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Preface

Product Line Engineering (PLE) is an increasingly important paradigm in soft-
ware development whereby commonalities and variations among similar systems
are systematically identi�ed and exploited. PLE covers a large spectrum of ac-
tivities, from domain analysis to product validation and testing. Variability is
manifested throughout this spectrum in artifacts such as requirements, models,
code and documentation and it is often of crosscutting nature. These charac-
teristics promote di�erent kinds of modularization and composition techniques
(e.g., objects, components, aspects, features, subjects, frames, etc.) as suitable
candidates to manage variability. Prior work on Generative Programming (GP)
and Component Engineering (CE) has shown their successful applicability to
PLE and the potential bene�ts of modularization and composition techniques.

The Workshop on Modularization, Composition, and Generative Techniques
for Product Line Engineering (McGPLE) aims at expanding and capitalizing on
the increasing interest of researchers from these communities. It builds on the
success of the Aspect-oriented Product Line (AOPLE) workshop which has run
consecutively at GPCE for the past two years. AOPLE established an initial
community and formulated a �rst joint research agenda. The main goal of the
workshop is to broaden this agenda and strengthen the established collabora-
tions, to share and discussed ideas, identify research opportunities and foster
collaboration to tackle the challenges these opportunities may bring about.

Goals

Work on software modularization and composition concepts and techniques when
applied to PLE has shown promising results. These results can be further strength-
ened when GGP and CE techniques are applied in concert. The main goal of
the workshop is to foster and strengthen the collaboration between the di�er-
ent software composition and modularization techniques, PLE and generative
research communities by identifying common interests and research venues. The
new workshop builds on the success of the AOPLE workshops that established
an initial community of researchers, but focuses on a broader range of issues,
techniques and approaches.

Program Committee

� Je� Gray, University of Alabama at Birmingham
� Vander Alves, Fraunhofer IESE
� Rob van Ommering, Philips Research
� Andreas Rummler, SAP
� Don Batory, University of Texas at Austin

October 2008, The McGPLE'08 organizers.
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Abstract

Event-B [19] is a language for the formal specification
and verification of reactive systems. The language and its
RODIN toolkit represent a leading model-based technol-
ogy for formal software construction. However, scalabil-
ity is a major current concern, especially the dimension of
reusability. We outline a proposed infrastructure for scal-
able development with reuse for Event-B. We focus specif-
ically on our agenda for reuse in Software Product Lines,
and explain how a form of feature modelling will be central
to this programme.

1 Introduction

Event-B [19] is a formal modelling language that
evolved naturally from the classical B language [1] of J.-
R. Abrial. The recent project RODIN1 saw the definition
of Event-B and the creation of the rich Eclipse-based [14]
RODIN toolkit [2] for formal modelling, animation, veri-
fication, and proof with Event-B. This includes a project
repository, syntax- and type-checkers, proof obligation gen-
erator, animators, theorem provers, and various front-end
plug-ins.

In software development with Event-B, refinement is the
central method by which initially small, abstract models of
requirements are elaborated through architectural and de-
tailed design to code. Refinement2 M1 of a model M0 will
usually remove some nondeterminism (implementation-
freedom) and add data and algorithmic structure. M1 is
mathematically proved to be a “black-box” simulation of
M0, i.e. to offer only behaviour specified by M0. Event-B
allows us to formally state and prove both consistency prop-
erties for models and refinement properties between them;

1RODIN - Rigorous Open Development Environment for Open Sys-
tems: EU IST Project IST-511599

2The term refinement is overloaded, meaning (i) the process of trans-
forming one model into another, and (ii) the concrete model which refines
the abstract one.

we call these properties proof obligations (POs) in Event-B.
These capabilities are part of the extra “bang for the buck”
that Formal Methods offer to critical systems developers.

While there is now growing evidence of successful in-
dustrial critical systems development using B technology,
e.g. [13, 18], only limited (and commercially protected)
tool support exists to scale up to large applications. Project
DEPLOY3 aims to address this by scaling methodology in
requirements validation, requirements evolution, reuse, and
resilience, and scaling tooling in simulation, analysis and
verification of formal models. This paper adds “feature-
oriented Event-B” to that agenda.

Modularization and structuring are key issues in scaling
Event-B models: a number of model decomposition mech-
anisms [3, 16, 21] have been proposed, and tool support
for them is under development. The event fusion of [21] is
designed specifically for feature-oriented structuring with
Event-B.

The authors are working towards defining a method for
feature-based modelling with Event-B, specifically aimed at
reuse in software product lines (SPLs). Feature modelling
[12] is a well understood approach for variability modelling
for SPLs. To date it has mostly been applied to code or
detailed design documents; we apply it to an abstract, non-
deterministic language with formal semantics and verifica-
tion conditions (POs). This paper outlines definitions of
features as generic Event-B model elements, and defines
feature composition and specialization. Using a simple ex-
ample we present a scheme for precise definition of prod-
uct line instances as particular feature compositions. This
suggests a graphical feature modelling notation in the usual
style, but with rigorous semantic foundations.

We present an agenda for methodological and tool devel-
opment to support feature-oriented software development
with Event-B. While the detailed feature structuring ideas

3DEPLOY - Industrial deployment of system engineering methods pro-
viding high dependability and productivity (2008 - 2011): FP VII Project
214158 under Strategic Objective IST-2007.1.2. Further information and
downloadable tools are available at http://www.deploy-project.eu/
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of this paper are syntactic, we emphasise that this is scaf-
folding for the real, semantic value that we anticipate from
this work: the scaling of verification through a product line.
The starting point is designing an identified feature and its
chain of refinements, and then proving each of these refine-
ments consistent, and a correct refinement transformation
of its predecessor. This is part of the legwork of feature
construction for the application domain.

The theoretical job is then as far as possible to prove
compositionality, i.e. that consistency and refinement are
preserved when we compose features. For any consistent
features f and g we must prove f ⊕ g consistent (for a de-
fined composition operator “⊕”). Given their refinements
f1 and g1, we must further prove f1⊕g1 both consistent and
a correct refinement of f ⊕ g. While such compositionality
has been proved for the operators of [3, 16, 21], much work
remains for the intricate needs of feature composition.

2 The Event-B language

Event-B is designed for long-running reactive hard-
ware/software systems that respond to stimuli from user
and/or environment. The set-theoretic language in first-
order logic (FOL) takes as its semantic model a transition
system with guarded transitions between states. The cor-
rectness of a model is defined by an invariant property, i.e.
a predicate, or constraint, which every reachable state in
the system must satisfy. More practically, every event in
the system must be shown to preserve this invariant; this
verification requirement is expressed in a number of proof
obligations (POs). In practice this verification is performed
either by model checking or theorem proving (or both).

In Event-B the top level unit of modularization is the
model consisting of a machine and zero or more contexts.
The dynamic machine contains state variables, the state in-
variant, and the events that update the state. The static con-
text contains sets, constants and their axioms.

The unit of behaviour is the event. An event E acting on
(a list of) state variables v, subject to enabling condition, or
guard predicate G(v) and action, or assignment R(v), has
syntax

E =̂ WHEN G(v) THEN R(v) END (1)

That is, the action defined by R(v) may occur only when
the state enables the guard. An event E works in a model
with constants c and sets s subject to axioms (properties)
P(s, c) and an invariant I(s, c, v). Thus the event guard G
and assignment with before-after predicate4 R̂ take s, c as
parameters. Two of the consistency proof obligations (POs)
for event E defined as (1) are FIS (feasibility) and INV (in-

4Here R(v) is a syntax of actions, corresponding to a before-after pred-
icate R̂(v, v′).

variant preservation):

P(s, c) ∧ I(s, c, v) ∧ G(s, c, v) ⇒ ∃ v′ • R̂(s, c, v, v′) (2)

P ∧ I ∧ G(s, c, v) ∧ R̂(s, c, v, v′) ⇒ I(s, c, v′) (3)

Intuitively speaking, the static typing and axioms P and
state consistency property I give the known properties of the
system at any time. For event E (1), FIS states that when its
guard G is true (enabled) at state v, then E - via its before-
after predicate R̂ - is able to make the state transition from
v to v′. INV states that E will maintain the invariant, i.e.
consistency: when G is enabled, any after-state v′ reachable
by E will satisfy invariant I.

In order to progress towards implementation, the process
of refinement is used. A refinement is a (usually) more elab-
orate model than its predecessor, in an eventual chain of
refinements to code.

The refinement of a context is simply its elaboration, by
the addition of new sets, constants and axioms. When re-
fining a machine, new variables may be added, and some
or all abstract (refined) variables v may be replaced by
new concrete (refining) ones w. New invariant clauses and
events will usually be added, elaborating data and algorith-
mic structure. There are proof obligations for refinement,
both for correctness of the simulation of an abstract model
by its more concrete refinement, and for preservation of cer-
tain liveness properties. We do not discuss these further.

3 Feature-oriented Event-B ?

A small case study from project DEPLOY will be used
to demonstrate the prototype scheme for product-line devel-
opment with Event-B, based on formal feature modelling.
The example consists of specifications and Event-B devel-
opments for two simple, related products: a switch and a
pushbutton.5 Switch and pushbutton each have a single two-
valued output, off (false) or on (true). Each has one continu-
ous input in the interval [0, 1]. Rising and falling thresholds
are used on the sampled input to determine switching con-
ditions.

Neither specifications nor models have been developed
through any product-line process: commonalities in the
Event-B models were cut-and-pasted, and variabilities were
modelled in situ for each model instance. Again, require-
ments features have simply been identified by intuition,
rather than by any defined process.

A precise syntactic definition of an Event-B feature re-
mains to be established after case study experience; for the
present we regard the feature as a well-formed machine,
context or model, and a subfeature as a well-formed ele-
ment of such, e.g. a variable + typing invariant, a constant
+ typing axiom, an event. Expressiveness is required in the

5A 3-way and an n-way switch are also part of the product line, but
have not been included for the sake of brevity.
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Event-B feature definition to allow easy correspondence be-
tween requirements and model features.

The switch is specified as follows, paraphrasing [22],
and adding named features. Note that all features here
map to Event-B machine (i.e. behavioural) features, ex-
cept for bounce, threshr, threshf, which are context features.
The switch has four parameters (Debounce time BT, Rising
threshold RTH, Falling threshold FTH, Cycle time CT). The
input will be read cyclically with Cycle time CT.

1-1 Initially, the output is “off” (initop).

1-2i If the output is “off” and the switch on condition is
true, the output is set to “on” (switchopi).

1-2ii If the output is “on” and the switch off condition is
true, the output is set to “off” (switchopii).

1-3 A rising edge is detected if at time t the input is higher
than RTH and at time t-CT it was lower than RTH
(edge).

1-4 A falling edge is detected if at time t the input is lower
than FTH and at time t-CT it was higher than FTH
(edge).

1-5i The switch on condition is true if a rising edge was
detected and the input exceeds RTH for BT after the
rising edge (swcond).

1-5ii The switch off condition is true if a falling edge was
detected and the input is lower than FTH for BT after
the falling edge (swcond).

1-6 BT > CT (bounce)

1-7i 0 < RTH <= 1 (threshr)

1-7ii 0 <= FTH < 1 (threshf)

The requirements are now expressed in terms of the com-
position of features, e.g. including two variants of swcond.
Such variation is achieved by making features specializable
by parameter. The pushbutton differs from the switch in that
it uses a single switch condition based on a rising threshold.

The specification suggests a graphical notation for the
Event-B feature model - shown in Fig. 1 - comprising a ma-
chine graph and a context graph. This notation will build on
some version of standard feature modelling notation [12].
We add two kinds of edge: “c” for “consists of”, as per stan-
dard notation, and “r” for “refines” (we make the distinc-
tion because of the verification POs denoted by a “refines”
edge). As usual, black or white dots denote mandatory or
optional features.

Thus a switch device comprises machine features ini-
top, switchopi, switchopii and context features bounce,
threshr, threshf, in an abstract (level 0) model. The sym-
bol ⊕ denotes various feature compositions outlined below.
switchopi, the switch-on feature, is enabled when the switch
is off. It is a machine feature comprising variable output, its
typing invariant, initialisation, and event

initop switchopi switchopii

r r r

⊕ ⊕swcond swcond

⊕ ⊕edge edge

0

1

r

switchMc

initop switchopi switchopii

c cc

rr

switchCtx

ccc

⊕

⊕⊕

⊕

threshr bouncethreshf ⊕⊕

⊕

Figure 1. Switch feature diagram

out F T =
WHEN grd1: output = false
THEN act1: output := true
END

switchopii is the reverse, switch off feature. Since at
level 0 the switch condition is abstracted away, the switch
and pushbutton models are identical at level 0.

At refinement level 1 abstractions of the switch condition
swcond and the rising/falling edge test edge are introduced.
A counter variable c is introduced and initialised to zero.
When a rising edge is detected on the input by edge, c is
set to n = BT/CT . c is decremented (by swcond) in each
cycle that the input remains high, and the switch condition
is satisfied when n reaches 1.

For each product line instance, its composition from con-
stituent features, and these features’ specialization (param-
eterization) must be explicitly defined at each refinement
level. We show refinement level 1 for the switch:

Switch =̂ SwitchCtx⊕scmc SwitchMc

SwitchCtx =̂ (threshr ⊕sccc threshf )⊕scac

Axiom(“fth<rth”)
SwitchMc =̂ initop⊕smmc

(switchopi⊕smmc

swcond(lbl = “re”, grd = “output = false”)⊕smmc

edge(lbl = “re”, grd = “output = false”)
⊕smmc

(switchopii⊕smmc

swcond(lbl = “fe”, grd = “output = true”)⊕smmc

edge(lbl = “fe”, grd = “output = true”))

Next we elaborate the various composition operators ⊕slrp

by describing these four modifiers:

• s: Strength of composition: s(default) denotes
“strong”, i.e. the two composing elements must be
syntax- and type-consistent and must not require any
user specialization. “w” denotes “weak”, i.e. allowing

3



user specialization and resolution of inconsistencies at
composition/instantiation time.

• lr: Syntactic kind of left l and right r elements be-
ing composed: these may be feature elements, i.e.
m(default) for machine, c for context, and b for model,
in any combination. Further, a feature may be com-
posed with a subfeature of appropriate kind, i.e. ma-
chine m with variable(s) v, invariant i, event(s) e, or
context c with constant(s) o, carrier set(s) r, axiom(s)
a. A model b may compose with a consistent subfea-
ture of any kind.

• p: Composition of predicates: whether to conjoin
c(default) or disjoin d predicates, i.e. when combining
invariant clauses, or adding guard clauses to an event,
or fusing events.

For the switch instance Switch, context feature SwitchCtx
is composed from context features for each of the rising
(threshr) and falling (threshf) thresholds, as well as an extra
axiom relating the two. All machine compositions are sim-
ply ⊕smmc. For an example of specialization consider the
single event in edge denoting threshold detection:

%lbl% F T =
WHEN %grd%:

grd1: c = 0
THEN act1: c := n
END

This skeleton feature requires a label and a guard to
be completed. In the above definition of Switch, edge
is instantiated twice, once for the rising edge (lbl=“re”,
grd=“output = false”), resulting in event re F T and once
for the falling edge, resulting in event fe F T. Thus, a ris-
ing edge can only be detected when output is off, and con-
versely for the falling edge instantiation.

Considering the second instance in our little SPL, the
pushbutton differs from the switch precisely in that it uses
a single switch condition swcond based on a rising thresh-
old. Thus refinement 1 for Pushbutton differs from Switch
in that (i) in swcond, edge for switchopii, the label param-
eters become “re”, (ii) the outer composition between the
switchopi and switchopii is ⊕smmd, and (iii) PushbuttonCtx
is simply threshr. In this case the two instantiations of edge
in the same instance produce two versions of the same event
re F T. Hence the two versions of event re F T must be
fused [21]. That is, duplicated guards and actions are ig-
nored, and the d-modifier on ⊕smmd specifies that the extra
guard clause be disjoined. This gives a guard of output =
false ∨ output = true, which should be preprocessed to
true during instantiation, giving an always-enabled switch
condition.

4 Tooling for feature modelling

Our tool development takes place in support of some fu-
ture feature modelling process for Event-B. A feature mod-
elling phase, during domain analysis, will develop a feature

model based on any existing feature database, at the same
time developing new features. This will include feature con-
sistency proof, refinement and verification, as far as possi-
ble: the question of exactly how much verification can be
done on an unspecialized feature remains open. Athough
an event like %lbl% F T can be interpreted as well-formed
Event-B, and be consistency-verified, in general this will
not be true. Further, [20] described how in general a feature,
not containing all behaviour affecting its variables, will fail
to verify liveness POs.

An instance modelling phase will follow where system
instance specifications will be developed in the style of the
Switch. Most probably there will be iterative feedback to
the feature modelling phase. Finally, an instance production
phase will follow.

The starting point in tooling was the construction of an
Eclipse Modeling Framework [11] (EMF) editor for Event-
B, based on a language metamodel produced in DEPLOY.
EMF, based on metamodelling in the UML sense, enables
quick construction of a simple editor with a tree-structured
user interface reflecting the metamodel structure. A com-
position metamodel was developed by inheritance from the
Event-B metamodel, to define a small number of proto-
type feature compositions. A prototype EMF feature com-
position editor (comp-editor) was then produced based on
the composition metamodel. This enables recording of the
composition and specialization parameters in a particular
composition instance.

The comp-editor shown in Fig. 2 allows the user to spec-
ify all composition and specialization parameters interac-
tively. Its interactive style will be useful during the early
feature and instance modelling activities. In the figure, on

Figure 2. Composition tool

the left is a RODIN project explorer panel showing various
project elements. When a project is clicked on, the comp-
editor panel on the right is opened and blank. A drop-down
menu allows selection of elements from the selected project,
which produce corresponding tickboxes in the the comp-
editor panel; in the figure we see identified context, machine
and variable features. The user then instantiates the compo-
sition by ticking required features. On clicking “Compose”,
a third panel opens, allowing user specialization of selected

4



features and resolution of any conflicts. Dependency anal-
ysis is provided; e.g. given a variable the tool will identify
all (sub-)features requiring that variable.

The next step for comp-editor is support for the auto-
mated composition variants “⊕slrp”, which is a matter of
suitably packaging existing functionality. Such automated
compositions will be required for recording, managing, and
generating predefined instance models. Next, an EMF fea-
ture metamodel must be constructed, against which the
comp-editor should easily be adaptable for feature instance
modelling. This will require full definition of the feature
modelling language indicated by Fig. 1 and elaborated by
the Switch definition. A further, more costly development,
would be a graphical version of the EMF feature instance
modeller.

Methodological work - beyond that in this paper - has
started with an approach based on the “refinement by re-
striction” of [27]. A “maximal” Event-B model is con-
structed, containing all features. The feature model is an-
notated with mapping information to the Event-B model, so
that instance modelling is done by slicing required features
into the output instance model according to these mappings.

5 Related work

Recent proposals [8, 6] identifying generic algebraic
models for feature-oriented software construction schemes
are relevant to our work. These models can support instance
construction; e.g. (i) associative composition operators give
freedom in how they can be ordered, (ii) the occurrence of
non-commuting compositions can indicate feature interac-
tions. These ideas will inform the development of an alge-
bra of Event-B features.

Turning to verification, another recent development [7]
presents a product-line development where verification -
theorem statements and their proofs - is modularized and as-
sembled by features. For certain Event-B composition oper-
ators, certain properties (POs) are guaranteed by construc-
tion, as indicated in section 1. For most operators this will
not be true, and patterns of construction will be sought that
propagate POs, either partially or completely. [7] is encour-
aging, but we note that its case study exploits the fact that
the feature increments are logical conservative extensions,
i.e. each increment to the feature model does not interfere
with prior features in the construction order. While Event-
B superposition refinements, which simply add structure,
should work similarly, in general refinements will not be
modularizable in this way.

The notion of a feature as a reusable requirement [12]
or an increment in functionality [10] emerged in the con-
text of domain modeling and software product line engi-
neering. However, features are often considered as con-
cepts only, i.e., as names without any predefined semantics
[12]. Feature diagrams can be given an (internal) seman-

tics by translating them into propositional logic [10, 26],
which can be used for checking the consistency of entire
diagrams as well as individual configurations. Feature di-
agrams can also be “lifted” from a pure domain modeling
method to a programming method by defining mappings
into class diagrams [12], or by defining features as program-
ming language constructs, e.g., in the language FeatureC++
[5]. Such feature-oriented programming languages [9] are
usually implemented using generative techniques, e.g., mix-
ins [23]. We anticipate that our approach will lift in the
same way to UML-B [25], a grahical UML-like front-end
for Event-B.

In formal methods, a variety of formally well-founded
structuring methods have been developed, such as the lad-
der construction [24]. However, these typically focus on
module composition and parameterization [15] and do not
allow the combination of incomplete specification elements
that could represent features.

6 Conclusion and future work

We have outlined a usable (if intricate) syntactic scheme
and graphical notation for the automatable composition of
each product line instance from a set of specializable fea-
tures. The fact that this could be done based on a set of sim-
ple models with no prior generic structuring through some
domain analysis process, gives us some confidence in this
enterprise. It is of course a very modest start which must
now be built on.

The future work required is extensive but clearly con-
tributes to an existing agenda in both Generative Program-
ming and Formal Methods communities, as identified at
GPCE’06 [17]. This work consists of methodological (see
section 4), theoretical, and tooling strands.

Theory:

1. From case study work, full definition of the feature
composition operators outlined in section 4.

2. Establish the extent to which unspecialized features
can be proved consistent, and can be proved refine-
ments. Can this extend to the liveness POs ?

3. For all possible feature composition operators of sec-
tion 4, proof of compositionality. For noncomposi-
tional operators, an investigation of what properties
can be established.

Technology:

1. From case study work, definition of a feature mod-
elling language for Event-B. To include graphical as
well as composition/instantiation syntax as per section
3.

2. Implementation of a prototype working subset of such
operators in RODIN, based on our current interactive
composition editor prototype.

5



3. Development of a full feature and instance modelling
toolset inspired by e.g. FeaturePlugin [4]. GUI design
will be appropriate both to RODIN and to the visual-
isation demands of the user building or instantiating
feature models.

4. Validation by case study application.
5. The RODIN provers build and manage proof trees for

every proved PO, and take a reuse-oriented approach
to the management of these trees, when models, then
POs, then finally proof trees change. We need to
investigate, for the many cases where full composi-
tionality does not apply, whether unspecialized fea-
ture proof trees can be transformed for reuse in prov-
ing POs about their compositions. For example, if we
have proof trees for features f , g and their refinements
{fi}, {gj}, to what extent can we transform any of these
proof trees to be be applicable for reuse in proof about
f ⊕slrp g and its refinements ?
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ABSTRACT
Prior research on software product lines (SPLs) in different do-
mains (e.g., avionics mission computing, automotive, cellular phones)
has focused primarily on managing the commonalities and variabil-
ities among product variants at the level of application functional-
ity. Despite the fact that the application-level SPL requirements
drive the specializations (i.e., customizations and optimizations) to
the middleware that host the SPL variants, middleware specializa-
tion is seldom the focus of SPL research. This results in substan-
tial and ad hoc engineering efforts to specialize middleware in ac-
cordance with the functional and quality of service (QoS) require-
ments (e.g., latency, reliability) of the product lines. To overcome
these problems, this paper highlights the need to unify middleware
specialization issues within SPL research, and argues for new re-
search directions in modularization and generative programming
techniques that can account for the deployment and runtime issues,
such as QoS and resource management. Preliminary ideas demon-
strating how feature-oriented programming and model-driven de-
velopment tools together can address these challenges are presented.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity measures, per-
formance measures

General Terms
Product Lines, Middleware Specializations, Modularizations

Keywords
Generative programming + Product lines, FOP/AOP + MDD

1. INTRODUCTION
Research on software product lines (SPLs) [7] has focused pri-

marily on managing the commonalities and variabilities [8] in appl-
ication-level functionality of product variants. Generative program-
ming [9] and modularization techniques, such as feature-oriented
programming (FOP) [20] and aspect-oriented programming (AOP)
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personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
McGPLE GPCE ’08 Nashville, TN, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

[12], play an important role in composing and synthesizing product
variants from modularized units called features and aspects.

Middleware is an important asset for SPLs across many domains,
such as avionics (e.g., Boeing’s Bold Stroke architecture [23]), tele-
communications (e.g., Ericsson’s family of carrier class switches
[1]) and even cell phones (e.g., Nokia or Motorola’s family of cell
phones). Middleware manages the quality of service (QoS) (e.g.,
latency, reliability, security), and resource management (e.g., band-
width, CPU, memory) issues in product variants of a SPL. SPL de-
velopers tend to rely on standardized, general-purpose middleware,
such as but not limited to J2EE, .NET Web Services, and CORBA,
since these middleware provide a reliable, robust, low cost and low
maintenance solution with the added benefit of feature-richness,
flexibility, and high degree of configurability.

Although existing research in SPLs has significantly improved
the quality of product lines, and reduced their development and
maintenance costs, these research efforts have seldom addressed
the challenges in effectively using middleware for SPLs. Address-
ing middleware challenges as part of SPL research is necessary
since the feature-richness and flexibility of general-purpose mid-
dleware often becomes a source of excessive resource consump-
tion and a lost opportunity to optimize for significant performance
gains and/or energy savings in SPLs. Moreover, it is infeasible
for general-purpose middleware to provide solutions to all possi-
ble domain-specific requirements since they are developed with the
aim of broader applicability. Developing proprietary middleware
for SPLs, however, is not a viable solution due to the excessively
high development and maintenance costs.

In the current state of the art these limitations are addressed
through significant but often ad hoc engineering efforts at special-
izing (i.e., customizing and optimizing) general-purpose middle-
ware. To overcome these deficiencies, there is a compelling need
for SPL research to consider middleware platforms as an integral
part of the SPL engineering processes and methodologies. This
in turn argues for new research directions in modularization and
generative programming techniques that account for QoS and re-
source management challenges, which are inherently deployment-
and run-time problems, while most generative/modularization tech-
niques are limited to design-time.

This paper proposes an integrated SPL methodology that incor-
porates capabilities for middleware specialization. Specialization
is a process that manipulates general-purpose middleware in ac-
cordance with the commonalities and variabilities of an SPL by
(a) adding custom features supplied by the application, (b) prun-
ing unwanted features, and (c) optimizing the resulting middleware
to address QoS and resource requirements of SPLs. Our approach
is based on exploiting a hitherto before untapped algebraic struc-
ture of middleware by synergistically integrating (a) Origami ma-
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trices [4], which provide a formal representation for feature com-
position, interaction and refactoring [14], (b) Aspects [12], which
modularize software that exhibits crosscutting characteristics into
reusable features, and (c) Generative programming [9], which pro-
motes automation in middleware specialization.

The remainder of this paper is organized to portray our vision
of middleware specialization shown in Figure 1. Section 2 deter-
mines the problem space for middleware specialization; Section 3
describes the details of our holistic approach to combining mid-
dleware specializations with SPL research; and Section 4 provides
concluding remarks and discusses open research issues.

General-purpose middleware
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Figure 1: Middleware Specializations for SPLs

2. THE PROBLEM SPACE FOR MIDDLE-
WARE SPECIALIZATION

This section helps to define the problem space for middleware
specialization in the context of SPLs.

2.1 Middleware System Model
The concept of middleware was born with the aim to shield ap-

plications from variabilities in lower-level artifacts, such as hard-
ware, networks and compilers of programming languages. Years
of middleware research resulted in a middleware model approxi-
mated by Figure 2. Middleware is made up of layers of software
targeted to perform specific activities. At the bottom, the host in-
frastructure layer (e.g., a Java virtual machine or the ACE [21]
middleware) shields developers from the differences in operating
systems and hardware. Next, the distribution layer (e.g., CORBA
or Java RMI) provides features for location transparency, request
processing, and data marshaling, among others. The common ser-
vices (e.g., CORBA Naming or the UDDI discovery service) in-
clude features, such as naming, transaction, fault tolerance and real-
timeliness, etc. At the top, the domain-specific middleware layer is
tailored to a particular domain, such as avionics.

Figure 2: System Model for Middleware Specialization.

2.2 Survey of Related Research
Now we survey and organize related work along different dimen-

sions that we observe to be prevalent in middleware specialization

research.
• Eliminating overhead of object-orientation: Lohmann et. al. [15]
argue that the development of fine-grained and resource-efficient
system software product lines requires a means for separation of
concerns [25] that does not lead to extra overhead in terms of mem-
ory and performance. The overhead of object-oriented program-
ming (OOP), e.g., due to dynamic binding and method dispatch, is
not acceptable for some embedded systems. Aspect-oriented pro-
gramming (AOP) [12] is shown to eliminate this overhead. As-
pects are modularized pieces of code that traditionally are scattered
across application code.
• Aspects for footprint reduction: AOP provides a novel mech-
anism to reduce footprint by enabling crosscutting concerns be-
tween software modules to be encapsulated into user selectable as-
pects. FACET [11] identifies the core functionality of a middleware
framework and then codifies all additional functionality into sepa-
rate aspects. To support functionality not found in the base code,
FACET provides a set of features that can be enabled and combined
subject to some dependency constraints. By using AOP techniques,
the code for each of these features can be weaved at the appropriate
place in the base code.
• Combining modeling and aspects for refinement: the Model-
ware [27] methodology adopts both the model-driven architecture
(MDA) [17] and AOP. Borrowing terms from subject-oriented pro-
gramming [10], the authors use the term intrinsic to characterize
middleware architectural elements that are essential, invariant, and
repeatedly used despite the variations in the application domains.
They use the term extrinsic to denote elements that are vulnerable
to refinements or can become optional when the application do-
mains change. Modelware advocates the use of models and views
to separate intrinsic functionalities of middleware from extrinsic
ones. Modelware considerably reduces coding efforts in supporting
the functional evolution of middleware along different application
domains.
• Combining computational reflection and aspects: computational
reflection is an efficient and simple way of inserting new function-
ality into reflective middleware, such as LOpenOrb [5]. It uses a
meta-object protocol to abstract away the implementation details so
that it is necessary only to know the components and interfaces. To
conserve resources and provide dynamic adaptation, AOP can be
used to specialize the reflective middleware. Aspects that are not
in the application code can be dynamically inserted using a meta-
object protocol.
• Layer collapsing and bypassing: In a typical middleware plat-
form every request passes through each layer, whether or not the
services provided by that layer are needed for that specific request.
This rigid layered processing can lower overall system throughput,
and reduce availability and/or increase vulnerability to security at-
tacks [19]. For use cases where the response is a simple function of
the request input parameters, bypassing middleware layers may be
permissible and highly advantageous. Devanbu et. al [26, 19] have
shown how AOP can be used to bypass middleware layers.
• Importance of lifecycle stages: Traditionally, performance prob-
lems in middleware layers have been addressed by optimizing the
source code and data structures. Edicts [6] is an approach that
shows how optimizations are also feasible at other application life-
cycle stages, such as deployment- and run-time. Just-in-time mid-
dleware customization [28] shows how middleware can be cus-
tomized after application characteristics are known. These efforts
discover the configuration of the target environment and compose
only the necessary modules that are best suited among alternatives
and configure them in the most optimal way.
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3. INTEGRATING MIDDLEWARE SPECIAL-
IZATIONS WITH SPL METHODOLOGIES

We now describe our proposed approach to integrate middleware
specialization with SPL methodologies.

3.1 A Middleware Case Study
To make the description of our proposed approach concrete we

use a middleware case study. Figure 3 illustrates the CORBA mid-
dleware architecture, which is compliant with our layered middle-
ware system model. Also shown in the figure are CORBA services,
real-time CORBA (RTCORBA) [18] enhancements, and component-
based abstractions. CORBA is used here only for illustration pur-
pose, however, our approach is general.

NOTIFICATIONS

A/V  STREAMING

SECURITY

TRANSACTIONS

DYNAMIC/STATIC

SCHEDULING

FT-CORBA

& LOAD

BALANCING

Real-time CORBA 1.0

Figure 3: CORBA Architecture

The different RTCORBA features are shown in Figure 4. RTC-
ORBA defines standard interfaces and QoS policies that allow ap-
plications to configure and control (1) processor resources via thread
pools, priority mechanisms, intra-process mutexes, and a global
scheduling service, (2) communication resources via protocol prop-
erties and explicit bindings, and (3) memory resources via buffering
requests in queues and bounding the size of thread pools. Appli-
cations typically specify these real-time QoS policies along with
other policies when they call standard CORBA operations, such as
create_POA or validate_connection. For example, the
priority at which requests must be handled can be propagated from
the client to the server (the CLIENT_PROPAGATED model) or de-
clared by the server (the SERVER_DECLARED model).

3.2 Uncovering the Algebraic Structure of Mid-
dleware

Despite a rich repertoire of features, specializations including
feature additions, pruning or customizations to general-purpose mid-
dleware is a hard problem due to the following challenges posed by
their design and implementation:

a. fundamental restrictions and limited flexibility of program-
ming languages such as C++ or Java do not allow intercep-
tion of the control flow at arbitrary points in the control flow
graph to inject required application-specific functionality or
remove certain unnecessary functionality. This is currently
feasible only at limited points in the code known as intercep-
tion points, which is often not sufficient.

b. although object-oriented designs help develop modular mid-
dleware code, this modularity incurs a performance penalty.
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Figure 4: RTCORBA Features

Maintaining the modular design, which promotes longevity
of the software, is desirable yet obtaining optimal perfor-
mance is also required. There is a need to decouple special-
izations from the modular design, which is a hard problem.

c. the combinatorial complexity of the feature compositions ma-
kes it hard to find valid configurations manually because of
the large number of middleware configuration options and
complex semantic relationships between them.

d. deployment- and run-time specializations are even harder be-
cause feature removal and additions need to be considered
simultaneously, systematically and in a semantically consis-
tent and coordinated manner such that domain-specified re-
quirements on performance and footprint are satisfied.

In Section 2.2 we discussed how Aspect-oriented programming
(AOP) [12] is extensively used for middleware specialization (e.g.,
[11, 27, 19]). AOP, however, does not support any architectural
model to define transformations to the structure of programs, par-
ticularly the ability to encapsulate new classes, which limits its suit-
ability for middleware specialization. Feature-oriented program-
ming (FOP) [20] on the other hand can represent single aspects
or collections of aspects, and also can complement model-based
development since both paradigms stress the importance of trans-
formations in automated program development [3]. Moreover, FOP
has better support to provide bounded (i.e., selective) quantification
for feature manipulation in contrast to AOP techniques which often
result in unbounded quantification.

FOP is thus a candidate approach for middleware specializations
since it involves manipulation of middleware features. FOP is best
suited when the underlying construct on which it operates displays
a well-defined algebraic structure. FOP for middleware specializa-
tions is not straightforward, however, due to a lack of an explicit
algebraic structure in the middleware design as explained above.
We therefore ask ourselves whether it is possible to impose an al-
gebraic structure on the middleware. A closer scrutiny of the mid-
dleware design reveals that if we raise the level of abstraction [24]
to the level of features the middleware offers instead of focusing
on source code-level details, then a strong algebraic structure un-
folds wherein features can be manipulated using the FOP paradigm
subject to some constraints.

We have therefore chosen the principles of AHEAD (Algebraic
Hierarchical Equations for Application Design) [4], which is an
implementation of FOP that uses stepwise refinement to synthe-
size application product lines, as the basis of the proposed ap-
proach. The notion of a feature in AHEAD is tied to basic object-
oriented programming concepts, such as classes and methods. Al-
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though middleware also often uses object-oriented design princi-
ples, our notion of features is at a higher level of abstraction in-
volving patterns and frameworks that provide properties, such as
real-timeliness and fault tolerance.

AHEAD starts with a small set of base capabilities and refines
them by incrementally adding features. In contrast our middle-
ware specializations start with a much larger software base pruning
unwanted features and customizing the needed ones with domain-
specific properties. Our goal is to enhance AHEAD and similar
research to support design, deployment and run-time feature ma-
nipulation.

3.3 Exploiting the Algebraic Structure of Mid-
dleware

We now lay down our initial ideas on our proposed approach to
middleware specializations based on recursive algebraic approaches
such as AHEAD, however, by operating at a level of abstraction for
features that is closer to patterns and frameworks, and across all
stages of the application lifecycle.

Table 1 depicts our attempt to capture the algebraic structure
of RTCORBA capabilities as features within an Origami matrix
as proposed by the AHEAD approach [4] with the difference that
our level of abstraction for features is different and we consider
all stages of application lifecycle. Origami is a generalization of
binary decision matrices, where matrix axes define different sets
of features, and matrix entries define feature interactions. Origami
matrices possess a special property in that they allow folding along
the rows or columns or both. We discuss how this property will be
used.

PPPPPBase
RT BasicRT Priority Conc Synch

ORB RTORB PriMapper TPReactor
POA RTPOA
Xport ExtXport BandConn

ReqHndl CLI_PROP TPLane MUTEX

Table 1: Origami Matrix for RTCORBA

We use rows to denote the basic CORBA features, such as the
object request broker (ORB) that mediates requests and manages
resources; the portable object adapter (POA) that manages object
lifecycle; the Transport (shown as Xport) which handles communi-
cation; and ReqHandling which provides the data marshaling and
handling of requests. The columns denote the real-time features
that refine the basic features of CORBA with real-time capabili-
ties. For example, BasicRT indicates the base capabilities that in-
troduce real-time properties; Priority indicates the priority handling
mechanisms; Concurrency and Synchronization are classical dis-
tributed computing properties and describe the RTCORBA mecha-
nisms that support these.

The individual cells illustrate the feature interaction across the
row and column. For example, the CLI_PROP cell indicates the
priority model to be used in request handling. We assume that
the RTORB shown in the top-left cell is the constant required by
AHEAD. In reality, however, a single cell such as RTORB can
itself be formed by its own nested Origami matrix where differ-
ent features are composed to realize the notion of an RTORB. An
empty cell indicates a composition identity, which does not change
anything to the feature on which it is composed.

Now imagine a stepwise folding of columns onto each other,
which in turn folds individual cells onto each other for all the rows.
This cell-wise folding results in the composition of features of the
folded cells. Table 2 depicts the folding of the third and fourth

column in the original matrix. Continuing this folding along all
columns and then rows (order does not matter) gives rise to a com-
position of features that constitutes the overall RTCORBA middle-
ware and can be represented by Equation 1. Features are composed
with each other using the composition operator •.

PPPPPBase
RT BasicRT Priority • Conc Synch

ORB RTORB PriMapper • TPReactor
POA RTPOA
Xport ExtXport BandConn

ReqHndl CLI_PROP • TPLane MUTEX

Table 2: Folded Matrix for RTCORBA

RTCORBA = MUT EX •T PLane•CLI_PROP•BandConn

•ExtX port •T PReactor •PriMapper •RT POA•RTORB (1)

Now let us explore how such equations will help us. Our previ-
ous work [13] on handcrafted middleware specialization has showed
how the RTCORBA middleware stack characterized by Equation 1,
forces the software components of our avionics mission computing
scenario to use all the features, many of which are sources of ex-
cess generality. We claim that an approach to prune unwanted fea-
tures can follow a similar folding operations of the Origami matrix
that produces an equation of features to be pruned (e.g., bypass-
ing the request demultiplexing logic) and customized (e.g., caching
requests). This can be attempted by the application developer or
middleware developers who are given the requirements by domain
experts. The algebraic difference between the RTCORBA equation
and the equation describing the excess generality provides a formal
approach to specializing middleware.

Notice how this proposed approach is no longer ad hoc unlike
handcrafted specializations. This desired property stems from the
significant benefit of an Origami matrix in that it can realize only
valid compositions of features. Notice that erroneous compositions
(e.g. folding along the diagonal) or differences are impossible due
to the constraints imposed by the folding capability of the Origami
matrix. A model-based tool can provide an approach to collect
all the domain requirements, which then can be used to drive the
Origami folding and synthesis of the different equations.

3.4 Feature Manipulations across Application
Lifecycle Stages

The composition operator • is part of a well-defined algebra [2],
which to our knowledge works only for design-time feature compo-
sition. AHEAD (and hence Origami) does not support deployment-
and run-time feature manipulation. We argue for new research
in enhancing existing SPL research, such as AHEAD, to include
deployment- and run-time phases of application lifecycle. Apply-
ing AHEAD principles to cover all the stages of application life-
cycle is hard however because the level of abstraction it operates
at (e.g., code level) is not suitable for feature manipulations in the
deployment- and run-time stages, and it is conceivable that the ex-
isting feature algebra will be incompatible at these stages.

We make an initial attempt to enhance this theory. Imagine a
third dimension added to Table 1, which defines the deployment
dimension. We can visualize this scenario as comprising multi-
ple planes each having its own Table 1, where each table corre-
sponds to the middleware specialization for the hosted component
of the product variant. Suppose that the deployment of the prod-
uct variant must ensure that the middleware is specialized for the
CLIENT_PROPAGATED priority model. Now suppose that one
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such table uses a SERVER_DECLARED priority model for re-
quest handling instead. We need an approach by which the folding
operation along the third dimension should throw an exception due
to a misconfiguration in one of the matrices. Run-time issues such
as adding features for, say, a coordination layer for fault manage-
ment can be handled by extending the Origami matrix in the fourth
dimension to cover these run-time issues.

3.5 Feature Interactions across Application Li-
fecycle Stages

Our discussions so far have assumed that features are indepen-
dent of each other and that they can be seamlessly added or pruned.
However, we cannot make such simplified assumptions in all cases.
For example, Narasimhan et. al. [16] have illustrated how real-time
and fault-tolerance properties of applications conflict with each other
thereby requiring tradeoffs.

Figures 5 and 6 illustrates how features can interact [14] with
each other at the framework level (which is our level of abstraction
for features). We show two design possibilities for an RTORB that
supports thread pools with lanes. The thread pool serves as an ad-
ditive refinement to the RTORB (i.e., an Introduction). However,
as shown in Figures 5 and 6, the request handling strategy inter-
acts with the RTORB in different ways each with its benefits and
consequences on performance.

Figure 5: Queue-per-lane Design for Threadpool-with-Lane

Figure 6: Reactor-per-lane Design for Threadpool-with-Lane

In the queue_per_lane strategy, a separate thread listens for
requests over the network and hands over the request to a worker
thread, which is the Half-Sync/Half-Async architectural pattern [22].

This model simplifies the design but incurs message queuing and
thread synchronization overhead. In the reactor_per_lane
approach, the thread that receives the request also handles the re-
quest, which is the Leader-Follower architectural pattern [22]. This
model is difficult to implement and debug for race conditions.

We showed design-time feature interactions above, which is a
hard problem since our features represent patterns and frameworks.
Feature interactions at other lifecycle stages are even harder to ad-
dress. Simple foldings of Origami columns and rows may not suf-
fice since the foldings have no capabilities to tradeoff one feature
over the other as in the case of fault tolerance and real-time. Tradi-
tionally the tradeoff problems have been mapped to combinatorial
optimization problems where heuristics are developed to find near-
optimal solutions.

4. CONCLUDING REMARKS AND OPEN
ISSUES

Middleware is an important asset of SPLs that operate in a dis-
tributed computing environment. In this paper we argued for ex-
tending SPL research to incorporate middleware specializations.
We showed how an algebraic structure can be imposed on the mid-
dleware which in turn makes it suitable for feature manipulation.
We then explored the use of generative programming and modular-
ization techniques based on AHEAD for middleware specialization
outlining how they can be extended to address deployment- and
run-time issues in middleware.

A number of open issues remain unresolved as explained below.

• Mapping higher-level feature abstractions to code: Since the
algebraic structure we consider is at a higher level of abstrac-
tion, we require a mappping from the high level artifacts to
low level details such as code. Naturally, such a mapping
cannot break existing code. Hence we will need out-of-band
mechanisms such as source code annotations including those
we developed in our preliminary work [13] or aspect defini-
tions to refactor existing middleware into the algebraic form
we require.

• Semantics of the composition and difference operator for de-
ployment- and run-time phases of the application lifecycle:
Is a single equation feasible that can capture the specializa-
tions to middleware by accounting all three phases of appli-
cation lifecycle. An important open issue points to the al-
gebra of these operators across the lifecycle. A number of
questions must be answered: What is the associativity and
precedence relationship of the operators along the lifecycle
stages? Do the semantics of Origami folding change in dif-
ferent lifecycle stages? How are features represented at the
other lifecycle stages? How can Origami folding handle dis-
tributed coordination at run-time? Can Origami capture sys-
tem schedulability and performance optimizations?

• Runtime Tradeoffs via Origami foldings: Adaptive systems
must make runtime tradeoffs among inherently conflicting
system properties such as real-timeliness and fault-tolerance.
Many questions must be answered if Origami abstractions
are used to solve these challenges: Do individual cells en-
code constraints? Do foldings give rise to cost functions?
How do constraints get refined during folding? What does
the final equation represent? Does the composition operator
encode a heuristic to solve the optimization problem? How
can feature manipulations be considered simultaneously, sys-
tematically and in a semantically consistent and coordinated
manner such that domain-specified requirements on QoS and
footprint are satisfied?
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Abstract
Techniques to model software product lines (SPLs), using feature
models, usually focus on a single SPL. Larger SPLs can also be
built from smaller SPLs which results in a dependency between the
involved SPLs, i.e., one SPL uses functionality provided by another
SPL. Currently, this can be described using constraints between the
involved feature models. However, if multiple differently config-
ured instances are used in a composition of SPLs, dependencies
between the concrete instances have to be considered. In this paper,
we present an extension to current SPL modeling based on class di-
agrams that allows us to describe SPL instances and dependencies
among them. We use SPL specialization to provide reuse of SPL
configurations between different SPL compositions.

1. Introduction
Reuse insoftware product lines (SPLs)is achieved by combin-
ing assets, e.g., components, to produce a number of similar pro-
grams [4]. The resulting concrete products of an SPL (SPL in-
stances) are variants tailored to a specific use-case or environ-
ment. Large SPLs can be built by reusing functionality provided
by smaller SPLs and sometimes functionality of multiple SPLs
is integrated into one SPL [18]. This results in a composition of
SPLs where compatibility between interacting SPLs has to be en-
sured. As an example, consider a mail application developed as an
SPL (MailClient in Figure 1). The client uses mail communica-
tion functionality provided by a MailFramework SPL (e.g., differ-
ent mail protocols) and two differently configured instances of list
SPLs (SortedList and SynchronizedList). To ensure correct com-
position the MailFramework has to be configured according to the
requirements of the MailClient. For example, using the IMAP mail
protocol in the MailClient requires the MailFramework to provide
this protocol. This is getting more complex if multiple product lines
are involved, e.g., the mail client in Figure 1 uses two additional in-
stances of a product line of list data structures that also have to be
configured appropriately. Such systems can be seen as large SPLs
composed from smaller SPLs, i.e.,product lines of product linesor
nested product lines[13]. Proper configuration of suchdependent
SPLsnot only ensures compatibility but also reduces consumed re-
sources by removing unneeded functionality, avoids unneeded de-
pendencies to other programs, and can reduce the user interface.

A user who configures an SPL that depends on other SPLs is
usually only interested in configuration decisions of her problem
domain and not in the configuration of underlying SPLs. For ex-
ample, configuring the MailClient should not involve configuration
of the underlying MailFramework SPL. Hence, SPLs used within
other SPLs should be automatically configured to match the re-
quirements of the enclosing SPL and only functionality a user is in-
terested in has to be configured manually. This is possible by defin-
ing constraints between dependent SPLs that enforce only valid
combinations and can be automatically resolved at configuration

MailClient MailFramework

SynchronizedListSortedList

«uses»«uses»

«uses»

Figure 1. A MailClient SPL using a MailFramework SPL and
different instances of a List SPL.

time. Such constraints (e.g.,requires constraints between Mail-
Client SPL and MailFramework) can be described as constraints
between the feature models of these SPLs [4]. However, if multiple
similar variants of one SPL are used, constraints between concrete
SPL instances (instance constraints) are needed. For example, the
MailClient uses two different instances of a list SPL (cf. Fig. 1).
These instances have to be be configured differently, i.e., one as a
sorted list and one as a synchronized list. A domain level constraint
between mail client SPL and list SPL as used in current domain
modeling cannot describe this dependency.

In this paper, we extend existing product line modeling with an
approach that aims at modeling compositions of dependent SPLs.
Our goal is to connect domain modeling and domain implemen-
tation: while feature models describe the features of an SPL we
use SPL instance models to describe the composition of SPLs. Fur-
thermore, we want to separate dependencies needed for SPL con-
figuration, i.e., the uses-relationship between SPL instances, from
concrete SPL implementation. Furthermore, we integrate domain
modeling and SPL instances by mapping a feature of an SPL to in-
stances of SPLs that are referenced by this feature. This is in line
with feature-oriented software developmentwhere all software ar-
tifacts are decomposed with respect to the features of a domain [2].
By includingSPL specialization[5] we are able to reuse SPL con-
figurations in different SPL compositions. A combination of do-
main modeling and the presented instance modeling can be used
to derive configuration generators that create instances of all de-
pendent SPLs of a composition and thus provide the basis for an
automated configuration process.

2. Software Product Line Engineering
In the following, we shortly present foundations ofsoftware prod-
uct line engineering (SPLE)and the current state of techniques used
to model and implement SPLs.

Domain Modeling. An SPL is used to create similar programs
that share some commonfeatures. The features of an SPL are
distinguishable characteristics of software that are of interest to
some stakeholder [4]. As part offeature-oriented domain analysis
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Figure 2. Feature diagram of a mail client SPL that uses a mail
framework SPL with requires-constraints between SPLs (shown as
dashed arrows).

(FODA), SPLs can be described usingfeature models[10, 4]. These
are usually visualized usingfeature diagrams[10] as shown for
a MailClient product line in Figure 2. The MailClient SPL uses
other SPLs: a MailFramework SPL that provides different mail
protocols and another small SPL of list data structures. The root of
a feature diagram (e.g., node MailClient) represents the SPL itself
and remaining nodes represent features of that SPL (e.g., feature
IMAP represents the IMAP mail protocol). Features can be optional
(depicted with an empty dot) or mandatory (depicted with a filled
dot). Variability introduced by features provides means to create
tailor-made applications. For example, mail clients using different
protocols are created by including the according features IMAP,
POP3, and SMTP.

Domain Constraints. Feature models often containdomain con-
straintsthat ensure only valid feature combinations on the domain
level. For example,requires (shown as dashed arrows in Fig. 2)
andmutual-exclusionrelations are used to describe dependencies
between features [4]. Domain constraints can also be used to de-
scribe dependencies between different product lines [6, 16]. For
example, if feature IMAP is used in the MailClient, also feature
IMAP of the MailFramework SPL is required (cf. Fig. 2). A user
of the MailClient SPL usually only wants to configure the Mail-
Client itself and not all accompanied SPLs which she might not
have any domain knowledge of. This can be achieved by automati-
cally resolving constraints between SPLs, e.g., between MailClient
and MailFramework.

Product Line Implementation. SPLs are implemented using a
variety of technologies. Examples are components that are com-
bined to build large systems [3] or C/C++ preprocessor definitions
used to build SPLs in the embedded domain. New paradigms like
aspect-oriented programming (AOP)[11] andfeature-oriented pro-
gramming (FOP)[14, 2] can also be used to implement SPLs. The
approach that we present in this paper is independent of the used
implementation technique.

Based on the SPL implementation a user derives a concrete
product by selecting the needed features from an SPL. The resulting
SPL configuration(i.e., feature selection) is used to compose the
corresponding software assets that implement an SPL resulting in a
tailoredSPL instance. The created SPL instance might be a library,
a component, a program, or a collection of programs. The concrete
composition mechanism depends on the implementation technique.

3. Dependent Software Product Lines
By using domain constraints, dependencies within an SPL and
between different SPLs can be modeled. In the following, we show

PDA

SensorNetwork

Bluetooth

DataStorage Access

Laptop

SensorNetworkNode

DataStorage Communication

Radio Wi-Fi

Sensor

Figure 3. Feature diagrams of an SPL for a sensor network (left
part) and an SPL for software used on sensor network nodes (right
part).

that existing models have to be extended to completely describe
arbitrary compositions of product lines and present requirements
needed for an extension of current product line modeling.

Large Scale Product Lines. Complex and distributed systems,
e.g., sensor networks, can be developed as product lines built from
a number of heterogeneous SPL instances. For example, a Sensor-
Network SPL as shown in Figure 3 may consist of different sensor
nodes, data storage nodes, and access nodes each of them being an
instance of a SensorNetworkNode SPL. Additionally, a client ap-
plication accessing the sensor network might be developed as an
SPL to support different client hardware (e.g., Laptops and PDAs)
to interface with sensor network nodes. Dependencies between net-
work nodes and client applications may exist to ensure a valid sen-
sor network as a whole. Communication between sensor nodes, for
instance, requires the same communication protocol and the access
node of a sensor network might additionally require Bluetooth to
communicate with clients (Laptop or PDA).

In contrast to the MailClient SPL, the SensorNetwork SPL is
not an SPL from which a program is created but a number of
interacting programs (i.e., the software running on nodes of the
network and the client software to access the network). Hence,
there might not be any source code needed for the SensorNetwork
and only the smaller SPLs contain program code. This also affects
the instantiation process: there is no particular composition process
needed (e.g., using code transformation and compilation of code)
but only instantiation of used product lines.

The SensorNetworkNode SPL again might use other SPLs that
provide lower level functionality, e.g., an SPL for database manage-
ment systems (DBMS) to store data. Hence, there can be chains of
SPLs using instances of smaller SPLs. This composition might lead
to large systems and also systems of systems. Each SPL in such a
chain of SPLs requires an own model to describe dependencies to
lower-level SPLs that it uses. By providing a separate composition
model for each of these SPLs we can reuse these models in other
product lines.

Compositions of Product Line Instances.Compositions of mul-
tiple SPLs imply that we have to handle these SPLs and constraints
between them on the model level. Domain constraints can describe
dependencies between different SPLs but do not take concrete in-
stances into account. These instances, however, have to be consid-
ered if one SPL uses multiple differently configured instances of
another SPL or if different instances of the same SPL depend on
each other.

As an example consider our MailClient that uses multiple dif-
ferently configured list data structures as shown in Figure 1. One
instance of the List SPL is a synchronized List, i.e., using feature
SYNC, and one is a sorted List, i.e., using feature SORT (cf. Fig. 2).
In such a composition, we describe the requires relationship be-
tween feature DEBUG of the MailClient and feature LOGGING of
the List using a domain constraint. This is not possible for features
SORT and SYNC because the MailClient requires two different in-
stances, one using feature SORT and one using feature SYNC. That
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OO-concept SPL representation

class SPL
object SPL instance
class specialization staged configuration
aggregation uses-relationship of SPLs
type of member variable type of SPL instance
name of member variable name of SPL instance

Table 1. OO-concepts and the corresponding representation of
concepts in product lines.

is, we cannot describe constraints that affect only a concrete in-
stance of an SPL.

We can find another example in the sensor network scenario. In
this case, differently configured instances of nodes (e.g., data stor-
age nodes and sensor nodes) are communicating with each other
and one instance (e.g., a sensor node) depends on the functionality
of another instance (e.g., a data storage node). Again, we cannot
describe the dependencies in the feature model, which is the same
for all nodes, because we would refer to the same feature model and
not a concrete instance of it. To solve this problem we propose to
extend feature modeling with explicit modeling of SPL instances.

Instance Identification. Using multiple instances of one SPL re-
quires assigning a unique name to each instance to identify the dif-
ferently configured instances and define constraints between them.
For example, we have to create a name for the synchronized and
sorted list that are used by the MailClient. Furthermore, we can
use these names on the implementation level of an SPL in order to
create class instances (e.g., list nodes) that are part of the different
instances of an SPL. For example, name spaces or packages can be
used to identify the SPL instances on the source code level. The
concrete technique used to identify instances (e.g., Java packages)
depends on the SPL implementation and is outside of the scope of
this paper.

4. An Extension of Product Line Modeling
We have seen that constraints between SPL instances are needed
to ensure correct configuration for a number of dependent SPLs.
To avoid manual implementation of these constraints at the source
code level of an SPL we present an extension to current product
line modeling that allows a domain engineer to describe SPLs and
SPL instances and specify constraints between them.

Modeling SPL Instances. The terminstantiationis used in prod-
uct line engineering as well as in OOP. In product line engineering,
creating an SPL instance means to derive a concrete product from
an SPL. In OOP, classes are instantiated resulting in concrete ob-
jects. Czarnecki et al. compared SPLs to classes of OOP and SPL
configurations to class instances [5]. We adopt this correspondence
and model SPLs and SPL instances using classes and objects of
OOP. This also means that class instantiation corresponds to SPL
instantiation. Using the concept of aggregation furthermore allows
us to have members within classes where the type of a member
corresponds to an SPL and the object assigned to such a member
corresponds to an SPL instance.Staged configurationof SPLs, i.e.,
specialization of the feature model [5], can be represented by spe-
cialization as known from OOP. This means, a specialized classCB

of classCA corresponds to a specialized SPLSB of SPLSA. Also
subtyping of SPLs and polymorphism can be applied:SB is a sub-
type ofSA and variables of typeSA can refer to instances ofSA or
SB . We summarized all corresponding constructs in Table 1.

Based on the correspondence of OOP classes and SPLs we can
use class diagrams to model SPL compositions. By using class

«SPL»
MailClient

«SPL»
List

-Sync : bool = true

«SPL»
SyncList

-Sort : bool = true

«SPL»
SortList

-m
ailList

-errM
sgList

Figure 4. A MailClient SPL that uses different specializations of
an SPL of list data structures (represented by aggregation). SPL
specialization is represented by inheritance.

diagrams also complex compositions of SPLs can be created using
existing tools and a familiar concept. Furthermore, existing support
for generation of object-oriented code from class diagrams can
be used to derive configuration generators from SPL composition
models.

Using a class diagram, the MailClient example that uses a
List SPL (cf. Fig 2) can now be modeled as shown in Figure 4.
SPLs are represented by classesMailClient andList. Classes
SortList and SyncList represent specialized variants of the
List SPL that provide sorting and synchronization. The special-
ization, i.e., a pre-configured feature model, can be represented
using special attributes of the classes (e.g., attributeSync in class
SyncList). Instances of SPLs used by other SPLs are described
using aggregation, e.g., membersmailList anderrMsgList of
classMailClient represent instances of different specialized List
SPLs. By using specialized variants we can avoid constraints be-
tweenMailClient andList that would be needed to define the
different variantsSortList andSyncList. Thus, we only have to
refer to the specialized variants and can reuse the configuration of
the specialized SPLs in other SPL compositions. Names of class
members (e.g.,mailList anderrMsgList) are used to identify
instances of an SPL.

Domain constraints are defined in the domain model and are
still used to define constraints that apply for all instances of an SPL.
For example, constraintMailClient.Debug => List.Logging

(cf. Fig. 2) means that feature DEBUG of the MailClient SPL re-
quires feature LOGGING of the List SPL. We can now provide
additional constraints for specialized SPLs. For example, we can
useMailClient.Debug => SyncList.Logging to enable fea-
ture LOGGINGonly in instances of synchronized lists because Syn-
cList is a specialized variant of the List SPL. These constraints are
part of the MailClient SPL and are separated from reusable special-
ized variants defined in the List SPL.

Instance Constraints. We useinstance constraintsto describe
dependencies between SPLs and concrete instances. As an exam-
ple, consider the model for a sensor network in Figure 5. The
SensorNetwork SPL uses specialized instances of SPLsClient

andNetworkNode. The specialized variantDataNode again uses
an instance of SPLDBMS to store data. In the lower part, we de-
pict constraints of the model. Domain constraint (1) is part of
the domain model and shown for completeness. Additionally, we
specify constraints between SPLs and specialized variants (2): fea-
ture PDA implies feature BLUETOOTH only in specialized variant
AccessNode. We also used an instance constraint (3): if feature
DATA STORAGE is used, we enable feature QUERIES in instance
pda of theSensorNetwork SPL. Thus, only a concrete instance is
affected and not the whole SPL.
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domain constraints:

(1) SensorNetwork.Logging => Client.Logging
(2) SensorNetwork.PDA => AccessNode.Bluetooth

instance constraints:

(3) SensorNetwork.DataStorage => SensorNetwork.pda.Queries

conditional dependencies:

(4) SensorNetwork.Laptop => SensorNetwork.laptop
(5) SensorNetwork.PDA => SensorNetwork.pda
(6) SensorNetwork.DataStorage => SensorNetwork.dataNode
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Figure 5. A sensor network SPL using network nodes and client
applications. The specialized DataNode SPL itself uses a DBMS
SPL.

In contrast to specialization, it might be simpler to define in-
stance constraints; however, specialization provides better reuse be-
cause the specialized variants can also be used in other SPLs. The
constraints presented here, are onlyrequiresor impliesconstraints
but arbitrary propositional formulas might be supported [1]. Object
Constraint Language (OCL) might be a good candidate for speci-
fying the constraints [4].

Conditional Dependencies. A description of a composition of
multiple SPLs using the model presented above includes all SPLs
and SPL instances that might be needed in arbitrary configura-
tions. Some of these SPLs and SPL instances, however, are only
needed if features that use those SPLs are actually present in a con-
crete configuration. For example, if feature DATA STORAGE of the
SensorNetwork SPL is not used, we also do not need special net-
work nodes that store data. This means that such SPLs do not have
to be considered at configuration time if we know that they are not
used. We achieve this by defining constraints for attributes of SPLs.
In the example shown in Figure 5, we used constraints 4–6 to de-
fine that attributeslaptop, pda, anddataNode are only needed if
a particular feature is selected. Hence, if feature DATA STORAGE
is not selected, there will be no instance of SPLDataNode. Other
SPLs thatDataNode depends on are also not added to the con-
figuration. In our example, this applies to SPLDBMS which, as a
result, does not have to be configured. This is similar for SPLs that
have specialized variants. These are only added to a configuration
if there is an instance of the SPL itself or one of its specializations
needed. For example, if there is neither an instance ofLaptop nor
of PDA, the wholeClient SPL is not needed. Conditional depen-
dencies are mappings of features to elements of the instance model.
To implement such mappings we propose to use existing tools, e.g.,
FeatureMapper [9]. This allows us to visualize such dependencies
and use views on a composition model to show only elements that
belong to a particular feature or a number of features.

The Configuration Process. The configuration of a composition
of SPLs is based on an instance model and the domain models of
all involved SPLs. The configuration process should be supported

by a configuration tool and the underlying models need not to be
shown to the user. When creating a configuration, the user starts
with an empty feature selection of the top-level SPL (e.g., SPL
SensorNetwork in Fig. 5) and selects functional features. This se-
lection is based on the domain model of an SPL but is additionally
checked against constraints in the instance model. Dependent SPLs
are only added when they are needed. This avoids conflicts of SPLs
that are not used and simplifies the verification of a feature selec-
tion. After finishing the configuration of one SPL the configuration
of dependent SPLs follows. Ideally, there is no further selection of
functionality of dependent SPLs needed because it is implicitly pro-
vided via constraints; however, manual configuration of underlying
SPLs might be needed or wanted.

In the following, we describe how a configuration for the Sen-
sorNetwork SPL can be derived. We start with an empty fea-
ture selection which includes instances of SPLsSensorNode

AccessNode that are always needed in a network. The user selects
feature DATA STORAGE which adds an instance of SPLDataNode
(conditional dependency 6) and SPLDBMS. Selection of feature
PDA adds an instance of SPLPDA. The configuration of functional
features is finished with this selection and constraints have to be
checked. Constraint (1) is ignored because feature LOGGING is
not selected. Constraint (2) enables feature BLUETOOTH in all in-
stances of theDataNode SPL and constraint (3) enables feature
QUERIES in instancepda of SPL PDA. After that, all dependent
SPLs have to be configured. This is done per SPL instance, e.g., if
we would have selected clientspda andlaptop, both have to be
configured separately. In our case, there are no other features to be
configured within dependent SPLs and the configuration is already
finished. This should be the usual scenario, but there might also be
a detailed configuration process of lower-level SPLs like theDBMS

SPL.

5. Discussion and Further Work
The presented model can be used to describe SPLs that are com-
posed from other SPLs. However, there are some issues that have
to be further analyzed and can be subject to extensions of the pre-
sented model. In the following, we discuss some of these issues.

Integration with Domain Models. To provide an integrated soft-
ware product line engineering process SPL instance modeling has
to be integrated with domain modeling. Based on a domain model
that describes constraints between features of one SPL and also
constraints to other SPLs we can ease the transition to SPL in-
stance modeling using a model transformation. The result is a
basic instance model that consists of classes representing SPLs
and constraints between these SPLs which represent domain con-
straints. Staged configuration of SPLs can also be automatically
transformed into an inheritance hierarchy of classes that represent
different stages of configuration. There are only a few steps to sup-
port such a transformation:
• create a class for each feature model of a composition of SPLs

and
• create a hierarchy of subclasses to represent staged configura-

tion.
Resulting classes that represent SPLs or specialized versions of an
SPL can be linked to their feature model to support visualization,
e.g., using a feature diagram. Since there are a number of special
extensions to feature models, e.g., cardinality based feature models,
a mapping of these models has to be further analyzed. In this paper,
we have not clearly defined which types of constraints should be
supported. There are a number of approaches to define constraints
in domain models (e.g., [4, 7, 15, 1]) which should also be ap-
plicable to the presented instance model. Which approach is used,
however, is not important for the presented solution in general.
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Tool Support. Mapping domain models and instance models is
the basis for tools that support development of such models and
automates the configuration process. Further visualization support
is possible by mapping features to elements in the instance model
(conditional dependencies) using tools like FeatureMapper [9]. In
further work, we aim at developing an integration of existing tools
and an automated configuration process as part of FeatureIDE.1

FeatureIDE is a plug-in for the Eclipse IDE, used to support the
complete SPL development process. It is based on feature-oriented
programming and supports domain models in theguidslformat [1].

Configuration Generators. As an extension to this basic tool sup-
port we want to use the presented model to derive configuration
generators. These generators can be created by generating OO code
from the instance model as supported by current UML tools. The
model can be extended using an object-oriented language (e.g.,
Java) to include user-defined code. This code can include code spe-
cific to a composition technique and also code to interact with a
user in the configuration process. By using an OO language for
configuration we can directly access SPLs that are represented by
classes and make use of polymorphism and method overriding to
simplify SPL configuration. Execution of the resulting configura-
tion generator results in an interactive configuration process for the
composition of dependent SPLs.

Adaptation to the Environment. The presented approach can be
applied to systems developed as SPLs where the developer has ac-
cess to all subsystems (i.e., used SPLs) to configure them according
to the needs of the top-level SPL. However, an SPL also interacts
with its environment, i.e., the operating system, hardware, other
software, etc., which usually cannot be changed. An SPL also has
to be configured with respect to this external variability. Using the
presented model we can also representexternal SPLs(e.g., an op-
erating system SPL [16]) and create constraints between the SPL
of the problem domain and SPLs of the environment. These con-
straints have to ensure that the domain SPL configuration changes
according to the environment. Providing a configuration for exter-
nal SPLs as they appear in a concrete scenario (e.g., describing the
actually used hardware) results in an SPL configuration that auto-
matically adapts to this environment.

6. Related Work
There is a large amount of work addressing domain modeling and
dependencies between multiple SPLs. Cardinality-based feature
models with constraints were proposed by Czarnecki et al. [6, 12].
They allow a domain engineer to specify specializations and con-
straints in feature models where multiple selections of one feature
are possible. The usedfeature model references[6] and feature
cloning might be applicable for modeling product line instances;
however, it mixes (1) domain modeling with domain implementa-
tion of a product line (handling instances of other product lines,
etc.) and (2) does not provide means to create named instances of
used product lines which is needed for implementation. Application
product lines consuming different service-oriented product lines in
a SOA environment where described by Trujillo et al. [17]. Their
focus was on modeling the interfacing between SPLs in a service-
oriented environment. This includes service registration and ser-
vice consumption. Hence, their work is complementary to the pre-
sented approach and both might be combined in service-oriented
environments. An approach that integrates feature models of differ-
ent product lines was presented by Streitferdt et al. [16]. Their goal
is to derive the configuration of a hardware product line based on
the requirements of an SPL for embedded systems. The presented

1 http://wwwiti.cs.uni-magdeburg.de/itidb/research/featureide/

integration of multiple SPLs does not consider SPL instances or
instance constraints which were not needed in their context.

In contrast to these modeling approaches, we found that feature
models and dependencies between them are not sufficient to de-
scribe compositions of dependent SPLs where multiple instances of
the same SPL are used. As a solution, we propose a model that de-
scribes SPL instantiation and dependencies between SPL instances.
We see our approach as an extension of other product line model-
ing techniques and we think that their combination is needed to
completely describe complex product lines that are composed with
other product lines.

Product populations built from Koala components were de-
scribed by van Ommering [18]. Koala components can be recur-
sively built from smaller components leading to a set of complex
products which is similar to dependent product lines described
here. The focus of van Ommerings work was on interactions be-
tween components via interfaces using different connectors to
support flexible component composition. Interfaces between com-
ponents and their description, e.g., as defined in Koala, are also
needed for safe composition when using our approach. Hence, in
this respect the Koala approach is complementary to our work.
Furthermore, the goal of our work is to describe compositions of
SPLs independent of the implementation technique by focusing on
features and dependencies between SPLs. Koala components are
defined by composing smaller components at configuration time
which is in contrast to our work. We aim at defining compositions
of whole SPLs and not concrete components. That is, the compo-
sition of a concrete product (e.g., a component), built from other
products, automatically changes depending on a feature selection,
which is a modification of the composed architecture. This is dif-
ferent from manual composition of components to derive a larger
component or a concrete product.

Fries et al. presented an approach to model SPL compositions
for embedded systems [8]. They usefeature configurationswhich
are a selection of configured features to describe a group of in-
stances that share this feature selection. Hence, feature configura-
tions are similar to specialized SPLs in staged configuration; how-
ever, they do not allow a user to describe multiple configuration
steps or sub-typing between specialized variants. A composition
model described by Fries et al. is defined for a complete composi-
tion of product line instances. Our approach uses an instance model
that is part of a product line and defines a composition of related
SPLs. Each referenced SPL itself has its own instance model defin-
ing other SPLs it is composed from. Hence, we define the compo-
sition for each SPL separately which eases reuse of instance mod-
els. Furthermore, we map features to referenced SPLs and SPL in-
stances and combine instance and feature models of multiple SPLs
only when this is needed, i.e., when a feature that references an-
other SPL is selected. This avoids any evaluation of composition
rules of product lines that are not used.

Tools likepure::variants2 andGears3 allow a domain engineer
to build feature models and also to describe dependencies among
them. Both tools support modeling of dependencies between prod-
uct lines and Gears explicitly supports nested product lines that can
be reused between different product lines.guidslis a tool to specify
composition constraints for feature models using a grammar [1]. It
provides means to check models and interactively derive a config-
uration for a feature model.

Batory et al. have shown that SPL development using layered
designs scales toproduct lines of program families. The focus of
their work was on generating families of programs from a single
code base and reasoning about program families. The work does

2 http://www.pure-systems.com
3 http://www.biglever.com
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not address relations between different product lines developed
independently or between instances of such product lines.

7. Conclusion
Compositions of SPLs are used to structure and decompose large
SPLs and also to reuse SPLs within other SPLs. Current feature
models can be used to describe such compositions only if an SPL
uses one instance of other SPLs. This is not sufficient if multiple
instances of the same SPL are used in a larger SPL.

We presented an approach based on class diagrams and OOP
that extends domain modeling. We provide means to model SPLs,
SPL instances, their relationships, and constraints between them. In
our model,nestedor hierarchicalSPLs, where only one instance of
each involved SPL is used, are included as a special case. The pre-
sented model describes the high-level architecture of compositions
of SPLs and their dependencies. We propose to use it to comple-
ment domain modeling and integrate it into the SPL development
process if multiple SPLs are involved. We showed how conditional
dependencies can be handled by using constraints that map fea-
tures of an SPL to referenced instances of other SPLs. This serves
a better understanding of compositions of dependent SPLs (e.g.,
supported by advanced visualization techniques) and can be used
to automate the configuration process of a whole SPL composition
scenario.
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Abstract

The combination of generative programming and com-
ponent engineering applied to software product line en-
gineering (SPLE) has focused thus far mostly on static
systems (as previous editions of AOPLE indicate), with
variability that is bound once. Meanwhile, an emergent
paradigm in software engineering deals with self-adaptive
and dynamic systems. While there is a well-known and
agreed SPLE process for static systems, there has been less
focus on dynamically adaptive systems. As such it appears
imperative to include it in an extended research agenda.

In the present paper we observe limitations related to
domain engineering in SPLE and identify what fundamen-
tal concepts, such as context and binding time, must be re-
tought in order to achieve SPLE for dynamically adaptive
systems. The main contribution of this paper is a set of
research questions, aimed at defining a common research
agenda for addressing these limitations.

1 Introduction

As previous editions of the AOPLE workshop indicate,
the combination of generative programming and component
engineering applied to software product line engineering
(SPLE) has focused thus far mostly on systems with static
variability binding. Meanwhile, an emergent paradigm
in software engineering deals with self-adaptive systems
(viz. SEAMS workshop at ICSE, or DSPL at SPLC). Self-
adaptive systems are systems that are able to autonomously
adapt to changing circumstances without human interven-
tion, or, in other words, systems that are able to cope with

∗FNRS Research Fellow.
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Fig. 1. Autonomic control loop.

and dynamics of modern network scenarios. The ultimate vision of autonomic
communication research is that of a networked world in which networks and
associated devices and services will be able to work in a totally unsupervised
manner, able to self-configure, self-monitor, self-adapt, and self-heal—the so-
called self-∗ properties. On the one hand, this will deliver networks capable of
adapting their behaviors dynamically to meet the changing specific needs of
individual users; on the other, it will dramatically decrease the complexity and
associated costs currently involved in the effective and reliable deployment of
networks and communication services.

Despite their evident similarities, there are significant differences between
autonomic computing and communication. While autonomic communication
is more oriented towards distributed systems and services and to the man-
agement of network resources at both the infrastructure and the user levels
[Quitadamo and Zambonelli 2007], autonomic computing is more directly ori-
ented towards application software and management of computing resources.
Nevertheless, both research areas recognize that traditional software systems
are facing a decreasing incremental benefit from technological advances (pow-
erful CPUs, large memories, and so forth) because the complexities of develop-
ment and management are overwhelming the technical gains. Accordingly, the
twin visions of autonomic communications and computing are aligned in iden-
tifying the need for decentralized algorithms and control, context-awareness,
novel programming paradigms, end-to-end privacy management, and compre-
hensive evaluation in order to deliver the desired self-∗ properties.

In the communications arena, the traditional architecture of control and data
planes has been expanded in a number of ways. Clark’s influential vision of a
knowledge plane [Clark et al. 2003] provides architectural support for integrat-
ing low-level (transport and network) knowledge with higher-level applications

ACM Transactions on Autonomous and Adaptive Systems, Vol. 1, No. 2, December 2006.

Figure 1. Typical control loop (from [6])

dynamic variability. To support dynamic variability, a self-
adaptive system typically implements a control loop that
consists of monitoring the application and its context, an-
alyzing the situation, planning and executing any required
adaptations (as depicted in Figure 1).

System-specific adaptation knowledge is used to specify
when, where and how to adapt the system. This adapta-
tion knowledge is typically specified by developers as adap-
tation rules following the well-known Event-Condition-
Action format. For example, the Rainbow framework from
Garlan et al. [8] allows to express rules like “when the re-
sponse time observed by a client exceeds a well-defined
threshold, and the server is overloaded, then migrate the
client to a less loaded server”. The control loop of a self-
adaptive system is thus basically programmed as a set of
such adaptation rules. Depending on the application re-
quirements, the realization of these dynamic adaptations
may be complex, and the number of adaptations may be-
come unwieldy and therefore difficult to manage. On the

19



other hand, reuse of this system-specific adaptation knowl-
edge across a family of related self-adaptive systems is pos-
sible and desirable [8].

While there is a well-known SPLE approach for static
systems [19], there has been less focus on self-adaptive sys-
tems. Yet, it would be desirable to at least apply a domain
engineering approach that focuses at the analysis and design
of reusable adaptions. However, the engineering process to
come to generic adaptations that are reusable across mul-
tiple applications is far from trivial. We believe the main
reason is that there has been not much support for explicitly
capturing context-dependent dynamism in variability mod-
els such as Feature Diagrams (FDs) [16]. Albeit more re-
cent work on variability models acknowledges the concept
of dynamic variability in SPLE, e.g. [18], key concepts in
SPLE, such as context and binding time, are not well under-
stood in the light of self-adaptive systems. This limits the
applicability of current SPLE approaches in real adaptive
scenarios.

For the purpose of this paper, we stick to the definition of
context as any piece of information which is computation-
ally accessible [11], and binding time as the time at which
the system is bound to a particular variant [24]. With static
binding we refer to the binding to a variant prior to the us-
age of the system, while dynamic binding is considered to
be the binding that occurs during runtime [23].

The goal of the present paper is to take the first steps
towards an extended research agenda including modelling
dynamic variability as part of the domain engineering phase
of SPLE: what are the most challenging problems concern-
ing modelling dynamic variability and the fundamental con-
cepts of context and binding time, and how these issues
affect the research community. In this regard, we list six
common research questions aimed at defining a common
research agenda for tackling these problems with domain
engineering (issues with application engineering are out of
the scope of this paper). This set of questions originated
from three distinct research cases that motivate the differ-
ent issues related to modelling dynamic variability in self-
adaptive SPLs. Most of this research is actually carried out
in the context of the Belgian MoVES project,1 fostering the
collaboration among different Belgian universities.

The paper is structured as follows. Section 2 presents
three different cases that each raise several issues w.r.t.
modelling dynamic variability. From these separate ac-
counts, we formulate common research questions in Sec-
tion 3, which are used to bootstrap a first high-level research
agenda in Section 4. Section 5 introduces related work and
confronts it to our research questions. We conclude the pa-
per in Section 6.

1More information at http://prog.vub.ac.be/moves

2 Motivating scenarios

We now elaborate on three different motivating scenarios
that prove the lack of support for modelling dynamic vari-
ability in adaptive SPLs. In each motivating scenario, we
discuss the issues that were experienced when performing a
concrete case study as part of our research: context-aware
cellphone systems, a web-based e-government application
and runtime interactions in domotics systems respectively.

2.1 Context-aware cellphone systems

2.1.1 Overview

Currently, there is little explicit support for context aware-
ness in traditional software engineering techniques and
tools, which makes the development of these applications
even more complex. We introduce an intelligent cell phone
as an illustration of a context-aware system. Whereas tra-
ditionally a cell phone’s action (e.g. to receive or to make
a call) typically corresponds to a single behaviour, context-
aware cell phones aim to have multiple behavioural varia-
tions associated to a single action. The choice of the ap-
propriate variation is determined by the use context of the
system. For instance, context-dependent variations can look
as follows: if the battery level is low, ignore all phone calls
except for contacts classified as VIP; if the user is in a meet-
ing, redirect all calls and messages to the secretary; if there
is a WiFi connection available, try to make phone calls or
send messages via VoIP since this is cheaper for the user; if
there is a GPRS connection available, try to send messages
using TCP/IP also since this is cheaper.

2.1.2 Current achievements

In [5], we proposed the Context-Oriented Domain Analy-
sis (CODA) model as a specialised approach for analysing,
structuring, and formalising context-aware software re-
quirements. In this work we identify a number of rela-
tionships that may exist among context-dependent adapta-
tions. A context-dependent adaptation can include another
adaptation which means that the applicability of the sec-
ond adaptation is verified only if the first one is activated.
Next, a context-dependent adaptation can conditionally de-
pend on another adaptation. In this case, the applicability
of the second adaptation depends on the result of the first
adaptation, yielding a sequential execution. We finally in-
troduce the notion of a choice point which is a variation
point or context-dependent adaptation which has multiple
adaptations associated to it. Optionally, one can associate
a resolution strategy to deal with semantically interacting
adaptations.

The CODA model proposes a solution that considerably
differs from the existing design and programming tech-
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niques to model runtime variations such as if-statements,
polymorphism or design patterns. Using such techniques
for context-awareness would lead to cluttered implemen-
tations (due to scattered context-dependent if-statements),
combinatorial explosion of class definitions (when using
polymorphism to model all the possible adaptations to the
context), or to considerable infrastructural overhead (when
using design patterns). By separating the system’s de-
fault behaviour from the behavioural variations, the CODA
model enables to make a clear distinction between the tasks
of context reasoning, and dynamic binding of the variations.

2.1.3 Open research issues

Although the CODA model can help in tackling some of the
challenges for modelling context-aware software, a number
of challenging issues needs to be further explored.

In our approach, we assume that context-dependent vari-
ations primarily occur while the program is running. This
approach gives the highest dynamicity but rises the issue
on how requests that are currently being processed should
be affected by the dynamic software update. A more ex-
haustive analysis should be done to determine what exactly
should occur at runtime (context acquisition, context rea-
soning, variation binding, etc.) and what can be derived to
earlier stages of the software development. The decision
as to when the behaviour should vary has an impact on the
design of the system (use of dedicated design patterns to
achieve variability) and the choice of technology (imple-
mentation platform, programming language paradigm, exe-
cution environment).

Experience has pointed out that the evolution of relation-
ships among context-dependent adaptations in the CODA
model is error-prone since contradictions and cases of
under-specification might seep into the specifications. This
is mainly caused by the fact that a new adaptation can pos-
sibly interact with all existing adaptations in the system.
Nevertheless, the solution for this issue is not to add extra
information to the CODA diagram as this can dramatically
diminish its understandability.

2.2 Web based eGovernment application

2.2.1 Overview

PloneGov is an open source project fostering the develop-
ment of web based eGovernment applications and gathering
around 55 international public organizations into 19 prod-
ucts [1]. All these products promote the cooperative de-
velopment of applications and web sites targeted to pub-
lic organizations and their citizens. The worldwide scope
of PloneGov yields specific legal, social, political or lin-
guistic aspects to deal with. All constrain the features re-
quired from a given product, hence the need for flexibil-

ity regarding product derivation. For now, we focus on
one of PloneGov’s products, namely PloneMeeting, a Bel-
gian government-initiated project offering advanced meet-
ing management functionalities to national authorities.

Central to PloneMeeting is the concept of meeting itself.
The allowed states of a meeting are defined according to a
workflow, which can be changed in the configuration. There
is, however, no restriction as of when such changes may be
made, e.g. installation time or runtime. Yet, changing the
workflow at runtime might result in an inconsistent system
since the states of already existing meetings might not be
compatible with those of the newly selected workflow.

The Plone internationalisation initiative intends to pro-
vide a flexible mechanism to manage language selection
and display. The so-called PlacelessTranslationService
(PTS) is Plone’s built-in translation management service.
The PTS uses the language of the web browser to automat-
ically determine the display language of the pages.

2.2.2 Current achievements

In previous work [4], we introduced the idea of using SPL
principles to engineer the PloneGov project. Our conclu-
sion showed a number of organisational and technical prob-
lems that had to be tackled. such as handling the distributed
developers and managing the already existing variability.

In [14], we focused on the identification and modelling
of the variability in PloneMeeting. Since no variability
model formerly existed, the variation points had to be re-
verse engineered from stakeholders, developers and exist-
ing artefacts to enable the re-engineering of configurable
artefacts. We therefore defined a reverse engineering pro-
cess taking these various information sources as input and
producing separate FDs for the different concerns we iden-
tified.

The most significant results we obtained so far are four
modelling challenges identified during the variability re-
verse engineering of PloneMeeting [13]. The first one refers
to the implicit modelling viewpoint underlying the variabil-
ity modelling. The second one discusses the modelling
of contextual elements whose availability is unpredictable.
The third one focuses on the consistency between the FD
and its constraints as they both evolve over time. The fourth
one addresses the representation of large sets of features in
a FD. The workarounds we proposed to tackle these issues
still have to be systematically applied to concrete cases and
properly assessed.

2.2.3 Open research issues

Apart from the workflow selection and browser-dependent
translation aspect of Plone, the dynamic side of PloneMeet-
ing has been disregarded is recent work. Although being
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a rather static application, PloneMeeting still exhibits some
dynamic, typically runtime, configuration alternatives.

As the language selection scenario shows, the changing
environment requires some extra flexibility from the sys-
tem to keep it displaying pages flawlessly. Since each web
browser encodes the language differently, elicitating, scop-
ing and modelling this contextual information is our first
issue. Secondly, a recurrent issue was the classification of
binding times and the identification of the proper time gran-
ularity. Although extensively covered in mainstream liter-
ature [12], solutions to these issues are still fragmentary.
Thirdly, a more practical research issue was the selection
of the most suitable means to identify and mark dynami-
cally configurable variation points. Finally, we struggled
to express runtime constraints conditioning the evolution
of product configurations. Further investigations will tell
whether existing solutions are comprehensive enough.

2.3 Runtime interactions in domotics sys-
tems

2.3.1 Overview

Domotics systems typically combine a wide range of fea-
tures in the area of home control, home security, communi-
cations, personal information, health, etc. We will motivate
the relevance of runtime context information when mod-
elling interactions by exploring two scenario’s for protect-
ing the housing environment. The first scenario concerns
a fire control feature that turns on some sprinklers during
a fire and a flood control feature which shuts off the water
main to the home during a flood. Turning the sprinklers on
during a fire and flooding the basement before the fire is un-
der control results in the house further burning down. The
second scenario involves a presence simulation feature that
turns lights on and off to simulate the presence of the house
occupants and a doorkeeper feature which controls the ac-
cess to the house and allows occupants to talk to the visitor.
Obviously, we would like the doorkeeper not to give away
the fact that nobody is home if there is an unidentified per-
son in front of the door in order to prevent the house owners
from a burglary. However, if the person can be identified
and trusted, there aren’t any problems. Both the basement
being flooded and the fact if a person can be identified or
not are conditions that are only available at runtime.

2.3.2 Current achievements

Domotics systems already have been introduced in a prod-
uct line context elsewhere by Kang et al. [17]. What is
missing in their FDs is that the dependencies and other re-
lationships between features cannot be expressed in terms
of runtime context information. As a result, runtime be-
havioural feature interactions (FIs) caused by runtime vari-

ability cannot be modelled. A behavioural FI is a situation
where a feature that works correctly in isolation does not
work correctly anymore when it is combined with other fea-
tures. The fact that an interaction only might or might not
occur depending on the runtime context at hand makes it a
runtime behavioural FI.

In previous work [20], we proposed a conceptual model
to enable the management of interactions so that knowl-
edge about interactions can be shared and used in the course
of system evolution. An important part of the conceptual
model consisted of a concern hierarchy that resembles the
feature hierarchy in FDs. In this model, we already intro-
duced the notion of a condition to take into account certain
runtime circumstances. A shortcoming of current FD ap-
proaches is the lack of support for modelling exactly this
runtime context information. To the best of our knowledge,
no appropriate formalism or methodology exists to reify in-
formation about runtime behavioural FIs, reason about them
and enforce resolutions. A number of extensions to FODA
have been proposed to express more complex feature rela-
tions, e.g. using propositional logic. However, we are not
convinced that propositional logic can distinguish between
all possible interpretations of runtime behavioural FIs. In
[21], we argument for instance that traditional logic is not
suited to represent the fire and flood control FI.

It is also important to realise that traditionally used
mechanisms, such as e.g. prioritisation, are not always fea-
sible for representing runtime behavioural FIs. Next to the
fact that an interaction between two features with the same
priority cannot be resolved, the relative priority of two fea-
tures to one another can be different in varying circum-
stances. The latter is illustrated by the second domotics sce-
nario from above where everything depends on the result of
identifying the visitor.

2.3.3 Open research issues

Based on this need for modelling runtime context informa-
tion relevant for FIs, we can identify the following open
research issues. First of all, although it is easy to come up
with the relevant context information for particular FIs, an-
swering the question what context to model is a non-trivial
problem. Secondly, we need to decide on how to model
runtime context information. Coming up with a widely ap-
plicable methodology for modelling runtime context infor-
mation poses an interesting challenge. One of the usual sus-
pects here are propositional logic, but are these sufficient to
express the possibly complex relationships including run-
time context information? Moreover, it is not clear how we
can express more complex interactions involving more than
two features. Finally, we need to ask ourselves if this run-
time context information should be part of the FD itself or
should be specified in a separate, dedicated modelling lan-
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guage, complementary to the FD. In the latter case, an ob-
vious need arises for traceability links between the different
models. For now, we want to leave this open for discussion
(cfr. RQ2). Either way, we are convinced that this kind of
knowledge is an important form of information that can be
(re)used to manage runtime variability and therefore should
be modelled.

3 Common research questions

After having presented three distinct cases, each of
which identifies different modelling problems, we will de-
rive from them a number of crosscutting research questions.
The goal of the present section is thus to formulate a com-
mon research focus for the coauthors of this paper.

RQ1: How to determine what context drives dynamic
change? To the best of our knowledge, there is currently no
methodological support to determine which are the context
variables that will have an influence on dynamic change and
to determine the course of action to deal with a change of
these context variables. For instance, in case of the mo-
bile phone example (Section 2.1), the decision of whether
the low battery level is a trigger for forwarding phone calls
could reasonably be made by a project manager or devel-
oper. The decision that VIP phone calls should be able
to circumvent this, however, needs to be taken on a higher
level (it requires an infrastructure that lets users decide who
VIPs are). Furthermore, the need for additional context in-
formation might emerge from the combination of several
features, as shown by the presence simulation and door-
keeper features in the domotics example (Section 2.3).

Such a methodology could be inspired, for instance, by
Kang et al. FODA’s context analysis [16]. It could also be
based on the Problem Frames approach [15], which aims
at identifying physical context given a requirement, or the
KAOS method [25] whose goal is to elicit requirements
based on high-level goals. The output of this methodology
would be (i) a set of relevant context info specifying what
elements in the environment of the system are relevant, (ii)
constraints specifying when adaptations must be performed
(due to changes in the context), (iii) concrete actions speci-
fying what adaptations must be taken (to deal with the con-
textual changes).

RQ2: How to explicitly model context-dependent
adaptations and how to compose it with the FD? Part of
this question is whether or not the context information and
adaptation knowledge uncovered in the methodology needs
to be incorporated into the FD. In the case of CODA, for
instance, it appears that including all context information in
the FD leads to a highly complex and unwieldy diagram. A
more scalable approach might be to model this kind of in-
formation in separate diagrams and to trace them to the fea-
tures that are concerned. At the same time, it might appear

natural to consider environment variables such as battery
level low in the FD.

RQ3: How do non-functional concerns constrain the
execution of context-dependent adaptations? Perform-
ing dynamic adaptations should preserve the non-functional
properties of the system. For instance, in the event of a
dynamic change, the structural integrity and global state-
consistency of the system have to be ensured. Other non-
functional properties of interest are reliability, correctness
or efficiency. In the scenario of PloneMeeting, for instance,
an issue is how to reliably change a running workflow. In
this case, we need to specify when it is safe to change
a workflow so that it remains compatible with the work-
flows of already existing meetings. In the scenario of the
context-aware cellphone, several variations may apply for
the context conditions in which the phone calls are received
or made, and therefore a correct integration between the
variations and the cellphone’s base behaviour should be en-
sured. Other type of constraints involve taking into account
the dependencies and conflicts between different context-
dependent adaptations

RQ4: How to specify constraints in order to avoid
under-specification? Given constraints (e.g. binding time
and runtime behavioural interaction constraints) have to be
expressed and formalised in some way. Take, for instance,
the interaction between the fire control and flood control
features in the domotics system. With current constraint
languages for FDs, we found it hard to express this kind of
constraint in order to capture it and/or process it later. It
is difficult to capture all possible context combinations in a
generic way (instead of enumerating all context combina-
tions) or referring to context information at all.

RQ5: How to map domain models to
implementation-specific elements? Given a suitable
notation for expressing constraints (see RQ2 & RQ3),
these constraints are ideally expressed at a level that makes
abstraction of specific context info related to a particular
implementation technology. For example, in the case of
PloneGov (Section 2.2), there are many different ways in
which a browser communicates the user language to the
web server. At the level of domain analysis and domain
design, however, one would like to identify and reason
about the desired user language as a context element that
is independent from the particular implementation technol-
ogy. Yet during domain implementation, a specification
is needed that maps this abstract context element to the
appropriate browser-specific information.

RQ6: How to classify context-dependent adaptations
according to their context and binding-time? As our
three cases from above already indicate, there is seem-
ingly no consensus as to what different types of context-
dependent adaptations can be supported by a self-adaptive
SPL. One of the key issues here is that the relation between
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the three concepts, that are at the heart of what we call self-
adaptive SPLs, namely “dynamism”, context and binding
time is not clear. And so, it seems imperative at some point
to classify the different types of adaptation, primarily, by
their suitable binding times and contexts.

4 Towards a research agenda

Having stated the research questions, let us examine how
they affect the classical SPLE process by Pohl et al. [19].
This leads us to a more concrete research agenda. The well-
accepted SPLE process, consists of a domain engineering
and an application engineering phase. In the domain en-
gineering phase, the scope of the product line is decided,
and a set of customisable components developed. The ap-
plication engineering phase exists for each product that is
to be delivered. Following a requirement analysis, it starts
by configuring the product, i.e. deciding what goes into the
product, and ends with integrating and testing it.

By mapping the research questions to the SPLE process,
we are able to identify a set of concrete objectives that must
be achieved in order to realise a suitable SPLE approach
for self-adaptive systems. Before we proceed, note that an
SPLE approach for self-adaptive systems is defined as an
extension and not as a replacement of a classical SPLE ap-
proach. For example the design of reusable components that
make up the technical infrastructure of self-adaptive system
(sensors, effectors, monitors, planners,..) remains largely
the same. The extension that a self-adaptive SPLE approach
brings focuses mostly on the domain engineering of the con-
trol loop in a family of self-adaptive systems:

RQ1 To implement RQ1, one would need to extend the do-
main engineering phase by (i) a context scoping activ-
ity, that decides what part of the context must be mon-
itored; and by (ii) a context modelling activity that ex-
plicitly captures the essence of the context-dependent
adaptations in a model, so that it can be referred to.

RQ2 Complementary to RQ1, addressing RQ2 would lead
to a scalable structure for relating the context-
dependent adaptation knowledge to standard feature
models.

RQ3 Addressing RQ3 would involve a quality attribute
analysis [2] to determine the important non-functional
requirements (performance, reliability, ...) and to iden-
tify reconfiguration tactics that aim at preserving these
quality attributes in the presence of dynamic adapta-
tions.

RQ4 We expect that the outcome of RQ4 will lead to the se-
lection or the improvement of existing modelling and
constraint languages supporting constraint specifica-
tion at the different stages of the context modelling and
integration process.

RQ5 In order to address RQ5, a translation infrastructure
is necessary that bridges the gap between the concepts
of the context models elicited during analysis, and the
concrete artefacts of the implementation. Generally
speaking, this translation infrastructure involves the
mapping from the context models to system-specific
sensors and actuators, but also involves connecting
context elements to specific state properties of soft-
ware components.

RQ6 This RQ is rather of conceptual nature, we hope that
it will lead to a better understanding of key concepts
and to a clearer terminology. It thus affects the whole
SPLE process, albeit indirectly.

The application engineering process also needs to be
extended with activities involving the analysis of required
context-dependent adaptations and the configuration, inte-
gration and testing of these adaptations into a fully opera-
tional control loop. But as stated in the introduction, this pa-
per has focused mostly on domain engineering, and leaves
the study of issues with application engineering for future
work.

5 Related work

Cheng et al. [3] propose a research roadmap focusing
on the requirements, modelling, engineering and assurance
activities of self-adaptive systems. For each of them, the in-
adequacy of existing techniques to support the development
of reliable self-adaptive systems and the challenges ahead
are systematically formulated. Out of their study, they no-
tably conclude that the design time and runtime processes
can no longer be dealt with separately and advocate SPLE
as a possible opportunity to drive the development of self-
adaptive systems. All the research questions we set forth
go along the same line of research by further precising the
issues self-adaptivity raises in SPLE.

Fernandes et al. [7] present UbiFEX, a modelling nota-
tion extending existing feature diagram languages with con-
textual information. The general feature model generated
with UbiFEX is composed of a feature model, a context
feature model with the associated activation expressions,
and context rules binding the context and feature models to-
gether. UbiFEX also comes with a simulation tool checking
the consistency of the produced models.

Desmet et al. [5], propose the Context-Oriented Domain
Analysis (CODA) which is heavily inspired by the origi-
nal Feature-Oriented Domain Analysis (FODA) [16] used
in product-line development. It enforces software engineers
to think of context-aware systems as pieces of basic context-
unaware behaviour which can be further refined by means
of context-dependent adaptations at certain variation points.
A context-dependent adaptation is a unit of behaviour that
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adapts a subpart of a software system only if a certain con-
text condition is satisfied. Both this work and the one from
Fernandes et al. should provide valuable solution elements
to RQ2 and RQ3.

Hartmann et al. [10] introduce context variability mod-
els (CVM) to represent high-level context information of
software supply chains. A CVM is a general classifier
of the context of products that is expressed in a FODA
like notation. The combination of the CVM and the SPL
feature model results in a Multiple Product Line Feature
Model where the dependencies between both models are
expressed with requires and excludes links. They do
not explicitly present their work as suited to self-adaptive
or dynamic systems. Once adopted, the context configura-
tion choices are immutable and do not lead to self-adaptive
behaviours. Conversely, Desmet et al. and Hartmann et
al. [7, 10] consider the dynamic evolution of the context and
its impact on the model. The relevance of this work to our
current research will therefore require further evaluations.

Lee et al. [18] propose an approach grouping features in
binding units which are assigned binding times and binding
states used to constrain the SPL configuration in a dynamic
context. Their framework also provides a product reconfig-
uration process encompassing a context analysis, a recon-
figuration strategy selection and a reconfiguration imple-
mentation phase. Their solution might notably offer means
to clarify the issues outlined in RQ6.

Gomaa et al. [9] present a solution based on reconfigura-
tion patterns for dynamic reconfiguration of software prod-
uct families. Their reconfiguration patterns are based on
UML collaboration and state diagrams. They focus on com-
ponents and do not model contextual information nor pro-
vide explicit links with variability models. Nevertheless,
their approach might be part of a solution to RQ5.

In contrast, Schmid et al. [22] propose a taxonomy of
issues that can arise when migrating a system from devel-
opment time (static) to runtime (dynamic) variability. They
analyse the impact of dynamicity on the input of the pro-
cesses, the processes themselves and the output of the pro-
cesses, and delineate the required capabilities of the code
base for each of them. Such a taxonomy might help us in-
vestigating solutions to RQ5.

Although promising, these solutions still call for system-
atic assessments and need to be augmented with thorough
guidelines covering the steps going from the context scop-
ing down to the implementation of self-adaptive SPLs. We
hope the outcome of this analysis will generate meaningful
results that will help us answering RQ1 and RQ4.

Finally, different research projects indicate the relevance
of defining a roadmap when it comes to investigating dy-
namic variability. DiVA2 will combine aspect-oriented and
model-driven techniques in an innovative way to provide a

2www.ict-diva.eu

new tool-supported methodology with an integrated frame-
work for managing dynamic variability in adaptive systems.
Their basic idea is to use models at both the design time and
runtime level to manage dynamic variability in combination
with aspect-oriented modeling techniques in order to tackle
the issue of the combinatorial explosion of variants. Model-
driven techniques are then used to automate and improve the
creation of (re)configuration logic. The MUSIC project3 is a
European project intending to offer an open platform for the
development of self-adaptive mobile applications. Among
the expected results of this project are a methodology, tools
and a middleware suited for software developers. MUSIC
builds further on the results of the MADAM project4 in
which adaptation requirements of mobile applications were
studied and a theory of adaptation was developed. A set of
reusable adaptation strategies and adaptation mechanisms,
based on dynamically reconfigurable component architec-
ture was one of their main results. Compared to DiVA, the
main variability mechanism in these two projects consists
in loading different implementations for each component
type of the architecture. The idea of the AMPLE project5

is to holistically treat variability at each lifecycle stage by
combining aspect-orientation and model-driven techniques
(similar to DiVA). Obviously, different implementation pos-
sibilities exist for binding variation points in various devel-
opment stages, e.g. at design, development, deployment or
even at runtime. Implementation artefacts will not only in-
clude traditional program code but also runtime configura-
tion and domain specific languages. Therefore, one of the
most promising results will be AMPLE’s variability frame-
work with integrated tool support for each lifecycle stage.
The careful study of the ongoing research in these projects
appears to be imperative to evaluate the sustainability of the
coming results of our research.

6 Conclusion

SPLE process support for dynamically adaptive sys-
tems is fragmented, although a well-known SPLE pro-
cess for static systems already exists. Therefore, the main
contribution of this paper is our list of six common re-
search questions indicating limitations we observed related
to modelling variability in self-adaptive SPLs and identify-
ing the need for clarification of fundamental concepts such
as context and binding time. Starting from this set of re-
search questions, we defined a high-level research agenda
in which we discuss the needed enhancements to the tradi-
tional SPLE process in order to achieve SPLE for dynami-
cally adaptive systems.

3www.ist-music.eu/MUSIC/about-music
4www.ist-music.eu/MUSIC/madam-project
5ample.holos.pt
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ABSTRACT
Features are distinguishable characteristics of a system rele-
vant to some stakeholder. A product line is a set of products
that differ in terms of features. Features do not have first-
class status in contemporary programming languages (PLs).
We argue that various problems related to features are a re-
sult of this abstraction and representation mismatch and that
features should be elevated to a first-class status. We propose
an extension to Java that implements features as first-class
entities. We give examples of the syntax and semantics of
this extension and explain how the new representation can
handle features better.

General Terms
Languages, Design

Keywords
Feature-Oriented Programming, JastAdd, Separation
of Concerns

1. INTRODUCTION
Separation of concerns is one of the most important

principles in software engineering [16]. Abstractions like
features and classes are viewed as dimensions in concern
space [36]. Separation of concerns means decomposing
software into manageable pieces along a dimension in
concern space. It consists of identification, encapsula-
tion, and integration. Identification means a software is
decomposed into entities that represent the abstraction,
e.g., classes and features, encapsulation means some
mechanism is provided so that these entities can be
manipulated as a first-class entities [32], and integra-
tion means that some composition mechanism is pro-
vided that integrates concerns represented as first-class
entities[36]. The first-class status of an entity in a pro-
gramming language (PL) indicates the degree to which
one can address or manipulate concepts in a given do-
main arranged along the dimensions of a concern space

and the ease with which this is made possible in a given
PL [32].

A feature is defined as an end-user-visible character-
istic of a system, or a distinguishable characteristic of
a concept (system, component, and so on) that is rel-
evant to some stakeholder [14]. A product line con-
tains different products that vary in features. Conse-
quently, features are used to understand the common-
alities (shared features) and variabilities (optional or
unshared features) between the products of a product
line.

Many technologies have been used to implement fea-
tures [3, 4, 9, 28, 31, 38]. The main kind of concern
supported by them is one of functions, classes, aspects,
hyperslices, mixins, and frames, etc. Features, which
are themselves a kind of concern, are essentially im-
plemented in terms of entities that basically represent
some other kind of concern. Instead of thinking only
about features, the developer has to organize them in
terms of the modular structure of the approach he is
using and see to it that the intent of features is pre-
cisely represented by the entities in this approach. We
take the position that this abstraction and representa-
tion mismatch causes problems [26, 29] such as, e.g.,
hierarchical misalignments, limitations in feature com-
position and order, and inexpressive program deltas,
etc. Our claim is that such problems can be addressed
and various possibilities for features can be achieved
more easily if features were represented not in terms of
other entities, but as first-class entities themselves.

In this position paper, we propose to represent fea-
tures as first-class entities. We discuss what it means
when certain programmatic entities have first-class sta-
tus in a given PL. We review various feature implemen-
tation approaches and enumerate related problems. We
argue that these problems arise due to an inadequate
representation of features. We put forward an agenda
that establishes features as first-class entities. Finally,
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we propose an implementation of the extension and dis-
cuss how features implemented as first-class entities can
be used to address the problems.

2. BACKGROUND

2.1 First-class Entities in PLs
There is no specific definition for first-class status of

entities in a given PL. Certain properties have been ob-
served that indicate a first-class status of a given pro-
grammatic entity [13, 35]. We deem the following five
properties as the defining properties that must be ex-
hibited by entities in a given PL to be called first-class
entities.

1. First-class entities can be instantiated at compile-
time or run-time and possibly other stages of pro-
gram execution.

2. First-class entities can be stored in variables and
data structures.

3. First-class entities can be statically or dynami-
cally typed, thus allowing compile-time or run-
time structural manipulation.

4. First-class entities can be passed as parameters to
other program elements such as methods and re-
turned from methods.

5. First-class entities can be part of various expres-
sions and statements in this PL, giving a program
developer ample options to represent his intent in
representing the problem domain.

Various PLs that claim first-class status for a kind
of concern, support different subsets of these properties
differing in their semantic treatment. The degree of
manipulation of first-class entities may depend on the
kind of typing and the kind of composition supported
by given PLs. Runtime manipulation of such entities
creates new possibilities. In this case, such entities can
have identity and be aware of other entities of the same
kind. This makes it possible to represent and manip-
ulate interactions among these entities more naturally.
Also, such entities can store context and be aware of
the state of a program, thus making possible changes at
wider range of stages in the program. These two prop-
erties are indicative of reflective and meta programming
support for the first-class entities. They depend on the
reflection and meta programming support of a given PL
and may increase the degree of manipulation substan-
tially for the first-class entities.

2.2 Features
In feature-oriented domain analysis (FODA) [22], fea-

tures are organized in feature diagrams. A feature di-
agram is a tree with the root representing a concept

and its descendant nodes being features. These features
can be mandatory, optional, or alternative. Feature-
oriented decomposition is a feature modeling activity
used to capture commonalities and variabilities in terms
of features, of systems in a domain [14]. It is used to
model a domain in terms of features from the ground
up. Feature-oriented refactoring is the process of de-
composing an already existing system to a system ex-
posing features [25].

2.3 Feature Implementations
Features as a programming model was first conceived

by Prehofer [33], citing the rationale behind using fea-
tures to be the flexible composition of objects possible
from a set of features. The implementation technique
for FODA is broadly referred to as feature-oriented pro-
gramming [9, 10], but as asserted earlier, there are many
ways in which features can be implemented. Kästner et
al. [24] distinguish between compositional and anno-
tative approaches. The same distinction can also be
applied to various feature implementation approaches.
Compositional approaches for implementing features
represent features as distinct modules, which are com-
posed at compile time or deployment time or similar.
Examples of compositional approaches are mixin layers
[5], HyperJ hyperslices [32], and Scala traits [31]. The
ifdef statements in C, frames in XVCL [38] and color
annotations in CIDE [38] are, on the other hand, exam-
ples of annotative approaches. Annotative approaches
implement features by identifying code belonging to a
feature in the source and annotating it, so that vari-
ants may be created by including or removing annotated
code from the source [24].

The compositional approaches generally allow
coarse-grained refinements to programs due to the fact
that naming schemes of container entities such as classes
and methods are required to be kept invariant as they
are used in identifying parts of the program to which
refinement must be applied. They are not suitable for
fine-grained refinements in which order of statements
or expressions added by features needs to be controlled
[24]. Fine-grained refinements are possible with the
annotative approaches. Annotative approaches allow
refinements of arbitrary granularity since the impor-
tant concerns of compositional approaches like naming
schemes and order of composed code do not matter as
all code fragments belonging to features are at their fi-
nal position and only need to be annotated [24].

We propose that, by using a combination of composi-
tional and annotative approaches, we can create a bet-
ter representation of features. In the following section,
we address the problems faced by feature-oriented ap-
proaches in general and then state the proposed solution
which uses elements from compositional and annotative
approaches to tackle these problems.
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3. THE PROBLEM
Mezini and Ostermann [29] identified weaknesses of

various current feature-oriented approaches in manag-
ing the variability in product lines. Similarly, Lopez-
Herrejon et al. [26] evaluated support for features in
advanced modularization technologies and concluded
that despite the crucial importance of features, fea-
tures are rarely completely modularized. The shortcom-
ings described below are not necessarily present in all
the approaches considered, but none of the approaches
provides a uniform treatment of the various shortcom-
ings either. The weaknesses of various current feature-
oriented approaches identified in [5, 26, 29] follow:

• Hierarchical refinements – Features are imple-
mented as refinements to base classes. Mezini and
Ostermann [29] claim that this is a shortcoming,
because the hierarchical modularity of the refine-
ments to the base classes imposes a structure on
features which are not in hierarchical relationship
to each other. The problem with this is that for a
given feature, there may not be a class in one-to-
one relation to which this feature may be mapped.
For further details refer to [3], [5], and [29]. Sim-
ilarly, because features are refinements, a feature
that is in fact reusable, would need to be encoded
separately as a refinement to each class that needs
it. This makes reuse of common features hard [29].

• Feature composition and feature order – Fea-
ture modules should be composable in different
orders and should follow the commutativity or
pseudo-commutativity of features [1]. Feature
composition should be closed under composition,
which means that features may be grouped to
larger features and such a composite feature is
valid wherever the constituents features are used
[26] as this increases the reuse of features. Dif-
ferent approaches support either or both of these
properties. Even in those approaches that support
both closed composition and feature order, actu-
ally implementing it can be a nontrivial task [26].

• Program deltas – Various program refinements
are deltas with respect to the base program [26].
New classes, interfaces, fields, method statements,
and method arguments, etc., are examples of pro-
gram deltas. Considering features as semantic
blocks of code, preferably any statement or expres-
sion, or group of statements and expressions in a
given programming language can be part of the
refinements a feature makes. The order of blocks
of code to be inserted into a method for example,
cannot be controlled in simple method refinement
approaches.

• Type support for features – Feature modules

and composite modules should be well defined via
type support. Types for features can be extremely
beneficial not only in safe composition of features,
but also in controlling interactions among features
and also between features and the regular types in
a given programming language [23, 37]. But types
for features have been treated in isolation, e.g., it
is not known how features represented as types will
fare in dynamic composition. Other treatments of
types for features consider only an extension to a
subset of Java [2]. Type checking or similar con-
cepts are difficult to apply to features because it
requires some way of identifying and localizing fea-
ture code and representing features as types that
interact with programming language types. By ex-
pressing a type checking mechanism for features as
a calculus language that interfaces with a feature
description language, type checking may be more
clearly applied to an entire programming language
[2, 23].

• Dynamic composition and separate compi-
lation – It should be possible to alter the con-
figuration of features which have already been in-
stantiated [29]. Similarly, it should be possible
to bind features dynamically based on conditions
related to specific expressions [21] and this must
happen considering the performance of application
that uses such dynamic reconfiguration of features.
Some approaches have been suggested for dynamic
composition of features [29, 34], but dynamic com-
position remains a largely unexplored issue in
other feature-oriented approaches. Separate com-
pilation of features is also desirable for better de-
bugging of feature implementation and distribu-
tion of byte code [26].

Feature implementations also lack a common
ground with feature modeling concepts. In order to
use features for creating program variants, some sort of
structure has to be imposed on them. Such structure in-
dicates the relationship between features, their grouping
into different collections and imposes certain constraints
about which choices of features are valid. Though, in
current feature-oriented approaches, no programmatic
or language level mechanisms are provided for it. Be-
low we summarize the problem and then describe the
proposed solution in the next section.

Problem Summary
Feature implementations either weave refinement code
based on a naming scheme or employ some sort of redi-
rection or delegation mechanism for executing feature
related code. Features cannot be stored in variables or
data structures, neither can they be used in pure Java
code. Features are not aware of their or other features’
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contents via some sort of interface, consequently their
interactions cannot be easily modeled. The general
shortcomings of various feature-oriented approaches in-
dicate in a way also the desirable properties of a feature
implementation which should be considered in concert
instead of providing support for only some of them. We
propose to rectify this situation by providing a better
representation of features as well as combining the fea-
ture modeling concepts of product lines, for a complete
feature based software solution.

4. SOLUTION PROPOSED
We propose a feature extension to a programming

language under consideration. This extension will have
two parts, one as a feature and feature models descrip-
tion language and the other as the feature development
and refactoring language used to manipulate code and
program fragments. In case of Java, the first part can
be expressed as an embedded domain specific language
[18]. The second part, i.e, the feature development and
refactoring language can be implemented as an exten-
sion of the Java syntax and semantics in accordance
with the first part. In the following, we establish an
agenda for features as first-class entities.

1. The kind of features (such as mandatory and op-
tional), parent-child relations (such as AND,OR,
and alternative) about features and constraints be-
tween features should be expressible in the exten-
sion.

2. Features should be represented as types and inter-
action between features and regular types should
be controlled. The mechanisms of feature normal-
ization and conversion to disjunctive normal form
for finding valid feature instances [15] could be
coupled with the meta information about features
in the programs to compose safe variants. We pro-
pose to implement the composition core based on
feature algebra [6].

3. It should be possible for features to contain classes
and various class members. It should also be pos-
sible for classes to contain feature annotations.
Such a representation would gain from both com-
positional and annotative syntax. Coarse-grained
program deltas can be represented in a compo-
sitional manner while fine-grained deltas can be
represented by annotative syntax.

4. Feature models should be expressed adequately in
the extension. A feature model should be mod-
ifiable at runtime, reflecting in a changed pro-
gram variant. Reification, i.e., storing informa-
tion about a feature such as the container entity
of a code fragment, can be used to create altered
feature variants at runtime. Changing a feature

model may entail removing a child feature from a
parent feature, relocating it elsewhere or remove
it entirely. All such changes need to be supported
with the above mechanism.

5. A program delta that is refined by some feature
may be required by other features. This informa-
tion should be expressible at language level so that
the choice of creating a variant with altered code
or creating variants in which one variant contains
the original code and the other variant contains
altered code remains with the user.

The above indicates that a mechanism for encapsulat-
ing various code fragments that constitute a feature in a
programmatic entity should be available. If operations
were available on such an entity for code composition as
well as product line customization, then a direct corre-
spondence can be established from features at the mod-
eling level and implemented features and both could be
manipulated with precise control.

5. IMPLEMENTATION DETAILS
In the following we show how a feature extension can

be implemented in Java.

5.1 JastAdd
We propose to use JastAdd1 which is a Java based

compiler construction system [19]. We choose JastAdd
because it implements Java 1.4 and 1.5 in terms of
modular compiler analyses [17]. JastAdd considers an
object-oriented abstract syntax tree (AST) as the basis
for language design. It uses AspectJ introductions to
add behavior to various classes representing language
constructs [17, 19]. Behavior can be added to AST
nodes both in a declarative and imperative manner us-
ing the extended versions of synthesized and inherited
attributes. The declarative specification ensures inter-
nally that attributes and analyses need not be ordered
by the programmer. Different transformations can be
applied to an AST in terms of attributes and an AST
can be prepared as required [30].

5.2 Syntax and Semantics of the Proposed Ex-
tension

In the following, we give some examples of syntax
and semantics of the proposed extension. Consider the
feature diagram for a Graph Product Line (GPL)[27],
shown in Figure 1.

A feature model representing a product line is de-
clared using the keyword productLine (Figure 2). Figure
2 shows the feature description for the feature model
shown in Figure 1. The one, more and all operators
in Figure 2 indicate the alternative, the OR and the
1http://jastadd.org/the-jastadd-extensible-java-compiler
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GPL

SearchAlgorithms

Number

GraphType

Directed
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Cycle
DFS
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Connected

Strongly 

Connected

MST

Shortest

Figure 1: Graph Product Line�
1 productLine GPL {
2 GraphType : a l l ( one ( Directed , Undirected ) ,
3 one (Weighted , Unweighted ) )
4 Search : one (DFS, BFS)
5 Algorithms : more (Number , Connected ,
6 StronglyConnected , Cycle , MST,
7 Shor t e s t )
8 }
9 a l l (GraphType , Algorithms , Search ?)
� �

Figure 2: Feature Description of Graph Product
Line

AND features respectively. Optionality is denoted by
?. This feature description is sufficient to create feature
types, so that it is semantically expressible that, e.g.,
the feature Number is of feature type Algorithms and
feature Weighted is of the type GraphType. This feature
description provides the language level specification of
what to do with features in the software system, i.e.,
how to group them, how to compose them with respect
to any constraints if present. The type representation
for features consists of representation for feature spe-
cific properties such as whether they are mandatory or
optional. Various advanced feature modeling concepts
such as feature attributes, groups, and cardinalities can
be implemented in the type representation for features
in the extension compiler. Once the features are defined
in the program, different feature models may be associ-
ated with these features. This allows creating not only
different products per product line but also different
product lines per set of features.

A specific variant graphProduct of the product line

�
1 va r i an t GPL. graphProduct {
2 GraphType = Directed and Unweighted ,
3 Algorithms= StronglyConnected ,
4 Search = DFS
5 }
� �

Figure 3: Creating a program variant for GPL

�
1 pub l i c v a r i an t alterGraphProduct (
2 va r i an t graphProduct ) {
3 removeFeature graphProduct DFS,
4 addFeature graphProduct BFS,
5 modi fyVar iant graphProduct
6 Algorithms=MST;
7 re turn graphProduct ;
8 }
� �

Figure 4: Typed modification, addition and re-
moval of features

GPL is created using the keyword variant (Figure 3). A
program variant can be modified by altering the choice
of features that constitute it. In Figure 4, feature
modification, addition and removal are shown. Spe-
cific type for a feature need not be given as in Algo-
rithms=MST, the type of feature is inferred from the
feature description. The keywords addFeature, remove-
Feature and modifyVariant are used in the Java method
alterGraphProduct() as operators, to alter the configu-
ration of previously instantiated variant graphProduct.

The feature modeling constraints can be expressed
explicitly in the embedded DSL. A feature model can
be converted to a constraint satisfaction problem and
various Java CSP solvers can be used to obtain valid
configurations of features [8, 11, 15]. This can be im-
plemented as a part of the type checking the AST nodes
representing productline and variant types. Both mu-
tual inclusion and mutual exclusion constraints between
features can be represented as attributes of AST nodes
representing the feature type. The implicit implementa-
tion constraints between the features are similarly taken
care of in type checking the features, e.g., calls between
methods of two features making these features depen-
dent on each other. This type of constraints can be
handled as a specialized checking of relations between
related program elements [23], e.g., a feature that adds
a call to a method must ensure that the method itself
already exists.

Features can contain not only the class definitions
and the class bodies, but also be part of classes and
various statements and expressions. In Figure 5, fea-
ture Weighted contains definitions of feature specific in-
troductions to separate classes in one place. JastAdd
operates with the AST as the only repository of pro-
gram information. The AST in JastAdd can be copied,
extended, and rewritten based on conditions as well as
compiled to byte code [17, 19, 30]. This provides a
unique opportunity to modify the AST noninvasively
both at compile time and run time. Therefore, we can
implement features in such a way that the feature defi-
nitions need not be complete and additional code frag-
ments can be added to features at runtime as well. A
program element like a method can be part of many fea-
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�
1 f e a t u r e Weighted {
2 c l a s s Graph {
3 pub l i c void addEdge ( Vertex begin , Vertex
4 end , i n t weight ) {
5 addEdge (new Edge ( begin , end , weight ) ) ;
6 }
7 }
8
9 c l a s s Edge {

10 pub l i c i n t weight ;
11 pub l i c Edge ( i n t the we ight ){
12 weight = the we ight ;
13 }
14 // cons t ruc to r with three arguments .
15 . . .
16 }
17 }
� �

Figure 5: feature containing various classes

tures, thus restricting duplication of code. Assume that
addEdge() is part of features Weighted and Shortest.
This can be achieved as shown in Figure 6. Currently,
we intend to provide support for modularizing classes
on the basis of features, but in future, we can include
aspects in our extension. This is possible in JastAdd
because aspects related extensions to their base Java
compiler have already been added [7]. In the following,�

1 pub l i c c l a s s Graph {
2 f e a t u r e Weighted , Shor t e s t {
3 pub l i c void addEdge ( Vertex begin ,
4 Vertex end , i n t weight ) {
5 addEdge (new Edge ( begin , end , weight ) ) ;
6 }
7 }
8 . . .
9 f e a t u r e Directed {

10 pub l i c s t a t i c f i n a l boo lean

11 i sD i r e c t ed = true ;
12 . . .
13 }
14 . . .
15 }
16 pub l i c c l a s s Edge {
17 f e a t u r e Weighted {
18 pub l i c i n t weight ;
19 pub l i c Edge ( i n t the we ight ) {
20 weight = the we ight ;
21 }
22 // cons t ruc to r with three arguments .
23 . . .
24 }
25 }
� �

Figure 6: Classes containing features

we briefly explain how we propose tackle the problems
of features mentioned before.

5.3 Solving Problems Related to Features
The combination of feature descriptions and first-

class status for features in the extension compiler pro-
vides a clearcut way to approach feature-based software
development.

• Hierarchical refinements – Features are no
longer related to the class hierarchy as seen in Fig-
ures 5 and 6. The feature definitions, whether oc-
curring inside classes/methods or themselves con-
taining definitions of specific elements, are recon-
ciled in one coherent collection when instantiating
a product. Once features are reified internally, dif-
ferent transformations can be applied easily to the
AST so that version of classes without feature an-
notations or feature definitions can be generated.

• Program deltas – Features in this extension
use both compositional and annotative syntax as
shown in Figures 5 and 6. Not only classes, meth-
ods and fields, but method parameters, various
statements and expressions in Java can be assigned
to features. Because parsing and semantic speci-
fications in JastAdd are modular, our feature ex-
tension to Java can be modified easily to support
deltas of only the required granularity.

• Feature composition and feature order – Fea-
tures can be composed based on feature types. For
example, Weighted and Directed features from Fig-
ure 1 may be composed to obtain a feature Weight-
Directed, based on the fact that both of them are
of the type GraphType. Order may be specified
between features and feature groups whenever re-
quired.

• Type support for features – We represent fea-
tures as a reference type in the compiler. Vari-
ous consistency checks for safe compositions can
be straightforwardly implemented as lookups and
Java typechecks which are implemented as inher-
ited and synthesized attributes respectively in Jas-
tAdd.

• Dynamic composition and separate compi-
lation – For implementing dynamic composition,
we intend to use the capability of obtaining trans-
formed copies of the AST as well as the possibility
to reify feature code to byte code which can be
used via variety of byte code manipulation pack-
ages. We intend to explore the use of contextual
information for separate compilation of individual
features.

6. RELATED WORK
Deursen and Klint [15] propose a language for de-

scribing feature models, but they implement features
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using UML and Java code generation. In Caesar [29],
classes can act as crosscutting layer modules containing
many classes or types contributing to features. But it
does not provide any interface for feature descriptions,
or programmatic means of changing feature configura-
tions. In Object Teams [20], a team is a container for
classes and also at the same language level as class. Al-
though it can be used to implement features, it is non-
trivial to do so, as teams have a complex inheritance
model in which features must be accommodated. Class-
box/J [12] provides support for localized refinements,
such that original and refined classes co-exist and can
be referred to separately. But classboxes have the same
problems as other compositional approaches that use
redirection mechanisms in implementing features [12].
Like these approaches, we propose to use a more flexi-
ble containment for features with respect to classes. At
the same time, we combine both feature descriptions
and feature-oriented programming concepts together in
features represented as first-class entities. Unlike the
above mentioned approaches, a developer need not con-
cern himself of how to represent features in terms of
underlying technologies, e.g., how to represent features
in terms of layers and bidirectional interfaces [29], teams
with bindings [20], or classboxes [12]. Features have a
structure set by a feature model expressed as feature
descriptions and no extra representation is required to
relate different code fragments to specific features.

7. CONCLUSION
We have proposed to raise the implementation level

of features to first-class status by representing them
as types with crosscutting containment in the exten-
sion. We have identified various properties that such
an implementation should have in order to tackle vari-
ous problems related to features. In future, we intend
to work on extending the Java implementation of the
JastAdd extensible compiler framework to include fea-
tures.
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ABSTRACT
Software product lines can be implemented with many different
approaches. However, there are common underlying mechanisms
which allow a classification into compositional and annotative ap-
proaches. While research focuses mainly on composition approaches
like aspect- or feature-oriented programming because those sup-
port feature traceability and modularity, in practice annotative ap-
proaches like preprocessors are common as they are easier to adopt.
In this paper, we compare both groups of approaches and find com-
plementary strengths. We propose an integration of compositional
and annotative approaches to combine advantages, increase flexibil-
ity for the developer, and ease adoption.

1. INTRODUCTION
In recent years, software product lines (SPLs) have gained momen-
tum [9, 37]. Instead of implementing each program from scratch,
SPLs enable systematic reuse in a domain by generating a family
of related programs – so called variants – from a common code
base. In this context, features are domain abstractions to distinguish
different variants. Typically, features implement increments in func-
tionality. Developers who want to adopt SPL technologies for their
product can choose from a wide range of different mechanisms to
implement SPLs: from version control systems [42], over simple
#ifdef statements [35], over frameworks and components [9], to var-
ious specialized languages or tools [19, 39, 17, 10]. Each of these
approaches has different advantages and disadvantages and there is
plenty discussion about which approach is suited best, e.g., [33, 34,
3, 24, 35].

In earlier work, we used various approaches to implement SPLs.
We started with AHEAD [10] and AspectJ [28] and their integration
Aspectual Feature Modules [7]. These languages can be used to com-
pose variants from reusable code units (compositional approaches).
In recent work, however, we found several limitations [23, 24],
especially when adopting SPL technology for legacy applications.
Therefore, we looked at more traditional approaches like #ifdef
preprocessors and improvements thereof (annotative approaches).
Without ever making it explicit in our research agenda, we pursued
both paths – compositional and annotative approaches – in parallel.

While we addressed the specific problems like granularity, lan-
guage independence, expressiveness, or type-safety of either group
of approaches in earlier work [24, 8, 25, 7, 23, 22, 5], we noticed
that both groups complement each other. There are several problems
for which compositional approaches required severe overhead, but
an annotative approach can solve straightforwardly, or the other
way around. In this paper, we give an overview of both groups of
approaches, discuss differences and synergies, and show how to
integrate both.

We focus especially on SPL adoption. Adopting SPL technolo-
gies for a project is difficult, especially if the target application
is not developed from scratch but derived from a legacy applica-
tion. There is some discussion whether lightweight implementation
approaches can lower the adoption barrier or whether more sophis-
ticated approaches are needed for maintainability and long-term
project success [13]. In this paper, we show how an integration of
both groups of implementation approaches can ease SPL adoption,
but still support long-term design qualities.

Specifically, we make the following contributions: (a) We put
annotative and compositional approaches (two groups of common
approaches for SPL implementation) in contrast and analyze advan-
tages and disadvantages of each. (b) We discuss an integration of
both. (c) We outline how the integration can lower the adoption
barrier but still support long-term qualities.

2. SPL IMPLEMENTATION APPROACHES
There are many approaches to SPL implementation. Most of them
can be grouped either as compositional or as annotative [24]. In this
section, we briefly introduce both groups, before we compare them
to discuss advantages and disadvantages in Section 3.

Compositional Approaches. Compositional approaches imple-
ment features as distinct (physically separated) code units. To
generate a product line member for a feature selection, the cor-
responding code units are determined and composed, usually at
compile-time or deploy-time. There is a large body of work on fea-
ture composition, usually employing component technologies [44],
frameworks [21], feature-oriented programming with some form of
feature modules [39, 41, 10, 7], subjects [19], multi-dimensional
separation of concerns [45], and aspects [28]. Depending on the
concrete approach or language, the composition mechanism varies
from assembling plug-ins to complex code transformations, but the
general idea of composition as illustrated in Figure 1 is the same.

In this paper, we use AHEAD [10] – respectively the compatible,
newer, and language-independent FSTComposer [8] that uses the
same mechanisms – as representative for compositional approaches.
In AHEAD and FSTComposer, features are implemented in sepa-
rate modules that modify the base code. In Figure 2, we show a
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class Stack {
void push(Object o) {

elementData[size++] = o;
}
...

}

class Stack {
void push(Object o) {

elementData[size++] = o;
}
...

}

refines class Stack {
void push(Object o) {

Lock l = lock(o);
Super.push(o);
l.unlock();

}
...

}

refines class Stack {
void push(Object o) {

Lock l = lock(o);
Super.push(o);
l.unlock();

}
...

}

Base

Feature: Locking

Feature: Statistics

aspect Statistics {
...

}

aspect Statistics {
...

}

class Stack {
void push(Object o) {

Lock l = lock(o);
elementData[size++] = o;
l.unlock();

}
...

}

class Stack {
void push(Object o) {

Lock l = lock(o);
elementData[size++] = o;
l.unlock();

}
...

}

Composition

Figure 1: Composing code units.

1 c l a s s Stack {
2 void push(Object o) { ... }
3 Object pop() { ... }
4 }

5 r e f i n e s c l a s s Stack {
6 void backup() { ... }
7 void restore() { ... }
8 void push(Object o) {
9 backup();

10 Super.push(o);
11 }
12 }

Figure 2: AHEAD example (compositional approach).

simple code example. The base code implements a stack, while
in a separate module a feature Undo is implemented. The refines
keyword indicates that the feature module extends an existing class.
It introduces the new methods (backup and restore) and extends the
existing method push similar to overriding using the keyword Super.
The base code and different feature modules are composed with the
AHEAD tool suite. Depending on which features are included in
the composition process, different variants are generated.

Annotative Approaches. In contrast, annotative approaches imple-
ment features with some form of explicit or implicit annotations in
the source code. The prototypical example, which is commonly used
in industrial SPLs, are #ifdef and #endif statements of the C prepro-
cessor to surround feature code. Such techniques are also common
in commercial SPL tools as pure::variants [11] or Gears [31]. Other
examples of annotative approaches are Frames/XVCL [20], explict
programming [12], Spoon [36], software plans [14], metaprogram-
ming with traits [47], and annotation-based aspects [29].

In this paper, we use our own tool CIDE as representative for
annotative approaches. It is similar to #ifdef preprocessors in that
code fragments are annotated and can be removed before compila-
tion depending on the feature selection. However, CIDE improves
over traditional preprocessors in several ways: (1) annotations are
represented by background colors and do not obfuscate the source
code with additional boilerplate code [24]; (2) annotations in CIDE
are based on the underlying structure of the artifact and, thus, disci-
plined (e.g., it is not possible to annotate only an opening bracket but
not the closing one) and ease the generation process [25, 24]; finally,
(3) all annotations are managed by the tool infrastructure which
allows virtual views on the source code (e.g., show all code that is
annotated with feature Backup) and navigation support [27, 24].

In Figure 3, we show the previous example as implemented with
CIDE. All feature code is located in the same code base. In the

1 c l a s s Stack {
2 void push(Object o) {
3 backup();
4 ...
5 }
6 Object pop() { ... }
7 void backup() { ... }
8 void restore() { ... }
9 }

Figure 3: Conditional compilation example (annotative ap-
proach).

printed version of this paper, all code annotated with the Backup
feature is underlined. In order to create a variant without this feature,
all annotated code is removed before compilation. Nevertheless, this
paper is not specifically on CIDE, but other annotative approaches
could be used or visualized in the same way.

3. COMPARISON
After briefly introducing the two groups of approaches, we compare
them based on several characteristics. We selected characteristics
that emphasize the differences between these approaches or which
arose during our prior research or case studies. The results are sum-
marized in Table 1 with approximated grades. This evaluation is
based on prior work in SPL research and our own experience.

Feature Traceability. Feature traceability is the ability to directly
trace a feature from the feature model (domain space) to the imple-
mentation (solution space) [15, 2]. For example, feature traceability
is important when developers want to debug an error that occurs in
a specific feature and want to find all code related to this feature.

Compositional approaches directly support feature traceability as
the code that implements a feature can be traced to a single code unit
(component, plug-in, aspect, feature module, etc). For example, in
Figure 2, all code of the backup feature can be found in the second
module (Lines 5–12). In contrast, in annotative approaches feature
traceability is poorly supported as feature annotations can be scat-
tered over the entire code base (cf. Fig. 3). However, with special
tools like CIDE it is still possible to provide feature traceability in
an annotative approach at a tool level. As explained above, virtual
views and navigation support can be used to explore all code that
belongs to a feature (see [27] for details). Nevertheless, feature
traceability in annotative approaches is a matter of tool support.

Modularity. Modularity as needed for modular reasoning or even
separate compilation is possible in some compositional approaches.
For example, when using components [44], plug-ins [21], sub-
jects [19] or hypermodules [45] this is well supported. However,
many more advanced compositional approaches like many aspect
languages or the analyzed approaches AHEAD or FSTComposer
are based on source code transformations and provide only limited
modularity, e.g., separate compilation is not supported. There are
no interfaces for feature modules in these approaches, thus to under-
stand a feature, it is often necessary to look also at the base code or
even other features1.

In annotative approaches a modularization is not intended. Modu-
lar reasoning can be simulated with tool support (views and naviga-
tion support as in CIDE) to some degree, but separate compilation
is not possible.

1In the context of aspect-oriented programming, modularity has
been addressed intensively, e.g., [43, 18], and can potentially be
adapted for other compositional approaches.
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1 c l a s s Stack {
2 void push(Object o) {
3 i f (o== n u l l ) re turn ;
4 hook();
5 ...
6 }
7 Object pop() { ... }
8 void hook() {}
9 }

10 r e f i n e s c l a s s Stack {
11 void backup() { ... }
12 void restore() { ... }
13 void hook() {
14 backup();
15 }
16 }

Figure 4: Fine-grained extension with AHEAD.

Granularity. The granularity of implementation mechanisms
provided by an approach is closely related to its expressiveness.
Very coarse-grained approaches only assemble files in a directory,
while fine-grained approaches allow modifications on the level of
methods, statements, parameters or even expressions [24].

Annotative approaches support even fine-grained extensions well.
As many are line-based or character-based, they scale from annotat-
ing entire files to even small code fragments of statements (cf. Fig. 3).
Even when the underlying structure is used as in CIDE, annotations
on the level of AST nodes allow even fine-grained annotations on
statements, parameters, or expressions [24].

In contrast, compositional approaches only provide a coarse gran-
ularity composing usually only components or – in some approaches
like aspects, AHEAD, or FSTComposer – down to introducing or
extending methods in existing classes (cf. Fig. 2). However, manipu-
lation of statements inside the middle of a method, of parameters or
of expressions is not possible in any compositional approach due to
conceptual limitations [24].2 Instead, workarounds like hook meth-
ods are needed. For example, a slight modification in the original
example makes an implementation with AHEAD difficult. Imagine
that the backup call in Figure 2 is not the first statement executed in
the push method, but located after some sanity checks. In this case
workarounds as the hook method in Figure 4 are required, because –
in contrast to annotative approaches – introducing a statement in the
middle of a method is not supported.

Safety. For both compositional and annotative approaches recent
research has provided solutions that ensure that all (potentially mil-
lions) variants of the SPL are syntactically correct and well-typed.
While compositional approaches ensure syntactical correctness with
their composition mechanism, many annotative approaches are line-
based or character-based and can easily generate syntactically in-
correct variants. However, CIDE – our annotative approach which
enforces disciplined annotations – provides such safety using the
underlying structure [25] and can thus achieve the same level of
safety.

Although they use different implementations, there are several
approaches to type-check entire SPLs for both compositional [46,
5] and annotative approaches [16, 22, 30]. Beyond type-safety,
we know of no approach to verify behavior of all SPL variants that

2Some aspect languages like AspectJ can intercept join points in
the body of methods, which can be used for extending statements
to some degree (‘call && withincode’). However, there are several
limitations as discussed elsewhere [23, 24].

would scale to mid-sized SPLs. There are several approaches on SPL
testing [38]; however, they work on the level of generated variants
and are thus independent of the implementation mechanism.

Language independence. Language independence is another
characteristic where both approaches perform similarly well. While,
many annotative approaches are line-based or character-based and
thus completely language-independent, even the more disciplined
CIDE which uses the underlying structure can be extended for
arbitrary languages (generated from the language’s grammar) [25].
In contrast, compositional approaches are usually depending on a
particular host language, where AHEAD and FSTComposer provide
notable exceptions. Especially in FSTComposer, there is a general
composition mechanism which can be easily extended for a new
language with only little manual effort [8].

SPL Adoption. Industry is very careful on adopting composi-
tional approaches because it influences their existing code base and
development process too much. At most, after careful planning,
frameworks or components are used [9]. In contrast, annotative
approaches can be adopted much quicker, because they introduce
only lightweight tools which do not change the code or development
process too much at first [13]. Annotative approaches, thus, make
adoption of SPL technologies easier and more likely in the initial
steps of evaluation and early development. In this context, CIDE’s
concept of storing annotations separate from the source code is
worth mentioning, because it allows annotating a legacy application
without changing its source code representation. This makes CIDE
well-suited for evaluating SPL technologies.

In an earlier case study, we experienced ourselves that refactoring
a legacy application (in this case Oracle’s Berkeley DB) into separate
code units that can later be composed is by far more difficult and
tedious than just annotating code [24].

4. COMPOSITIONAL AND ANNOTATIVE
APPROACHES IN CONCERT

The comparison in the previous section showed that compositional
and annotative approaches are quite different and have different –
often complementary – strengths and weaknesses, which are also
differently important in various phases of SPL adoption. Research
on SPL implementation focuses almost exclusively on composi-
tional approaches, ignoring the advantages of annotative approaches.
Instead, the demand from industry has been answered mostly by
commercial vendors like BigLever and Pure Systems which (among
others) provide tools to annotate code. In this paper, we show that
integrating compositional and annotative approaches is beneficial.
In the following, we propose a simple integration and discuss its
impact on the characteristics above.

4.1 Integration
Conceptually, an integration is straightforward. Using a compo-
sitional approach, features can be physically separated into code
units (e.g., components, aspects, feature modules). Inside these
physically separated code units, an annotative approach can be used
to additionally annotate code fragments.

In Figure 5, we show a possible different implementation of the
extended example of Figure 4. The method declarations for backup
and restore are implemented in a physically separated AHEAD
feature module, while some code (that would be hard to extract)
is left as an annotation (underlined) in the base code. To generate
a variant, the code units are composed and the annotations are
evaluated to remove unneeded code fragments.

Also technically, such integration is straightforward. The annota-
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AHEAD/FSTComposer CIDE Integrated Approach Importance in the life cycle
(compositional) (annotative)

Traceability ++ + + all phases
Modularity/Separate comp. + −− +/− maintenance
Granularity − ++ ++ early adoption, implementation
Safety + + + all phases
Language independence + + + all phases
Adoption − ++ ++ project start

++ very good support, + good support, +/− medium support, − poor support, −− no support

Table 1: Comparison

1 c l a s s Stack {
2 void push(Object o) {
3 i f (o== n u l l ) re turn ;
4 backup();
5 ...
6 }
7 Object pop() { ... }
8 }

9 r e f i n e s c l a s s Stack {
10 void backup() { ... }
11 void restore() { ... }
12 }

Figure 5: Fine-grained extension with AHEAD.

tive approach – in our case CIDE – must only be extended to support
the additional language constructs of the compositional approach
(e.g., refines keyword), and the generation process must be adapted
to handle both composition and evaluating annotations. If annota-
tions are evaluated before the actual composition, the composition
process itself does not even need to be adapted. On the tool level,
an integration is more difficult as both tools must be integrated.
Views and navigation support for the annotative approach must be
extended for physically separated feature implementations, and ex-
isting support for the compositional language as in FeatureIDE [32]
(e.g., syntax highlighting, code completion, outline view) must be
extended to understand the annotations. However, integrating tools
is not a conceptual challenge, but merely an engineering task.

Interestingly, automated refactorings that transform annotated
code into physically separated AHEAD feature modules [26] and
automated refactorings that transform AHEAD feature modules into
annotated CIDE code [30] have been developed. While the result
of these refactorings might be difficult to read (e.g., the transforma-
tion from CIDE to AHEAD heavily requires hook methods as in
Figure 4, which makes generated code hard to read in the presence
of fine-grained extensions) or unambiguous (transforming AHEAD
to CIDE, there are many different possible annotated programs that
express the same behavior), these automated refactorings still help
developers to deal with the different possible representations of the
source code. Note, refactorings can also be used to convert only
parts of the SPL, e.g., convert individual features or only code from
certain classes or methods.

4.2 Comparison
An integration of compositional and annotative approaches does
not automatically dissolve all disadvantages of either approach. For
example, when using annotations in physically separated feature
modules, modularity is lost as if only annotations were used in the
first place. However, the main advantage is that developers can

always decide when to use which approach and when to use a com-
bination of both, e.g., to achieve fine granularity or ease adoption.
In the following, we discuss the criteria listed in Section 3 for the
integrated approach. Approximated grades are shown in Table 1.

Feature Traceability. First, feature traceability is weaker than in
pure compositional approaches. A feature must not be physically
separated, but can instead or additionally be implemented by some
scattered (annotated) code fragments, as shown in the example in
Figure 5. However, still the same views and navigation support from
CIDE can be used, so feature traceability is not worse than in the
CIDE solution. Moreover, if a full (or partial) physical separation
is desired it can be achieved and even improve feature traceability.
In that case, all (or most) relevant feature code can be found in one
corresponding code unit.

Modularity. When integrating compositional and annotative ap-
proaches modularity depends on how the developers implement a
feature. They can choose between a modular implementation (us-
ing classes, modules, aspects, feature modules) or a non-modular
implementation with (at least some) scattered code fragments as in
Figure 5. In general, modularity is weakened and separate compila-
tion is no longer possible. However, using gradual refactorings it is
possible to achieve modularity in the long run.

Granularity. The integrated approach benefits from the fine granu-
larity of the annotative approach. Features can still be implemented
with physically separated code units as far as reasonable or pos-
sible with the low available granularity. However, additionally
fine-grained extensions can still be added to the base code or other
features and marked with annotations. For example, instead of using
workarounds as the hook method in Figure 4, such fine-grained
extensions can be implemented with an annotation as shown in Fig-
ure 5. Again, the integrated approach allows a quick solution using
annotations at first, while further refactorings are possible to change
the implementation to avoid fine-grained extensions and use only
the compositional approach in the long run.

Safety and language independence. As discussed above, there
are striking commonalities in the solutions for type-checking and
language-independence developed in recent research for both, com-
positional and annotative approaches. As the mechanisms are al-
ready related, and integration is mostly an engineering task. Thus,
the same level of safety and language independence can be achieved
as in the original isolated approaches.

Adoption.
The most interesting results from an integration affect the process

of adopting SPL technologies for a project. While industry is very
careful about adopting compositional approaches, they are usually
seen as superior in academia because of modularity, separations of
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concerns and thus promised improvements during maintenance and
evolution in the later life cycle phases. Nevertheless, companies
often use lightweight annotative approaches for faster results and
lower initial risk [13].

In this scenario, the integration of compositional and annotative
approaches pays off. In early evaluation and adoption stages, devel-
opers can simply annotate legacy code. They can use the lightweight
capabilities of annotative approaches without having to change their
code base. As annotations are stored separately in CIDE, these
annotations do not even affect the code base at all.

In later stages, when the idea of developing SPLs is established,
and annotations already provide variability they can gradually change
from the annotated code base to separated feature modules by au-
tomated or manual refactoring. Still, it is not necessary to refactor
all annotated code fragments at once, but developers can start with
the obvious coarse-grained ones (separate entire classes or method
introductions) and gradually prepare the code (e.g., by introducing
explicit extension points) to avoid even the annotated fine-grained ex-
tensions. This way it is possible to adopt a compositional approach
gradually and eventually achieve long-term goals of modularity and
maintainability.

4.3 Discussion
Instead of being forced to choose between an annotative or composi-
tional approach, an integration allows to start with one and gradually
refactor to the other. For each problem, developers can choose the
mechanism that suits best at first and only later refactor to a different
version if reasonable. Though this allows developers to break modu-
larity, it also gives them expressive power to express fine-grained
extensions. Goals that have been achieved in either approach like
traceability, safety, or language independence can be adapted also
for the integrated approach.

Instead of a one-step effort with uncertain costs and risks, the
integration allows a lightweight adoption with annotative approaches
and gradual refactoring to compositional approaches. This eases
the initial adoption barrier significantly, while long-term goals are
explicitly supported.

5. RELATED WORK
Several related publications compare different approaches to SPL
implementation. First, Lopez-Herrejon et al. [33] and Mezini and
Ostermann [34] compare several compositional approaches. Both fo-
cus in detail on modularization support and do not cover annotative
approaches. Next, Anastasopoulos and Gacek [1] briefly compare
11 concrete implementation approaches, Muthig and Patzke [35]
also compare 6 approaches. Both comparisons include conditional
compilation and frames as annotative approaches. However, in
both works analysis is focused on expressiveness and several details
of analyzed languages and does not consider an integration of ap-
proaches. We provide a broader comparison on a higher level of
abstraction, where we each subsume all compositional approaches
and annotative approaches. For our analysis the subtle distinctions
between different compositional approaches is not relevant, but the
importance lies in the bigger picture achieved with an integration.

The idea of adopting SPL technology slowly and stepwise emerged
from Spinczyk in a discussion at the Dagstuhl seminar ‘Software En-
gineering for Tailor-made Data Management’ [4]. The participants
proposed a migration path from ‘thinking in product lines’, over
using advanced preprocessors, over object-oriented decomposition,
toward more advanced compositional approaches of aspect-oriented
programming and feature-oriented programming, and eventually
toward model-driven development or a decoupling using service-

orientation. We follow this migration path on the lower levels and
actually combine annotative and compositional approaches to be
able to evolve gradually from one approach to the other.

FeatureC++ [6], a compositional approach for C++ based on
feature-oriented and aspect-oriented programming mechanisms, still
allows to use the C preprocessor (#ifdef ). FeatureC++ can therefore
be considered as an existing implementation that already integrates
compositional and annotative approaches to some degree. Neverthe-
less, this integration was not planned and never made explicit. The
used annotative approach is line-based, does not use the underlying
structure and there are neither views nor navigation support. In prior
work using FeatureC++, developers explicitly avoided to use the
preprocessor to achieve variability [40].

6. CONCLUSION
There are many different approaches to implement SPLs. Most can
be classified as either compositional or annotative. While annotative
approaches like simple #ifdef directives are common in industry,
research focuses mostly on compositional approaches like aspect-
oriented or feature-oriented programming.

In this paper, we compared both groups of approaches and found
that there are many differences in strengths and weaknesses, but that
it is also possible to base both on similar foundations based on the
artifact’s structure. To combine the advantages of each and address
the shortcomings we propose an integration. With this integration a
developer can separately choose which implementation mechanism
to use for each problem. This eases SPL adoption. When adopting
SPL technologies, it is possible to first use the lightweight annota-
tive approaches and then gradually refactor toward compositional
approaches as far as possible and reasonable.

In future work, we want to implement the integration and exper-
imentally merge our tools CIDE and FSTComposer, and evaluate
our approach empirically in an industrial case study or experiment.
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Abstract
Similar to refactoring, feature-oriented programming can be
seen as a metaprogramming paradigm, in which programs
are values and composition operators transform programs to
programs. In this position paper we discuss open issues of
applying refactoring in the context of feature-oriented pro-
gramming. First, we elaborate on the role of refactoring in
maintaining features and their implementations as well as
the impact of refactoring on the relation between theprob-
lem and solution spaces. Second, we discuss issues of re-
lating well-known refactoring formalisms to existing formal
approaches used in feature-oriented programming. Third, we
suggest to use refactoring semantics to upgrade and test final
products of a product line.

1. Introduction
Research in the area of Software Product Lines (SPL) fo-
cuses on the design and automatic synthesis of product fam-
ilies (11). An important concept in this area is that of a
feature–a refinement in the product functionality (33). Each
product within a product family can be identified by a unique
combination of features, from which it is created. By model-
ing theproblem spaceof a domain, afeature modeldefines
all legal feature configurations. A particular configuration
chosen by the user is used to generate a final product out
of feature modules that comprise thesolution space(12).

Feature-oriented programming (FOP) is concerned with
designing and implementing features and can be seen as a
metaprogramming paradigm (6): feature composition modi-
fies (by addition and extension) base programs using fea-
tures. Another well-known metaprogramming paradigm
is refactoring—program-to-program transformations that
“does not alter the external behavior of the code yet im-
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proves its internal structure.” (18, p.9) Several recent publi-
cations (e.g., (6), (9), (28), (40)) point out various contexts
where refactorings and FOP overlap. Inspired by their obser-
vations, in this position paper we elaborate on open issues
relating FOP and refactorings. In particular, we overview
related work and discuss:

• Refactoring software artifacts in FOP (Section 2). In FOP
refactoring means restructuring software artifacts of the
solution space, the problem space, or both. When refac-
toring the solution space, how to keep multiple repre-
sentations of a feature consistent? When refactoring the
problem space, what is a meaningful library of refactor-
ing operators to restructure a feature model? Moreover, in
some cases refactoring one space requires refactoring the
another space. How could one synchronize both spaces
to preserve their consistency?

• Refactoring definition in a formal FOP calculus (Sec-
tion 3). Existing work on refactoring formalization varies
in the way refactorings are defined. Which formalism
is more appropriate to be integrated into existing FOP
formal definitions? And which FOP formalism, if any,
would be appropriate for such integration?

• Refactoring-based product maintenance (Section 4). As
refactorings are formally defined, the refactoring history
of a component can be treated as a formal specification of
its change representing a kind ofmaintenance delta(10)
to be used for automatic software construction and main-
tenance. In the context of FOP, how to use formal spec-
ification to alleviate maintenance tasks, such as upgrade
and testing, of final feature-based software products?

Our main goal is to foster discussions on the role of
refactoring in developing and maintaining software artifacts
in the context of FOP.

2. Refactoring Software Artifacts in FOP
Extensively used software artifacts have to evolve consider-
ably, because, according to the Lehman’s first law, “a large
program that is used undergoes continuing change or be-
comes progressively less useful.” (30, p. 250) The second
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Lehman’s law says, that “as a large program is continuously
changed, its complexity, which reflects deteriorating struc-
ture, increases unless work is done to maintain or reduce it.”
(30, p. 253). This work is performed by program restructur-
ing, called refactoring in object-oriented systems (32).

Since both the problem and the solution spaces are rep-
resented by software artifacts, evolving the latter will in-
evitably imply their refactoring.1

2.1 Refactoring Solution Space

An example of refactoring the solution space is refactoring
the source code of a feature module to address changed secu-
rity requirements. Developers may need to move some func-
tionality previously accessible in more general features to
more specialized features restricting the visibility of func-
tionality to more specific features. This operation will in-
volve moving members among feature modules and is an
example of a reactive refactoring. An example of a proactive
refactoring is renaming certain members of feature modules
to follow established naming conventions improving thus fu-
ture maintainability of modules.

In general, besides source modules, features can be im-
plemented by modules containing, for instance, binary code,
grammars and makefiles (8), XML documents (2) or UML
diagrams (13). Therefore, in addition to code refactoring
(e.g., (15; 18; 32; 34)), in the context of FOP one should also
consider existing work on refactoring of other software com-
ponents, such as sequence and protocol state machines (36)
or UML class diagrams (37). A practical problem is how to
correlate refactorings in multiple representations of the same
feature.

A possible solution is to use functions that map refactor-
ings of one representation to refactorings of other represen-
tations (similar tomapdeltasas proposed by Batory (7)). It
is, however, not clear whether it is possible to find a refactor-
ing counterpart in any possible representation, that is, to map
refactorings in all representations used in the solution space.
This problem stems from the lack of rigor in formal specifi-
cations of refactorings for certain representations (e.g., what
is a grammar refactoring?). Moreover, as Batory mentions
(7), creating and maintaining functions that relate transfor-
mations may burden programmers considerably.

2.2 Refactoring Problem Space

Facing new and changing requirements, besides evolving the
solution space, the variability of a product line has to evolve,
too. If not refactored, features of a feature model will not re-
flect changing domain requirements. Moreover, the number
of features may explode making the model unmanageable.

In a large industrial case study, Loesch and Ploedereder
(31) show how formal concept analysis (19) of existing prod-

1 Terminology note: in this section by refactoring of problem and solution
spaces we mean refactoring of feature models and their corresponding
feature modules as opposed tofeature-based refactoringof legacy software
into a set of feature modules (e.g., (3; 27; 28; 40)).

ucts can be used to find obsolete (unused) features as well
as to derive missing feature constraints. Their restructuring
proposals, such as merge/remove variable features and mark
mutually exclusive features as alternatives, can be consid-
ered feature model refactorings.

Alves et al. (1) define a feature model refactoring as
a transformation that improves the model’s configurability
(i.e., the number of valid variants defined by the model).
Based on their definition, the authors suggest a number of
refactorings that either increase configurability of the model
(while addressing new model requirements or merging fea-
ture models) or does not affect the number of model’s vari-
ants (while maintaining the model).

As opposed to enlarging the number of model’s variants,
Kim and Czarnecki (29) discuss the impact changes made
to a feature model may have on model’s specializations
(i.e., models derived successively by specializing the initial
model). For several changes applied to the initial model (e.g.,
cardinality change or feature addition), the authors define
synchronizing changes in specializations, including the final
specialization (i.e., configuration). Changes mentioned by
Kim and Czarnecki (29) can also be seen as refactorings
operating on feature models.

A future research direction is reusing the work of (1;
31; 29) to define a set of feature model refactorings, such
asMakeMandatory, MakeAlternative, DeleteFeature,
CopyFeature or ReduceGroupCardinality. For that, an
important requirement is to define precisely preconditions
and, perhaps, synchronization actions of such refactorings
for relating changes of the problem space to the solution
space (as discussed in the next section).

2.3 Synchronizing Refactored Spaces

The key issue in refactoring of the two spaces is that their
refactoring should not be considered in isolation; otherwise
seemingly safe changes may lead to wrongly composed fi-
nal products. For example, consider refactoring the solution
space that makes one feature module dependent on another
module.2 If applied only to the solution space, this valid
(with regard to the module implementation) refactoring is
not reflected in the feature model as an additional constraint
between the features involved. As a consequence, the model
will permit a configuration that includes the depending fea-
ture without the feature it depends on. As another example,
if a feature in the feature model is made optional, whereas
other features depend on its functionality in their implemen-
tation, the feature may be missing in a configuration leading
to invalid final product implementation. As an extreme case,
for a wrongly defined feature model the set of its configura-
tions may be empty.

In general, changes made to one space should propagate
to another space. More precisely, in case refactorings change

2 Our examples are inspired by Czarnecki and Pietroszek (13) and Thaker
et al. (38)
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constraints on the valid combination of features or feature
modules, constraints of another space must be updated cor-
respondingly. It is important that the overall “strictness‘ of
the implementation constraints of the solution space and the
domain constraints of the problem space are not equivalent.
The implementation constraints are defined by the language
(metamodel), in which feature modules are defined, and by
the modules’ implementation itself. Domain constraints are
defined by the feature model. In general, as argued by Czar-
necki and Pietroszek (13) and Thaker et al. (38), the do-
main constraints must imply the implementation constraints.
Representing constraints in propositional formulas and using
SAT solvers, it is possible to automatically detect when such
implication does not hold, and then manually solve inconsis-
tencies between the two spaces (13; 38).

The elegant solution of using SAT solvers is, however, not
perfect in the context of agile refactoring of problem and/or
solution spaces. Drawing analogies with conventional code
refactoring, it would mean manually changing the program,
recompiling it to detect possible problems and then solving
the latter manually. Instead, when applying small changes to
features or their implementation, it would be preferable to
immediately know whether changes are safe and do not lead
to space inconsistencies. Moreover, similar to a refactoring
engine updating calls to a renamed method or prompting for
a default value of a new parameter, some space inconsisten-
cies could be interactively fixed, at least, semi-automatically.

Generalizing this discussion, an important issue with re-
gard to refactoring in FOP is how to synchronize the spaces
being refactored to ensure no invalid product may be gener-
ated afterwards. With this regard, two important issues to be
considered are:

1. How the relation between the two spaces is defined.
Space relation may be defined as feature template an-
notations (13), code annotations relating features to AST
nodes (28)3, a separate metamodel-based specification
(20), or a systematically organized directory and file
structure (8).

2. Which safeness constraints (in other words, invariants
that these constraints preserve) a refactoring must re-
spect. Safeness constraints may be defined by separate
specifications (e.g., OCL expressions (13), propositional
formulas (38) or type rules (28)) or may be embedded
into the language type system (4; 27).

The space relation complemented with safeness con-
straints can be treated as a model to reason about and detect
space inconsistencies. Janota and Botterweck (26) explic-
itly define such a model, which they call feature-component
model, by formally specifying the feature model, compo-
nent model and constraints on their relations. They derive

3 On the contrary to feature composition, in CIDE (28) annotations are used
for featuredecompositionto support feature-oriented refactoring of existing
programs into features.

the feature model induced by a feature-component model,
compare it with the provided feature model and detect pos-
sible weaknesses of the latter.

Motivated by the aforementioned work, an important
question is how to define and realize an interactive refac-
toring environment permitting for safe refactoring of the
problem and solution spaces and semi-automatic space syn-
chronization.

3. Refactoring Definition in a Formal FOP
Calculus

Recent work on formalization of feature-based software de-
velopment (5; 9) aim for an algebra to represent and rea-
son about features and their composition.4 The key idea is
of both approaches is the same: find an atomic unit of fea-
ture representation, use it to uniformly define feature struc-
ture and then define precisely how those structures are com-
posed. Moreover, feature composition is always feature ad-
dition and/or feature modification. Feature modification is
performed by modifiers—(selector,rewrite)pairs ap-
plied to atomic units, whereselector finds program units
(using pattern matching) and thenrewrite applies to the
units found. However, the two aforementioned approaches
differ in the way they model features and divide composi-
tion power between addition and modification.

Batory and Smith (9) use as the atomic unit of feature
representation a (primitive) term, that is, a key-value pair.
A features is either a vector of terms or a delta vector. The
latter is a unary function that transforms vectors to vectors
by addition and modification. Feature addition uses set union
(using term names) of vector terms and raises an error when
conflicting term names occur. Feature modification is term
selection and term rewriting.

In the feature algebra of Apel et al. (5), the atomic rep-
resentation unit is a tree node (a so-calledatomic introduc-
tion). As a consequence, a feature is modeled as a tree, called
a feature structure tree(FST) of various abstraction levels.
Feature addition is tree superimposition (i.e., node conflicts
are resolved by language-specific overriding of leaf nodes).5

Feature modification is tree traversal and tree rewrite. The
key difference to the work of Batory and Smith (9) is the
shift of composition power from modification to addition:
due to overriding, such concepts as mixins can be unified
with introduction (performed by union set) and need not be
modeled by modifiers, as in (9).

The vision of Apel et al. (5) and Batory and Smith (9) is
that by implementing an uniform calculus one will develop

4 The algebra of Ḧofner et al. (23) focuses on the analysis phase of feature-
oriented development and considers neither the structure of features nor
their implementation. Since the latter two are our main concerns regarding
refactoring, we do not discuss the aforementioned work in this paper.
5 More exactly, FST can be seen as a set of superimposed (added) atomic
introductions and superimposition is modeled by the operatorintroduction
sumcomposing introductions, hence FSTs.
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an object-oriented framework for feature composition that
is independent of a concrete implementation language. In
such framework, all kinds of manipulated programs are rep-
resented uniformly under a common superclass. This super-
class provides standard operations (implemented specifically
for each supported kind of programs) to query and trans-
form programs. For us it is interesting to investigate how
existing work on program refactoring can be transferred to
such uniform frameworks of program transformations. With
this regard, the dual research questions is 1) which existing
refactoring formalism could be adopted easier into a FOP
calculus, and 2) which FOP calculus, if any, is appropriate
for such adoption.

While classical refactoring definitions (32; 34) use predi-
cate logic to define preconditions, in the context of tree ma-
nipulation more recent work using graphs to define precon-
ditions, either by testing of presence conditions (42) or by
defining a graph pattern to be matched (22; 41), may be more
appropriate for defining pattern matching used by modifiers.
Moreover, while the actual transformation of a refactoring is
usually described informally (18; 32; 34; 39; 42), for uni-
form transformations of program graphs one should also
consider formal definition of refactoring transformations us-
ing graph rewriting (22; 41) to definerewrite of modifiers.

Batory and Smith define two types of modifiers (9). While
a universal modifierfinds all program terms that have the
name or valueselector (and rewrite these terms), anex-
istential modifierattempts to findselector by name. If
the term is undefined, it assigns the term an existence error;
otherwise, the modifier does nothing (9). Whereas probably
all refactorings require universal modifiers (for example, to
rewrite multiple method calls or push down methods to sev-
eral subclasses at once), the question is whether some refac-
torings may also require existential modifiers. For instance,
it may make sense to test for the method usage before delet-
ing it and signal an error in case it is in use. In a sense, it
would be similar to the code analysis implemented in the
conventional refactoring engines, but at the general and uni-
form level of the finite map space.

Finally, and most important, the key difference of a refac-
toring from a feature is that refactoring may also require term
(node) deletion. For example, moving a method can be seen
as deleting it from one class and adding to another class.
Future work mentioned by Batory and Smith (9) is defin-
ing delta vectors that support vector subtraction. However,
allowing such modification to parts of features may lead
to a situation that the target of a subsequent feature com-
position is eliminated by a previously executed refactoring.
An appealing research direction is to investigate and define
a proper interaction (composition) of features and refactor-
ings.

4. Refactoring-based Product Maintenance
Since refactorings are program transformations with for-
mally defined semantics (32; 34), a history of refactorings
applied to a component can be treated as a formal specifica-
tion of the component’s structural change (16). Such spec-
ification could be used to alleviate tasks of maintaining a
product line, for example, upgrading and testing.

4.1 Module Upgrade

After a feature module is refactored, one may want to also
update existing products to propagate improvements of the
new module version. In some cases, simple recompilation of
all modules would take too much time and their complete
redeployment. Instead, it may be preferred to update only
the refactored modules.

Several software engineering approaches (17; 21; 35) use
refactoring history to automatically upgrade a software li-
brary (or a framework). They base on the fact that more than
80% of library changes that break library-dependent applica-
tions are API refactorings (16). Using refactoring informa-
tion, it is possible to adapt existing applications to the new
library version (21), the new library to existing applications
(17) or create adapters that translate between the library and
its applications (35).

In the line of these approaches, refactoring semantics
can be used to upgrade existing products of a product line.
For example, similarly to the approach of Henkel and Di-
wan (21) refactorings could be effectively re-executed on the
product implementation, synchronizing it with the refactored
implementation. As another example, using refactoring his-
tory it would be possible to partially decompose an existing
product extracting obsolete feature implementation and then
compose back the final product using refactored feature im-
plementation.

4.2 Product Line Testing

To ensure that generated feature-based programs are correct,
Batory (7) suggests to use specification-based product line
testing using Alloy (25). An Alloy specification describes
properties of the program to be verified. Out of this speci-
fication, a set of input tests represented by a propositional
formula is generated, solved by a SAT solver and converted
into a test (7).

Although we do not have any practical results, we envis-
age using refactoring semantics to automatically derive such
specifications (and, hence, product line tests). Several for-
malisms of refactoring definition use the notion of postcon-
ditions for refactoring definitions, either as logic predicates
(34) or as modified graphs (41; 42). Although actual def-
initions differ, the intuition is the same: a postcondition re-
flects the semantics of the refactoring transformation and de-
scribes important structural particularities of the refactored
program. An approach would be to convert the postcondi-
tions into a propositional formula and generate tests in the
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similar manner as Batory suggests (7). This would detect
program errors introduced, for example, by bugs in refac-
toring engines (14). Furthermore, depending on how the in-
variants are reflected by postconditions, it could also detect
“bad smells” specific for FOP, like inadvertently overriding
a method in a base class by a renamed method in a feature
refining that base class. Moreover, because refactorings can
be composed (34), given a refactoring history as a sequence
of refactorings its composed postcondition can be derived.
In such cases, there is no need to create tests for each sin-
gle refactoring—a set of tests can be created at once for the
whole refactoring history.

To guarantee type-checking software produce lines for
the price of reduced language power, Kästner and Apel (27)
adopt the Featherweight Java (FJ)–a formally specified min-
imal functional subset of Java (24)–as a implementation lan-
guage of product lines. They propose Color Featherweight
Java (CFJ) as a FJ-based calculus to describe the entire
(valid) software product line in combination with annota-
tions and prove that, if the product line is well-typed (with
regard to the CFJ language grammar), then all generated
FJ variants will be well-typed (i.e., the generation will pre-
serve typing). When using such a language subset as FJ with
proved type-soundness, a question is which transformations
considered refactorings for its original superset (i.e., Java)
can be considered as such for FJ, that is, do not lead to typ-
ing errors (and invalid program variants) according to the
grammar of FJ.

5. Summary
In our position paper we discuss open issues of applying
refactoring in the context of FOP. We believe that by ad-
dressing the research and practical questions formulated in
the paper, it is possible to integrate existing work on program
refactoring into the context of FOP building a framework
for uniform program transformation and tools that combine
feature-oriented programming and refactoring. With regard
to the inherent complexity of developing software product
lines, it is important that these tools will foster agile devel-
opment and maintenance of feature-related software artifacts
and will give a uniform view on a feature-oriented develop-
ment environment.
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toring UML models. InUML’01: Proceedings of the Fourth
International Conference on The Unified Modeling Language,
Modeling Languages, Concepts, and Tools, pages 134–148.
Springer, 2001.

[38] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe com-
position of product lines. In C. Consel and J. L. Lawall, edi-
tors, GPCE’07: Proceedings of the Sixth International Con-
ference on Generative Programming and Component Engi-
neering, pages 95–104, New York, NY, USA, 2007. ACM.

[39] S. Tichelaar.Modeling Object-Oriented Software for Reverse
Engineering and Refactoring. PhD thesis, University of Bern,
December 2001.

[40] S. Trujillo, D. Batory, and O. D́ıaz. Feature refactoring a
multi-representation program into a product line. In S. Jarz-
abek, D. C. Schmidt, and T. L. Veldhuizen, editors,GPCE’06:
Proceedings of the Fifth International Conference on Gener-
ative Programming and Component Engineering, pages 191–
200, New York, NY, USA, 2006. ACM.

[41] N. van Eetvelde.A graph transformation approach to refac-
toring. PhD thesis, Antwerp, April 2007.

[42] M. Werner. Facilitating Schema Evolution With Automatic
Program Transformation. PhD thesis, Northeastern Univer-
sity, July 1999.

46



The Applicability of Common Generative Techniques for Textual
Non-Code Artifact Generation

Johannes Müller Ulrich W. Eisenecker
University of Leipzig

Information Systems Institute
Marschnerstraße 31, 04109 Leipzig, Germany

http://www.iwi.uni-leipzig.de

{eisenecker, jmueller}@wifa.uni-leipzig.de

Abstract
Configuration or generation of software artifacts is a widely
adopted approach to implement software system families e.g. by
applying the generative software development paradigm. The gen-
eration of artifacts not directly related to software but rather related
to a delivered software product is not widely examined. This paper
discusses the applicability of three well-known software artifact
generation techniques to natural language textual non-code arti-
facts. Therefore an overview of these techniques and adequate tools
is given. The frame technology with the adaption and the abstrac-
tion concept and and the template approach of the model driven
software development are examined. The tools XFramer, XVCL
and openArchitectureWare are used to evaluate these techniques by
implementing an exemplary toy use case. The experience gained
by implementing the use case is presented. The three selected tools
are compared with respect to the task to generate natural language
texts as non-code artifacts.

Categories and Subject Descriptors D [2]: m

General Terms GSE, Non-code artifact

Keywords frame, MDSD, XVCL, XFramer, oAW

1. Introduction
Generative software development (GSD) [6] is one widely ac-
cepted approach to develop software intensive systems within a
software system family amongst others such as model driven soft-
ware development (MDSD) and aspect oriented software develop-
ment (AOSD). There are mainly two development processes for
software system families, namely domain engineering (develop-
ment for reuse), and application engineering (development with
reuse).

A software intensive system comprises more artifacts than only
source files or executable program files, e.g. user-manual or man-
pages but also graphics, sounds, animations, test data and so on.
Such artifacts are subsumed under the term non-code artifacts. A
special kind of such non-code artifacts are natural language textual
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non-code artifacts. These kinds of non-code artifacts will be subject
of this paper.

When the generative paradigm is applied to develop a system
family, the elementary reusable components of the solution space
should be maximally reusable and minimally redundant, as the
authors point out in [6]. The features of a system family member
can be described by a domain specific language (DSL) which
belongs to the problem space. The configuration knowledge is
required for mapping the specification of a system family member
to the solution space by means of a (configuration) generator. These
components form the generative domain model (GDM).

The term generator covers not only facilities to generate code
artifacts, but also to configure and parameterize available compo-
nents which have well defined, asserted and possibly tested qual-
ities. An exemplary realization of such a configuration generator
in C++ could apply template meta-programming. Obviously this
technique is not really suitable for generating non-code artifacts.
There are other techniques which are more appropriate to generate
non-code artifacts. One approach which explicitly aims to synthe-
size, beside code-artifacts, non-code-artifacts is the AHEAD tool
suite [4]. The ancestor of it is the GenVoca approach [5], which is
a methodology for creating system families.

Other approaches, which also use GenVoca as architectural
style, are described as technology projections of the GSD. A tech-
nology projection is a mapping of the GDM to a specific technique,
platform or programming language (see [6] for details). Some of
them are also able to generate non-code artifacts, namely the pro-
jection to the adaption and the abstraction concept of the frame
technology as described in [10] and the projection to the generator-
framework openArchitectureWare [14]. The benefit of using one of
these approaches to generate non-code artifacts is, that, if the stated
approaches are used to realize a system family, one can use the ex-
isting environment to also generate non-code artifacts: No further
tools are required. The paper will examine the ability of these three
projections to generate non-code artifacts by using the theoretical
background given by the specification of the projections.

A member of a system family may require a considerable num-
ber of related documents, e.g. program-documentation, instructions
for manual system tests, customized licensing agreement or a con-
tract between software supplier and customer to account a created
software product. The listed documents raise distinct demands for
a text generation system. Documentation, for example, could be
created by simply assembling the specific documentation of the
miscellaneous components, the system is built from. A contract on
the other hand requires the creation of parts of a sentence, which
are differently composed depending on the distribution model for
the software system and the assembled components, to get a well-
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defined content. An example of a contract generation system can
be found on [19].

The preceding example, the contract generation, could be
achieved by natural language generation (NLG), a field of research
in the area of artificial intelligence and computer linguistics [20, p.
1]. Its aim is to create natural language texts out of non-linguistical
representations—e.g. out of a database. Another approach is to cre-
ate texts by assembling text components. In [20, p. 4] the thesis is
stated that every functionality which is realized by a NLG-system
can also be realized by assembling text components. For this rea-
son this paper focuses exclusively on the text-assembly approach,
while NLG-techniques will be not pursued.

A human readable document must be well presented to make
the contained information easily accessible to human readers. To
format the output of a generation run, amongst others, there are the
following techniques available:

• Tag the document by LATEX commands. A TEX processor trans-
lates the tagged document into a human readable form in natural
language.

• Tag the document by XHTML1 commands and format it with
CSS2.

• Create a XML3-document and format it with XSL-FO4.

If the approach with the LATEX tags is used, the document creation
process is a multi level generation process. At a first stage, the doc-
ument with LATEX tags is created. At a second stage, a TEX processor
transforms the representation created before into a document ready
for press. Because of that, LATEX sometimes is referred to as a DSL
for the domain of document creation [16].

2. Techniques for Text Generation
Not all technology projections to the generative software develop-
ment paradigm which are useful to generate software artifacts are
useful for generating non-code artifacts. Applying template meta
programming in C++ for example is an effective way to create con-
figuration generators to configure software components in C++. In
fact this technique uses the features of the C++ language and re-
quires adequate components for assembly. Therefore it can not be
reasonably used to generate natural language texts. Furthermore a
technique for non-code artifact generation must provide a possibil-
ity to modularize text blocks to handle potentially complex non-
code artifacts within a system family. These prerequisites are pro-
vided by the adaption and the abstraction concept of the frame tech-
nology [2] and the template approach of model driven software de-
velopment used to transform a model to code [8, 14].

2.1 Frames
The idea of frames was developed in the research area of artificial
intelligence. In the seminal work “A Framework for Knowledge
Representation” [13] Marvin Minsky explains a system to describe
the mental processing of concepts appearing in the real world.

A frame defines constant values for a concept. These constant
values are part of all instances of a frame. Beside this a frame
contains also variable parts which are organized in so called slots.
A slot of a frame can be either an instance of an other frame or
finally a terminal value. Because of this relationship between frame
instances a complex frame hierarchy can be composed which is
useful to represent or analyse concepts of the real world [9, p. 120].

1 XML Hypertext Markup Language
2 Cascading Style Sheets
3 Extensible Markup Language
4 Extensible Stylesheet Language-Formating Objects

In 1987 Bassett describes in his seminal work [2] at the first
time the usage of frames to foster reuse of software components.
Independently of this work the company Delta Software Technol-
ogy developed a technology to generate software components based
on the idea of Minsky.

In [11, p. 55] the approach of Bassett is called the adaption
concept and the solution of Delta Software Technology is called
abstraction concept.

2.1.1 Adaption Concept
In the adaption concept frames are stepwise specialized. From
general frames more special frames will be assembled. Higher
level frames adapt lower level frames. The more general frames
are customized to the circumstances and requirements of the more
special frames [3, p. 88]. A frame will be changed on its slots,
which are the variation points of the frame hierachy. A frame has
default values for variation points, so an adapting frame must only
change the slots if there are special requirements which differ from
the defaults [3, p. 89]. Furthermore a frame at the adaption concept
did not have any mutable state. So its processing compares to the
processing of variables at the functional programming paradigm.

2.1.2 Abstraction Concept
Within the abstraction concept frames are not part of an other
frame, rather they are instantiated. The created instances will be
referenced from other frame instances. In this way a hierarchy of
frame instances is constructed. It is possible to instantiate a frame
more than once. Every instance gets its own set of slot-values and
references to other frames. This feature of the abstraction concept
resembles the class/instance-scheme of object-oriented program-
ming. Thereby the abstraction concept is similar to object-oriented
programming.

2.2 Templates
The MDSD aims at automatic generation of executable software
out of a formal model [24, p. 11]. A formal model represents rules
which make a statement about the models meaning. In this context a
model could be a class diagram in the Unified Modeling Language
(UML). Moreover also other types of models e.g. textual models
can be used. Automatic generation means that the source code is
generated without manual intervention. No modifications may be
applied to the generated source code because the model adopts the
role of code.

Underlying every concrete model is a meta-model. A meta-
model is a formal description of a domain in which a system is
generated. It defines the abstract syntax of the models. The ab-
stract syntax consists of the meta-model elements and their rela-
tion amongst each other [24, p. 29]. A transformation is described
by means of a template language. A template consists of static text
which contains tags on specific spots. During the generation pro-
cess these spots will be assigned text according to a input model
[24, p. 146]. The tags can contain additional instructions which
are executed while the model is processed, e.g. to modify an input
string. While templates are defined on the basis of a meta-model,
the generated text will be created according to a concrete model.
In this approach the templates are the reusable components of the
solution space.

MDSD aims at generating code artifacts. Because code is gen-
erated mainly as text, it is also possible to apply MDSD for gener-
ating textual non-code artifacts.

2.3 Techniques not Examined
The techniques mentioned before are not the only options to gen-
erate text. Subsequently some other techniques are listed. Every
technique has its own weakness which renders it not suitable for the
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specific purpose of text generation. In [24, p. 149ff] it is remarked
that common programming languages, such as Java or C# can be
used to create generators. However this idea is rejected, because of
language related problems such as processing of strings which re-
quires to use escaped sequences for special characters. Moreover,
language structures which are not designed for text generation have
to be used for the generator. Thereby it is hardly recognizable, how
the result will be structured. In [24, 147ff] another alternative is dis-
cussed, namely the application of XSLT5 to build a generator. The
availability of XPath as a powerful navigation language is pointed
out as a special advantage. XPath supports the navigation of ba-
sically every object structure. But an obvious disadvantage is the
hardly readable syntax of XML 6, which has to be used to describe
the transformation in XSL files. Preprocessors like those used in
C/C++, can be used independently from the compiler as well [24,
p. 143f]. Therefore it is basically possible to realize a text gener-
ator. A preprocessor is often used for small replacements of texts,
for instance the value of a constant. A frequent consequence is that
preprocessors are mostly not Turing-complete, they lack especially
control structures for iterations. These are required in order to im-
plement more complex generators. For this reason it is not practical
to realize the generation of textual non-code artifacts with a prepro-
cessor.

3. A Use Case for Text Generation
As use case to gain experience with the tools a family of documents
is implemented. A document of these family accompanies a pizza
and contains the following elements:

• The address and the title of the customer
• The price of the ordered pizza
• A list describing the ingredients. The list also contains a warn-

ing if an ingredient could be allergenic.
• A complimentary close customized to the order. Friends of chili

get the spanish wish ¡buen provecho!, garlic fans get the italian
wish Buon appetito and if no or both extras are chosen, the close
will be the english phrase enjoy your meal.

The document is generated to be suitable to the corresponding
pizza. The example covers a wide range of imaginable non-code
artifact generation scenarios. So one can gain experience with the
utilized tools. First the price contains no static contents: the gen-
erator is able to compute all values. Second the list of ingredients
consists of distinct text blocks which will be assembled with re-
spect to a certain order. The third part, the complementary close,
is a mixture of the both preceding variants. The closings will not
be changed but a generator must choose the right text block with
respect to the chosen extras.

4. Tools for Text Generation
In the last section, techniques for textual non-code artifact genera-
tion were examined. This section focuses on tools for implementing
these techniques. There is more than on implementation for each of
the preceding introduced techniques. Tools to realize one of the
two frame concepts are presented in [11, p. 56]. The template ap-
proach is realized by MDSD tools. An overview of available tools
is provided in [7, p. 622]. The evaluation of these techniques will be
based on open source or freely available tools so that the following
descriptions can be easily reproduced7. However it is important that

5 Extensible Stylesheet Language Transformations
6 Extensible Markup Language
7 The complete source-files of all three implementations can be downloaded
as a zip archive from [15]

the used tools adequately support the examined technique. This re-
quirements are fulfilled by the following tools: For the abstraction
concept XFramer is chosen and for the adaption concept XVCL is
selected. To examine the template approach openArchitectureWare
will be applied.

In addition to the aforementioned requirements, there are also
the following properties of the tools expected, to realize a family of
non-code artifacts:

• It must be possible to define a domain specific language.
• It must be possible to preserve a certain locality of the parts of

the GDM to achieve a sufficient maintainability
• Control structures for processing text modules must be avail-

able.
• Debugging facilities must be available.
• It should be possible to externalize huge text blocks in order to

improve the readability of the generator modules.
• It must be possible to exactly control the output of white spaces

to get the expected output by the TEX-processor.
• Tools, i.e. editor, must be available for creating the text mod-

ules.

4.1 XFramer
XFramer is available from [23] as freeware for Linux and Windows
for non-commercial purpose. It is used to extend the programming
languages C++, C# and Java with the capability to process frames
[11, p. 55] Nevertheless the compiler is still required to use it as
a full frame processor. XFramer works as a preprocessor, which
translates the frame definitions to valid source code of the lan-
guage of the used compiler. Even if one of the languages C++, C#
or Java is used to process the frames, it does not imply that only
one of this languages can be used exclusively. In fact all textual
representation—any programming language, HTML, XML or nat-
ural language are imaginable—of information can be processed by
the tool [11]. The tool extends the supported languages with new
elements.

Figure 1. Workflow when applying XFramer [11, p. 57]

Figure 1 depicts the flow of a XFramer run. The XFramer
preprocessor reads frame specifications and transforms them into
source code modules—classes in the case of the chosen host pro-
gramming language. The output of the preprocessor is processed by
the compiler of the used host language. In this step the real genera-
tor is created. This generator is executed in the runtime system and
creates the result in the target language. XFramer creates the gener-
ator in the selected programming language, so it is fully amenable
to the debugger of this language [10, p. 80]. In addition all libraries
available in the host language can be used to build the generator. So
it is e.g. imaginable to make the generator configurable by XML
using a XML processing library like Xerces [10, p 80].
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4.2 XVCL
XVCL is an acronym for XML-based Variant Configuration Lan-
guage and names a language to define frames according to Bassetts
adaption concept. Frame definitions in XVCL are processed by the
tool XVCL processor [12, p. 1]. Language, tool as well as a method-
ology for domain analysis are developed by the National University
of Singapore. XVCL processor can be freely downloaded from [1]
under the permission of the GNU Lesser General Public License
(LGPL) version 2.1.

XVCL is a XML-based language and is shipped with a Doc-
ument Type Definition (DTD). It is written in Java so it executes
on many host systems. The tool is invoked with the specification
frame and starts the generation process in which all frames directly
or indirectly referenced by the specification frame are stepwise pro-
cessed and assembled to one or more output documents. There lies
one key difference to XFramer, which instantiates the frames, so
the content can be changed during the generation process.

If the parameter -B is passed to the execution of XVCL super-
fluous white spaces are removed. Otherwise all blank lines of the
frames are written into the output documents. Lines with XVCL
commands become blank lines. An exemplary invocation of the
tool is java -jar xvcl.jar -B pizza-document.xvcl. A detailed
description of the XVCL-tool can be found in [18].

4.3 OpenArchitectureWare
OpenArchitectureWare (oAW) is a generator framework from the
area of model driven software development. It covers a language
family to check and transform models. The language Xpand is used
to describe model to text transformations. The framework offers
editors and plug-ins for the eclipse platform but it is also possible
to use it independently [17]. It is available under the terms of the
Eclipse Public License (EPL).

Within the subproject Xtext a tool is developed which allows
to define the syntax of a DSL with a sort of Extended Backus
Naur Form (EBNF). With this definition a model is generated
which represents the abstract syntax tree (AST) of the language.
In addition an editor for the eclipse platform is generated which
assists the user with error checking, syntax highlighting and so on.

It is not possible to describe all features of the oAW project here.
For details the reader is referred to the manual of oAW [8].

4.4 Comparison of the Tools
Essential properties of techniques and of tools for generating non-
code artifacts in natural language are enumerated in section 2 and
4 respectively. These properties will be studied more closely with
respect to the selected tools now.

Definition of the DSL XFramer uses a host language. Hence the
only restriction implementing a DSL is given by the selected host
language. As it is the case in the described example the DSL is
embedded into the host language. If this approach is not powerful
enough, it is imaginable to externalize the DSL and include a
parser which reads the specification. XVCL on the other hand only
allows to define a rudimentary DSL in the specification frame.
In the implementation of the use case with XVCL multi-valued
and single-valued variables are used to realize the DSL. Another
approach could be to define a DSL as an XML lanugage and use
XSLT8 to transform a specification into a valid XVCL specification
frame. The oAW solution in this paper is showing the realization
of a textual DSL with the Xtext tool. It has the ability to create
expressive DSLs. A specification in the DSL can be written in its
own editor which has the capability to check the specification and
highlight keywords.

8 Extensible Stylesheet Language Transformations

Locality of the parts of the GDM With XFramer it is possible
to define one configuration frame which contains all the knowl-
edge to configure the elements of the solution space given a spec-
ification from the problem space. Another possible approach with
XFramer is to define intelligent frames with each containing some
specific part of the configuration knowledge and elements of the so-
lution space. Thus some elements of the configuration knowledge
can be reused but the locality of the components of the configura-
tion knowledge degrades. Because of the stepwise adoption of the
frames in XVCL only the second approach is feasible. The frame-
work oAW is able to use model to model transformations. So the
configuration knowledge is localized in the transformation rules. If
the direct model to text generation approach is used the maintain-
ability degrades.

Available control structures XFramer can use all the facilities
of the host language, so very expressive solutions are possible. In
contrast XVCL provides only a few basic commands which permit
the definition of the logic, but they are much harder to use—also
because of the XML syntax—than the control structures of a gen-
eral purpose language. The Xpand template language provides also
just rudimentary support for control structures. But it is possible to
define the logic in a functional sub-language of the oAW project
called Xtend which has the ability to call statically defined Java-
methods. Thereby all the power of the Java language is available.

Debugging facilities If errors are detected during the generation
process it would be helpful to use a debugger to understand the
generation process. In fact XFramer uses a host language, hence
the debugging facilities of this language are available. If there is
any error at the generation process with the XVCL tool it produces
error messages. Another approach to support debugging is to pro-
duce messages which the generator displays during the generation
process. At present, other debugging facilities do not seem to be
available. The oAW project contains debugging facilities to debug
templates, workflows and transformations.

Externalize and modularize text blocks If huge text blocks are
used, it would be useful to define them externally and reference
them by a generator module. This is directly supported only by
XFramer. Using XVCL there is no possibility to do so. Basically
the same restriction applies to oAW but this functionality can be
realized with the capability to use Java-methods. Related to this
problem is the ability to modularize text blocks. All tools allow to
distribute the modules over several files.

Control white spaces Even if the final document is typeset by
LATEX it is nevertheless important that the resulting document does
not contain superfluous white spaces because they could have a
meaning. At LATEX e.g. an empty line results in a new paragraph
in the target document. So the techniques must provide a facility to
control the output of white spaces. Using XFramer all blanks are
outputted as defined in the frame. So the output of the blanks can
not be well controlled. The XVCL tool has the ability to remove su-
perfluous white spaces but if there are intended blank lines they are
also removed. The lines in the templates of Xpand which contains
escaped commands will be removed if a minus is noted at the end
of the escaped sequence.

Tool support The creation of text modules for one of the tool
could be made more convenient by having any tool support, e.g.
a text editor with syntax highlighting. At present, it seems that
there is no editor available which assists the creation of frames
for XFramer. But perhaps it is more adequate to use a common
text editor which supports the selected host language. XVCL is a
XML dialect so any XML editor can be used. Because a DTD is
given, some editors can even perform syntax highlighting and code
completion. oAW is well integrated into the eclipse platform. There
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are editors, wizards and other plug-ins available, which make the
usage of the different languages convenient.

Table 1. summary of the comparison of the tools
Criteria XFramer XVCL oAW
Defining DSLs − −− ++
Locality of parts of the
GDM

++ −− ++/−a

Available Control
structures

++ −− ++/−−b

Debugging facilities ++ + +
Externalize text blocks ++ −− +c

Modularize text blocks ++ ++ ++
Control white spaces −− + +
Tool support −− ++ ++
Overall effort to imple-
ment the use case

− ++ +

(−−) bad to (++) good

a Good, if model to model transformation are used, otherwise bad.
b By using Xtend all possibilities of Java are available.
c By using Xtend and Java.

5. Conclusions
This work has analyzed three technology projections for their appli-
cability to generate textual non-code artifacts in natural language.
The techniques and tools which realize them were presented. The
three tools are used to implement a use case. The three tools were
compared with respect to the aforementioned criteria. As table 1
suggests, the toolset of oAW is well suited to realize the text gen-
erator. But it needs some effort to set up the environment to get
the generator run (define a grammar, install the plugin and so on).
The fastest way to implement the text generator of the use case pro-
vides XVCL. If a simple DSL suffices or there is an other way to
configure the specification frame XVCL is a lightweight alternative
to oAW. XFramer was somewhat harder to use then the other two
approaches. But if complex decision logic is to be implemented, it
can be an alternative because of the integration in a host language.
To decide which tool is best suited for a given environment one
must check the ease of integration in a present tool chain to gen-
erate system family members. Therewith it is possible to use one
and the same DSL to specify the software system and the adequate
textual non-code artifacts in natural language.

This paper only examines textual non-code artifacts in natural
language. Another survey should reveal other relevant types of non-
code artifacts. The result of this survey could be organized in a
taxonomy of non-code artifacts. With such a taxonomy it would be
possible to examine generation tools for all other types of non-code
artifacts.

Real life use cases probably contain much harder requirements
to textual non-code artifacts in natural language than the presented
toy use case. To implement such requirements some ideas can be
found in work related to NLG ([20], [21] and [22]).

As the implementation of the use case demonstrates, the con-
ceptual framework of the generative software development [6] is
also well-suited to generate textual non-code artifacts in natural
language. With this aspect in mind, further technology projections
specialized for generating non-code artifacts could be developed.
As the usage of a multistage generation process in the use case
demonstrates (e.g. XVCL and TEX processor), the usage of more
than one tool to realize the generation is a promising approach. A

further example would be to generate graphics by producing svg-
files (which are text-based) and then use one of the svg-tools to
convert it to a required file type.

This paper has shown that existing techniques and tools are
applicable to generate (textual) non-code artifacts. To get a deeper
insight the aforementioned next steps should be pursued.
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