
Parallel Processing Lettersc World Scienti�c Publishing Company
ON THE SPACE-TIME MAPPING OF WHILE-LOOPSMARTIN GRIEBL and CHRISTIAN LENGAUERFakult�at f�ur Mathematik und InformatikUniversit�at PassauD{94030 Passau, GermanyReceivedRevisedAccepted by ABSTRACTA WHILE-loop can be viewed as a FOR-loop with a dynamic upper bound. Thecomputational model of polytopes is useful for the automatic parallelization of FOR-loops. We investigate its potential for the parallelization of WHILE-loops.Keywords: loop parallelization, parallelizing compiler, space-time mapping.1. WHILE-loops as FOR-loopsWe denote a FOR-loop as follows:FOR index := lower bound TO upper bound DO bodyThe step size (also called stride) of a FOR-loop is +1. (A FOR-loop with a di�erentstride can easily be transformed to one with stride +1.) If the upper bound of theFOR-loop is smaller than the lower bound, the loop de�nes the empty statement.A WHILE-loop is commonly denoted as follows:WHILE condition DO bodyOne can view a WHILE-loop as a generalized FOR-loop, with a conditional upperbound that is reevaluated after every iteration:FOR new index := 0 TO (IF condition THEN new index ELSE new index�1) DO bodyHere, new index is a new variable that counts the number of iterations of the loopand that does not appear in body. As in normal FOR-loops, the only thing thathappens to new index is an implicit increment after each iteration.With new index, the upper bound of the loop is also incremented at each iter-ation, provided the condition holds at that point. When the condition is found tobe violated, the upper bound is reduced to cause termination. We shall use thefollowing syntax for a WHILE-loop written as a FOR-loop:FOR new index := 0 WHILE condition DO body

2. Mathematical NotationOur mathematical notation follows Dijkstra [5]. Quanti�cation over a dummyvariable x is written (Q x : R:x : P:x). Q is the quanti�er, R is a predicate in xrepresenting the range, and P is a term that depends on x. Formal logical deductionsare given in the form:formula1op f comment explaining the validity of this relation gformula2where op is an operator from the set f(;,;)g.Scalar and matrix product are denoted by juxtaposition. Element (i; � � � ; j) ofmatrix A is denoted by Ai;���;j . rank(A) denotes the row rank of A. A��i;���;j is thematrix that is composed of rows i to j of matrix A. A> denotes the transpose ofA.3. The Polytope Model3.1. FOR-loops in the polytope modelThe polytope model is a useful model of computation for the static parallelizationof FOR-loops. It represents the atomic iteration steps of n perfectly nested FOR-loops as the points of a polytope in Zn; each loop de�nes the extent of the polytopein one dimension. The faces of the polytope correspond to the bounds of theloops; they are all known at compile time. This enables the discovery of maximumparallelism (relative to the choices available within the method) at compile time.In the polytope model, a FOR-loop nest is typically represented in single-assignment form by a set of recurrence equations. A recurrence equation isf(p) = g(f(q1); : : : ; f(qk)) where p; q1; : : : ; qk2IThe polytope I comprises the computation points. At present, there are paral-lelization methods for uniform recurrences, i.e., qi=p+bi, or a�ne recurrences, i.e.,qi = Aip+bi for i = 1; : : : ; k. Here, the bi are constant n-vectors and the Ai areconstant n�n matrices [10].3.2. WHILE-loops in the polytope modelAt compile time, a loop nest that contains one or more WHILE-loops mustbe modelled by a polyhedron. (A polyhedron can be in�nite, whereas a polytopeis �nite [8].) This space of potential execution points is called the index space oriteration space; we name it I. If the loop body has several statements that we wantto consider individually, we must add one more dimension that enumerates these

6 - ij -666 -6 66Fig. 1. A non-convex execution space with data dependences.statements. We call the corresponding polyhedron with one more dimension thecomputation space and name it C. The actual points of a (terminating) execution ofthe loop nest correspond to a �nite subspace of the index space. We call this spacethe execution space and name it X .The WHILE-loop model departs in one important aspect from the FOR-loopmodel: the point that represents one loop iteration models also the boundary testpreceding the iteration. One consequence is that an empty loop is modelled by onepoint, not by the empty set since at least its condition must be evaluated. (This isnot important for the rest of this paper.)The execution space need not be a polytope. In particular, it need not be convex.ExampleFOR i := 0 TO 2 DOFOR j := 0 WHILE condition DObodyLet the inner loop (with index j) be executed four times for i=0, twice for i=1,and three times for i=2. This yields the non-convex execution space X depicted inFigure 1. Note, though, that the subspaces of X for every �xed i are convex, sincethe model of a WHILE-loop execution is a convex line.We can also express WHILE-loops as single-assignment recurrences. We needtwo equations for each WHILE-loop. One equation is the same as that for a FOR-loop; it corresponds to the iterative enumeration of the loop body, but has anunbounded index space. The other equation establishes, at every step, the validityof the condition and either de�nes the next iteration point or yields the result.Exampley := init;FOR i := 0 WHILE B(y) DO y := F (y);z := y

where condition B and function F are without side e�ects.This program corresponds to the following set of recurrence equations:y[k] = IF k = 0 THEN init ELSE F (y[k � 1]);x[k] = IF B(y[k]) THEN x[k + 1] ELSE y[k];z = x04. Schedules and Allocations of WHILE-loops4.1. Schedules and allocations of FOR-loopsThe dependence graph of a loop nest is the directed acyclic graph (V;E) whosevertex set V is the polyhedron modelling the loop nest and whose edge setE containsthe direct data dependences between the computations represented by the vertices[12]. The index space, the computation space and the execution space each have anassociated dependence graph.The problem of the scheduling (in time) and allocation (in space) of polytopesmodelling loops has received a lot of attention from the seminal work of 25 yearsago [6] to some recent extensions [2, 9, 10].De�nition 1. (Schedule, allocation, space-time matrix) Let I be an r-dimen-sional polyhedron and consider the dependence graph (I ; E).� Function t : I ! Z is called a schedule if it preserves the data dependences:(8 x; x0 : x; x02I ^ (x; x0)2E : t(x)<t(x0))The schedule that maps every x2I to the �rst possible time step allowedby the dependences is called the free schedule.� Function a : I ! Zr�1 is called an allocation with respect to schedule t ifeach process it de�nes is internally sequential:(8 x; x0 : x; x02I : t(x)= t(x0)) a(x) 6=a(x0))This is the full-dimensional case: space takes up r�1 dimensions and time theremaining one dimension of the transformed polytope (we call it the target polytope).Most parallelization methods based in the polytope model require the scheduleand allocation to be a�ne functions:(9 �; � : �2Z1�r ^ �2Z : (8 x : x2I : t(x) = �x+ �))(9 �; � : �2Z(r�1)�r ^ �2Zr�1 : (8 x : x2I : a(x) = � x+ �))The matrix T formed by � and � is called a space-time matrix:T = � �� �

In the full-dimensional case, T is a square matrix and the requirement on theallocation is: j T j 6= 0. We call T (I) (or T (X), which will become clear fromthe context) the target space.Lately, a relaxation to piecewise a�nity has been investigated [2, 9, 10].4.2. Schedules and allocations of one perfect loop nest including WHILE-loopsEvery terminating WHILE-loop has some iteration in which some value changessuch that the following iteration is disabled. This change requires a data depen-dence. In the static model, this dependence must be assumed between any twosuccessive iterations of the loop. In our representation of a WHILE-loop as a gen-eralised FOR-loop, this is made explicit by the introduction of an arti�cial index(Section 1). We also �nd this index in the according recurrence equations (Sec-tion 3.2). In this paper, we assume uniform dependences. Later work shall extendthe methods to a�ne dependences.Since we allow the upper loop bound to be unknown, the space-time mappingmay be de�ned on an in�nite domain (index space) and, thus, may de�ne an in�niterange (target space). It is easy to ascertain that only a �nite number of processorswill be required at any point in time. We can state this fact as a theorem. Since onlythe WHILE-loops contribute to the in�nity of the index space, we do not considerFOR-loops but show only that any nest of WHILE-loops de�nes, at any time step,a �nite set of processors in the target space. Then, we conclude without furtherproof that every general mixed loop nest also does so.Theorem 1. Let v1; : : : ; vr be linearly independent vectors of Zr and �1; : : : ; �r2 Nnf0g. Then the intersection of any hyperplane H through the set of pointsf(�1 v1; 0; : : : ; 0); : : : ; (0; : : : ; 0; �r vr)g and the polyhedral cone K spanned by thevectors v1; : : : ; vr is �nite.Proof: Our basis of Zr is fv1; : : : ; vrg. Then K = fx j x 2 N r ^ �I x� 0g =N r is the polyhedral cone spanned by v1; : : : ; vr [8]. (I is the identity matrix.)Furthermore, H = fx j x2Zn ^ (1�1 ; : : : ; 1�r)x = 1g. Then:H \K = fx j x 2 N r ^ (� i : 0<i�r : xi�i) = 1g� fx j x 2 N r ^ (8 i : 0<i�r : 0<xi��i)gSince the superset on the right is �nite, so is H\C.Corollary 1. (Finite time slices) In the polytope model for loop parallelization,the iteration space I (and also the computation space C) representing a nest of loopsis the coneK, andH\K corresponds to some time slice t�1(x)�I for a �xed x2 t(I).Thus, each time slice is �nite.Laying out a WHILE-loop partly in space only makes sense if we limit the

number of processors required by folding the processor space in some way. This hasbecome an active area of research recently [4, 14].4.3 Schedules of imperfect loop nests with WHILE-loopsAn imperfect loop nest speci�es at least one statement that does not belong tothe innermost loop of the nest. Such a statement does not belong to some (at leastthe innermost) loop, but succeeds it. Since the number of iterations of a WHILE-loop is not known before run time, we cannot schedule statements that succeed aWHILE-loop precisely before run time. Our solution is to enrich the schedule withadditional variables|each one is a placeholder for the extent of the execution spacein one dimension, i.e., for the number of actual iterations (+1) of one loop.Example(1) y := init;(2) FOR i := 0 WHILE condition DO y := F (y);(3) z := y;In an imperfect loop nest, the schedule and allocation must take a variablenumber of arguments depending on the nesting depth of the statement that isbeing scheduled. In this example, t(1) = 0, (8 i : i 2 N : t(2)(i) = i+1 andt(3) = t(2)(0) + �+1 = �+2. For the loop statement (2), the schedule de�nesa sequence of numbers|one for each loop iteration (including the �nal test thatleads to the termination of the loop). The schedule for the statement succeedingthe loop includes the placeholder � for the actual extent of the loop. The value of� is not known before run time.4.4. OptimalityIf we use a�ne schedules t(i) = �1 i1+� � �+�r ir+�, for any i=(i1; � � � ; ir)2I , thecoe�cients �1; � � � ; �r are derived from the system of linear inequalities that corre-spond to the dependences. If this system has only one vertex|which is frequentlythe case|then the optimal solution can be given at compile time, independentlyof the number of iterations of any WHILE-loop. If there are several vertices, theshape of the execution space inuences the optimal choice of the coe�cients|as isthe case for a nest of FOR-loops. Therefore, the optimal choice of the parameterscannot be made before run time if WHILE-loops are considered.5. The Target SpaceOur objective is to describe the target space with a nest of loops. The image ofthe execution space of a loop nest may be non-convex, since even the execution space

6 - ij 666-6-66-6666(a) 6 - xy 6-6-6-- --- -- -(b) 6 - xy -� -� -� �� � �� � �
(c)Fig. 2. Unscanable transformed execution spaces with data dependences.itself may be. Therefore, we must address the problem of describing non-convexsets by loop nests.5.1. ScanabilityWe illustrate with an example that not every transformed execution space canbe scanned precisely with a nest of loops. We also state a requirement on the space-time matrix that makes the target space precisely scanable. The interpretation ofan axis as being laid out in time or space does not matter.We use the following conventions:� We refer to the loop at level l in a loop nest as loop l.� The columns of the space-time matrix T are ordered (left to right) accord-ing to the (outside-in) order of the source loop nest.� The rows of T are ordered (top to bottom) according to the (outside-in)order of the target loop nest that we want to generate.� A column which corresponds to a WHILE-loop is called aWHILE-column;the predicate whilecol(c) indicates whether column c is a WHILE-column.ExampleFOR i := 0 TO 3 DOFOR j := 0 WHILE condition DObodyFigure 2(a) shows one possible execution space, Figures 2(b) and 2(c) show thetransformations of this execution space by T1 = � 0 11 0 � and T2 = � 1 10 1 �.Consider the line x=3 in Figures 2(b) and 2(c). Both T1 and T2 de�ne holes in thisline. The distribution of these holes depends on the upper bound of the WHILE-loop which, in turn, depends on the FOR-loop index and is only known at run time.

In order to minimize run-time overhead, we are interested in identifying theclass of space-time mappings which permit a precise scanning of the target spacewithout run-time testing for holes.� We call this property of a space-time mappingscanability. Our de�nition of scanability does not distinguish which dimensions ofthe space-time matrix belong to the schedule and which to the allocation. Let us�rst motivate it informally.The number of iterations that are executed by a WHILE-loop w in the sourceloop nest L is allowed to depend on all indices of enclosing loops. All outer indicesof w are known at the start of the WHILE-loop's execution. In order to obtain aloop nest L0 that scans any possible transformed execution space of L precisely, wemust require that:� The terminating condition of WHILE-loop w in L might depend on theindices c1; : : : ; cw�1 of the enclosing loops; thus, if this WHILE-loop istransformed by space-time matrix T into a target loop w0 (Tw0;w 6= 0),ythe same indices c1; : : : ; cw�1 must be derivable again|but now expressedin the indices r1; : : : ; rw0�1 of the target loops that enclose loop w0. Wename this expression f .� Indices of outer loops are not allowed to depend on indices of inner loops|not only in the source but also in the target loop nest. Consequently, fmust not depend on indices of target loops inside loop w0:(8 r; r0 : r; r02Zd ^ (8 i : 1� i�w0�1 : ri=r0i) : f(r) = f(r0)))This leads to the following formal de�nition.De�nition 2. (Scanability) The transformation of a loop nest L by an invertiblesquare matrix T of rank d is scanable i�:(8 w;w0 : 1�w;w0�d ^ whilecol(w) ^ Tw0;w 6=0 : (9 f : f 2Zd ! Zw�1 :(8 r; r0; c : r; r0; c2Zd ^ (r = T c) ^ (8 i : 1� i�w0�1 : ri=r0i) :f(r) = (c1; � � � ; cw�1) = f(r0))))Not surprisingly, f is part of the inverse space-time matrix T�1. The followingtheorem states the precise de�nition of f .Theorem 2. The transformation of a loop nest L by an invertible square matrixT of rank d is scanable i�:(8 w;w0 : 1�w;w0�d ^ whilecol(w) ^ Tw0;w 6=0 :(8 r; c : 1�r <w ^ w0�c�d : T�1r;c =0) ^ w�w0)�Holes may also arise in the space-time mapping of FOR-loops but only in regular distri-bution. This problem can be solved at compile time [1, 7, 11, 16].yNote that one source loop may become part of several target loops.

Proof.\)": We prove the two conjuncts successively.� Left conjunct: By the de�nition of scanability, there is an f suchthat: (8 r; c : r; c2Zd ^ (r = T c) : f(r) = (c1; � � � ; cw�1)>)It follows that: (8 r : r2Zd : f(r)= (c1; � � � ; cw�1)>= cj1;���;w�1= (T�1 r)��1;���;w�1= T�1��1;���;w�1 r)f is a linear function. We name the matrix that represents it M =T�1��1;���;w�1 2 Z(w�1)�d. Note that M is the upper part of T�1. Byshowing that the right part of M is zero, we prove that some upperright corner of T�1 is zero. The de�nition of scanability gives us:(8 r; r0 : r; r02Zd ^ (8 i : 1� i�w0�1 : ri=r0i) : f(r) = f(r0))) f M is the matrix for f g(8 r; r0 : r; r02Zd ^ (8 i : 1� i�w0�1 : ri=r0i) :M r =M r0)) f Def. of matrix-vector-product, ignoring equal summands g(8 r; r0 : r; r02Zd : (8 i : 1� i�w�1 :(� j : w0�j�d :Mi;j rj) = (� j : w0�j�d :Mi;j r0j)))) f choose r0 = 0 g(8 r : r2Zd : (8 i : 1� i�w�1 : (� j : w0�j�d :Mi;j rj) = 0))) f arithmetic g(8 i; j : 1� i�w�1 ^ w0�j�d :Mi;j=0)) f M = T�1��1;���;w�1 g(8 i; j : 1� i�w�1 ^ w0�j�d : T�1i;j =0)� Right conjunct: We know that rank(T�1) = d, since T is an invertiblesquare matrix of rank d. Thus:d= rank(T�1)� rank(M) + rank(T jw;���;d)� rank(M) + d� (w�1), f arithmetic gw�1 � rank(M), f rank(M) � w�1 (since M has w�1 rows) grank(M) = w�1

Thus, there must be some number k of non-zero columns that is atleast as big as rank(M). It follows that rank(M) � k � w0�1, sinceall columns from column w0 to the right are zero. This yields, withthe derived value for rank(M), w�w0.\(": Let the column w be a WHILE-column, and let w�w0 with Tw0;w 6= 0.Then, let r; r0; c be vectors in Zd such that r = T c and (8 i : 1� i�w0�1 :ri = r0i). De�ne f(x) = T�1��1;���;w�1 x. We show that this choice for fsatis�es the conditions required in the de�nition of scanability. The rightside of the if-and-only-if in Theorem 2 yields:�8 i; j : 1� i<w ^ w0�j�d : T�1i;j =0�) f (8 i : 1� i�w0�1 : ri=r0i) ^ (r = T c) gT�1��1;���;w�1 r = T�1��1;���;w�1 r0^ T�1��1;���;w�1 r = �T�1 r���1;���;w�1 = cj1;���;w�1 = (c1; � � � ; cw�1)>, f De�nition of f gf(r) = f(r0) ^ f(r) = (c1; � � � ; cw�1)>Theorem 2 provides us with a simple way of checking whether the target spaceof the transformation can be scanned precisely by a target loop nest.5.2. Choices of space-time mappingOur requirements for precise scanning limit the choice of space-time mappingsigni�cantly. Let us illustrate what freedom of choice is left.1. If only the outermost loop of the nest is a WHILE-loop, then every space-time mapping produces only scanable execution spaces, since the scanabil-ity condition is trivially satis�ed (1�r< w is impossible for w = 1).2. In a two-dimensional nest with an inner WHILE-loop, the inverse of thespace-time matrix must have the form � x 0y z � with x; y; z2Z.3. For deeper loop nests, there is a wide choice of space-time mappings. Thefollowing example illustrates that our de�nition of scanability allows fortarget loops with tricky bounds. Assume a nest of three loops of whichonly the second is a WHILE-loop, and assume the space-time mapping:T = 24 1 0 01 1 11 1 2 35 T�1 = 24 1 0 0�1 2 �10 �1 1 35This target WHILE-loop does not terminate at the point when the trans-formed termination condition becomes invalid but a constant number of

iterations later|depending on the bounds of the inner source loop. Thisfact also inuences the bounds of the inner target loop.In future work, we shall characterize the set of scanable target spaces furtherand investigate methods of code generation for target spaces that do not satisfyour de�nition of scanability. One technique that could be used is the synthesis ofcontrol signals [13, 15, 17].6. ConclusionsWe have shown that the parallelization method for a perfect nest of FOR-loopsbased on the polytope model can be extended such that perfect nests of FOR- andWHILE-loops can be mapped into space and time by using an arti�cial index forevery WHILE-loop. Principally, every form of WHILE-loop can be handled thatway.The main complication, the introduction of a non-convex execution space, causesproblems with the precise scanning of target spaces. We have formulated a require-ment on the space-time matrix that is, without a program-speci�c data depen-dence analysis, necessary and su�cient for the precise scanning of target spaces. Aprogram-speci�c data dependence analysis may reveal a lack of dependences thatare assumed in our de�nition of scanability. We suspect that this may lead to moreparallelism.A more permissive approach to WHILE-loop parallelization is being developedelsewhere [3]. It permits the execution of the loop body even at some points thatare not in the execution space. The resulting change of program behaviour neednot always be undesirable. For example, in iterative approximations, it may leadto a higher degree of accuracy.AcknowledgementsWe thank the participants of the Dagstuhl Seminar 9325 on \ParallelizationTechniques for Uniform Algorithms" for discussions at the seminar. In particular,Mike Barnett, Alain Darte and Patrice Quinton helped shape the de�nition of scan-ability. We also thank Herv�e Le Verge and J.-F. Collard for very useful discussionson loop parallelization with the �rst author.References1. M. Barnett and C. Lengauer, Unimodularity and the parallelization of loops,Parallel Processing Letters 2, 2{3 (Sept. 1992) 273{281.2. P. Clauss, C. Mongenet, and G. R. Perrin, Calculus of space-optimal mappingsof systolic algorithms on processor arrays, J. VLSI Signal Processing 4, 1 (Feb.1992) 27{36.

3. J.-F. Collard Space-time transformation of WHILE-loops using speculative execu-tion, Technical Report 93-38, LIP, Ecole Nationale Superieure de Lyon, November1993.4. A. Darte, Regular partitioning for synthesizing �xed-size systolic arrays, INTE-GRATION 12, 3 (Dec. 1991) 293{304.5. E. W. Dijkstra and C. S. Scholten, Predicate Calculus and Program Semantics,Texts and Monographs in Computer Science (Springer-Verlag, 1990).6. R. M. Karp, R. E. Miller and S. Winograd, The organization of computations foruniform recurrence equations, J. ACM 14, 3 (July 1967) 563{590.7. W. Li and K. Pingali, A singular loop transformation framework based on non-singular matrices, Technical Report TR 92-1924, Department of Computer Sci-ence, Cornell University, July 1992.8. G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization,Interscience Series in Discrete Mathematics and Optimization (JohnWiley & Sons,1988).9. P. Quinton and V. van Dongen, The mapping of linear recurrence equations onregular arrays, J. VLSI Signal Processing 1, 2 (Oct. 1989) 95{113.10. S. V. Rajopadhye, Synthesizing systolic arrays with control signals from recurrenceequations, Distributed Computing 3 (1989) 88{105.11. J. Ramanujam, Non-unimodular transformations of nested loops, in Proc. Super-computing '92 (IEEE Computer Society Press, 1992) 214{223.12. S. K. Rao and T. Kailath, Regular iterative algorithms and their implementationson processor arrays, Proc. IEEE 76, 3 (Mar. 1988) 259{282.13. J. Teich and L. Thiele, Control generation in the design of processor arrays,J. VLSI Signal Processing 3, 1{2 (June 1991) 77{9214. J. Teich and L. Thiele, Partitioning of processor arrays: a piecewise regular ap-proach, INTEGRATION 14, 3 (1993) 297{332.15. J. Xue, Specifying control signals for systolic arrays by uniform recurrence equa-tions, Parallel Processing Letters 1, 2 (1992) 83{93.16. J. Xue, An algorithm to automate non-unimodular transformations of loop nests.In Proc. 5th IEEE Symp. on Parallel and Distributed Processing (SPDP '93)(IEEE Computer Society Press, 1993) 512{519.17. J. Xue and C. Lengauer, The synthesis of control signals for one-dimensionalsystolic arrays, INTEGRATION 14, 1 (1992) 1{32.

