
Integrating Compositional and Annotative Approaches for
Product Line Engineering

Christian Kästner
School of Computer Science

University of Magdeburg, Germany
kaestner@iti.cs.uni-magdeburg.de

Sven Apel
Department of Informatics and Mathematics

University of Passau, Germany
apel@uni-passau.de

ABSTRACT
Software product lines can be implemented with many different
approaches. However, there are common underlying mechanisms
which allow a classification into compositional and annotative ap-
proaches. While research focuses mainly on composition approaches
like aspect- or feature-oriented programming because those sup-
port feature traceability and modularity, in practice annotative ap-
proaches like preprocessors are common as they are easier to adopt.
In this paper, we compare both groups of approaches and find com-
plementary strengths. We propose an integration of compositional
and annotative approaches to combine advantages, increase flexibil-
ity for the developer, and ease adoption.

1. INTRODUCTION
In recent years, software product lines (SPLs) have gained momen-
tum [9, 37]. Instead of implementing each program from scratch,
SPLs enable systematic reuse in a domain by generating a family
of related programs – so called variants – from a common code
base. In this context, features are domain abstractions to distinguish
different variants. Typically, features implement increments in func-
tionality. Developers who want to adopt SPL technologies for their
product can choose from a wide range of different mechanisms to
implement SPLs: from version control systems [42], over simple
#ifdef statements [35], over frameworks and components [9], to var-
ious specialized languages or tools [19, 39, 17, 10]. Each of these
approaches has different advantages and disadvantages and there is
plenty discussion about which approach is suited best, e.g., [33, 34,
3, 24, 35].

In earlier work, we used various approaches to implement SPLs.
We started with AHEAD [10] and AspectJ [28] and their integration
Aspectual Feature Modules [7]. These languages can be used to com-
pose variants from reusable code units (compositional approaches).
In recent work, however, we found several limitations [23, 24],
especially when adopting SPL technology for legacy applications.
Therefore, we looked at more traditional approaches like #ifdef
preprocessors and improvements thereof (annotative approaches).
Without ever making it explicit in our research agenda, we pursued
both paths – compositional and annotative approaches – in parallel.

While we addressed the specific problems like granularity, lan-
guage independence, expressiveness, or type-safety of either group
of approaches in earlier work [24, 8, 25, 7, 23, 22, 5], we noticed
that both groups complement each other. There are several problems
for which compositional approaches required severe overhead, but
an annotative approach can solve straightforwardly, or the other
way around. In this paper, we give an overview of both groups of
approaches, discuss differences and synergies, and show how to
integrate both.

We focus especially on SPL adoption. Adopting SPL technolo-
gies for a project is difficult, especially if the target application
is not developed from scratch but derived from a legacy applica-
tion. There is some discussion whether lightweight implementation
approaches can lower the adoption barrier or whether more sophis-
ticated approaches are needed for maintainability and long-term
project success [13]. In this paper, we show how an integration of
both groups of implementation approaches can ease SPL adoption,
but still support long-term design qualities.

Specifically, we make the following contributions: (a) We put
annotative and compositional approaches (two groups of common
approaches for SPL implementation) in contrast and analyze advan-
tages and disadvantages of each. (b) We discuss an integration of
both. (c) We outline how the integration can lower the adoption
barrier but still support long-term qualities.

2. SPL IMPLEMENTATION APPROACHES
There are many approaches to SPL implementation. Most of them
can be grouped either as compositional or as annotative [24]. In this
section, we briefly introduce both groups, before we compare them
to discuss advantages and disadvantages in Section 3.

Compositional Approaches. Compositional approaches imple-
ment features as distinct (physically separated) code units. To
generate a product line member for a feature selection, the cor-
responding code units are determined and composed, usually at
compile-time or deploy-time. There is a large body of work on fea-
ture composition, usually employing component technologies [44],
frameworks [21], feature-oriented programming with some form of
feature modules [39, 41, 10, 7], subjects [19], multi-dimensional
separation of concerns [45], and aspects [28]. Depending on the
concrete approach or language, the composition mechanism varies
from assembling plug-ins to complex code transformations, but the
general idea of composition as illustrated in Figure 1 is the same.

In this paper, we use AHEAD [10] – respectively the compatible,
newer, and language-independent FSTComposer [8] that uses the
same mechanisms – as representative for compositional approaches.
In AHEAD and FSTComposer, features are implemented in sepa-
rate modules that modify the base code. In Figure 2, we show a



class Stack {
void push(Object o) {

elementData[size++] = o;
}
...

}

class Stack {
void push(Object o) {

elementData[size++] = o;
}
...

}

refines class Stack {
void push(Object o) {

Lock l = lock(o);
Super.push(o);
l.unlock();

}
...

}

refines class Stack {
void push(Object o) {

Lock l = lock(o);
Super.push(o);
l.unlock();

}
...

}

Base

Feature: Locking

Feature: Statistics

aspect Statistics {
...

}

aspect Statistics {
...

}

class Stack {
void push(Object o) {

Lock l = lock(o);
elementData[size++] = o;
l.unlock();

}
...

}

class Stack {
void push(Object o) {

Lock l = lock(o);
elementData[size++] = o;
l.unlock();

}
...

}

Composition

Figure 1: Composing code units.

1 c l a s s Stack {
2 void push(Object o) { ... }
3 Object pop() { ... }
4 }

5 r e f i n e s c l a s s Stack {
6 void backup() { ... }
7 void restore() { ... }
8 void push(Object o) {
9 backup();

10 Super.push(o);
11 }
12 }

Figure 2: AHEAD example (compositional approach).

simple code example. The base code implements a stack, while
in a separate module a feature Undo is implemented. The refines
keyword indicates that the feature module extends an existing class.
It introduces the new methods (backup and restore) and extends the
existing method push similar to overriding using the keyword Super.
The base code and different feature modules are composed with the
AHEAD tool suite. Depending on which features are included in
the composition process, different variants are generated.

Annotative Approaches. In contrast, annotative approaches imple-
ment features with some form of explicit or implicit annotations in
the source code. The prototypical example, which is commonly used
in industrial SPLs, are #ifdef and #endif statements of the C prepro-
cessor to surround feature code. Such techniques are also common
in commercial SPL tools as pure::variants [11] or Gears [31]. Other
examples of annotative approaches are Frames/XVCL [20], explict
programming [12], Spoon [36], software plans [14], metaprogram-
ming with traits [47], and annotation-based aspects [29].

In this paper, we use our own tool CIDE as representative for
annotative approaches. It is similar to #ifdef preprocessors in that
code fragments are annotated and can be removed before compila-
tion depending on the feature selection. However, CIDE improves
over traditional preprocessors in several ways: (1) annotations are
represented by background colors and do not obfuscate the source
code with additional boilerplate code [24]; (2) annotations in CIDE
are based on the underlying structure of the artifact and, thus, disci-
plined (e.g., it is not possible to annotate only an opening bracket but
not the closing one) and ease the generation process [25, 24]; finally,
(3) all annotations are managed by the tool infrastructure which
allows virtual views on the source code (e.g., show all code that is
annotated with feature Backup) and navigation support [27, 24].

In Figure 3, we show the previous example as implemented with
CIDE. All feature code is located in the same code base. In the

1 c l a s s Stack {
2 void push(Object o) {
3 backup();
4 ...
5 }
6 Object pop() { ... }
7 void backup() { ... }
8 void restore() { ... }
9 }

Figure 3: Conditional compilation example (annotative ap-
proach).

printed version of this paper, all code annotated with the Backup
feature is underlined. In order to create a variant without this feature,
all annotated code is removed before compilation. Nevertheless, this
paper is not specifically on CIDE, but other annotative approaches
could be used or visualized in the same way.

3. COMPARISON
After briefly introducing the two groups of approaches, we compare
them based on several characteristics. We selected characteristics
that emphasize the differences between these approaches or which
arose during our prior research or case studies. The results are sum-
marized in Table 1 with approximated grades. This evaluation is
based on prior work in SPL research and our own experience.

Feature Traceability. Feature traceability is the ability to directly
trace a feature from the feature model (domain space) to the imple-
mentation (solution space) [15, 2]. For example, feature traceability
is important when developers want to debug an error that occurs in
a specific feature and want to find all code related to this feature.

Compositional approaches directly support feature traceability as
the code that implements a feature can be traced to a single code unit
(component, plug-in, aspect, feature module, etc). For example, in
Figure 2, all code of the backup feature can be found in the second
module (Lines 5–12). In contrast, in annotative approaches feature
traceability is poorly supported as feature annotations can be scat-
tered over the entire code base (cf. Fig. 3). However, with special
tools like CIDE it is still possible to provide feature traceability in
an annotative approach at a tool level. As explained above, virtual
views and navigation support can be used to explore all code that
belongs to a feature (see [27] for details). Nevertheless, feature
traceability in annotative approaches is a matter of tool support.

Modularity. Modularity as needed for modular reasoning or even
separate compilation is possible in some compositional approaches.
For example, when using components [44], plug-ins [21], sub-
jects [19] or hypermodules [45] this is well supported. However,
many more advanced compositional approaches like many aspect
languages or the analyzed approaches AHEAD or FSTComposer
are based on source code transformations and provide only limited
modularity, e.g., separate compilation is not supported. There are
no interfaces for feature modules in these approaches, thus to under-
stand a feature, it is often necessary to look also at the base code or
even other features1.

In annotative approaches a modularization is not intended. Modu-
lar reasoning can be simulated with tool support (views and naviga-
tion support as in CIDE) to some degree, but separate compilation
is not possible.

1In the context of aspect-oriented programming, modularity has
been addressed intensively, e.g., [43, 18], and can potentially be
adapted for other compositional approaches.



1 c l a s s Stack {
2 void push(Object o) {
3 i f (o== n u l l ) re turn ;
4 hook();
5 ...
6 }
7 Object pop() { ... }
8 void hook() {}
9 }

10 r e f i n e s c l a s s Stack {
11 void backup() { ... }
12 void restore() { ... }
13 void hook() {
14 backup();
15 }
16 }

Figure 4: Fine-grained extension with AHEAD.

Granularity. The granularity of implementation mechanisms
provided by an approach is closely related to its expressiveness.
Very coarse-grained approaches only assemble files in a directory,
while fine-grained approaches allow modifications on the level of
methods, statements, parameters or even expressions [24].

Annotative approaches support even fine-grained extensions well.
As many are line-based or character-based, they scale from annotat-
ing entire files to even small code fragments of statements (cf. Fig. 3).
Even when the underlying structure is used as in CIDE, annotations
on the level of AST nodes allow even fine-grained annotations on
statements, parameters, or expressions [24].

In contrast, compositional approaches only provide a coarse gran-
ularity composing usually only components or – in some approaches
like aspects, AHEAD, or FSTComposer – down to introducing or
extending methods in existing classes (cf. Fig. 2). However, manipu-
lation of statements inside the middle of a method, of parameters or
of expressions is not possible in any compositional approach due to
conceptual limitations [24].2 Instead, workarounds like hook meth-
ods are needed. For example, a slight modification in the original
example makes an implementation with AHEAD difficult. Imagine
that the backup call in Figure 2 is not the first statement executed in
the push method, but located after some sanity checks. In this case
workarounds as the hook method in Figure 4 are required, because –
in contrast to annotative approaches – introducing a statement in the
middle of a method is not supported.

Safety. For both compositional and annotative approaches recent
research has provided solutions that ensure that all (potentially mil-
lions) variants of the SPL are syntactically correct and well-typed.
While compositional approaches ensure syntactical correctness with
their composition mechanism, many annotative approaches are line-
based or character-based and can easily generate syntactically in-
correct variants. However, CIDE – our annotative approach which
enforces disciplined annotations – provides such safety using the
underlying structure [25] and can thus achieve the same level of
safety.

Although they use different implementations, there are several
approaches to type-check entire SPLs for both compositional [46,
5] and annotative approaches [16, 22, 30]. Beyond type-safety,
we know of no approach to verify behavior of all SPL variants that

2Some aspect languages like AspectJ can intercept join points in
the body of methods, which can be used for extending statements
to some degree (‘call && withincode’). However, there are several
limitations as discussed elsewhere [23, 24].

would scale to mid-sized SPLs. There are several approaches on SPL
testing [38]; however, they work on the level of generated variants
and are thus independent of the implementation mechanism.

Language independence. Language independence is another
characteristic where both approaches perform similarly well. While,
many annotative approaches are line-based or character-based and
thus completely language-independent, even the more disciplined
CIDE which uses the underlying structure can be extended for
arbitrary languages (generated from the language’s grammar) [25].
In contrast, compositional approaches are usually depending on a
particular host language, where AHEAD and FSTComposer provide
notable exceptions. Especially in FSTComposer, there is a general
composition mechanism which can be easily extended for a new
language with only little manual effort [8].

SPL Adoption. Industry is very careful on adopting composi-
tional approaches because it influences their existing code base and
development process too much. At most, after careful planning,
frameworks or components are used [9]. In contrast, annotative
approaches can be adopted much quicker, because they introduce
only lightweight tools which do not change the code or development
process too much at first [13]. Annotative approaches, thus, make
adoption of SPL technologies easier and more likely in the initial
steps of evaluation and early development. In this context, CIDE’s
concept of storing annotations separate from the source code is
worth mentioning, because it allows annotating a legacy application
without changing its source code representation. This makes CIDE
well-suited for evaluating SPL technologies.

In an earlier case study, we experienced ourselves that refactoring
a legacy application (in this case Oracle’s Berkeley DB) into separate
code units that can later be composed is by far more difficult and
tedious than just annotating code [24].

4. COMPOSITIONAL AND ANNOTATIVE
APPROACHES IN CONCERT

The comparison in the previous section showed that compositional
and annotative approaches are quite different and have different –
often complementary – strengths and weaknesses, which are also
differently important in various phases of SPL adoption. Research
on SPL implementation focuses almost exclusively on composi-
tional approaches, ignoring the advantages of annotative approaches.
Instead, the demand from industry has been answered mostly by
commercial vendors like BigLever and Pure Systems which (among
others) provide tools to annotate code. In this paper, we show that
integrating compositional and annotative approaches is beneficial.
In the following, we propose a simple integration and discuss its
impact on the characteristics above.

4.1 Integration
Conceptually, an integration is straightforward. Using a compo-
sitional approach, features can be physically separated into code
units (e.g., components, aspects, feature modules). Inside these
physically separated code units, an annotative approach can be used
to additionally annotate code fragments.

In Figure 5, we show a possible different implementation of the
extended example of Figure 4. The method declarations for backup
and restore are implemented in a physically separated AHEAD
feature module, while some code (that would be hard to extract)
is left as an annotation (underlined) in the base code. To generate
a variant, the code units are composed and the annotations are
evaluated to remove unneeded code fragments.

Also technically, such integration is straightforward. The annota-



AHEAD/FSTComposer CIDE Integrated Approach Importance in the life cycle
(compositional) (annotative)

Traceability ++ + + all phases
Modularity/Separate comp. + −− +/− maintenance
Granularity − ++ ++ early adoption, implementation
Safety + + + all phases
Language independence + + + all phases
Adoption − ++ ++ project start

++ very good support, + good support, +/− medium support, − poor support, −− no support

Table 1: Comparison

1 c l a s s Stack {
2 void push(Object o) {
3 i f (o== n u l l ) re turn ;
4 backup();
5 ...
6 }
7 Object pop() { ... }
8 }

9 r e f i n e s c l a s s Stack {
10 void backup() { ... }
11 void restore() { ... }
12 }

Figure 5: Fine-grained extension with AHEAD.

tive approach – in our case CIDE – must only be extended to support
the additional language constructs of the compositional approach
(e.g., refines keyword), and the generation process must be adapted
to handle both composition and evaluating annotations. If annota-
tions are evaluated before the actual composition, the composition
process itself does not even need to be adapted. On the tool level,
an integration is more difficult as both tools must be integrated.
Views and navigation support for the annotative approach must be
extended for physically separated feature implementations, and ex-
isting support for the compositional language as in FeatureIDE [32]
(e.g., syntax highlighting, code completion, outline view) must be
extended to understand the annotations. However, integrating tools
is not a conceptual challenge, but merely an engineering task.

Interestingly, automated refactorings that transform annotated
code into physically separated AHEAD feature modules [26] and
automated refactorings that transform AHEAD feature modules into
annotated CIDE code [30] have been developed. While the result
of these refactorings might be difficult to read (e.g., the transforma-
tion from CIDE to AHEAD heavily requires hook methods as in
Figure 4, which makes generated code hard to read in the presence
of fine-grained extensions) or unambiguous (transforming AHEAD
to CIDE, there are many different possible annotated programs that
express the same behavior), these automated refactorings still help
developers to deal with the different possible representations of the
source code. Note, refactorings can also be used to convert only
parts of the SPL, e.g., convert individual features or only code from
certain classes or methods.

4.2 Comparison
An integration of compositional and annotative approaches does
not automatically dissolve all disadvantages of either approach. For
example, when using annotations in physically separated feature
modules, modularity is lost as if only annotations were used in the
first place. However, the main advantage is that developers can

always decide when to use which approach and when to use a com-
bination of both, e.g., to achieve fine granularity or ease adoption.
In the following, we discuss the criteria listed in Section 3 for the
integrated approach. Approximated grades are shown in Table 1.

Feature Traceability. First, feature traceability is weaker than in
pure compositional approaches. A feature must not be physically
separated, but can instead or additionally be implemented by some
scattered (annotated) code fragments, as shown in the example in
Figure 5. However, still the same views and navigation support from
CIDE can be used, so feature traceability is not worse than in the
CIDE solution. Moreover, if a full (or partial) physical separation
is desired it can be achieved and even improve feature traceability.
In that case, all (or most) relevant feature code can be found in one
corresponding code unit.

Modularity. When integrating compositional and annotative ap-
proaches modularity depends on how the developers implement a
feature. They can choose between a modular implementation (us-
ing classes, modules, aspects, feature modules) or a non-modular
implementation with (at least some) scattered code fragments as in
Figure 5. In general, modularity is weakened and separate compila-
tion is no longer possible. However, using gradual refactorings it is
possible to achieve modularity in the long run.

Granularity. The integrated approach benefits from the fine granu-
larity of the annotative approach. Features can still be implemented
with physically separated code units as far as reasonable or pos-
sible with the low available granularity. However, additionally
fine-grained extensions can still be added to the base code or other
features and marked with annotations. For example, instead of using
workarounds as the hook method in Figure 4, such fine-grained
extensions can be implemented with an annotation as shown in Fig-
ure 5. Again, the integrated approach allows a quick solution using
annotations at first, while further refactorings are possible to change
the implementation to avoid fine-grained extensions and use only
the compositional approach in the long run.

Safety and language independence. As discussed above, there
are striking commonalities in the solutions for type-checking and
language-independence developed in recent research for both, com-
positional and annotative approaches. As the mechanisms are al-
ready related, and integration is mostly an engineering task. Thus,
the same level of safety and language independence can be achieved
as in the original isolated approaches.

Adoption.
The most interesting results from an integration affect the process

of adopting SPL technologies for a project. While industry is very
careful about adopting compositional approaches, they are usually
seen as superior in academia because of modularity, separations of



concerns and thus promised improvements during maintenance and
evolution in the later life cycle phases. Nevertheless, companies
often use lightweight annotative approaches for faster results and
lower initial risk [13].

In this scenario, the integration of compositional and annotative
approaches pays off. In early evaluation and adoption stages, devel-
opers can simply annotate legacy code. They can use the lightweight
capabilities of annotative approaches without having to change their
code base. As annotations are stored separately in CIDE, these
annotations do not even affect the code base at all.

In later stages, when the idea of developing SPLs is established,
and annotations already provide variability they can gradually change
from the annotated code base to separated feature modules by au-
tomated or manual refactoring. Still, it is not necessary to refactor
all annotated code fragments at once, but developers can start with
the obvious coarse-grained ones (separate entire classes or method
introductions) and gradually prepare the code (e.g., by introducing
explicit extension points) to avoid even the annotated fine-grained ex-
tensions. This way it is possible to adopt a compositional approach
gradually and eventually achieve long-term goals of modularity and
maintainability.

4.3 Discussion
Instead of being forced to choose between an annotative or composi-
tional approach, an integration allows to start with one and gradually
refactor to the other. For each problem, developers can choose the
mechanism that suits best at first and only later refactor to a different
version if reasonable. Though this allows developers to break modu-
larity, it also gives them expressive power to express fine-grained
extensions. Goals that have been achieved in either approach like
traceability, safety, or language independence can be adapted also
for the integrated approach.

Instead of a one-step effort with uncertain costs and risks, the
integration allows a lightweight adoption with annotative approaches
and gradual refactoring to compositional approaches. This eases
the initial adoption barrier significantly, while long-term goals are
explicitly supported.

5. RELATED WORK
Several related publications compare different approaches to SPL
implementation. First, Lopez-Herrejon et al. [33] and Mezini and
Ostermann [34] compare several compositional approaches. Both fo-
cus in detail on modularization support and do not cover annotative
approaches. Next, Anastasopoulos and Gacek [1] briefly compare
11 concrete implementation approaches, Muthig and Patzke [35]
also compare 6 approaches. Both comparisons include conditional
compilation and frames as annotative approaches. However, in
both works analysis is focused on expressiveness and several details
of analyzed languages and does not consider an integration of ap-
proaches. We provide a broader comparison on a higher level of
abstraction, where we each subsume all compositional approaches
and annotative approaches. For our analysis the subtle distinctions
between different compositional approaches is not relevant, but the
importance lies in the bigger picture achieved with an integration.

The idea of adopting SPL technology slowly and stepwise emerged
from Spinczyk in a discussion at the Dagstuhl seminar ‘Software En-
gineering for Tailor-made Data Management’ [4]. The participants
proposed a migration path from ‘thinking in product lines’, over
using advanced preprocessors, over object-oriented decomposition,
toward more advanced compositional approaches of aspect-oriented
programming and feature-oriented programming, and eventually
toward model-driven development or a decoupling using service-

orientation. We follow this migration path on the lower levels and
actually combine annotative and compositional approaches to be
able to evolve gradually from one approach to the other.

FeatureC++ [6], a compositional approach for C++ based on
feature-oriented and aspect-oriented programming mechanisms, still
allows to use the C preprocessor (#ifdef ). FeatureC++ can therefore
be considered as an existing implementation that already integrates
compositional and annotative approaches to some degree. Neverthe-
less, this integration was not planned and never made explicit. The
used annotative approach is line-based, does not use the underlying
structure and there are neither views nor navigation support. In prior
work using FeatureC++, developers explicitly avoided to use the
preprocessor to achieve variability [40].

6. CONCLUSION
There are many different approaches to implement SPLs. Most can
be classified as either compositional or annotative. While annotative
approaches like simple #ifdef directives are common in industry,
research focuses mostly on compositional approaches like aspect-
oriented or feature-oriented programming.

In this paper, we compared both groups of approaches and found
that there are many differences in strengths and weaknesses, but that
it is also possible to base both on similar foundations based on the
artifact’s structure. To combine the advantages of each and address
the shortcomings we propose an integration. With this integration a
developer can separately choose which implementation mechanism
to use for each problem. This eases SPL adoption. When adopting
SPL technologies, it is possible to first use the lightweight annota-
tive approaches and then gradually refactor toward compositional
approaches as far as possible and reasonable.

In future work, we want to implement the integration and exper-
imentally merge our tools CIDE and FSTComposer, and evaluate
our approach empirically in an industrial case study or experiment.

7. REFERENCES
[1] M. Anastasopoules and C. Gacek. Implementing product line

variabilities. SIGSOFT Softw. Eng. Notes, 26(3), 2001.
[2] G. Antoniol, E. Merlo, Y.-G. Guéhéneuc, and H. Sahraoui. On

Feature Traceability in Object Oriented Programs. In Proc.
ASE Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE). 2005.

[3] S. Apel and D. Batory. When to Use Features and Aspects? A
Case Study. In Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE), 2006.

[4] S. Apel, D. Batory, G. Graefe, G. Saake, and O. Spinczyk,
editors. Software Engineering for Tailor-made Data
Management. Dagstuhl Seminar Proceedings. 2008. to appear.

[5] S. Apel, C. Kästner, and C. Lengauer. Feature Featherweight
Java: A Calculus for Feature-Oriented Programming and
Stepwise Refinement. In Proc. Int’l Conf. Generative
Programming and Component Engineering (GPCE). 2008.

[6] S. Apel, T. Leich, M. Rosenmüller, and G. Saake. FeatureC++:
On the Symbiosis of Feature-Oriented and Aspect-Oriented
Programming. In Proc. Int’l Conf. Generative Programming
and Component Engineering (GPCE). 2005.

[7] S. Apel, T. Leich, and G. Saake. Aspectual Feature Modules.
IEEE Trans. Softw. Eng., 34(2), 2008.

[8] S. Apel and C. Lengauer. Superimposition: A
Language-Independent Approach to Software Composition.
In Proc. ETAPS Int’l Symposium on Software Composition,
2008.



[9] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, 1998.

[10] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Trans. Softw. Eng., 30(6), 2004.

[11] D. Beuche, H. Papajewski, and W. Schröder-Preikschat.
Variability Management with Feature Models. Sci. Comput.
Program., 53(3), 2004.

[12] A. Bryant et al. Explicit programming. In Proc. Int’l Conf.
Aspect-Oriented Software Development (AOSD). 2002.

[13] P. Clements and C. Krueger. Point/Counterpoint: Being
Proactive Pays Off/Eliminating the Adoption Barrier. IEEE
Software, 19(4), 2002.

[14] D. Coppit, R. Painter, and M. Revelle. Spotlight: A Prototype
Tool for Software Plans. In Proc. Int’l Conf. on Software
Engineering (ICSE). 2007.

[15] K. Czarnecki and U. Eisenecker. Generative programming:
methods, tools, and applications. ACM Press, 2000.

[16] K. Czarnecki and K. Pietroszek. Verifying Feature-based
Model Templates against well-formedness OCL Constraints.
In Proc. Int’l Conf. Generative Programming and Component
Engineering (GPCE). 2006.

[17] M. Griss. Implementing Product-Line Features by Composing
Aspects. In Proc. Int’l Software Product Line Conference
(SPLC). 2000.

[18] W. Griswold et al. Modular Software Design with
Crosscutting Interfaces. IEEE Software, 2006.

[19] W. Harrison and H. Ossher. Subject-oriented programming: a
critique of pure objects. SIGPLAN Not., 28(10), 1993.

[20] S. Jarzabek et al. XVCL: XML-based Variant Configuration
Language. In Proc. Int’l Conf. on Software Engineering
(ICSE). 2003.

[21] R. E. Johnson and B. Foote. Designing Reusable Classes.
Journal of Object-Oriented Programming, 1(2), 1988.

[22] C. Kästner and S. Apel. Type-checking Software Product
Lines - A Formal Approach. In Proc. Int’l Conf. Automated
Software Engineering (ASE). 2008.

[23] C. Kästner, S. Apel, and D. Batory. A Case Study
Implementing Features Using AspectJ. In Proc. Int’l Software
Product Line Conference (SPLC). 2007.

[24] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in
Software Product Lines. In Proc. Int’l Conf. on Software
Engineering (ICSE). 2008.

[25] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory.
Language-Independent Safe Decomposition of
Legacy Applications into Features. Technical Report 2,
School of Computer Science, University of Magdeburg,
Germany, 2008.

[26] C. Kästner, M. Kuhlemann, and D. Batory. Automating
Feature-Oriented Refactoring of Legacy Applications. In
Poster presented at Europ. Conf. Object-Oriented
Programming, 2007.

[27] C. Kästner, S. Trujillo, and S. Apel. Visualizing Software
Product Line Variabilities in Source Code. In Proc. SPLC
Workshop on Visualization in Software Product Line
Engineering (ViSPLE), 2008.

[28] G. Kiczales et al. An Overview of AspectJ. In Proc. Europ.
Conf. Object-Oriented Programming (ECOOP). 2001.

[29] G. Kiczales and M. Mezini. Separation of Concerns with
Procedures, Annotations, Advice and Pointcuts. In Proc.
Europ. Conf. Object-Oriented Programming (ECOOP). 2005.

[30] C. H. P. Kim, C. Kästner, and D. Batory. On the Modularity of

Feature Interactions. In Proc. Int’l Conf. Generative
Programming and Component Engineering (GPCE). 2008.

[31] C. Krueger. Easing the Transition to Software Mass
Customization. In Proc. Int’l Workshop on Software
Product-Family Eng. 2002.

[32] T. Leich, S. Apel, and L. Marnitz. Tool Support for
Feature-Oriented Software Development: featureIDE: an
Eclipse-based Approach. In OOPSLA workshop on eclipse
technology eXchange. 2005.

[33] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating
Support for Features in Advanced Modularization
Technologies. In Proc. Europ. Conf. Object-Oriented
Programming (ECOOP). 2005.

[34] M. Mezini and K. Ostermann. Variability Management with
Feature-Oriented Programming and Aspects. SIGSOFT Softw.
Eng. Notes, 29(6), 2004.

[35] D. Muthig and T. Patzke. Generic Implementation of Product
Line Components. In Proc. Net.ObjectDays. 2003.

[36] R. Pawlak. Spoon: Compile-time Annotation Processing for
Middleware. IEEE Distrib. Sys. Onl., 7(11), 2006.

[37] K. Pohl, G. Böckle, and F. J. van der Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer, 2005.

[38] K. Pohl and A. Metzger. Software product line testing.
Commun. ACM, 49(12), 2006.

[39] C. Prehofer. Feature-Oriented Programming: A Fresh Look at
Objects. In Proc. Europ. Conf. Object-Oriented Programming
(ECOOP). 1997.

[40] M. Rosenmüller et al. FAME-DBMS: Talor-made Data
Management Solutions for Embedded Systems. In Proc.
EDBT Workshop on Software Engineering for Tailor-made
Data Management, 2008.

[41] Y. Smaragdakis and D. Batory. Mixin Layers: an
Object-Oriented Implementation Technique for Refinements
and Collaboration-Based Designs. ACM Trans. Softw. Eng.
Methodol., 11(2), 2002.

[42] M. Staples and D. Hill. Experiences Adopting Software
Product Line Development without a Product Line
Architecture. In Proc. Asia-Pacific Software Engineering Conf.
2004.

[43] K. Sullivan et al. Information Hiding Interfaces for
Aspect-Oriented Design. In Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering.
2005.

[44] C. Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley, 2002.

[45] P. Tarr et al. N Degrees of Separation: Multi-Dimensional
Separation of Concerns. In Proc. Int’l Conf. on Software
Engineering (ICSE). 1999.

[46] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
Composition of Product Lines. In Proc. Int’l Conf. Generative
Programming and Component Engineering (GPCE). 2007.

[47] A. Turon and J. Reppy. Metaprogramming with Traits. In Proc.
Europ. Conf. Object-Oriented Programming (ECOOP). 2007.


