves the output messages in a file. A master script executes all run-scripts
and compares produced messages with the expected output. The result of
executing the master script is a report that presents all tests and their results.

For every bug that we found in the compiler and that was not covered
by existing tests, we created a new mini-SPL before fixing the bug. In com-
bination with regular regression tests, it allowed us to reduce the amount of
defects in the code in a systematic way. Most of the mini-SPLs cover multiple
use cases and tests, so that the amount of actual tests cases is greater than

29

the number of mini-SPLs.
Combination of techniques like test-driven development, regression tests

and disciplined refactoring allowed us to introduce new functionality that re-
quired design changes and keep the negative impact on existing functionality
as low as possible. Using output-based testing we could successfully find and
fix bugs in our code.

4.2 Example Software Product Lines

We took the example SPLs form the SPL collection of the FeatureHouse
project. The SPLs differ significantly in the number of features and lines of
code (LOC). They were developed by various authors and present a broad
range of real-life functionality. Altogether they build a representative pool
of test cases. In the following we give a short description of each SPL and
acquired test results.

GUIDSL GUIDSL is a product line configuration tool. It can read feature
models in GUIDSL format and allows configuring and analyzing different
variants based on the feature model. This application was developed using
FOP techniques, in contrast to some of the example SPLs that were created
through refactoring of existing Java applications.

Violet Violet is a simple UML editor. It was created by decomposing
an existing Java application of the same name into features. Violet was
the first application where we observed inconsistent bytecode produced by
JastAddJ’s front end. The defect resulted in a java.lang.VerifyError

during execution of the variant with all features enabled. Updating JastAddJ
to the last SVN snapshot solved the problem; apparently the bug was solved
in the meantime.

Prevayler Prevayler is an open source object persistence library for Java.
It was created through refactoring an existing application. Fuji’s semantic
error checks found multiple bugs in this application, which can be classified
into 2 types. The first type encompasses bugs caused by wrong access mod-
ifiers. For example, one of the classes declared a constructor with default
access, but code from another package tried to instantiate it. Public access
to the constructor was necessary in this case. Fuji found 4 defects of this
type. They were all fixed by extending the accessibility of the members ap-
propriately. The second type includes compile errors caused by unreachable
code, e.g. a statement after throw clause. Fuji found 2 defects of this type.

30

They were fixed by commenting out the unreachable code. Another prob-
lem with Prevayler SPL was that JastAddJ’s back end produced invalid byte
code. Updating to the last SVN snapshot did not solved the problem. So, we
investigated the problem further and found a bug32 in the JastAddJ’s front
end. Definite assignment check for local variables, as specified in Chapter 16
of The Java Language Specification [12], produces false negatives under cer-
tain circumstances. Therefore usage of an uninitialized variable in Prevayler
code was not detected properly, that resulted in inconsistent bytecode. We
found the corresponding declaration of the variable and initialized it with
null. This fixed the bug.

PKJab PKJab is an instant messaging client for XMPP (Extensible Mes-
saging and Presence Protocol) protocol, also known as Jabber protocol. Vari-
ants of this SPL could be successfully compiled using Fuji.

ZipMe A pure Java zip compression library for Java mobile applications.
It was created by refactoring an existing library of the same name. We wrote
a test application that zips and unzips a dummy file, to be able to test the
variants compiled with Fuji.

TankWar A rael-time strategic war game. The SPL uses Java multimedia
capabilities. Variants for mobile platforms are provided by this SPL. Variants
of this SPL could be successfully compiled using Fuji. The application was
developed from scratch using FOSD.

AJStats AJStats is a tool for collecting statistics of AspectJ programs. It
is used to explore how aspects are being used in current AspectJ projects,
and was developed from scratch using FOSD. Variants of this SPL could be
successfully compiled using Fuji.

Notepad A text editor SPL. The basic variant represents a minimal scratch-
pad without save functionality. Save, undo, clipboard, print and so on are
implemented in separate features. The most feature-rich variant is a fully-
fledged editor for styled text. This product line was written from scratch
using FOSD.

32http://bugs.jastadd.org/cgi-bin/bugzilla/show_bug.cgi?id=41 (last access
on 7 Feb. 2011)

31

http://bugs.jastadd.org/cgi-bin/bugzilla/show_bug.cgi?id=41

SPL Domain Features LOC Compilation (sec.)
GUIDSL SPL configuration tool 26 10084 56.54
Violet UML editor 88 7194 20.18
Prevayler object persistence lib. 6 5268 18.62
PKJab Jabber client 8 3373 12.53
ZipMe ZIP library 13 3520 07.09
TankWar strategic game 15 2830 07.34
AJStats software analysis tool 20 13226 05.78
Notepad text editor 10 891 05.59
GPL graph library 9 646 04.53
EPL expression evaluation 11 105 01.36

Table 1: Example SPL Statistics

GPL Graph product line is a family of classical graph applications. Each
variant can model a certain graph type, e.g., directed weighted graph, with
unique set of features, e.g., search algorithm and cycle checking.

EPL A small SPL written from scratch that does expression evaluations.
Variants of this SPL could be successfully compiled using Fuji.

Table 1 summarizes the information about the example SPLs and specifies
for each SPL the name, application domain, number of features in the variant
used for testing, LOC in the variant and time required for compilation.

Using the example SPLs to test Fuji showed its strength, namely, the abil-
ity to find semantic errors in the SPL code, but also revealed several defects
in JastAddJ compiler Fuji is based on. JastAddJ is not actively supported
anymore. Thus it is difficult to say if the defects will be eliminated in near
future. Nevertheless, there are no comparable alternatives to JastAddJ at
this time.

4.2.1 Testing Environment

The compile time measurements were carried out under a GNU/Linux OS,
using OpenJDK Runtime Environment (IcedTea6 1.9.5). We used Bash
build-in command time to measure the runtime of the processes. JVM boot-
strapping took thereby about 0.1 sec. The testing machine was a Fujitsu
Celsius W480 workstation with Intel R© Xeon R© 2.93GHz (4 Core), 8GB DRR3
SDRAM (1333 MHz) and Serial ATA-300 HDD.

32

5 Conclusion

In this thesis we presented Fuji, an extensible compiler for feature-oriented
programming in Java. We described its architecture, design principles and
implementation details, which were strongly influenced by such feature-oriented
concepts like compositional approach in implementing software product lines
and superimposition of feature structure trees.

We successfully showed the extensibility of our compiler by describing
several extensions we implemented in the course of this work. The exten-
sions utilize type system, access control model, abstract representation of the
compiled program, and were hardly implementable in alternative tools that
use source-to-source translation.

During development of the compiler we applied elements of test-driven
development and wrote multiple mini software product-lines, as well as an
automated testing framework. These were also used to run regressions tests,
after we introduced new functionality. The described approach helped us
minimize the amount of defects in the code, and keep all the components
working until the end of the development. The compiler was successfully
tested on 10 software product-lines differing in the number of features, LOC
and application domain.

33

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles,
Techniques, and Tools. Addison-Wesley, 2006.

[2] Sven Apel and Christian Kästner. An overview of feature-oriented soft-
ware development. Journal of Object Technology, 8(5):49–84, jul 2009.
(column).

[3] Sven Apel, Christian Kästner, and Christian Lengauer. Featurehouse:
Language-independent, automatic software composition. In In Proc.
Int’l Conf. on Software Engineering, page 2009. Universitätsbibliothek
Passau; Fakultät für Informatik und Mathematik. Mitarbeiter Lehrstuh-
l/Einrichtung der Fakultät für Informatik und Mathematik, 2009.

[4] Sven Apel, Sergiy Kolesnikov, Jörg Liebig, Christian Kästner, Mar-
tin Kuhlemann, and Thomas Leich. Access control in feature-oriented
programming. Science of Computer Programming, In Press, Corrected
Proof, 2010.

[5] Sven Apel and Christian Lengauer. Superimposition: A language-
independent approach to software composition. In Cesare Pautasso
and Éric Tanter, editors, Software Composition, volume 4954 of Lec-
ture Notes in Computer Science, pages 20–35. Springer, 2008.

[6] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-
wise refinement. IEEE TRANSACTIONS ON SOFTWARE ENGI-
NEERING, 30(6):2004, 2004.

[7] Don S. Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scal-
ing step-wise refinement. IEEE Transactions on Software Engineering,
30(6):355–371, jun 2004.

[8] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-
Marganiec. Feature interaction: a critical review and considered fore-
cast. Comput. Netw., 41(1):115–141, January 2003.

[9] Torbjörn Ekman and Görel Hedin. The jastadd extensible java compiler.
In OOPSLA ’07: Proceedings of the 22nd annual ACM SIGPLAN con-
ference on Object oriented programming systems and applications, pages
1–18, New York, NY, USA, 2007. ACM Press.

[10] Torbjörn Ekman and Görel Hedin. The jastadd system –- modular
extensible compiler construction. SCP, 69(1-3):14–26, 2007.

34

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns. Addison-Wesley, Boston, MA, January 1995.

[12] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM)
Language Specification, The (3rd Edition) (Java (Addison-Wesley)).
Addison-Wesley Professional, 2005.

[13] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in
software product lines. In Proceedings of the 30th international confer-
ence on Software engineering, ICSE ’08, pages 311–320, New York, NY,
USA, 2008. ACM.

[14] Yannis Smaragdakis and Don Batory. Mixin layers: an object-oriented
implementation technique for refinements and collaboration-based de-
signs. ACM Trans. Softw. Eng. Methodol., 11(2):215–255, April 2002.

35

36

Eidesstattliche Erklärung: Hiermit versichere ich an Eides statt, dass
ich diese Bachelorarbeit selbständig und ohne Benutzung anderer als der
angegebenen Quellen und Hilfsmittel angefertigt habe und dass alle Ausführung-
en, die wörtlich oder sinngemäß übernommen wurden, als solche gekenn-
zeichnet sind, sowie dass ich die Bachelorarbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegt habe.

Sergiy Kolesnikov,
Passau, 21. Februar 2011

	Introduction
	Feature-Oriented Software Development
	Phases of the FOSD Process

	JastAddJ Java Compiler
	About this Thesis

	Design and Implementation
	Fuji's Architecture
	Processing SPL Structure
	Java Project Structure vs. Java-based SPL Structure
	Implementation of the SPL Structure Processing

	Superimposition of Abstract Syntax Trees
	Superimposition Rules
	Implementation of the AST Superimposition

	Summary

	Fuji Extensions
	Feature-Oriented Access Modifiers
	Access Analyzer
	Introduces and References Relations
	Source-to-Source Translation

	Evaluation
	Output-Based Testing
	Example Software Product Lines
	Testing Environment

	Conclusion

