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ABSTRACT
A WHILE-loop can be viewed as a FOR-loop with a dynamic upper bound. The
computational model of polytopes is useful for the automatic parallelization of FOR-
loops. We investigate its potential for the parallelization of WHILE-loops.
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1. WHILE-loops as FOR-loops
We denote a FOR-loop as follows:

FOR index := lower_bound TO upper_bound DO body

The step size (also called stride) of a FOR-loop is +1. (A FOR-loop with a different

stride can easily be transformed to one with stride +1.) If the upper bound of the

FOR-loop is smaller than the lower bound, the loop defines the empty statement.
A WHILE-loop is commonly denoted as follows:

WHILE condition DO body

One can view a WHILE-loop as a generalized FOR-loop, with a conditional upper
bound that is reevaluated after every iteration:

FOR new-index := 0 TO (IF condition THEN new_index ELSE new_index—1) DO body

Here, new_index is a new variable that counts the number of iterations of the loop
and that does not appear in body. As in normal FOR-loops, the only thing that
happens to new_indez is an implicit increment after each iteration.

With new_index, the upper bound of the loop is also incremented at each iter-
ation, provided the condition holds at that point. When the condition is found to
be violated, the upper bound is reduced to cause termination. We shall use the
following syntax for a WHILE-loop written as a FOR-loop:

FOR new-index := 0 WHILE condition DO body



2. Mathematical Notation

Our mathematical notation follows Dijkstra [5]. Quantification over a dummy
variable z is written (Q z : R.x : P.z). @Q is the quantifier, R is a predicate in x
representing the range, and P is a term that depends on z. Formal logical deductions
are given in the form:

formulay
op { comment explaining the validity of this relation }
formulas

where op is an operator from the set {<, <, =}.

Scalar and matrix product are denoted by juxtaposition. Element (,---,7) of
matrix A is denoted by A; ... ;. rank(A) denotes the row rank of A. A|lJ is the
matrix that is composed of rows i to j of matrix A. AT denotes the transpose of

A.
3. The Polytope Model

3.1. FOR-loops in the polytope model

The polytope model is a useful model of computation for the static parallelization
of FOR-loops. It represents the atomic iteration steps of n perfectly nested FOR-
loops as the points of a polytope in Z"; each loop defines the extent of the polytope
in one dimension. The faces of the polytope correspond to the bounds of the
loops; they are all known at compile time. This enables the discovery of maximum
parallelism (relative to the choices available within the method) at compile time.

In the polytope model, a FOR-loop nest is typically represented in single-
assignment form by a set of recurrence equations. A recurrence equation is

f(p) =g(f(@r),..., f(qx)) where p,q1,...,q,€T

The polytope Z comprises the computation points. At present, there are paral-
lelization methods for uniform recurrences, i.e., g; = p+b;, or affine recurrences, i.e.,
qi = A;p+b; for i =1,...,k. Here, the b; are constant n-vectors and the A; are
constant n xn matrices [10].

3.2. WHILE-loops in the polytope model

At compile time, a loop nest that contains one or more WHILE-loops must
be modelled by a polyhedron. (A polyhedron can be infinite, whereas a polytope
is finite [8].) This space of potential execution points is called the indezr space or
iteration space; we name it Z. If the loop body has several statements that we want
to consider individually, we must add one more dimension that enumerates these



Fig. 1. A non-convex execution space with data dependences.

statements. We call the corresponding polyhedron with one more dimension the
computation space and name it C. The actual points of a (terminating) execution of
the loop nest correspond to a finite subspace of the index space. We call this space
the ezecution space and name it X.

The WHILE-loop model departs in one important aspect from the FOR-loop
model: the point that represents one loop iteration models also the boundary test
preceding the iteration. One consequence is that an empty loop is modelled by one
point, not by the empty set since at least its condition must be evaluated. (This is
not important for the rest of this paper.)

The execution space need not be a polytope. In particular, it need not be convex.

Ezxample

FOR ¢ :=0 TO 2 DO
FOR j := 0 WHILE condition DO
body

Let the inner loop (with index j) be executed four times for ¢ =0, twice for i =1,
and three times for i =2. This yields the non-convex execution space X depicted in
Figure 1. Note, though, that the subspaces of X for every fixed i are convex, since
the model of a WHILE-loop execution is a convex line. O

We can also express WHILE-loops as single-assignment recurrences. We need
two equations for each WHILE-loop. One equation is the same as that for a FOR-
loop; it corresponds to the iterative enumeration of the loop body, but has an
unbounded index space. The other equation establishes, at every step, the validity
of the condition and either defines the next iteration point or yields the result.

Ezxample
Y 1= init;

FOR 7 := 0 WHILE B(y) DO y := F(y);
2=y



where condition B and function F' are without side effects.
This program corresponds to the following set of recurrence equations:
ylk] = IF k =0 THEN init ELSE F(y[k — 1]);
z[k] = IF B(y[k]) THEN z[k + 1] ELSE y[k];
z To O

4. Schedules and Allocations of WHILE-loops

4.1. Schedules and allocations of FOR-loops

The dependence graph of a loop nest is the directed acyclic graph (V, E) whose
vertex set V is the polyhedron modelling the loop nest and whose edge set E contains
the direct data dependences between the computations represented by the vertices
[12]. The index space, the computation space and the execution space each have an
associated dependence graph.

The problem of the scheduling (in time) and allocation (in space) of polytopes
modelling loops has received a lot of attention from the seminal work of 25 years
ago [6] to some recent extensions [2, 9, 10].

Definition 1. (Schedule, allocation, space-time matriz) Let Z be an r-dimen-
sional polyhedron and consider the dependence graph (Z, E).
e Function ¢t : Z — Z is called a schedule if it preserves the data dependences:

(Vz,z' iz, €L A (z,2')€E : t(z)<t(z"))
The schedule that maps every z €7 to the first possible time step allowed
by the dependences is called the free schedule.
e Function a: Z — Z" ! is called an allocation with respect to schedule ¢ if
each process it defines is internally sequential:

(Va2 z,2' €T : t(z)=t(z') = a(z)#a(z"))

This is the full-dimensional case: space takes up r—1 dimensions and time the
remaining one dimension of the transformed polytope (we call it the target polytope).

Most parallelization methods based in the polytope model require the schedule
and allocation to be affine functions:

ANa:XeZ"  ANa€Z :(Vz:zel:t(z) =rz+a))
Fa,B:0eZ™ V" ANBeZ" T (Va:z€T a(z) = oz +f))

The matrix T formed by A and o is called a space-time matriz:

12



In the full-dimensional case, T is a square matrix and the requirement on the
allocation is: | T |# 0. We call T(Z) (or T(X), which will become clear from
the context) the target space. O

Lately, a relaxation to piecewise affinity has been investigated [2, 9, 10].

4.2. Schedules and allocations of one perfect loop nest including WHILE-loops

Every terminating WHILE-loop has some iteration in which some value changes
such that the following iteration is disabled. This change requires a data depen-
dence. In the static model, this dependence must be assumed between any two
successive iterations of the loop. In our representation of a WHILE-loop as a gen-
eralised FOR-loop, this is made explicit by the introduction of an artificial index
(Section 1). We also find this index in the according recurrence equations (Sec-
tion 3.2). In this paper, we assume uniform dependences. Later work shall extend
the methods to affine dependences.

Since we allow the upper loop bound to be unknown, the space-time mapping
may be defined on an infinite domain (index space) and, thus, may define an infinite
range (target space). It is easy to ascertain that only a finite number of processors
will be required at any point in time. We can state this fact as a theorem. Since only
the WHILE-loops contribute to the infinity of the index space, we do not consider
FOR-loops but show only that any nest of WHILE-loops defines, at any time step,
a finite set of processors in the target space. Then, we conclude without further
proof that every general mixed loop nest also does so.

Theorem 1. Let vy, ...,v, be linearly independent vectors of Z" and ay, ..., a,
€ N\{0}. Then the intersection of any hyperplane H through the set of points
{(1v1,0,...,0), ...,(0,...,0,.v,.)} and the polyhedral cone K spanned by the
vectors vy, ..., v, is finite. O

Proof: Our basis of Z" is {vy,...,v.}. Then K = {z | ze N"A -T2 <0} =
N" is the polyhedral cone spanned by wvi,...,v, [8]. (I is the identity matrix.)

Furthermore, H = {z | z€Z" A (a%,,a%)x = 1}. Then:
HNK = {x|$€NT/\(Ez':O<i§r:g):1}
C {a:|:UENT/\(‘V’i:0<i§7":0<l:vi§ozi)}
Since the superset on the right is finite, so is HNC. O

Corollary 1. (Finite time slices) In the polytope model for loop parallelization,
the iteration space Z (and also the computation space C) representing a nest of loops
is the cone K, and HNK corresponds to some time slice t 1 (z) CZ for a fixed z €(T).
Thus, each time slice is finite. O

Laying out a WHILE-loop partly in space only makes sense if we limit the



number of processors required by folding the processor space in some way. This has
become an active area of research recently [4, 14].

4.8 Schedules of imperfect loop nests with WHILE-loops

An imperfect loop nest specifies at least one statement that does not belong to
the innermost loop of the nest. Such a statement does not belong to some (at least
the innermost) loop, but succeeds it. Since the number of iterations of a WHILE-
loop is not known before run time, we cannot schedule statements that succeed a
WHILE-loop precisely before run time. Our solution is to enrich the schedule with
additional variables—each one is a placeholder for the extent of the execution space
in one dimension, i.e., for the number of actual iterations (+1) of one loop.

Ezample
(1) y:=init;
(2) FOR i := 0 WHILE condition DO y := F(y);
3)  z:=y;

In an imperfect loop nest, the schedule and allocation must take a variable
number of arguments depending on the nesting depth of the statement that is
being scheduled. In this example, (1) =0, (V¢ : i € N : ¢2)(i) =i+1 and
t(3) = ¢(2)(0) +0+1 = §+2. For the loop statement (2), the schedule defines
a sequence of numbers—one for each loop iteration (including the final test that
leads to the termination of the loop). The schedule for the statement succeeding
the loop includes the placeholder ¢ for the actual extent of the loop. The value of
¢ is not known before run time. O

4.4. Optimality

If we use affine schedules ¢(7) = A1 i1+ - +A, i+a, for any i=(iy,- - -, i) €Z, the
coefficients Aq, -+, A, are derived from the system of linear inequalities that corre-
spond to the dependences. If this system has only one vertex—which is frequently
the case—then the optimal solution can be given at compile time, independently
of the number of iterations of any WHILE-loop. If there are several vertices, the
shape of the execution space influences the optimal choice of the coefficients—as is
the case for a nest of FOR-loops. Therefore, the optimal choice of the parameters
cannot be made before run time if WHILE-loops are considered.

5. The Target Space

Our objective is to describe the target space with a nest of loops. The image of
the execution space of a loop nest may be non-convex, since even the execution space
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Fig. 2. Unscanable transformed execution spaces with data dependences.

itself may be. Therefore, we must address the problem of describing non-convex
sets by loop nests.

5.1. Scanability

We illustrate with an example that not every transformed execution space can
be scanned precisely with a nest of loops. We also state a requirement on the space-
time matrix that makes the target space precisely scanable. The interpretation of
an axis as being laid out in time or space does not matter.

We use the following conventions:

e We refer to the loop at level [ in a loop nest as loop [.

e The columuns of the space-time matrix T" are ordered (left to right) accord-
ing to the (outside-in) order of the source loop nest.

e The rows of T are ordered (top to bottom) according to the (outside-in)
order of the target loop nest that we want to generate.

e A column which corresponds to a WHILE-loop is called a WHILE-column;
the predicate whilecol(c) indicates whether column ¢ is a WHILE-column.

Ezxample

FOR 7 :=0T0 3 D0
FOR j := 0 WHILE condition DO
body

Figure 2(a) shows one possible execution space, Figures 2(b) and 2(c) show the

transformations of this execution space by T; = { (1) (1) } and Tb, = [ (1) i }

Consider the line =3 in Figures 2(b) and 2(c). Both T} and T» define holes in this
line. The distribution of these holes depends on the upper bound of the WHILE-
loop which, in turn, depends on the FOR-loop index and is only known at run time.

O



In order to minimize run-time overhead, we are interested in identifying the
class of space-time mappings which permit a precise scanning of the target space
without run-time testing for holes.* We call this property of a space-time mapping
scanability. Our definition of scanability does not distinguish which dimensions of
the space-time matrix belong to the schedule and which to the allocation. Let us
first motivate it informally.

The number of iterations that are executed by a WHILE-loop w in the source
loop nest L is allowed to depend on all indices of enclosing loops. All outer indices
of w are known at the start of the WHILE-loop’s execution. In order to obtain a
loop nest L' that scans any possible transformed execution space of L precisely, we
must require that:

e The terminating condition of WHILE-loop w in L might depend on the
indices c1,...,cpy—1 of the enclosing loops; thus, if this WHILE-loop is
transformed by space-time matrix 7' into a target loop w' (Ty o # 0),
the same indices ¢y, . .., cy—1 must be derivable again—but now expressed
in the indices 71,...,7ry 1 of the target loops that enclose loop w'. We
name this expression f.

e Indices of outer loops are not allowed to depend on indices of inner loops—
not only in the source but also in the target loop nest. Consequently, f
must not depend on indices of target loops inside loop w':

Vorr crr €Z AN 1<i<w —1:ri=7)): f(r) = (') )

This leads to the following formal definition.

Definition 2. (Scanability) The transformation of a loop nest L by an invertible
square matrix T of rank d is scanable iff:

Y w,w' : 1 <w,w' <d Awhilecol(w) A Ty #0: (3 f: f€Z -7
Ve c€ZiA(r=Te)A(Vi:1<i<w —1:r;=7}):
flr)=(er, - cwa) = f(r') ) O

Not surprisingly, f is part of the inverse space-time matrix T~!. The following
theorem states the precise definition of f.
Theorem 2. The transformation of a loop nest L by an invertible square matrix

T of rank d is scanable iff:

YV w,w" : 1<w,w <d A whilecol(w) A Ty 1 #0 :
(Vre:1<r <wAw' <e<d:T,}=0)Aw<w')

*Holes may also arise in the space-time mapping of FOR-loops but only in regular distri-
bution. This problem can be solved at compile time [1, 7, 11, 16].
fNote that one source loop may become part of several target loops.



Proof.

“=": We prove the two conjuncts successively.

e Left conjunct: By the definition of scanability, there is an f such
that:

(Vrec: r,cEZd ANr=Tc): f(r)= (cl,---,cw,l)T)
It follows that:
Vr:rez: f(r)

= (Cl,"',wal)T

c|l,---,w71

= (T71T)|1,---,w—1
= T71|1,---,w—1 r)

f is a linear function. We name the matrix that represents it M =
T_1|1,---,w71 e 7(*~1*4 Note that M is the upper part of T~1. By
showing that the right part of M is zero, we prove that some upper
right corner of T~ is zero. The definition of scanability gives us:

Vo irr €ZEAN i 1<i<w —1:r;=7)): f(r) = f(r'))
= { M is the matrix for f }

(Vo e €ZEANV i 1<i<w' —1:rj=rl): Mr=Mr")
= { Def. of matrix-vector-product, ignoring equal summands }

Vo e el (Vi:1<i<w—1:

(Ej:w’Sde:Mi,jT‘j) = (E]M’S]SdMZ,JT‘;)))

= { chooser’' =0}

(Vr:reZ?: (Vi:1<i<w—1:(2 j:w' <j<d: M;;r;)=0))
= { arithmetic }

(Vi,j:1<i<w—1Aw'<j<d:M,;;=0)
S (M=T, .}

(Vi,j:1<i<w—1Aw <j<d:T;;=0)

e Right conjunct: We know that rank(7T~1) = d, since T is an invertible
square matrix of rank d. Thus:

d

rank(T 1)

rank(M) + rank(T|,, ... ;)

rank(M) +d — (w—1)

arithmetic }
w—1 < rank(M)

< { rank(M) <w-—1 (since M has w—1 rows) }
rank(M) = w—-1

L_IAIA

=



Thus, there must be some number k of non-zero columns that is at
least as big as rank(M). It follows that rank(M) < k < w'—1, since
all columns from column w' to the right are zero. This yields, with
the derived value for rank(M), w<w'.

“<”: Let the column w be a WHILE-column, and let w<w' with Ty . # 0.
Then, let r, 7/, ¢ be vectors in Z? such that r = Tcand (Vi:1<i<w'—1:
r; =r}). Define f(z) = T’1|1,___,w71 z. We show that this choice for f
satisfies the conditions required in the definition of scanability. The right
side of the if-and-only-if in Theorem 2 yields:

(Vi,j:1<i<wAw' <j<d:T;;=0)
= { (Vi:1<i<w'=1:rmj=r))A(r=Tc) }

T_1|1,---,w—1 r= T_1|1,--- w1 T
A T_l |l,---,w71 r= (T_l T) [1,...,11;71 = c|1,---,w71 = (Cl, Tty cw—l)T
< { Definition of f }
fr)y=f") A flr)= (e, cw)’ O

Theorem 2 provides us with a simple way of checking whether the target space
of the transformation can be scanned precisely by a target loop nest.

5.2. Choices of space-time mapping

Our requirements for precise scanning limit the choice of space-time mapping
significantly. Let us illustrate what freedom of choice is left.

1. If only the outermost loop of the nest is a WHILE-loop, then every space-
time mapping produces only scanable execution spaces, since the scanabil-
ity condition is trivially satisfied (1 <7 < w is impossible for w = 1).

2. In a two-dimensional nest with an inner WHILE-loop, the inverse of the

. . 0 .
space-time matrix must have the form { z . } with z,y,z € Z.

3. For deeper loop nests, there is a wide choice of space-time mappings. The
following example illustrates that our definition of scanability allows for
target loops with tricky bounds. Assume a nest of three loops of which
only the second is a WHILE-loop, and assume the space-time mapping:

T:H(l);)] Tflz[—i (2]—(1)]

[112J [0—1 1J

This target WHILE-loop does not terminate at the point when the trans-
formed termination condition becomes invalid but a constant number of



iterations later—depending on the bounds of the inner source loop. This
fact also influences the bounds of the inner target loop.

In future work, we shall characterize the set of scanable target spaces further
and investigate methods of code generation for target spaces that do not satisfy
our definition of scanability. One technique that could be used is the synthesis of
control signals [13, 15, 17].

6. Conclusions

We have shown that the parallelization method for a perfect nest of FOR-loops
based on the polytope model can be extended such that perfect nests of FOR- and
WHILE-loops can be mapped into space and time by using an artificial index for
every WHILE-loop. Principally, every form of WHILE-loop can be handled that
way.

The main complication, the introduction of a non-convex execution space, causes
problems with the precise scanning of target spaces. We have formulated a require-
ment on the space-time matrix that is, without a program-specific data depen-
dence analysis, necessary and sufficient for the precise scanning of target spaces. A
program-specific data dependence analysis may reveal a lack of dependences that
are assumed in our definition of scanability. We suspect that this may lead to more
parallelism.

A more permissive approach to WHILE-loop parallelization is being developed
elsewhere [3]. It permits the execution of the loop body even at some points that
are not in the execution space. The resulting change of program behaviour need
not always be undesirable. For example, in iterative approximations, it may lead
to a higher degree of accuracy.
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